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1 Introduction

1.1 Purpose

The purpose of this module is to describe the capabilities and performance of the
telemetry decoding and frame synchronization equipment used by the Deep Space Network
(DSN) in order to assist the telecommunications engineer to design compatible spacecraft
equipment.

1.2 Scope

The detailed discussion in this module is limited to equipment that is currently
installed at the Deep Space Communications Complexes (DSCCs) and performs data decoding
and frame synchronization in real time. Additional factors that affect telemetry performance such
as imperfect residual or suppressed carrier synchronization (radio loss), imperfect subcarrier and
symbol synchronization, and waveform distortion are discussed in module 207. Formatting of
data for delivery to the customer is discussed in the companion document, 810-007.

2 General Information

Most spacecraft employ data encoding to make more efficient use of the data
channel. Currently, the coding used for deep space spacecraft is one of several convolutional
codes with or without concatenated Reed–Solomon (RS) code. The following paragraphs dicuss
the performance and provide recommendations for the use of codes that can be decoded by the
DSN telemetry processing equipment.
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2.1 Convolutional Codes

Convolutional codes are used on spacecraft because they achieve significant
coding gain with simple, highly reliable encoders and their decoders are of resonable complexity.
Convolutional codes are specified by their constraint length  (K) and rate (r). Constraint length is
the number of sequential input bits required to define the output symbols at any point in time.
Rate is the number of symbols produced for each input bit. In general, the performance of a
convolutional code increases with both K and r, but codes must be selected carefully because
channel bandwith varies directly with r  and decoder complexity increases exponentially with K.

2.2 Decoding of Convolutional Codes

The decoding of convolutional codes is performed by one of two Maximum-
Likelihood Convolutional Decoders (MCDs): the Block 2 MCD (B2MCD) and the Block 3
MCD (B3MCD) that are hardware implementations of the Viterbi decoding algorithm. The
B2MCD is intended for decoding constraint length 7, rate 1/2 codes whereas the B3MCD is a
general purpose decoder subject to the limitations discussed below. An additional Viterbi
decoder is implemented in software for decoding low rate data from the Galileo spacecraft. The
characteristics of the three decoders are provided in Table 1.

The B3MCD uses the full 8 bits of input symbol quantization provided by the
Block V Receiver (BVR). This provides decoding performance superior to the B2MCD, which
must map the 8-bit symbols from the BVR into 3-bit symbols. Unfortunately, there are a limited
number of B3MCDs at each complex, so the link designer is encouraged to accept the reduced
performance of the B2MCD whenever this is possible. The effect of 3-bit versus 8-bit input
symbol quantization on the K = 7, r = 1/2 code can be seen in the ideal performance curves
shown in Figure 1. This figure also shows the performance improvement that can be expected
from using the longer constraint length codes.

2.2.1 B2MCD- and B3MCD-Supported Encoder Connections

Two encoder configurations for K = 7, r = 1/2 (7,1/2) codes are supported by the
DSN. These are the NASA–DSN convention and the Consultative Committee for Space Data
Systems (CCSDS) convention, also known as the NASA-Goddard Space Flight Center (GSFC)
convention. The two codes utilize the same connection vectors but differ in symbol ordering.
Encoder diagrams for these two codes are shown in Figure 2. The DSN (7,1/2) code was most
recently used on Mars Global Surveyor, while the CCSDS code has been used on almost all
Earth orbiter spacecraft. Both codes are said to be transparent. That is, they can be decoded
before the ambiguity associated with Binary Phase Shift Keying (BPSK) modulation of the
subcarrier is resolved. The result of decoding a transparent code with every input symbol inverted
will be an output with every bit inverted

The B3MCD presently supports two configurations of K = 15, r = 1/6 (15,1/6)
codes. One of these 15,1/6 codes is used for the Cassini spacecraft and is diagrammed in Figure
3. The other 15,1/6 code was used for the Mars Pathfinder spacecraft and is not diagrammed.
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Table 1. Maximum- Likelihood Convolutional Decoder Characteristics

Parameter B2MCD B3MCD Galileo

Constraint Length

Frame Length

Code Rate

Connection Vectors

Symbol (Input) Rate

Bit (Output) Rate

Input Quantization

Node Synchronization

Frame Synchronization

7

Variable

1/2

Fixed

10  Ms/s (max.)

5 Mb/s (max.)

3 bits (8 levels)

Automatic

External

3  to 15

Variable

1/2 to 1/6

Programmable

6.6  Ms/s (max.)

2.2 Mb/s (max.)

8 bits

Automatic or
External

Automatic

14

65,536 symbols

1/4

Fixed

640 s/s (max.)

160 b/s 9max.)

8 bits

Automatic

Automatic

The difference between the two codes is the order in which their connection vectors deliver
symbols to the communications channel. Connection vectors and impulse responses for the
supported codes (including both 15,1/6 codes) are provided in Table 2.  The impulse responses
include  the effects of alternate symbol inversion, which is normally used to provide a sufficient
symbol transition density to ensure adequate symbol synchronizer performance.  Alternate
symbol inversion can be disabled if not required by the telecommunications link.

The B3MCD has the capability to support other codes, subject to the constraint
that the most significant and least significant bits of all connection vectors be equal to one. This
is not a significant limitation as it is a property of all the best codes.  It also includes the
capability to perform input symbol inversion as part of the node synchronization process and can
therefore process both transparent and non-transparent codes. It must be recognized, however,
that implementation of an additional code in the B3MCD would require significant resources for
implementation and performance verification.

2.2.2 Galileo Telemetry Decoder

The K = 15, r = 1/4 code that was flown on Galileo as an experiment for the X-
band downlink (and not available for the S-band downlink) could not be used when the high gain
antenna failed to fully deploy. The search for a code that would improve S-band telemetry
performance was complicated by the fact that the standard K = 7, r = 1/2 encoder could not be
bypassed in the S-band downlink. This resulted in the selection of a K = 11, r = 1/2 software
encoder programmed onboard the spacecraft and placed in series with the standard encoder,
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Table 2. B2MCD and B3MCD Connection Vectors and Impulse Responses

Name Constraint Length,
Rate

Connection
Vectors (HEX)1

Impulse
Response (HEX)1

DSN Standard2 (7,1/2) CV1 = 5b
CV2 = 79

1d61

CCSDS, GSFC Standard2 (7,1/2) CV1 = 79
CV2 = 5b

2e92

Cassini3 (15,1/6) CV1 = 4cd1
CV2 = 52b9
CV3 = 715d
CV4 = 67b7
CV5 = 76bf
CV6 = 7d4b

0159, 712c, df27, 703f,
14c6, 4b55

Mars Pathfinder3 (15,1/6) CV1 = 4cd1
CV2 = 52b9
CV3 = 67b7
CV4 = 715d
CV5 = 76bf
CV6 = 7d4b

0159, 7d2c, 1c27, 40fc,
14f6, 4855

1. Connection vectors and impulse responses are right justified within the hexadecimal
numbers, which have been divided into groups of four for readability.

2. These codes can be supported by the B2MCD and B3MCD.

3. These codes can be supported only by the B3MCD.

producing a K = 14, r = 1/4 code. Figures 4 and 5 show the connection diagrams for the K =11,
r = 1/2 software encoder, the K = 7, r = 1/2 encoder, and the K = 14, r = 1/4 encoder that resulted
from concatenating these two codes. Because the C0 connection vector has a 0 as its least
significant bit, this code is not compatible with the B3MCD; however, the low data rate made it
possible to construct a software decoder. This had additional advantages in that it provided
flexibility to perform feedback concatenated decoding (FCD)—a scheme in which multiple
passes are made through a Viterbi decoder constrained by information obtained from Reed–
Solomon decoding.
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Figure 4. Concatenated (11,1/2) and (7,1/2) Galileo Convolutional Encoder Connection
Diagram
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OUTPUT
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Figure 5. Equivalent (14,1/4)  Galileo Convolutional Encoder Connection Diagram
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2.2.3 Telemetry System Performance with Viterbi Decoding

Ideal reference curves for the (7,1/2) codes at the 3-bit quantization level of the
B2MCD and the 8-bit quantization level of the B3MCD were shown in Figure 1. This figure also
showed the performance of the (15,1/4) Galileo experimental convolutional code (which was not
used) and the (15,1/6) Cassini convolutional code.

2.2.4 MCD Synchronization Time

The appropriate MCD is connected directly to the output of the receiver as part of
the telemetry equipment configuration and will attempt to decode data as soon as it is enabled
and the receiver delivers a symbol clock. Because of the possibility of false lock, the operators do
not normally enable decoding until they are certain that the receiver lock is correct. This places a
small but indeterminate time delay between the reported symbol lock acquisition and the start of
decoding.

When the MCD is enabled, it must first obtain node synchronization. That is, it
must determine which symbol from each group of r symbols represents the first one in the group.
A different method is used by each MCD.

2.2.4.1 B2MCD Node Synchronization

Node synchronization for the B2MCD requires only a determination of which  is
the first symbol out of each pair of symbols. The determination of waveform polarity and frame
synchronization is left to later equipment because the rate-1/2 codes are transparent.

When enabled, the MCD begins calculating metrics for the 64 possible paths
through its decoding trellis. Eleven bit periods later, an output is available, but its quality is
uncertain as the amount of information  obtained is insufficient to determine whether the node
synchronization is correct or if the correct path has been followed. As the metrics grow, they are
continuously normalized with respect to the value of the shortest path. The design of the decoder
is such that a normalization rate of less than one normalization for every ten output bits is an
indication that the decoder is operating correctly. A rate in excess of this is an indication that
synchronization may not be correct. If acquisition has not been accomplished, the decoder is
instructed to select the alternate node and start again. The process continues until the
normalization rate is below the required threshold. Both the number of bit periods used to test for
node synchronization and the threshold used are selectable to a maximum of 65,535 with the
default values being 2,048 and 256.

MCD acquisition time is given by

TMCD = B ×  n/bit-rate

or

TMCD = B ×  (n + 1)/bit-rate, with equal probability
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where:

B = normalization monitor period (default = 2048 bits)

n = number of normalization periods that must be observed without a node
synchronization change before in-lock is declared (selectable from 1 to
255, with a default value of 3)

The normalization rate is continuously monitored after in-lock is declared, and the
number of consecutive periods exceeding the threshold is counted. If this number exceeds a
specified value (selectable from 1 to 32,767 with a default value of 3), the MCD is declared out-
of-lock and commanded to re-acquire.

Although the default values of B and n are usually used, at strong signal levels, the
normalization monitor period can be decreased with a corresponding adjustment of threshold. At
weak signal levels, the number of normalizations required for the best path increases and a larger
number of bit periods is required to differentiate it from the other paths. For frame synchronized
telemetry (discussed below) having a Bit Signal-to-Noise ratio (Bit SNR), also referred to as the
Energy-per-bit to Noise ratio (Eb/N0), within 0.5 dB of theoretical, the continued recognition of
the synchronization marker is a more reliable indication of MCD node synchronization and
contrary indications from the MCD should be ignored.

2.2.4.2 B3MCD Node Synchronization

The B3MCD is capabable of decoding both transparent and non-transparent codes
at rates up to 1/6. This means that as many as twelve possibilities must be investigated if a rate-
1/6, non-transparent code is being decoded.

The B3MCD uses a soft-symbol correlation technique to determine node
synchronization. The input soft symbols to the decoder, appropriately delayed, are correlated
against the re-encoded bits from the decoder output. This gives almost-known symbols to
correlate against the input symbols without waiting for a frame marker. When the decoder is
synchronized, the decoded output bits are a very good estimate of the true bits, and hence the re-
encoded bits are a good estimate of the true symbols. If the decoder is out of synchronization, the
decoded bits should be almost random, and the re-encoded bits will correlate very poorly with the
input symbols.

To acquire node synchronization, the decoder must test all possible starting offsets
for the received symbols. Both polarities also must be tested for non-transparent codes. As
observed previously, a non-transparent code, such as the Cassini (15,1/6) code, has twelve
possibilities. The B3MCD is capable of buffering the input soft-symbol stream during acquisition
so that the re-examination process at low code rates does not take an excessive amount of time
and does not cause a loss of data.
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The B3MCD requires 1000 bit periods to determine node synchronization. After
synchronization is declared, it correlates 3000 bit segments of the input data stream against the
re-encoded output and compares the result against a calculated threshold. The result of this
approach is to cause declaration of loss of lock to be delayed from 3000 to 6000 bit times after
the actual event. This time may be significant at low bit rates.

2.2.5 Eb/N0  Estimation

Both MCDs use the technique of re-encoding the output bits and comparing them
to a suitably delayed version of the input symbol stream to provide an accurate count of channel
symbol errors. This is possible because the probability of the decoder falsely decoding a bit is at
least two orders of magnitude less than the the probability of a channel symbol error. This
symbol error count is used to provide an estimate of the Eb/N0 with an accuracy of 0.1 dB.

2.3 Telemetry Data Formats

The DSN Telemetry System converts Non-Return to Zero-Mark (NRZ-M) and
Non-Return to Zero-Space (NRZ-S) differentially encoded telemetry data into Non-Return to
Zero-Level (NRZ-L) format subsequent to convolutional decoding. The relationship between
these data formats is illustrated in Figure 6.

DATA 
SEQUENCE 1 1 0 0 1 0 0 0 1 1

NRZ-L

NRZ-M 
(DIFFERENTIAL 
ENCODING)

NRZ-S 
(DIFFERENTIAL 
ENCODING)

Figure 6. Telemetry Data Formats
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2.4 Frame Synchronization of Telemetry

Frame synchronization is available for all telemetry streams and must be

established prior to operation of an RS decoder or, when no outer code is being used, before

processing information contained in transfer frames. Synchronization is accomplished by

preceding each codeblock or transfer frame with a fixed-length Attached Synchronization

Marker (ASM). This known bit pattern can be recognized to determine the start of the

codeblocks or transfer frames. It also can be used to resolve the phase ambiguity associated with

BPSK modulation if this was not done by the convolutional decoder.

The Consultative Committee for Space Data Systems (CCSDS) has adopted a 32-

bit ASM with a pattern of

0001   1010   1100   1111   1111   1100   0001   1101

FIRST TRANSMITTED
BIT (Bit 0)

LAST TRANSMITTED
BIT (Bit 31) ,

represented in hexadecimal as 1ACFFC1D, but other ASM lengths and patterns can be

accommodated. Characteristics of the frame synchronizer are provided in Table 3.

Frame synchronization is an optional capability. When it is not being used, the

received or received-and-decoded bits are placed into telemetry transport blocks in the order

received and annotated in the block header with status data consisting of mode identifiers and

data quality indicators.

2.4.1 Frame Synchronizer Operation

When frame synchronization is enabled, the frame synchronizer establishes and

maintains synchronization for the incoming data at either of two specified frame lengths. The

operation of the synchronizer is defined by four operating modes: Search, Verify, Lock, and

Flywheel.

In the Search mode, the synchronizer attempts to find a pattern in the data that

differs from the known ASM by a specified number of bit errors. The specified number of bit

errors from the synchronization marker is called the Search Bit Error Tolerance (BETS). As the

synchronizer does this, it collects the received bits in chronological order and divides them into

data blocks using the specified frame length (or the longer of the two specified lengths) so they

can be forwarded to the user.
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Table 3. Frame Synchronizer Characteristics

Parameter B2MCD

Maximum Data Rate

Frame Lengths (1 or 2)

ASM

Acceptable Bit Errors in ASM (BETS and BETL)

Minimum Error Detection (MED)

ASM Polarity

Polarity Correction

Bit Slip

Check Frames Before In-lock

Maximum Number of Flywheel Frames

Output Data Rate

Force Out of Synchronization

2.2 Mb/s

Up to 32,766 bits

8 to 64 bits

0 to 15 bits, Independently

Specifiable for BETS and BETL

Enabled or Disabled

True or Inverted

Enabled or Disabled

0 to –3 bits

0 to 15 (frames)

0 to 15 (frames)

800 frames/s (maximum)

Yes

There are two user-selectable alternatives when an ASM match is found. Either it

can be accepted (Minimum Error Detection (MED) disabled) or the search can be continued for

one frame length past the first potential match (MED enabled) to find a potential ASM that has a

lower number of bit errors. When the first or best match is found, the current data block is

terminated, annotated with frame length and status information, and forwarded to the next stage

of telemetry processing (either transfer frame formatting or Reed—Solomon decoding).

In the Verify mode, the synchronizer examines the data stream for an acceptable

ASM within a 0 to 3-bit window of either of its possible locations. An acceptable ASM is

defined as one having no more than BETS errors. In this mode, the data bits that were recognized

as the ASM, followed by the data bits up to the beginning of the next ASM, are collected,

annotated with frame length and status, and forwarded to the next stage of telemetry processing.

The synchronizer continues in the Verify mode for a specified number of frames or until no

ASM is detected. If the requisite number of frames occur, the synchronizer advances to the Lock

mode. If no ASM is detected, the synchronizer reverts to the Search mode.

In the Lock mode, the synchronizer places an ASM at the beginning of each

frame followed by data bits in the order received and annotated with frame length and status

information. It continues to examine the data stream for an acceptable ASM within a bit slip

window, the Lock Bit Error Tolerance (BETL), that may be specified independently of BETS.
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The synchronizer remains in the Lock mode until no acceptable ASM is detected. Should this

occur, the synchronizer places itself in the Flywheel mode.

In the Flywheel mode, the synchronizer substitutes the received bits instead of the

ASM, followed by data bits until the end of the frame is reached (as was done in the verify

mode). The synchronizer remains in this mode for a specified number of frames or until an ASM

having fewer than BETL errors is found and positioned within the bit slip window. If frame

synchronization can be re-established within the specified number of frames, the synchronizer

returns to Lock mode. If an acceptable ASM is not found, the synchronizer returns to Search

mode.

2.4.2. Frame Synchronizer Performance

There are no obvious best choices in the selection of frame synchronization

parameters because each one gives a trade-off between the probability of incorrectly declaring

lock and incorrectly not declaring lock. A computer simulation has been performed, and some

results are provided in the following figures.

The probability of acquiring frame synchronization within a given number of

frames is a function of Bit SNR, burst-error statistics, frame size, ASM length, BETS, the

number of frames selected to verify synchronization (V), and whether MED is used. Figure 7

shows the probability of frame acquisition within four frames versus BETS for different frame

and ASM lengths with MED enabled and using 0 to 3 check frames (V = 0 to 3).

Figure 8 shows the probability that correct frame synchronization is not found

within four frames as a function of Bit SNR for values of BETS of 0, 5, and 10. The figure

assumes that the MED is enabled and that a 32-bit ASM is used. The probability of dropping

lock (once acquired) is shown by Figure 9. The effects of the number of flywheels (F), BETL,

and Bit SNR can be seen from the figure. The probability of dropping lock is independent of the

frame length.

2.5 Decoding of Concatenated Convolutional and Reed—Solomon Code

Errors in convolutionally coded channels tend to occur in bursts that result when

noise causes the decoder to momentarily follow the wrong path through the decoding trellis. The

combination of an outer Reed—Solomon (RS) code with an inner convolutional code provides

good burst-error correction with minimal bandwidth expansion.

A Reed—Solomon code takes the input data and divides it into J bit sequences to

form symbols. Although other symbol sizes are feasible, the ability of computers to handle

information as 8-bit bytes has led to a standardization of J = 8. The RS encoder creates parity

symbols from the data that enable the decoder to correct any combination of E or fewer symbol

errors per RS codeword. The value E is referred to as the code redundancy. The length of an RS

codeword is 2
J
 − 1 symbols or 255 symbols when J = 8. The output of an RS encoder is a
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Figure 7. Probability of Frame Acquisition (in Four Frames) as a Function of BET
Threshold and the Number of Check Frames (V) with MED Enabled
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systematic code (one in which the input symbols are contained in the output) containing 2
J
 – (1 +

2E) information symbols followed by 2E parity symbols. The standard RS code supported by the
DSN is capable of correcting 16 or less RS symbol errors (E = 16) and is referred to as the RS
(255,223) code.

2.5.1. Interleaving

The burst errors associated with Viterbi decoding can be as long as several
constraint lengths. Thus, several closely spaced error bursts could exceed the decoder's error
correction capability—especially with longer constraint length codes. Interleaving is a technique
that spreads the effects of burst errors across several RS codewords. The input data are collected
eight bits at a time to form RS symbols from which parity is calculated. The partially completed
parity symbols are stored in 8I-bit-long shift registers, where I is the interleave factor. After 8I
bit times, the output of the shift registers is available for use in calculating the next parity
symbol. The result is to build the parity symbols from consecutive 8-bit data symbols when the
interleave factor is one but from every Ith 8-bit data symbol when I is other than one.

The input data are passed directly to the convolutional encoder as the parity
symbols are being calculated. Thus, the code remains systematic—independent of the interleave
factor. When all information symbols have been processed, the parity symbols are shifted out of
the registers and passed to the convolutional encoder. This takes the 32 parity symbols from the
first 223 information symbols and disperses them across the entire 32I parity symbol portion of
the  codeblock at I-symbol intervals. Figure 10 illustrates the symbol arrangement for an
interleave factor of 5.

When the data are received, they are written into an array from which the parity
symbols associated with each of the I RS codewords can be separated. DSN supports interleaving
for values of I between 1 (no interleaving) and 16.

2.5.2. Reed–Solomon Encoder

The conventional architecture for an RS encoder employs binary multipliers and
read-only memories to enable the log of the information symbols to be quickly accessed for
calculation and to enable the results of these calculations to be converted back to parity symbols
via a table of antilogs. In 1968, a simplified method was developed (named the Berlekamp
Architecture, after its inventor) that, in combination with appropriate selection of the RS code
generator polynomial, enables parity symbols to be calculated using bit-serial multipliers
constructed with a matrix of exclusive OR gates. The DSN and CCSDS have adopted an RS code
that is compatible with the Berlekamp Architecture and has the following specifications:

(1) J = 8 bits per RS symbol.

(2) E = 16 RS symbol error correction capability.
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 (3) Field generator polynomial:

F( ) =x x x x x8 7 2 1+ + + +

over the Galois Field, GF(2
8
)).

(4) Code generator polynomial:

g( ) ( j) G11

j

x x xi
i

i

= − =
= =
∏ ∑α

112

143

0

32

over the Galois Field, GF(2
8
), where F(α) = 0.

It should be recognized that α11
 is a primitive element of GF(2

8
) and that F(x)

and g(x) characterize a (255,223) Reed−Solomon code.

Figure 11 shows the design of a Berlekamp encoder for producing the

DSN/CCSDS standard RS code. The performance of RS codes at several interleave factors and

for several of the supported convolutional inner codes is shown in Figure 12.

2.5.3. Virtual Fill

The maximum amount of input data that can be transmitted in a codeblock varies

from 1784 bits (with no interleaving) to 28,554 bits (with an interleaving depth of 16). If a

transfer frame has less data than 1784I bits, the codeblock can be completed by inserting virtual

fill (all-zero RS symbols) between the ASM and the start of the input data. The amount of virtual

fill (in units of 8-bits) must be fixed for a tracking pass and is inserted by the encoder and

decoder but not transmitted. The efficiency of RS coding will decrease as the amount of virtual

fill increases because the number of parity symbols remains fixed while the number of data

symbols decreases. An illustration of virtual fill is shown in Figure 13.

2.5.4. Frame Error Rate of Concatenated Codes

Coding performance has traditionally been expressed in terms of bit-error rate

(BER). This may not be the most appropriate measure for all applications. For example, the

failure to correct an RS codeword is an indication that it contains at least 17 RS (7.6%) symbol

errors. If the information has been RS coded in order to provide an error rate that is lower than

can be obtained with convolutional coding, a block with an error rate of 7.6 × 10
−2

 is probably

useless. Simulations have been performed to predict the Frame Error Rate (FER) as a function of

interleaving depth. Figure 14 illustrates the modeled frame error rate for several DSN

concatenated codes and interleave factors.

2.5.5 Variable Redundancy and Feedback Concatenated Decoding

The feedback concatenated decoding technique implemented for the Galileo low-

rate telemetry mission utilizes a frame of eight codewords having four different redundancies (E)

and arranged with E = 47, 5, 15, 5, 30, 5, 15, and 5. The average redundancy of these frames is
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Figure 13. Virtual Fill

approximately the same as a standard RS (255,223) code, but the code becomes non-systematic
after 1288 ([255 – 2 × 47] × 8) symbols as parity symbols become interspersed with the data
symbols.

The frames are decoded by making from two to four passes through a Viterbi
decoder with each pass being constrained by known symbols from earlier passes. On the first
pass, the Viterbi decoder is unconstrained, and decoding of the four codewords with the highest
redundancies (E = 47, 30, and 15) is attempted. Depending on how many of these codewords are
successfully decoded, either one or two additional passes are made with additional constraints
from earlier passes. When these four codewords have been decoded, a final pass is made to
decode the four codewords with the lowest redundancy (E=5).
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Figure 14.  Modeled Frame Error Rate for several DSN Concatenated Codes and
Interleave Factors (I)
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3 Proposed Capabilities

The following paragraphs discuss capabilities that have not yet been implemented
by the DSN but have adequate maturity to be considered for spacecraft mission and equipment
design. Telecommunications engineers are advised that any capabilities discussed in this section
cannot be committed to except by negotiation with the Telecommunications and Mission
Operations Directorate (TMOD) Plans and Commitments Program Office.

3.1 Parallel Concatenated Convolutional Codes (Turbo Codes)

Turbo codes provide near-Shannon-limit error-correction performance with
reasonable decoding complexity. A turbo encoder consists of an interleaver that is used to
permute a block of input data in a random fashion and two simple recursive convolutional
encoders that produce sets of parity bits from the information bits and the permuted information
bits. A second interleaver is used to combine the information bits and the two sets of parity bits.
The resulting turbo code symbol stream is systematic and non-transparent.

The DSN is in the process of implementing a decoder for the turbo code specified
in CCSDS Recommendation 101.0-B-4. The recommendation permits information block lengths
(k) of 1,784, 3568, 7136, 8920, and 16,384 bits, and nominal code rates (r) of 1/2, 1/3, 1/4, and
1/6. The first four of these block lengths are the same as would be required for Reed-Solomon
encoding using an interleave factor (I) of 1, 2, 4, or 5.

3.1.1 Turbo Code Encoder

A practical encoder includes two input buffer/interleavers to ensure a continuous
stream of output symbols. A switching arrangement allows one buffer to be filled while the
second is being read simultaneously in the normal and permuted orders. The interleaver
responsible for the combination of information and parity bits becomes the third interleaver.

Figure 15 illustrates the design of a CCSDS compliant turbo for nominal code
rates of 1/3 and 1/6. Switch SW1 is used to alternately route a block of input data bits into
buffers 1 and 2. Switches SW2 and SW3 operate simultaneously to route the normal and
permuted outputs of the buffers into the coders. At the end of each block, SW2 and SW3 move to
position 1 for four additional bit times before selecting the opposite buffer/interleaver. This
causes the encoders to be filled with zeroes in anticipation of processing the next block of data.
The symbol output that occurs during the zeroing of the encoders is called the trellis termination
sequence and provides a known final state (zero) to the turbo decoder.
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3.1.2 Permutations

Turbo codes have been shown to provide good performance using randomly
chosen permutations. However, implementation constraints require that a limited number be
considered and that these be selected from the ones offering the best performance. Having
discovered the characteristics of good random permutations, it is possible to develop an
algorithm for a permutation that approaches their performance. Such an algorithm has been
adopted by the CCSDS and is described in the previously cited recommendation. An agothithmic
approach has the advantage of ease of delivery to flight and ground equipment at the possible
expense of a small performance penalty.

The alternative is to select the best permutation for a given information block size
and deliver it to the flight and ground equipment as a file of numbers. This approach has the
possibility of providing slightly improved performance at the expense of less convenient delivery
of the permutation. The performance estimates in this document employ permutaions that appear
random but were manually optimized for the two selected block lengths.

3.1.3 Synchronization of Turbo Codes

Codeblock synchronization is necessary for proper decoding of turbo codes
because the decoding operation needs to know the codeblock boundaries before it can iterate
between the unpermuted and permuted data domains. Unlike the frame synchronization for
Reed–Solomon codes, which is performed after convolutional decoding, synchronization for
turbo codes must be done in the channel-symbol domain. This requires a rate-dependent attached
synchronization marker and synchronization algorithms that operate at the symbol rate as
opposed to the data rate. Operation of the synchronizer is anticipated to be similar to that of the
RS frame synchronizer and involves recognition of the marker in the coded symbol stream and
anticipation of a recurring marker at an interval corresponding to the length of the turbo
codeblock, the trellis termination sequence, and the synchronization marker. Figure 16 illustrates
the structure of the turbo code as it appears in the information channel.

3.1.4 Turbo Code Decoder Implementation

The turbo decoder uses an iterative decoding algorithm based on simple decoders
individually matched to the two constituent codes. Each constituent decoder makes a maximum a
posteriori probability (MAP) estimate for each bit from the uncoded information symbols (in
normal or permuted form, as appropriate) and the parity symbols generated by its corresponding
encoder. The MAP algorithm requires that the first and last states of the of the code sequence be
known, which is most easily accomplished by transmitting the trellis termination sequence over
the information channel. The decoders exchange their MAP estimates via the permutation
matrices to be used by the opposite decoder as a priori estimates for a second iteration. The
exchange of MAP estimates and iterations continues for a fixed number of times, depending on
SNR, or until a satisfactory convergence is reached. The final output is a hard-quantized version
of the likelihood estimates from either one of the decoders.
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Information and Parity
(k/r  symbols)

Termination Sequence (4/r symbols)

Synchronization Marker (32/r symbols)

k = information block size (1784, 3568, 7136, 8920, or 16384 bits)

r = code rate (1/2, 1/3, 1/4, or 1/6)

Figure 16. Turbo Code Structure in the Information Channel

3.1.5 Turbo Code Latency

Because the decoder processes information one block at a time, there is a

minimum decoding delay of k + 4r symbols (where k is the block size and r is the code rate).

This latency is further increased by the (to be determined) iteration time of the decoders.

3.1.6 Turbo Code Error Floor

A turbo code’s performance curve does not stay steep forever as does that of a

convolutional/RS concatenated code. It eventually reaches an error floor, flattens out

considerably, and looks, from that point onward, like the performance curve for its weak

constituent convolutional codes. As a result, Projects using highly compressed data may benefit

from the addition of an outer code that they can remove after the data are delivered by the DSN.

The outer code can have a low code rate because only a few errors per block are expected at the

error floor and the code will, therefore, have little effect on the required SNR.

3.1.7 Selection and Performance of Turbo Codes

The DSN indends to implement the complete set of turbo codes adopted by the

CCSDS. However, performance has been simulated only for the subset of codes shown in Table

4 and identified by their block sizes and code rate. Figure 17 shows the modeled performance for

these four codes as a function of their information bit rate. That is, the small overhead associated

with the ASM and termination sequence is included to make them comparable to the other

performance curves published in this document. Note that these curves are for frame error rate

because a decoding failure affects an entire frame. Also note that these simulations employed

optimized permutations rather than those produced by the CCSDS algorithm.
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Table 4. Turbo Code Characteristics

Block Size
(Information Bits)

Rate (r) ASM Length
(Symbols)

Trellis Termination
(Symbols)

1784 1/3 96 12

1784 1/6 192 24

8920 1/3 96 12

8920 1/6 192 24

Selection of which of the four codes should be used depends on several factors

but primarily on data rate. For example, a rate 1/6 code is not the best choice at low data rates

because it has a smaller Es/N0 than does a rate 1/3 code for a given Eb/N0. This leads to

increased receiver losses in the symbol, subcarrier, and Costas carrier (if used) loops. Thus, a

rate 1/6 code can give poorer performance than a rate 1/3 code. A complete discussion of

receiver losses is contained in module 207 of this document. The smaller block size of 1784 is

also attractive at lower data rates because it leads to shorter acquisition times

At high data rates, the better baseline performance of the rate 1/6 codes makes

them more attractive.  The (8920,1/6) code often will be used for the higher data rates because it

has the best baseline performance. The remaining two codes, (1784,1/6) and (8920,1/3),

represent compromises between the extremes of the (1784,1/3) and (8920,1/6) codes.
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