810-005, Rev. E

DSN Telecommunications Link Design Handbook

103, Rev. B 34-m HEF Subnet Telecommunications Interfaces

Released September 19, 2008

Date

Document Owner:

S. D. Slobin 9-15-08

S. D. Slobin, Antenna System Engineer 4,6032

Approved by:

08 Timothy T. Pham Date

DSN Chief System Engineer

Released by:

Signature on file at DSN Library 9/19/2008

DSN Document Release Date

Change Log

Rev	Issue Date	Affected Paragraphs	Change Summary
Initial	11/30/2000	All	All
A	4/2/2007	All	Documents installation of a 200 W S-band uplink at DSS 45 and DSS 65. Revised T_{AMW} formulation for noise temperature to be consistent with Rev. B of module 105.
В	9/19/2008	2, Tables 1 & 2	Provides measured performance of S-band uplink at DSS 45 and DSS 65 and editorial changes

Note to Readers

There are two sets of document histories in the 810-005 document, and these histories are reflected in the header at the top of the page. First, the entire document is periodically released as a revision when major changes affect a majority of the modules. For example, this module is part of 810-005, Revision E. Second, the individual modules also change, starting as an initial issue that has no revision letter. When a module is changed, a change letter is appended to the module number on the second line of the header and a summary of the changes is entered in the module's change log.

Contents

<u>Paragraph</u>

Page 1

1	Introd	uction			4
	1.1	Purpos	e		4
	1.2	Scope.			5
2	Genera	al Inforn	nation		5
	2.1	Telecon	mmunicatio	ons Parameters	5
		2.1.1	Antenna	Gain Variation	6
			2.1.1.1	Frequency Effects	6
			2.1.1.2	Elevation Angle Effects	6
			2.1.1.3	Wind Loading	7
		2.1.2	System N	oise Temperature Variation	7
		2.1.3	Pointing .	Accuracy	8
Ap	Appendix A Equations for Modeling 2				23
	A.1	Equation	ons for Gai	n Versus Elevation Angle	23
	A.2 Equations for System Noise Temperature Versus Elevation Angle			23	
A.3	A.3 Equation for Gain Reduction Versus Pointing Error				25

Illustrations

Figure

Page 1

1.	Functional Block Diagram of the HEF Subnet Antennas	17
2.	S-Band Receive Gain, All HEF Antennas, at Feedhorn Aperture	18
3.	X-Band Receive Gain, DSS-15 Antenna, at Feedhorn Aperture	18
4.	X-Band Receive Gain, DSS-45 Antenna, at Feedhorn Aperture	19
5.	X-Band Receive Gain, DSS-65 Antenna, at Feedhorn Aperture	19
6.	S-band System Noise Temperature, all HEF Antennas, LNA-1, Non-Diplexed, at Feedhorn Aperture	20
7.	X-Band System Noise Temperature, DSS-15, LNA-1, Non-Diplexed, at Feedhorn Aperture	20

Illustrations (Continued)

Tables

<u>Table</u>

Figure

1.	S-Band Transmit Characteristics, DSS-45 and DSS-65 (estimated)	9
3.	S- and X-Band Receive Characteristics	13
4.	Gain Reduction Due to Wind Loading, 34-m HEF Antennas	16
5.	T_{AMW} , T_{sky} , and T_{op} for CD=25% Average Clear Weather at Zenith, Referenced to Feedhorn Aperture	16
A-1.	Vacuum Component of Gain Parameters	25
A-2.	S- and X-Band Year-Average Zenith Atmosphere Attenuation Above Vacuum (<i>A_{ZEN}</i>)	25
A-3.	Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture	26

1 Introduction

1.1 Purpose

This module provides the performance parameters for the Deep Space Network (DSN) High-efficiency (HEF) 34-meter antennas that are necessary to perform the nominal design of a telecommunications link. It also summarizes the capabilities of these antennas for mission planning purposes and for comparison with other ground station antennas.

Page

Page

1.2 Scope

The scope of this module is limited to providing those parameters that characterize the RF performance of the 34-meter HEF antennas. The parameters do not include effects of weather, such as reduction of system gain and increase in system noise temperature that are common to all antenna types. These are discussed in module 105, Atmospheric and Environmental Effects. This module also does not discuss mechanical restrictions on antenna performance that are covered in module 302, Antenna Positioning, or the effects of terrain masking that are covered in Module 301, Coverage and Geometry.

2 General Information

The DSN 34-m Antenna Subnet contains three 34-meter diameter HEF antennas. These antennas employ an elevation over azimuth (AZ-EL) axis configuration, a single dualfrequency feedhorn, and a dual-shaped reflector design. Although this subnet is referred to as the High-efficiency Subnet, the efficiency of the antennas is approximately the same as all other DSN antennas. The subnet was constructed when a subnet of lower-efficiency antennas was in existence and the name has been retained. One antenna (DSS-15) is located at Goldstone, California; one (DSS-45) near Canberra, Australia; and one (DSS-65) near Madrid, Spain. The precise station locations are shown in Module 301, Coverage and Geometry.

A block diagram of the 34-meter HEF microwave and transmitter equipment is shown in Figure 1. An orthomode junction for X-band is employed that permits simultaneous right-circular polarization (RCP) and left-circular polarization (LCP) operation. For listen-only operation or when transmitting and receiving on opposite polarizations, the low-noise path (orthomode upper arm) is used for reception. If the spacecraft receives and transmits simultaneously with the same polarization, the diplexed path must be used and the noise temperature is higher. A waveguide labyrinth is used to couple S-band signals into and out of the feed. This would provide simultaneous RCP and LCP operation although the presence of only one S-band low noise amplifier (LNA) and receiver channel limits the use to selectable RCP or LCP. At DSS-45 and DSS-65, the polarization selection switch is used to implement a diplexed signal path in addition to the non-diplexed, low-noise signal path that exists at all three stations.

A 20 kW X-band transmitter is available at all stations. DSS-45 and DSS-65 have a 250W S-band transmitter intended for near-Earth spacecraft support as an alternative to the Beam Waveguide (BWG) Subnet 1 described in module 104. Alternative support for the BWG-1 subnet at Goldstone is provided by the DSS-27 High-speed Beam Waveguide (HSB) antenna also described in module 104.

In addition to spacecraft tracking, the DSN 34-m Antenna Subnet is also used for very-long baseline interferometry and radio-source catalog maintenance.

2.1 Telecommunications Parameters

The significant parameters of the 34-meter HEF antennas that influence telecommunications link design are listed in Tables 1, 2, and 3. Variations in these parameters that are inherent in the design of the antennas are discussed below. Other factors that degrade

link performance are discussed in modules 105 (Atmospheric and Environmental Effects) and 106 (Solar Corona and Wind Effects).

2.1.1 Antenna Gain Variation

The antenna gains in Tables 1, 2, and 3 do not include the effect of atmospheric attenuation and should be regarded as vacuum gain at the specified reference point.

2.1.1.1 Frequency Effects

Antenna gains are specified at the indicated frequency (f_0) . For operation at higher frequencies in the same band, the gain (dBi) must be increased by 20 log (f/f_0) . For operation at lower frequencies in the same band, the gain must be reduced by 20 log (f/f_0) .

2.1.1.2 Elevation Angle Effects

Structural deformation causes a reduction in gain whenever the antenna is operated at an elevation angle other than the angle where the reflector panels were aligned. The effective gain of the antenna is reduced also by atmospheric attenuation, which is a function of elevation. Figures 2 through 5 show the estimated gain versus elevation angle for the hypothetical vacuum condition (structural deformation only) and with 0%, 50%, and 90% weather conditions, designated as CD (cumulative distribution) = 0.00, 0.50, and 0.90. A CD of 0.00 (0%) means the minimum weather effect (exceeded 100% of the time). A CD of 0.90 (90%) means that effect which is exceeded only 10% of the time. Qualitatively, a CD of 0.00 corresponds to the driest condition of the atmosphere; a CD of 0.50 corresponds to humid or very light clouds; and 0.90 corresponds to very cloudy, but with no rain. A CD of 0.25 corresponds to average clear weather and often is used when comparing gains of different antennas. Comprehensive S-band and X-band weather effects models (for weather conditions up to 99% cumulative distribution) are provided in module 105 for detailed design control table use. Equations and parameters for the curves in Figures 2 through 5 are provided in Appendix A.

Figure 2 depicts the S-band (2295 MHz) net gains for all stations as a function of elevation angle and weather condition, including the vacuum condition. Net gain means vacuum-condition gain as reduced by atmosphere attenuation. Figures 3, 4, and 5 present the X-band (8420 MHz) net gains. All gains are referred to the feedhorn aperture, and the equations a parameters of these curves are given in Appendix A. The models use a flat-Earth, horizontally stratified atmosphere approximation.

It should be noted in Appendix A, Table A-1, that the gain parameters do not vary for different configurations (e.g., LNA-1 non-diplexed vs. LNA-1 diplexed), as they do in Table A-3 for the noise temperature parameters. This is due to the fact that the gain is referenced to the feedhorn aperture, and configurations "downstream" (e.g., orthomode and diplexer paths) do not affect the value of gain at the aperture. The observed differences in antenna G/T are attributed only to different values of noise temperature because G and T are referenced to the feedhorn aperture. When G and T are referenced to the LNA input, both the G and T parameters vary with antenna configuration. When referenced to feedhorn aperture, only T varies with configuration.

2.1.1.3 Wind Loading

The gain reduction at X-band due to wind loading is listed in Table 4. The tabular data are for structural deformation only and presume that the antenna is maintained on-point by conical scan (CONSCAN, discussed in module 302) or an equivalent process. In addition to structural deformation, wind introduces a pointing error that is related to the antenna elevation angle, the angle between the antenna and the wind, and the wind speed. The effects of pointing error are discussed below. Cumulative probability distributions of wind velocity at Goldstone are given in module 105.

2.1.2 System Noise Temperature Variation

The operating system temperature (T_{op}) varies as a function of elevation angle due to changes in the path length through the atmosphere and ground noise received by the sidelobe pattern of the antenna. Figures 6 through 9 show the combined effects of these factors at S- and X-bands in a hypothetical vacuum (no atmosphere) with no cosmic noise condition for nondiplexed antenna configurations, and with the three weather conditions described above. The equations and parameters for these curves are provided in Appendix A of this module. The models use a flat-Earth, horizontally stratified atmosphere approximation.

This revision of Module 103 presents a new formulation for system operating noise temperature contrasted with the earlier edition. The system operating noise temperature, T_{op} , consists of two parts, an *antenna-microwave component*, T_{AMW} , for the contribution of the antenna and microwave hardware only, and a *sky component*, T_{sky} , that consists of the atmosphere noise plus the cosmic microwave background noise, attenuated by the atmosphere loss. T_{AMW} is shown in Figures 6, 7, 8, and 9 as "ANT-UWV". The previous revision used a term $T_{op,vacuum}$, which included the net cosmic contribution. The atmospheric noise contribution was added to this to obtain T_{op} . In this revision, the system operating noise temperature is given by

$$T_{op}(\theta) = T_{AMW} + T_{sky} = \left[T_1 + T_2 e^{-a\theta}\right] + \left[T_{atm}(\theta) + T'_{CMB}(\theta)\right]$$

where

 $T_{sky} = T_{atm}(\theta) + T'_{CMB}(\theta)$

 T_1 , T_2 and *a* are coefficients and exponent given in Appendix A, Table A-3

 T_{atm} is the atmosphere contribution term, calculated from Module 105

 T'_{CMB} is the attenuated cosmic contribution, calculated from Module 105

More details of this calculation are given in Appendix A of this module.

Figure 6 shows the S-band (2295 MHz) system noise temperature curves for all three HEF antennas, LNA-1 (HEMT), non-diplexed, referenced to the feedhorn aperture. The S-band atmosphere models are averages of the effects at all three stations, at each CD level. The X-band (8420 MHz) system temperatures referenced to the feedhorn aperture for the three

antennas are shown in Figures 7, 8, and 9. Each figure shows the noise temperature with the antenna in the lowest noise, LNA-1 (maser) non-diplexed configuration. The diplexed configuration higher noise temperatures can be calculated using the parameters given in Appendix A. Separate atmosphere models are used for each station, as given in module 105.

The T_{AMW} noise temperature values in Table 3 are stated with reference to the feedhorn aperture and arise from antenna and microwave hardware contribution only. No atmosphere or cosmic background contribution is included. Table 5 presents values (for all antenna frequencies and configurations, at zenith, with average-clear CD = 0.25 weather) of T_{AMW} , T_{sky} , and T_{op} . The values of T_{sky} in Table 5 are calculated by methods presented in Module 105, Rev. B, using year-average attenuation values in Tables 10–15 of that module.

When two low-noise amplifiers (LNAs) are available for use, as at X-band, the amplifier in the lowest noise configuration is designated as LNA-1. Under some conditions, LNA-2 may be used, and the higher noise temperature values apply.

2.1.3 Pointing Accuracy

Figures 10 and 11 show the effects of pointing error on effective transmit and receive gain of the antenna. These curves are Gaussian approximations based on measured and predicted antenna beamwidths. Data have been normalized to eliminate elevation and wind-loading effects. The equations used to derive the curves are provided in Appendix A.

Parameter	Value	Remarks	
ANTENNA			
NOTE: No S-band uplink is implemented at Goldstone DSS-15.		Alternate S-band uplink for Earth-orbiter support at Goldstone is provided by DSS- 27. See module 104.	
Gain at 2070 MHz	55.40 ±0.2 dBi	At elevation angle of peak gain, referenced to feedhorn aperture for matched polarization; no atmosphere included	
Transmitter Waveguide Loss	0.6 ±0.1 dB	200 W transmitter output terminal (waterload switch) to feedhorn aperture	
Half-Power Beamwidth	0.258 ±0.004 deg	Angular width (2-sided) between half- power points at specified frequency	
Polarization	RCP or LCP	Remotely selected.	
Ellipticity	1.0 dB (max)	Peak-to-peak axial ratio defined as the ratio of peak-to-trough received voltages with a rotating linearly polarized source and the feed configured as a circularly (elliptically) polarized receiving antenna	
Pointing Loss			
Angular	See module 302	Also see Figure 10	
CONSCAN	0.03 dB	At S-band, using X-band CONSCAN reference set for 0.1 dB loss	
	0.1 dB	At S-band, using S-band CONSCAN reference set for 0.1 dB loss	
EXCITER AND TRANSMITTER			
RF Power Output	47.0–54.0, ±0.25 dBm	Referenced to 250-W transmitter output terminal (waterload switch). Settability is limited to 0.25 dB by measurement equipment precision	
Power output varies across the bandwidth and may be as much as 0.5 dB below the set value if the frequency is adjusted to a value other than where the power was set. In general, amplitude drift and variation with frequency will be less at higher output power, but specified performance is guaranteed over the operating range of 50 to 250 Watts.			

Table 1. S-Band Transmit Characteristics, DSS-45 and DSS-65

EIRP (maximum)

108.8, ±0.35 dBm

Parameter	Value	–0.5, +1.0 dB
EXCITER AND TRANSMITTER (Continued)		
Frequency Range Covered	2025 to 2110 MHz	
Instantaneous 1-dB Bandwidth	>85 MHz	
Coherent with Earth Orbiter S-Band D/L Allocation	2028.8–2108.7 MHz	240/221 turnaround ratio
Tunability		At transmitter output frequency
Phase Continuous Tuning Range	2.0 MHz	
Maximum Tuning Rate	±12.1 kHz/s	
Frequency Error	0.012 Hz	Average over 100 ms with respect to frequency specified by predicts
Ramp Rate Error	0.001 Hz/s	Average over 4.5 s with respect to rate calculated from frequency predicts
Stability		At transmitter output frequency
Output Power Stability	–0.5, +1.0 dB	From initial calibration value over an 8-h period at a fixed frequency
Group Delay Stability	≤3.0 ns, RMS	Ranging modulation signal path over an 8-h period (see module 203)
Frequency Stability		Allan deviation
1 s	9.0×10^{-13}	
10 s	9.0×10^{-14}	
1000–3600 s	3.0×10^{-15}	
Spurious Output		Below carrier
1–10 Hz	–60 dB	
10 Hz–1.5 MHz	–70 dB	
1.5 MHz–8 MHz	–80 dB	
2nd Harmonic	–80 dB	
3rd, 4th & 5th Harmonics	–90 dB	

Table 1. S-Band Transmit Characteristics, DSS-45 and DSS-65, (Continued)

Parameter	Value	Remarks	
ANTENNA			
Gain at 7145 MHz	67.05 ±0.2 dBi	At elevation angle of peak gain, referenced to feedhorn aperture for matched polarization; no atmosphere included	
Transmitter Waveguide Loss	0.25 ±0.05 dB	20-kW transmitter output terminal (waterload switch) to feedhorn aperture	
Half-Power Beamwidth	0.0777 ±0.004 deg	Angular width (2-sided) between half- power points at specified frequency	
Polarization	RCP or LCP	One polarization at a time, remotely selected	
Ellipticity	1.0 dB (max)	Peak-to-peak axial ratio defined as the ratio of peak-to-trough received voltages with a rotating linearly polarized source and the feed configured as a circularly (elliptically) polarized receiving antenna	
Pointing Loss			
Angular	See module 302	Also see Figure 11	
CONSCAN	0.1 dB	X-band CONSCAN reference set for 0.1 dB loss	
EXCITER AND TRANSMITTER			
RF Power Output	73.0, +0.0, –1.0 dBm	Referenced to 20-kW transmitter output terminal (waterload switch). Settability is limited to 0.25 dB by measurement equipment precision	
Power output varies across the bandwidth and may be as much as 1 dB below nominal rating. Performance will also vary from tube to tube. Normal procedure is to run the tubes saturated, but unsaturated operation is also possible. The point at which saturation is achieved depends on drive power and beam voltage. The 20-kW tubes are normally saturated for power levels greater than 63 dBm (2 kW). Minimum power out of the 20-kW tubes is about 53 dBm (200 W). Efficiency of the tubes drops off rapidly below nominal rated output.			

Table 2. X-Band Transmit Characteristics

EIRP	139.8, +0.2, –1.0 dBm	

Parameter	Value	Remarks
EXCITER AND TRANSMITTER (Continued)		
Frequency Range Covered	7145 to 7190 MHz	
Instantaneous 1-dB Bandwidth (MHz)	45 MHz	
Coherent with Deep Space S-Band D/L Allocation	7151.9–7177.3 MHz	240/749 turnaround ratio
Coherent with Deep Space S-Band D/L Allocation	7151.9–7188.9 MHz	880/749 turnaround ratio
Tunability		At transmitter output frequency
Phase Continuous Tuning Range	2.0 MHz	
Maximum Tuning Rate	±12.1 kHz/s	
Frequency Error	0.012 Hz	Average over 100 ms with respect to frequency specified by predicts
Ramp Rate Error	0.001 Hz/s	Average over 4.5 s with respect to rate calculated from frequency predicts
Output Power Stability		From initial calibration value over an 8-h period at a fixed frequency
Saturated Drive	± 0.3 dB, peak	
Unsaturated Drive	± 0.5 dB, peak	
Output Power Variation		Across any 2 MHz segment
Saturated Drive	≤ 0.3 dB, p-p	
Unsaturated Drive	≤ 0.5 dB, p-p	
Group Delay Stability	≤ 1.5 ns, RMS	Ranging modulation signal path over 8 h period (see module 203)
Frequency Stability		Allan deviation
1 s	1.0 ×10 ⁻¹²	
10 s	1.0 ×10 ⁻¹³	
1000–3600 s	3.0 ×10 ⁻¹³	

Table 2. X-Band Transmit Characteristics (Continued)

Parameter	Value	Remarks
Spurious Output		Below carrier
1–10 Hz	–50 dB	
10 Hz–1.5 MHz	–60 dB	
1.5 MHz–8 MHz	–45 dB	
2nd Harmonic	–75 dB	
3rd, 4th & 5th Harmonics	–60 dB	

Table 2. X-Band Transmit Characteristics (Continued)

Table 3. S- and X-Band Receive Characteristics

Parameter	Value	Remarks
ANTENNA		
Gain		At elevation angle of peak gain for matched polarization, no atmosphere included. Favorable (+) and adverse (–) tolerances have a triangular PDF. See Figures 2–5 for elevation dependency.
S-Band (2295 MHz)	56.07 ±0.25 dBi	Referenced to feedhorn aperture
X-Band (8420 MHz)	68.41 ±0.2 dBi	Referenced to feedhorn aperture
Half-Power Beamwidth (deg.)		Angular width (2-sided) between half- power points at specified frequency
S-Band	0.242 ±0.020 deg	
X-Band	0.0660 ±0.004 deg	
Polarization		Remotely selected
S-Band	RCP or LCP	
X-Band	RCP or LCP	Same or opposite from transmit polarization
Ellipticity (dB)	0.7 dB	Peak-to-peak voltage axial ratio, RCP and LCP. See definition in Table 1.
S-Band	≤1.0 dB	
X-Band	≤0.8 dB	

Parameter	Value	Remarks
ANTENNA (Continued)		
Pointing Loss		
Angular	See module 302	Also see Figures 10 and 11
CONSCAN		
S-Band	0.03 dB, 3 sigma	Loss at S-band when using X-band CONSCAN reference set for 0.1 dB loss at X-band
	0.1 dB, 3 sigma	Recommended value when using S-band CONSCAN reference
X-Band	0.1 dB, 3 sigma	Recommended value when using X-band CONSCAN reference
RECEIVER		
Frequency Ranges Covered (MHz))		
S-Band	2200–2300 MHz	
X-Band		
Telemetry	8400–8500 MHz	
VLBI	8200–8600 MHz	Wideband HEMT LNA
Recommended Maximum Signal Power	-90.0 dBm	At LNA input terminal
Antenna-Microwave Noise Temperature (<i>T_{AMW}</i>)		Near zenith, no atmosphere (vacuum) or cosmic noise included. See Table 5 for 25% CD average clear sky noise contribution. Favorable (–) and adverse (+) tolerances have triangular PDF. See Figures 6–9 for elevation dependency.
S-Band (2200–2300 MHz)		With respect to feedhorn aperture
All Stations	34.00 ±2 K	LNA-1, HEMT, non-diplexed path
DSS-45 and DSS-65	41.76 ±2 K	LNA-1, HEMT, diplexed path

Table 3. S- and X-Band Receive Characteristics (Continued)

Parameter	Value	Remarks
RECEIVER (continued)		
X-Band (8400–8500 MHz)		With respect to feedhorn aperture
DSS-15	15.47 ±2 K	
DSS-45	15.47 ±2 K	LNA-1, maser, non-diplexed path.
DSS-65	15.47 ±2 K	
DSS-15	24.61 ±2 K	
DSS-45	24.61 ±2 K	LNA-1 maser, diplexed path.
DSS-65	24.61 ±2 K	
DSS-15	42.00 ±2 K	
DSS-45	42.00 ±2 K	LNA-2, HEMT, diplexed path.
DSS-65	42.00 ±2 K	
(8200–8600 MHz)		
DSS-15	32.37 ±2 K	
DSS-45	32.37 ±2 K	LNA-2, HEMT, non-diplexed path.
DSS-65	32.37 ±2 K	
Carrier Tracking Loop Noise B/W	0.25 – 200 Hz	Effective one-sided, noise-equivalent carrier loop bandwidth (BL)

Table 3. S- and X-Band Receive Characteristics (Continued)

Wind Speed		- X-Band Gain Reduction (dB)			
(km/hr)	(mph)				
16	10	0.2			
48	30	0.3			
72	45	0.4			

Table 4. Gain Reduction Due to Wind Loading, 34-m HEF Antennas

* Assumes antenna is maintained on-point using CONSCAN or equivalent closed-loop pointing technique.

S-band gain reduction is negligible for wind speeds up to 72 km/hr (45 mph). Worst case, with most adverse wind orientation.

Table 5. T_{AMW} , T_{sky} , and T_{op} for CD=25% Average Clear Weather at Zenith, Referenced to Feedhorn Aperture

Configuration and Stations	Noise Temperatures, K			
	T _{AMW} T _{sky}		Τορ	
S-band, all stations, LNA-1, HEMT, non-diplexed	34.00	4.78	38.78	
S-band, DSS-45 and DSS-65, LNA-1, HEMT, diplexed	41.76	4.78	46.54	
X-band, DSS-15, LNA-1, maser, non-diplexed	15.47	5.04	20.51	
X-band, DSS-15, LNA-1, maser, diplexed	24.61	5.04	29.65	
X-band, DSS-15, LNA-2, HEMT, non-diplexed	32.37	5.04	37.41	
X-band, DSS-15, LNA-2, HEMT, diplexed	42.00	5.04	47.04	
X-band, DSS-45, LNA-1, maser, non-diplexed	15.47	5.39	20.86	
X-band, DSS-45, LNA-1, maser, diplexed	24.61	5.39	30.00	
X-band, DSS-45, LNA-2, HEMT, non-diplexed	32.37	5.39	37.76	
X-band, DSS-45, LNA-2, HEMT, diplexed	42.00	5.39	47.39	
X-band, DSS-65, LNA-1, maser, non-diplexed	15.47	5.27	20.74	
X-band, DSS-65, LNA-1, maser, diplexed	24.61	5.27	29.88	
X-band, DSS-65, LNA-2, HEMT, non-diplexed	32.37	5.27	37.64	
X-band, DSS-65, LNA-2, HEMT, diplexed	42.00	5.27	47.27	

Figure 1. Functional Block Diagram of the HEF Subnet Antennas

Figure 2. S-Band Receive Gain, All HEF Antennas, at Feedhorn Aperture

Figure 3. X-Band Receive Gain, DSS-15 Antenna, at Feedhorn Aperture

Figure 4. X-Band Receive Gain, DSS-45 Antenna, at Feedhorn Aperture

Figure 5. X-Band Receive Gain, DSS-65 Antenna, at Feedhorn Aperture

Figure 6. S-band System Noise Temperature, all HEF Antennas, LNA-1, Non-Diplexed, at Feedhorn Aperture

Figure 7. X-Band System Noise Temperature, DSS-15, LNA-1, Non-Diplexed, at Feedhorn Aperture

Figure 8. X-Band System Noise Temperature, DSS-45, LNA-1, Non-Diplexed, at Feedhorn Aperture

Figure 9. X-Band System Noise Temperature, DSS-65, LNA-1, Non-Diplexed, at Feedhorn Aperture

Figure 10. S-Band Gain Reduction Versus Angle Off Boresight

Figure 11. X-Band Gain Reduction Versus Angle Off Boresight

Appendix A Equations for Modeling

A.1 Equations for Gain Versus Elevation Angle

The following equation can be used to generate S- and X-band transmit and receive gain versus elevation curves for DSS-15, DSS-45, and DSS-65. The gains are referenced to the feedhorn aperture, so different configurations (e.g., LNA-1 non-diplexed and LNA-2 diplexed) will have the same gain values. Examples of these curves are shown in Figures 2 through 5, for S- and X-bands. See paragraph 2.1.1.1 for frequency effect modeling and Module 105, Rev. B for atmospheric attenuation at weather conditions corresponding to cumulative distributions from 0% to 99%. The year-average atmosphere attenuations for CD = 0.00, 0.50, and 0.90 are also given in Table A-2.

$$G(\theta) = G_0 - G_1 (\theta - \gamma)^2 - \frac{A_{ZEN}}{\sin \theta}, \text{ dBi}$$
(A1)

where

$$\theta$$
 = antenna elevation angle (deg.) $6 \le \theta \le 90$
 G_0, G_1, γ = parameters from Table A-1
 A_{ZEN} = zenith atmospheric attenuation from Table A-2 or from Tables
10 through 15 in Module 105, dB.

A.2 Equations for System Noise Temperature Versus Elevation Angle

The following equations can be used to generate S-, and X-band receive system noise temperature versus elevation curves for DSS-15, DSS-45, and DSS-65. Examples of these curves are shown in Figures 6 through 9. See Module 105, Rev. B for atmospheric attenuation at weather conditions corresponding to cumulative distributions from 0% to 99%. Atmosphere attenuations for CD = 0.00, 0.50, and 0.90 are also given in Table A-2.

System operating noise temperature:

$$T_{op}(\theta) = T_{AMW} + T_{sky} = \left[T_1 + T_2 e^{-a\theta}\right] + \left[T_{atm}(\theta) + T'_{CMB}(\theta)\right]$$
(A2)

Sky noise contribution:

$$T_{sky} = T_{atm}(\theta) + T'_{CMB}(\theta)$$
(A3)

Atmospheric attenuation:

$$A(\theta) = \frac{A_{zen}}{\sin(\theta)}, \, dB$$
 (A4)

Atmospheric loss factor:

$$L(\theta) = 10^{\frac{A(\theta)}{10}}$$
, dimensionless, >1.0 (A5)

Atmospheric physical temperature:

$$T_p = 255 + 25 \times CD, \text{ K}$$
 (A6)

Atmospheric noise contribution:

$$T_{atm}(\theta) = T_p \left[1 - \frac{1}{L(\theta)} \right],$$
 (A7)

Effective cosmic background noise:

$$T'_{CMB}(\theta) = \frac{T_{CMB}}{L(\theta)},$$
 (A8)

where

 θ = antenna elevation angle (deg.), $6 \le \theta \le 90$

 $T_1, T_2, a =$ antenna-microwave noise temperature parameters from Table A-3

- *A_{ZEN}* = zenith atmospheric attenuation, dB, from Table A-2 or from Tables 10 through 15 (S-, X-bands) in Module 105, Rev. B, as a function of frequency, station, and cumulative distribution (*CD*)
- *CD* = cumulative distribution, $0 \le CD \le 0.99$, used to select A_{ZEN} from Table A-2 or from Tables 10 through 15 in Module 105, Rev. B

$$T_{CMB}$$
 = 2.725 K, cosmic microwave background noise temperature

A.3 Equation for Gain Reduction Versus Pointing Error

The following equation can be used to generate gain-reduction versus pointing error curves examples of which are depicted in Figures 10 and 11.

$$\Delta G(\theta) = 10 \log \left(e^{\frac{2.773\theta^2}{HPBW^2}} \right) , \quad \text{dB}$$
(3)

where

 θ = pointing error (deg.)

HPBW = half-power beamwidth in degrees (from Tables 1, 2, or 3)

	Parameters [†]				
Configuration and Stations	G ₀ * (Transmit)	G ₀ * (Receive)	G ₁	γ	
S-band, All Stations (Figure 2)	55.40 ‡	56.07	0.000006	42.0	
X-band, All Stations (Figures 3—5)	67.05	68.41	0.00008	42.0	

Table A-1. Vacuum Component of Gain Parameters

Notes:

^{\dagger} G₀ values are nominal at the frequency specified in Table 1, 2, and 3. Other parameters apply to all frequencies within the same band.

* Favorable tolerance = +0.5 dB, adverse tolerance = -0.5 dB, with a triangular PDF.

 \ddagger S-band uplink G₀ value only applies to DSS 45 and DSS 65 (No S-band uplink at DSS 15).

Table A-2.S- and X-Band Year-Average Zenith Atmosphere Attenuation Above Vacuum (A_{ZEN})

Weather Condition†	A _{ZEN} , dB*					
	S-band			X-band		
	DSS-15	DSS-45	DSS-65	DSS-15	DSS-45	DSS-65
Vacuum	0.000	0.000	0.000	0.000	0.000	0.000
CD = 0.00	0.033	0.036	0.035	0.037	0.039	0.038
CD = 0.50	0.034	0.036	0.035	0.041	0.047	0.044
CD = 0.90	0.034	0.037	0.036	0.045	0.058	0.057

Notes:

* From Tables 10 through 15 in module 105

† CD = cumulative distribution.

O and immediate and Otations	Parameters			
Configuration and Stations	<i>T</i> ₁ *	T ₂	а	
S-band, all stations, LNA-1, HEMT, non-diplexed	31.80	7.10	0.013	
S-band, DSS-45 and DSS-65, LNA-1, HEMT, diplexed	39.40	7.60	0.013	
X-band, DSS-15, LNA-1, maser, non-diplexed	15.47	5.00	0.10	
X-band, DSS-15, LNA-1, maser, diplexed	24.61	6.10	0.10	
X-band, DSS-15, LNA-2, HEMT, non-diplexed	32.37	5.50	0.10	
X-band, DSS-15, LNA-2, HEMT, diplexed	42.00	6.60	0.10	
X-band, DSS-45, LNA-1, maser, non-diplexed	15.47	5.00	0.10	
X-band, DSS-45, LNA-1, maser, diplexed	24.61	6.10	0.10	
X-band, DSS-45, LNA-2, HEMT, non-diplexed	32.37	5.50	0.10	
X-band, DSS-45, LNA-2, HEMT, diplexed	42.00	6.60	0.10	
X-band, DSS-65, LNA-1, maser, non-diplexed	15.47	5.00	0.10	
X-band, DSS-65, LNA-1, maser, diplexed	24.61	6.10	0.10	
X-band, DSS-65, LNA-2, HEMT, non-diplexed	32.37	5.50	0.10	
X-band, DSS-65, LNA-2, HEMT, diplexed	42.00	6.60	0.10	

Table A-3.	Antenna-Microwave Noise	Temperature	Parameters,	Referenced to	Feedhorn
		Aperture			

Note:

* Favorable tolerance = -2 K, adverse tolerance = +2 K, with a triangular PDF.