Deep Space Network

# DSN Telecommunications Link Design Handbook 

http://deepspace.jpl.nasa.gov/dsndocs/810-005/

TMOD No. 810-005, Rev. E
Issue Date: November 30, 2000
JPL D-19379, Rev.E

Jet Propulsion Laboratory
California Institute of Technology


810-005
Rev. E

Deep Space Network

## DSN Telecommunications Link Design Handbook

Prepared by:

Signature Provided Christine Chang

01/11/2024
Date

Approved by:

Released by:

Signature Provided
01/11/2024
DSN Document Release
Date

DSN No. 810-005
Issue Date: January 11, 2024
JPL D-19379
Jet Propulsion Laboratory
California Institute of Technology
U.S. Government sponsorship acknowledged.

This page intentionally left blank

Document Change Log

| Rev. | Issue Date | Modules Affected | Change Summary |
| :---: | :---: | :---: | :---: |
| Initial | 3/1/70 | All | New document. |
| A | 10/1/70 | All | Complete revision. |
| B | 4/15/72 | All | Complete revision. |
| C | - | All | Complete revision. |
| D | 2/15/75 | All | New modular format first appeared. |
| E | 1/15/2001 | All | Title changed from DSN Flight Project Interface Design Handbook; all modules renumbered and revised or reformatted. Volume 2 deleted as proposed capabilities are now led within the modules of this revision. Modules not related to telecommunications link design have been deleted from this document and will be incorporated in a new document, 810-007, DSMS Mission Interface Design Handbook. |
| Change 1 | 2/10/2003 | 105, 202, 205 | Added monthly weather statistics for all frequency bands to module 105, Added discussion of one-way Doppler error and XUp/Sdown Solar Phase Scintillation errors to module 202. Provided characteristics of new DSMS command equipment in module 205. |
| $\begin{gathered} \text { Change } \\ 2 \end{gathered}$ | 6/13/2003 | 207, 301 | Added concatenated codes, QPSK/OQPSK, and improved turbo code information to module 207, Identified $11-\mathrm{m}$ subnet as non-operational, expressed geodetic coordinates in WGS84 ellipsoid and added DSS 55 to module 301. |
| $\begin{gathered} \text { Change } \\ \hline \end{gathered}$ | 8/18/2003 | 101, 305, 901 | Documents new feedcone at DSS 63, L-band at all 70-m stations, and S-band low noise cone at DSS 43. Provided information on test support. Added information and corrected Glossary. |
| $\begin{gathered} \text { Change } \\ 4 \end{gathered}$ | 2/10/2004 | 104, 301 | Provided latest capability and performance information for all BWG stations. Corrected locations of DSS-26, 54, and 55. Provides final receive and transmit masks for DSS-55. |
| Change 5 | 3/31/2004 | $\begin{gathered} \hline 101 \mathrm{~A}, 208, \\ 214,304 \end{gathered}$ | Corrects Figures 1 and 5 in module 101, Rev. A. Corrects Figures 3 and 17 in module 208. Adds module 214, Pseudo-noise and Regenreative Ranging, and module 304, Frequency and Timing. |
| $\begin{gathered} \hline \text { Change } \\ 6 \end{gathered}$ | 7/15/2004 | 210 | Provides capabilities of Delta Differential Oneway Ranging in the DSN. |

## Document Change Log (Continued)

| Rev. | Issue Date | Modules Affected | Change Summary |
| :---: | :---: | :---: | :---: |
| Change 7 | 10/7/2004 | 206, 302, 901A | Adds overview of telemetry and antenna positioning capability. Revises Glossary to accommodate new and revised modules. |
| $\begin{gathered} \text { Change } \\ \hline 8 \end{gathered}$ | 5/9/05 | 212 | Provides capabilities of telemetry equipment installed in the DSN $26-\mathrm{m}$ subnet stations. |
| Change 9 | 8/10/05 | 104, 106 | Provides revised X-band and new Ka-band capability for DSS-34. Adds module 106, Solar Corona and Solar Wind Effects. |
| Change 10 | 10/21/05 | $\begin{gathered} 106,301 \mathrm{~B}, \\ 901 \mathrm{~B} \end{gathered}$ | Corrects errors in module 106, provides revised location, coverage and horizon mask for recently relocated DSS-65, and updates Glossary. |
| Change 11 | 2/20/06 | 203 | Incorporate changes resulting from improvements in sequential ranging implementation. |
| Change 12 | 5/26/06 | $\begin{gathered} \text { 105B, } 107 . \\ 305 \mathrm{~A} \end{gathered}$ | Provides new weather models and methods of calculating system temperature, Adds a radio source catalog. Updates capabilities of test facilities. |
| Change 13 | 8/25/06 | 101B, 211 | Revises $70-\mathrm{m}$ module to be consistent with module 105B and to delete DSS-43 S-band Ultracone. Adds description of wideband VLBI capabilities. |
| Change 14 | 4/2/07 | 103A, 203A | Revises 34-m HEF module to be consistent with module 105B and to le DSS-45 \& DSS-65 Sband uplink capability. Restores information on recommended range of $\operatorname{Pr} / \mathrm{N} 0$ to module 203. |
| Change 15 | 9/15/08 | $\begin{gathered} \text { 103A, 104B, } \\ \text { 201, 206A, } \\ 301 \mathrm{C} \end{gathered}$ | Revises 34-m HEF module to provide measured S-band uplink performance. Modifies $34-\mathrm{m}$ BWG module to document current status of K and Ka band implementation, Modifies frequency assignments module to le $26-\mathrm{GHz}$ band. Modifies Coverage and Telemetry General Information modules to document effects of decommissioned antennas and 26 GHz . |
| $\begin{gathered} \text { Change } \\ 16 \\ \hline \end{gathered}$ | 9/18/08 | 104C, 208 | Adds antenna performance at 26 GHz . Revises coding module and deletes obsolete code types. |
| $\begin{gathered} \hline \text { Change } \\ 16.5 \end{gathered}$ | 5/18/2009 | 104D, 208A | Revises antenna performance at 26 GHz for DSS 24,-34, and 54. Adds Low Density ParityCheck (LDPC) codes as a proposed capability. |
| Change 17 | 8/1/2009 | 105C | Updates weather models for the $26-\mathrm{GHz}$ support capability. Removes references to all 26 -m stations. |

## Document Change Log (Continued)

| Rev. | Issue Date | Modules Affected | Change Summary |
| :---: | :---: | :---: | :---: |
| Change 18 | 9/15/2009 | $\begin{gathered} \text { 101C, 102, } \\ \text { 104E, 105D, } \\ 204,212,213 \end{gathered}$ | Updates the $400-\mathrm{kW}$ S-band uplink capability and its supported frequency range. Revises DSS-54 and DSS-55 G and T information. Removes the document modules and all references to the decommissioned $26-\mathrm{m}$ stations. |
| Change 19 | 10/31/2009 | $\begin{aligned} & \text { 203C, 206B, } \\ & \text { 305B, 901D } \end{aligned}$ | Revises these document modules to reflect organizational changes and to eliminate references to the $26-\mathrm{m}$ subnet stations. |
| Change 20 | 12/15/2009 | 201B, 205B, 301E, 302A | Revises these document modules to reflect organizational changes and to eliminate references to the $26-\mathrm{m}$ subnet stations. |
| Change 21 | 4/1/2010 | Introductory <br> Materials, 001A | Revises introductory materials (Cover \& Title pages, Change Log, Foreword, Table of Contents) and Module 001A with up-to-date information and to reflect organizational changes. |
| Change 22 | 6/1/2010 | Introductory <br> Materials, <br> 104F, 205C, <br> 209A, 301F, <br> 302B | Revises these document modules to reflect organizational changes. |
| Change $23$ | 9/30/2010 | Introductory Materials, 106B, 202B, 304A | Revises these document modules to reflect organizational changes. |
| Change 24 | 4/29/2011 | Introductory <br> Materials, <br> 101D, 107A, <br> 211A, 901E | Revises introductory materials and Module 101D, 107A, 211A with up-to-date information. |
| $\begin{gathered} \text { Change } \\ 25 \end{gathered}$ | 3/22/2012 | Introductory <br> Materials, <br> 301G, 901F | Revises introductory materials and Module 301G with updated information. Revises the abbreviation list on Module 901F. |
| Change 26 | 10/17/2012 | Introductory <br> Materials, 301H | Revises introductory materials and Module 301H with updated information for DSS-54 and DSS55. |
| Change 27 | 03/12/2013 | Introductory <br> Materials, <br> 104G, 208B | Revises introductory materials. Revises 104G and 208B with up-to-date information. |
| $\begin{gathered} \text { Change } \\ 28 \end{gathered}$ | 04/08/2013 | Introductory <br> Materials, 107B | Revises introductory materials. <br> Revises 107B with up-to-date information. |
| Change $29$ | 09/18/2013 | Introductory <br> Materials, 101E | Revises introductory materials. <br> Revises 101E with up-to-date information. |
| $\begin{gathered} \hline \text { Change } \\ 30 \\ \hline \end{gathered}$ | 06/12/2014 | Introductory | Revises introductory materials. <br> Revises 301I with up-to-date information. |

$\left.\begin{array}{|c|c|c|l||}\hline \hline & & \text { Materials, 301I } & \\ \hline \begin{array}{c}\text { Change } \\ 31\end{array} & 08 / 01 / 2014 & \begin{array}{c}\text { Introductory } \\ \text { Materials, 103C }\end{array} & \begin{array}{l}\text { Revises introductory materials. } \\ \text { Revises 103C with up-to-date information. }\end{array} \\ \hline \begin{array}{c}\text { Change } \\ 32\end{array} & 09 / 10 / 2014 & \begin{array}{c}\text { Introductory } \\ \text { Materials, 301J }\end{array} & \begin{array}{l}\text { Revises introductory materials. } \\ \text { Revises 301J with up-to-date information. }\end{array} \\ \hline \begin{array}{c}\text { Change } \\ 33\end{array} & 12 / 15 / 2014 & \begin{array}{c}\text { Introductory } \\ \text { Materials, } \\ \text { 107C, 201C, } \\ \text { 205D, 304B }\end{array} & \begin{array}{l}\text { Revises introductory materials. } \\ \text { Revises 107C, 201C, 205D, 304B with up-to- } \\ \text { date information. }\end{array} \\ \hline \begin{array}{c}\text { Change } \\ 34\end{array} & 02 / 09 / 2015 & \begin{array}{c}\text { Introductory } \\ \text { Materials, } \\ \text { 209B, 210A, } \\ \text { 211B, 302C }\end{array} & \begin{array}{l}\text { Revises introductory materials. } \\ \text { Revises 209B, 210A, 211B, and 302C with up-to- } \\ \text { date information. }\end{array} \\ \hline \begin{array}{c}\text { Change } \\ 35\end{array} & 04 / 01 / 2015 & \begin{array}{c}\text { Introductory } \\ \text { Materials, } \\ \text { 104H }\end{array} & \begin{array}{l}\text { Revises introductory materials. } \\ \text { Revises 104H with up-to-date information. }\end{array} \\ \hline \begin{array}{c}\text { Change } \\ 36\end{array} & 08 / 05 / 2015 & \begin{array}{c}\text { Introductory } \\ \text { Materials, } \\ \text { 101F }\end{array} & \begin{array}{l}\text { Revises introductory materials. } \\ \text { Revises 101F with up-to-date information. }\end{array} \\ \hline \begin{array}{c}\text { Change } \\ 37\end{array} & 10 / 22 / 2015 & \begin{array}{c}\text { Introductory } \\ \text { Materials, } \\ \text { 105E, 107D }\end{array} & \begin{array}{l}\text { Revises introductory materials. } \\ \text { Revises 105E and 107D with up-to-date } \\ \text { information. }\end{array} \\ \hline \begin{array}{c}\text { Change } \\ 43\end{array} & 0 / 12 / 2018 & \begin{array}{c}\text { Introductory } \\ \text { Materials, 104J }\end{array} & \begin{array}{l}\text { Revises introductory materials. } \\ \text { Revises 104J with up-to-date information. }\end{array} \\ \hline \begin{array}{c}\text { Change } \\ 38\end{array} & 10 / 28 / 2015 & \begin{array}{c}\text { Introductory } \\ \text { Materials, }\end{array} & \begin{array}{l}\text { Revises introductory materials. } \\ \text { Revises 211D with up-to-date information. } \\ \text { Revises 301L with up-to-date information. } \\ \text { Materials, } \\ 214 \mathrm{~A}\end{array}\end{array} \begin{array}{l}\text { Revises introductory materials. } \\ \text { Revises 214A with up-to-date information. }\end{array}\right]$

|  |  | 211D, 301L |  |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Change } \\ \hline 45 \end{gathered}$ | 01/22/2019 | Introductory <br> Materials, 202C | Revises introductory materials. <br> Revises 202C with up-to-date information. |
| $\begin{gathered} \text { Change } \\ 46 \end{gathered}$ | 02/14/2019 | Introductory <br> Materials, 209D | Revises introductory materials. <br> Revises 209D with up-to-date information. |
| Change 47 | 06/06/2019 | Introductory <br> Materials, 210C | Revises introductory materials. Revises 210C with up-to-date information. |
| Change 48 | 07/17/2019 | Introductory Materials, 104K, 203D, 214B | Revises introductory materials. <br> Revises 104K, 203D, 214B with up-to-date information. |
| Change 49 | 09/04/2019 | Introductory <br> Materials, 101G | Revises introductory materials. Revises 101G with up-to-date information. |
| $\begin{gathered} \text { Change } \\ 50 \end{gathered}$ | 10/16/2019 | Introductory <br> Materials, 104L | Revises introductory materials. <br> Revises 104L with up-to-date information. |
| $\begin{gathered} \text { Change } \\ 51 \end{gathered}$ | 12/23/2019 | Introductory <br> Materials, 211E | Revises introductory materials. <br> Revises 211E with up-to-date information. |
| $\begin{gathered} \hline \text { Change } \\ 52 \end{gathered}$ | 09/04/2020 | Introductory Materials, 201D, 301M | Revises introductory materials. <br> Revises 201D and 301M with up-to-date information. |
| $\begin{gathered} \text { Change } \\ 53 \end{gathered}$ | 11/12/2020 | Introductory <br> Materials, 108 | Revises introductory materials. Initial version for 108 |
| Change 54 | 02/05/2021 | Introductory Materials, 201E, 209E, 210D, 304C, 901H | Revises introductory materials. <br> Revises 201E, 209E, 210D, 304C, and 901H with up-to-date information. |
| $\begin{gathered} \text { Change } \\ 55 \end{gathered}$ | 04/02/2021 | Introductory Materials, 104M, 107E, 205F | Revises introductory materials. <br> Revises 104M, 107E, and 205F with up-to-date information. |
| $\begin{gathered} \text { Change } \\ 56 \end{gathered}$ | 06/07/2021 | Introductory <br> Materials, 104N | Revises introductory materials. <br> Revises 104 N with up-to-date information. |
| Change 57 | 09/01/2021 | Introductory Materials, 202D, 206D | Revises introductory materials. Revises 202D and 206D with up-to-date information. |
| $\begin{gathered} \text { Change } \\ 58 \end{gathered}$ | 04/15/2022 | Introductory <br> Materials, 301 N | Revises introductory materials. Revises 301 N with up-to-date information. |
| $\begin{gathered} \text { Change } \\ 59 \end{gathered}$ | 05/04/2022 | Introductory <br> Materials, 201F | Revises introductory materials. Revises 201F with up-to-date information. |


| Change <br> 60 | $06 / 07 / 2022$ | Introductory <br> Materials, 211F | Revises introductory materials. <br> Revises 211F with up-to-date information. |
| :---: | :---: | :--- | :--- |
| Change <br> 61 | $07 / 19 / 2022$ | Introductory <br> Materials, 202E | Revises introductory materials. <br> Revises 202E with up-to-date information. |
| Change <br> 62 | $08 / 09 / 2022$ | Introductory <br> Materials, 104O | Revises introductory materials. <br> Revises 104O with up-to-date information. |
| Change <br> 63 | $03 / 23 / 2023$ | Introductory <br> Materials, 205G | Revises introductory materials. <br> Revises 205G with up-to-date information. |
| Change <br> 64 | $08 / 03 / 2023$ | Introductory <br> Materials, <br> 103D, 214C | Revises introductory materials. <br> Revises 103D and 214C with up-to-date <br> information. |
| Change <br> 65 | $10 / 10 / 2023$ | Introductory <br> Materials, 206E | Revises introductory materials. <br> Revises 206E with up-to-date information. |
| Chang <br> 66 | $01 / 11 / 2024$ | Introductory <br> Materials, <br> 209F, 210E, <br> 211 G | Revises introductory materials. <br> Revises 209F, 201E, and 211G with up-to-date <br> information. |

## Foreword

This modular handbook has been approved by the Deep Space Network (DSN) Project Office and is provided as a source of technical information for all flight projects using the DSN. It provides information useful to flight projects contemplating the design of hardware and software, with reasonable assurance that the resulting project telecommunications interfaces will be compatible with the established or planned DSN configurations.

The handbook is primarily concerned with performance parameters of equipment that supports the forward and return telecommunications link interfaces between spacecraft and the DSN. The handbook consists of modules that present technical information applicable to the current DSN configuration and preliminary information applicable to future DSN configurations. The modules will be revised to reflect new capabilities when these new capabilities have been planned and budgeted for by the DSN Project Office.

For matters of interpretation or questions concerning this handbook, contact the Deep Space Network Project Office, Organization 920, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, 91109.

## Table of Contents

| Designator | Release | Modular Document Title |
| :--- | :--- | ---: |
| 001, Rev. A | April 1, 2010 | Handbook Introduction |

## Space Link Interfaces

| 101, Rev. G | September 04, 2019 | 70-m Subnet Telecommunications Interfaces |
| :--- | :--- | :--- |
| 102 | September 15, 2009 | 26-m Subnet Telecommunications Interfaces <br> (Decommissioned) |
| 103, Rev. D | August 03, 2023 | 34-m HEF Subnet Telecommunications Interfaces |
| 104, Rev, O | August 09, 2022 | 34-m BWG Antennas Telecommunications Interfaces |
| 105, Rev. E | October 22, 2015 | Atmospheric and Environmental Effects |
| 106, Rev. B | September 30, 2010 | Solar Corona and Solar Wind Effects |
| 107, Rev. E | April 02, 2021 | Radio Source Catalog |
| 108 | November 12, 2020 | Ka-Band Radio Source Catalog |

## Station Data Processing

| 201, Rev. F | May 04, 2022 | Frequency and Channel Assignments |
| :--- | :--- | :--- |
| 202, Rev. E | July 19, 2022 | Doppler Tracking |
| 203, Rev. D | July 17, 2019 | Sequential Ranging |
| 204 | September 15, 2009 | 26-m Subnet Doppler and Ranging (Decommissioned) |
| 205, Rev. G | March 23, 2023 | Command Service |
| 206, Rev. E | October 10, 2023 | Telemetry General Information |
| 207, Rev. A | June 13, 2003 | 34-m and 70-m Telemetry Reception |
| 208, Rev. B | March 12, 2013 | Telemetry Data Decoding |
| 209, Rev. F | January 11, 2024 | Open-Loop Radio Science |


| Designator | Release Modular Document Title |  |
| :---: | :---: | :---: |
| 210, Rev. E | January 11, 2024 | Delta Differential One-way Ranging |
| 211, Rev. G | January 11, 2024 | Wideband Very Long Baseline Interferometry |
| 212 | September 15, 2009 | 26-m Subnet Telemetry (Decommissioned) |
| 213 | September 15, 2009 | 26-m Subnet Command (Decommissioned) |
| 214, Rev. C | August 03, 2023 | Pseudonoise and Regenerative Ranging |
| Ground Station Properties |  |  |
| 301, Rev. N | April 15, 2022 | Coverage and Geometry |
| 302, Rev. D | February 10, 2017 | Antenna Positioning |
| 303 | January 15, 2001 | Media Calibration |
| 304, Rev. C | February 05, 2021 | Frequency and Timing |
| 305, Rev. B | October 31, 2009 | Test Support |
| Supplementary Information |  |  |
| 901, Rev. H | February 05, 2021 | Handbook Glossary |

# 001, Rev. B Handbook Introduction 

April 29, 2011

Prepared by:
[Signature on file at DSN Library] Christine Chang
Editor

Approved by:

Released by:
[Signature on file at DSN Library]
DSN Document Release
Date

## Change Log

| Rev | Issue Date | Affected <br> Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: |
| Initial | $11 / 30 / 2000$ | All | All |
| A | $4 / 1 / 2010$ | All | Updates names, titles, and website references <br> due to organizational changes. |
| B | $4 / 29 / 2011$ | All | Update names, titles due to organizational <br> changes. |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Contents

Paragraph Page
1 Introduction ..... 3
1.1 Purpose ..... 3
1.2 Scope ..... 3
1.3. Distribution ..... 4
2 General Information ..... 4
2.1 Constraints ..... 4
2.2 Types of Data ..... 4
2.3 Proposed Capabilities ..... 5
2.4 Document Layout ..... 5
2.5 Module Revision and Control ..... 5
2.6 Abbreviations ..... 6
2.7 Applicable Documents ..... 6
2.7.1 DSN External Documents ..... 6
2.7.2 DSN Internal Documents ..... 6

## 1 <br> Introduction

### 1.1 Purpose

This modular handbook has been approved by the Deep Space Network (DSN) Project Office and is published as a source of interface design data for all flight projects using the DSN. It provides information useful to flight projects contemplating the design of hardware and software, with reasonable assurance that the resulting project telecommunications interfaces will be compatible with the established or planned DSN configurations.

### 1.2 Scope

The handbook consists of modules that present technical information applicable to the current DSN configuration and preliminary information applicable to future DSN configurations. These modules will be revised to reflect new capabilities and distributed to all users as these capabilities are in the plan and budgeted for by DSN Project Office.

This handbook is primarily concerned with performance parameters of equipment that supports the forward and return telecommunications link interfaces between spacecraft and the DSN.

### 1.3. Distribution

This handbook is published as an electronic document. The latest copy of the entire document series may be downloaded from this publicly accessible website:
http://deepspace.jpl.nasa.gov/dsndocs/810-005/
Notification of revisions will be distributed by electronic mail only. Requests for e-mail address changes should be submitted to the Editor of this document.

## 2 General Information

### 2.1 Constraints

The disclosure of a capability by this handbook does not assure that it can be made available to all potential DSN users. Specific support commitments must be negotiated between individual flight projects and the DSN/Mission Services Planning \& Management Office [http://deepspace.jpl.nasa.gov/advmiss/](http://deepspace.jpl.nasa.gov/advmiss/). Furthermore, this handbook does not relieve projects of the responsibility for obtaining frequency spectrum support for their equipment designs. Contact the DSN/Mission Services Planning \& Management Office for assistance in obtaining spectrum support from the JPL Frequency Manager.

In seeking viable solutions to telecommunications or data processing problems, flight projects are not necessarily constrained by the effective design parameters contained in this handbook. However, flight project requirements that could require DSN interface design beyond what is specified by this handbook are subject to negotiation with the DSN/Mission Services Planning \& Management Office.

The term user appears throughout this handbook whenever a mode of operation or parameter must be selected by a flight project. It must be understood that it is only in rare cases that these decisions can be made in real time. All DSN activities are planned well in advance and conducted by highly skilled personnel trained in handling contingencies. Changes to planned operations must be made in accordance with DSN procedures that are beyond the scope of this document.

### 2.2 Types of Data

It is the intent of this handbook to provide data verified by measurement and, therefore, representing actual performance. Unless clearly marked to the contrary, data in this handbook should be assumed to comply with this intent.

Sometimes it is necessary to include DSN design performance data that have not been verified by measurement. These data will be clearly identified in the associated text or by appropriate marking.

As hardware and software are tested and evaluated under operational conditions throughout the DSN, performance parameters will be upgraded to represent actual performance and published in the next revision of the appropriate module.

### 2.3 Proposed Capabilities

Whenever sufficient information is known about a capability being implemented in the DSN and having adequate maturity to be considered for spacecraft mission and equipment design, this information will be included in the appropriate modules under the heading of Proposed Capabilities. Telecommunications engineers are advised that anything discussed under this heading cannot be committed to except by negotiation with the DSN/Mission Services Planning \& Management Office.

### 2.4 Document Layout

The modules in this revision of 810-005 have been divided into major sections that can be identified by their module numbers and the color of the index/tab at the on-line document website.

This module is part of an introductory section that may be expanded in the future to include tutorial or summary information. Modules in this section have yellow tabs and numbers starting with 0 .

The next section, Space Link Interfaces, contains modules that provide information to those concerned with antenna selection and propagation effects. Modules in this section have blue tabs and numbers starting with 1.

The third section, Station Data Processing, contains modules that provide capabilities and performance of equipment installed in the Signal Processing Center (SPC) portion of each DSN location. This information will be of interest both to telecommunications engineers and spacecraft mission designers. Modules in this section have green tabs and numbers starting with 2.

The fourth section in this revision, Ground Station Properties, contains modules that provide information about the underlying technologies relating to many of the Space Link Interfaces and Station Data Processing modules. These modules have been grouped to consolidate this information in one place. Modules in this section have brown tabs and numbers starting with 3 .

### 2.5 Module Revision and Control

The modules contained in this handbook are approved for publication under the authority of the cover page signatories. Revisions are indicated by a revision letter following the module designator.

A summary of the changes and additions can be accessed on the home page of the document website, provided in Section 1.3 and as listed on the cover and title page of this document. Currency of modules in printed copies can be verified against the information in the Table of Contents supplied with each revision or by comparison with the version downloaded from the website.

Persons requesting additions of modules to the handbook should direct their request to the DSN Project Office. Persons requesting changes, corrections, or additions to existing modules should direct their comments to either of the cover page signatories or to the Editor of this document. All modules are subject to the review and approval process of DSN

Standard Practice in: DSN Documentation Structure, Standards, and Definitions, DSN Document 810-001.

### 2.6 Abbreviations

Abbreviations are normally defined after their first textual usage and are compiled in module 901, Handbook Glossary. It should be recognized, however, that certain common abbreviations or acronyms used in this handbook might not defined. External users may refer to any of several compilations of electronic terms for omitted definitions. Users with access to the JPL Intranet can find additional abbreviations at the DSN Acronym Reference Tool website: http://dsnprocess.jpl.nasa.gov/dart/

### 2.7 Applicable Documents

The latest issues of the following documents are referenced by modules in this handbook or are the source of requirements for this handbook or the capabilities described herein.

### 2.7.1 DSN External Documents

The following documents either are public documents or may be made available to organizations or individuals under contract to, or having received a request for a proposal from, NASA or one of its Centers.

1. The Interplanetary Network Progress Report, On-line document: http://eis.jpl.nasa.gov/tmo/index.cfm
2. DSN External Interface Specifications, DSN Document 820-013
3. Deep Space Network Services Catalog, DSN Document 820-100

### 2.7.2 DSN Internal Documents

The following DSN internal documents are referenced by, or provide requirements for, this handbook and may be found at the Product Data Management System web site: https://pdms.jpl.nasa.gov/CMTOOLS/

1. DSN Standard Practice, DSN Documentation Structure, Standards, and Definitions, DSN Document 810-001
2. DSN Subsystem Requirements; DSN Document Series 834

Deep Space Network

## 101

## 70-m Subnet

Telecommunications Interfaces

Document Owner:

| Signature provided | 07/23/2019 |
| :--- | :--- |
| Stephen D. Slobin | Date |
| Antenna System Engineer |  |

Prepared by:

| Signature provided | $07 / 23 / 2019$ |
| :--- | :--- |
| Stephen D. Slobin | Date |
| Antenna System Engineer |  |

Approved by:

| Signature provided | $07 / 19 / 2019$ |
| :--- | :--- |
| Timothy Pham | Date |
| Communications Systems Chief |  |
| Engineer |  |

Released by:

| Signature provided | $07 / 23 / 2019$ |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 101, Rev. G
Issue Date: September 04, 2019
JPL D-19379; CL\#19-5458

## Jet Propulsion Laboratory

California Institute of Technology

810-005
101, Rev. G

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature provided | $07 / 23 / 2019$ |  | Signature provided | $07 / 23 / 2019$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\left.\begin{array}{llll}\text { Jeff Berner } & \text { Date } & & \text { Date } \\ \text { DSN Project Chief Engineer } & & & \end{array}\right)$ |  |  |  |  |

Signature provided
07/22/2019
Timothy Cornish
Date
Uplink System Engineer

## Document Change Log

| Rev | Issue Date | Prepared By | Paragraphs Affected | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| Initial | 1/15/2001 | Stephen Slobin Robert Sniffin | All |  |
| A | 07/30/2003 | Stephen Slobin Robert Sniffin | All | Revised gain and noise temperature reference point to feedhorn aperture. Documented installation of new feedcone at DSS 63. Provided diagrams of L-band microwave equipment and Low-noise Sband cone at DSS 43. |
| Chg 1 | 3/31/2004 | Stephen Slobin Robert Sniffin | Figures 1, 5 | Corrected S-band amplifier types in Figure 1. Replaced Figure 5 with correct graphic |
| B | 8/25/2006 | Stephen Slobin Robert Sniffin | All | Documents removal of DSS-43 Ultracone. Revised $T_{A M W}$ formulation for noise temperature to be consistent with Rev. B of module 105. |
| C | 9/15/2009 | Stephen Slobin Robert Sniffin | Pages 1, 6, Table 1, Figure 1. | Replaced DSMS with DSN. Correctly stated that $400-\mathrm{kW}$ S-band uplink is available at DSS-43 only. Included frequency range for support for this capability. DSS-14 S-band radar transmitter removed. |
| D | 4/21/2011 | Stephen Slobin Christine Chang | Tables 2, 4, 5, 6, A-3. <br> Figures 1, 8, 9, 10. | S-band LNA-1 maser at DSS-14 replaced with a HEMT, giving 1.8 K higher noise temperature. LNA numbering updated. |
| E | 9/18/2013 | Stephen Slobin Christine Chang | Tables 2, 4, 7, 8, A-3 <br> Section 2, Table 1 <br> Figures 9, 10 <br> Tables 4, A-2 | S-band LNA-1 maser at DSS-43 replaced with a HEMT, giving 1.8 K higher noise temperature. DSS-63 S-band transmit frequency restriction. Transmit elevation angle restrictions for all antennas. DSS-43 400 kW transmit power restriction. New temperature profiles for DSS-43. Minor numerical changes. |

101, Rev. G

| F | 08/05/2015 | Stephen Slobin Christine Chang | Tables 2, 4-10 <br> Table 4 <br> Figure 1 <br> Figures 4-6 <br> Figures 8-10 <br> Figures 11-13 <br> Table A-2 <br> Table A-3 | New DSS-63 S-band LNA-1 HEMT Tamw values. Recalculated DSS-14 and DSS43 S-band $\mathrm{T}_{\text {Amw }}$ and $\mathrm{T}_{\text {op }}$ with LNA-1 HEMT. <br> New S-band $\mathrm{T}_{\text {Amw }}$ and $\mathrm{T}_{\text {op }}$ values. New X-band $\mathrm{T}_{\text {sky }}$ and $\mathrm{T}_{\text {op }}$ values. Relabeled S-band LNA-1 HEMT. Redrawn for new X -band $\mathrm{A}_{\text {zen }}$ values. Redrawn for new S-band Tamw values. Redrawn for new X -band $\mathrm{T}_{\text {sky }}$ values. New X-band Azen values. New S-band LNA-1 T1 values. |
| :---: | :---: | :---: | :---: | :---: |
| G | 09/04/2019 | Stephen Slobin Christine Chang | Section 2 | 2090-2110 MHz uplink no longer supported on 70-m antennas. |
|  |  |  |  | DSS-43 400 kW S-band transmitter limited to 100 kW and 17.4 degree elevation restriction. |
|  |  |  | Section 4 | Proposed Capabilities added. |
|  |  |  | Table 1 | Changed S-band 400 kW transmitter power and EIRP to 100 kW limit. |
|  |  |  |  | 2090-2110 MHz uplink no longer supported on $70-\mathrm{m}$ antennas. |
|  |  |  | Table 2 | Corrected 2270-2300 MHz to 2200-2300 MHz (one place). |
|  |  |  | Figure 1 | Changed to indicate 100 kW limit for DSS-43 400 kW transmitter. |

## Contents

Paragraph Page
1 Introduction ..... 7
1.1 Purpose. ..... 7
1.2 Scope ..... 7
2 General Information ..... 7
3 Telecommunications Parameters ..... 8
3.1 Antenna Gain ..... 9
3.1.1 Frequency Effects ..... 9
3.1.2 Elevation Angle Effects ..... 9
3.1.3 Wind Loading ..... 10
3.2 System Operating Noise Temperature ..... 10
3.3 Pointing ..... 12
4 Proposed Capabilities. ..... 12
Appendix A Equations for Modeling ..... 39
A. 1 Equations for Gain Versus Elevation Angle ..... 39
A. 2 Equations for System Noise Temperature Versus Elevation Angle ..... 39
A. 3 Equation for Gain Reduction Versus Pointing Error ..... 41
Illustrations
Figure Page
Figure 1. Functional Block Diagram of S-Band and X-Band Microwave and Transmitter Equipment ..... 30
Figure 2. Functional Block Diagram of L-Band Microwave Equipment ..... 31
Figure 3. S-Band Receive Gain, All Stations, at Feedhorn Aperture ..... 32
Figure 4. X-Band Receive Gain, DSS 14 Antenna, X-Only Configuration (S/X Dichroic Retracted), at Feedhorn Aperture ..... 32
Figure 5. X-Band Receive Gain, DSS 43 Antenna, X-Only Configuration (S/X Dichroic Retracted), at Feedhorn Aperture ..... 33
Figure 6. X-Band Receive Gain, DSS 63 Antenna, X-Only Configuration (S/X Dichroic Retracted), at Feedhorn Aperture ..... 33
Figure 7. L-Band System Noise Temperature, All Stations, at Feedhorn Aperture ..... 34
Figure 8. S-Band System Noise Temperature, DSS 14 Antenna, LNA-1, Non-Diplexed, at Feedhorn Aperture. ..... 34
Figure 9. Eastern Horizon S-Band System Noise Temperature at $6^{\circ}$ Elevation Angle ..... 35
Figure 10. Western Horizon S-Band System Noise Temperature at $6^{\circ}$ Elevation Angle ..... 35
Figure 11. X-Band System Noise Temperature, DSS 14 Antenna, LNA-1 or LNA-2, X-Only Configuration (S/X Dichroic Retracted) ..... 36
Figure 12. X-Band System Noise Temperature, DSS 43 Antenna, LNA-1 or LNA-2, X-Only Configuration (S/X Dichroic Retracted) ..... 36
Figure 13. X-Band System Noise Temperature, DSS 63 Antenna, LNA-1 or LNA-2, X-Only Configuration (S/X Dichroic Retracted) ..... 37
Figure 14. L-Band and S-Band Pointing Loss Versus Pointing Error ..... 37
Figure 15. X-Band Pointing Loss Versus Pointing Error ..... 38
Tables
TablePage
Table 1. S- and X-Band Transmit Characteristics ..... 13
Table 2. L-, S-, and X-Band Receive Characteristics ..... 18
Table 3. Gain Reduction Due to Wind Loading, 70-m Antenna ..... 22
Table 4. $T_{A M W}, T_{\text {sky }}$, and $T_{O p}$ for CD=25\% Average Clear Weather at Zenith, Referenced to Feedhorn Aperture. ..... 22
Table 5. DSS 14 Eastern Horizon S-Band $T_{O p}(\mathrm{~K})$ with SPD Cone ..... 24
Table 6. DSS 14 Western Horizon S-Band $T_{O p}(\mathrm{~K})$ with SPD Cone ..... 25
Table 7. DSS 43 Eastern Horizon S-Band $T_{o p}(\mathrm{~K})$ with SPD Cone ..... 26
Table 8. DSS 43 Western Horizon S-Band $T_{O p}(\mathrm{~K})$ with SPD Cone ..... 27
Table 9. DSS 63 Eastern Horizon S-Band $T_{O p}(\mathrm{~K})$ with SPD Cone ..... 28
Table 10. DSS 63 Western Horizon S-Band $T_{O p}(\mathrm{~K})$ with SPD Cone ..... 29
Table A-1. Vacuum Component of Gain Parameters, Referenced to Feedhorn Aperture ..... 42
Table A-2. Zenith Year-Average Atmosphere Attenuation Above Vacuum ( $A_{Z E N}$ ) ..... 42
Table A-3. Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture ..... 43

## 1 Introduction

### 1.1 Purpose

This module provides the performance parameters for the Deep Space Network (DSN) 70-meter antennas that are necessary to perform the nominal design of a telecommunications link. It also summarizes the capabilities of these antennas for mission planning purposes and for comparison with other ground station antennas.

### 1.2 Scope

References here (e.g., "Module 105") are to the DSN Telecommunications Link Design Handbook, DSN Document Number 810-005. The scope of this module is limited to providing those parameters that characterize the RF performance of the 70-meter antennas. These are discussed in Module 105, Atmospheric and Environmental Effects. The parameters do not include effects of weather, such as reduction of system gain and increase in system noise temperature that are common to all antenna types. This module also does not discuss mechanical restrictions on antenna performance that are covered in Module 302, Antenna Positioning, or the effects of terrain masking that are covered in Module 301, Coverage and Geometry.

## 2 General Information

The DSN 70-m Antenna Subnet contains three 70-meter diameter antennas. Deep Space Station (DSS) 14 is located at Goldstone, California, DSS-43 is near Canberra, Australia, and DSS-63 is near Madrid, Spain. The precise station locations are given in Module 301, Coverage and Geometry. All antennas support L-, S-, and X-band reception, and S-band and Xband transmission.

Figure 1 is a block diagram of the S-band and X-band microwave and transmitter equipment at DSS-14, DSS-43, and DSS-63 that is common to all three stations. Additionally a 400 kW S-band transmitter is shown for DSS-43, but its use is limited to 100 kW . A block diagram of the L-band equipment at the three stations is shown in Figure 2.

For S-band, the stations utilize the S-band Polarization Diversity (SPD) feedcone that contains the feed, the primary low-noise amplifier (LNA) and its support equipment, the diplexer, and the required switches and other waveguide. The backup LNA and the S-band transmitters are located in an area beneath the feedcones referred to as the Module III area. The S-band feed employs an orthomode junction that permits simultaneous right hand circular polarization (RCP) and left hand circular polarization (LCP) to be used. The polarizer may be switched so that either polarization may be directed to the non-diplexed path with the opposite polarization appearing on the diplexed path. The lower-noise non-diplexed path (orthomode upper arm) is used for listen-only reception, or if the spacecraft transmits and receives on opposite polarizations. If the spacecraft receives and transmits simultaneously with the same polarization, the diplexed path must be used for reception and the system operating noise temperature is higher.

A 20-kW S-band transmitter is provided for normal spacecraft communication at all three sites. The uplink frequency band $2090-2110 \mathrm{MHz}$ is no longer supported on 70-meter

$$
\begin{gathered}
\text { 810-005 } \\
\text { 101, Rev. G }
\end{gathered}
$$

antennas. An additional 400-kW S-band transmitter is available at DSS-43 (Canberra), but its power output is limited to 100 kW . In no case can the $400-\mathrm{kW}$ transmitter be used below 17.4 degrees elevation, no matter what the power is. At DSS-63 (Madrid) S-band uplink in the deep space frequency band ( $2110-2120 \mathrm{MHz}$ ) is not available due to conflict with IMT-2000 users, per agreement between NASA and Secretaria de Estado de Telecomunicaciones par la Sociedad de la Informacion (SETSI), January, 2001. Deep-space S-band is also not available at the Madrid DSS-54 BWG antenna or the DSS-65 HEF antenna. Transmission below 10 degrees elevation by any antenna at any frequency is not allowed. Additional horizon mask transmission limitations can be seen in the figures in Module 301, Coverage and Geometry.

All three 70-meter antennas employ the X-band Transmit-Receive feedcone (the XTR cone). The XTR cone employs a unique feed design that includes a diplexing junction to inject the transmitted signal directly into the feed. This eliminates the need for a waveguide diplexer and a common path for the received and transmitted signals. As a result, much of the received path can be cryogenically cooled with a significant reduction in system operating noise temperature. The S/X dichroic plate can also be retracted when S-band is not required, for a further improvement in X-band performance - lower noise temperature and higher gain. When the $\mathrm{S} / \mathrm{X}$ dichroic is retracted, both the X -band transmit and receive beams are moved to the left (looking outward from the antenna, minus cross-elevation direction, smaller azimuth) about 8.5 mdeg relative to the X-band beam in the S/X configuration. This beam movement is corrected for by existing pointing models, however the appropriate model must be chosen by an operator prior to observing a spacecraft. The XTR feed includes a fixed circular polarizer and an orthomode junction to enable both circular polarizations to be received simultaneously. Each polarization is routed to one of two identical high-electron-mobility transistor (HEMT) low-noise amplifiers located within the cryogenic package. A separate, switchable polarizer is provided for the X-band transmitter so that the transmitted signal can be of either polarization

The 70-m antennas are equipped with an L-band feed (Figure 2) mounted on the outside of the XTR cone. The feed normally receives LCP, but could be disassembled and reconfigured to receive RCP. The low noise amplifiers, an L-band to S-band upconverter for the received signal, and an S-band to L-band downconverter for test signals are located in the Module III area. The output of the L-band to S-band upconverter is substituted for one of the two S-band receive channels. However, the need to position the antenna subreflector to illuminate the L-band feed prevents the other frequencies from being simultaneously available.

The L-, S- and X-band feeds are provided with phase calibration couplers and comb generators so the stations can be used for very-long baseline interferometry reception in addition to spacecraft tracking.

The Goldstone site also has an X-band radar transmitter (Goldstone Solar System Radar, GSSR) in a third cone that operates near the normal receive frequency band. In this third cone is also a Ku-band ( 22 GHz ) receive feed for radio astronomy investigations. The third feedcone position at DSS 43 is now occupied with host-country equipment for non-DSN use. At DSS-63, a third feedcone has been installed that contains a Ku-band radio astronomy feed.

## 3 Telecommunications Parameters

The significant parameters of the 70-meter antennas that influence telecommunications link design are listed in Tables 1 and 2. Variations in these parameters that

$$
\begin{aligned}
& \text { 810-005 } \\
& \text { 101, Rev. G }
\end{aligned}
$$

are inherent in the design of the antennas are discussed below. Other factors that degrade link performance are discussed in Modules 105 (Atmospheric and Environmental Effects) and 106 (Solar Corona and Wind Effects).

### 3.1 Antenna Gain

The antenna gains in Tables 1 and 2 do not include the effect of atmospheric attenuation and should be regarded as vacuum gain referenced to the feedhorn aperture.

### 3.1.1 Frequency Effects

Antenna gains are specified at the indicated frequency $\left(f_{0}\right)$. For operation at higher frequencies in the same band, the gain $(\mathrm{dBi})$ must be increased by $20 \log \left(f / f_{0}\right)$. For operation at lower frequencies in the same band, the gain must be reduced by $20 \log \left(f / f_{0}\right)$.

### 3.1.2 Elevation Angle Effects

Structural deformation causes a reduction in gain when the antenna operates at an elevation angle other than the angle where the reflector panels were aligned. The net gain of the antenna is also reduced by atmospheric attenuation that is a function of elevation angle and weather condition. These effects are illustrated in Figures 3 through 6 which show the estimated gain versus elevation angle for the hypothetical vacuum condition (structural deformation only) and with $0 \%, 50 \%$, and $90 \%$ weather conditions, designated as CD (cumulative distribution) = $0.00,0.50$, and 0.90 . A CD of $0.00(0 \%)$ means the minimum weather effect (exceeded $100 \%$ of the time). A CD of 0.90 ( $90 \%$ ) means that effect which is exceeded only $10 \%$ of the time. Qualitatively, a CD of 0.00 corresponds to the driest, lowest-loss condition of the atmosphere; a CD of 0.50 corresponds to humid or very light clouds; and 0.90 corresponds to very cloudy, but with no rain. A CD of 0.25 corresponds to average clear weather. Comprehensive S-band and Xband weather effects models (for weather conditions up to $99 \%$ cumulative distribution) are provided in Module 105 for detailed design control table use.

Figure 3 depicts the S-band ( 2295 MHz ) net gains for all stations as a function of elevation angle and weather condition, including the vacuum condition. Net gain means vacuumcondition gain as reduced by atmosphere attenuation. The L-band gain curve shapes should be considered identical to the S-band curve shapes, except that they are reduced in value by the differences shown in Table 2 and Appendix Table A-1. Figures 4, 5, and 6 present the X-band ( 8420 MHz ) net gains of the DSS-14, DSS-43, and DSS-63 antennas as a function of elevation angle and weather condition, including the vacuum condition, using the XTR feedcone with the S/X dichroic plate retracted (the X-only configuration). The equations and parameters of these curves are given in Appendix A. The models use a flat-Earth, horizontally stratified atmosphere approximation.

It should be noted in Appendix Table A-1, that the gain parameters do not vary for different S-band configurations (e.g., LNA-1 non-diplexed vs. LNA-1 diplexed), as they do in Table A-3 for the noise temperature parameters. This is due to the fact that the gain is referenced to the feedhorn aperture, and configurations "downstream" (e.g., orthomode and diplexer paths) do not affect the value of gain at the aperture. The observed differences in antenna $G / T$ are attributed to different values of noise temperature when $G$ and $T$ are referred to the feedhorn aperture. When $G$ and $T$ are referenced to the LNA input, both the $G$ and $T$
parameters vary with antenna configuration. For X-band, which is always in a fixed diplexed configuration, the $\mathrm{S} / \mathrm{X}$ dichroic position in front of the feedhorn affects both the gain and noise temperature parameters at the feedhorn aperture.

Under normal operation of the antenna, the subreflector is moved in the axial (Zdirection, in-out) and lateral (Y-direction, up-down) directions several centimeters to compensate for main reflector and quadripod gravitational distortion and to maintain antenna gain at an optimum level. As the antenna moves from 6 degrees to 90 degrees in elevation, the total subreflector axial movement, relative to the quadripod, is 3.744 cm . The subreflector movement alone contributes a phase change of -666 degrees at X -band. (The sign convention is that a longer path length results in a smaller value of phase). Quadripod distortion contributes +195 degrees, and main reflector distortion contributes -172 degrees. The net effect of these three motions is a phase change of -643 degrees at X-band.

Fixing the subreflector movement at a Y/Z value appropriate for a particular elevation angle, as is done in certain very-long baseline interferometry (VLBI) and spacecraft experiments, greatly reduces the net phase change over the range of elevation angles needed to track a radio source or spacecraft. In the 6-90 degree elevation example above, the net total phase change is reduced to +23 degrees. The downside of fixing the subreflector motion is that the antenna gain will be reduced many tenths of a dB, up to 1 dB , for deviations in elevation angle of 10-20 degrees from the nominal elevation angle. These effects should be thoroughly investigated if there is any question of having adequate margin to complete the telecommunications link. Further discussion can be found in S. D. Slobin and D. A. Bathker, "DSN 70-Meter Antenna X-Band Gain, Phase, and Pointing Performance, With Particular Application for Voyager 2 Neptune Encounter," TDA Progress Report 42-95, pp. 237-245, JulySeptember 1988.

### 3.1.3 Wind Loading

The gain reductions at S- and X-band due to wind loading are listed in Table 3. The tabular data are for structural deformation of the main reflector only and assume that the antenna is maintained on-point by conical scan (CONSCAN, discussed in Module 302) or an equivalent process. In addition to structural deformation, wind introduces a blind-pointing error that is related to the antenna elevation angle, the angle between the antenna and the wind, and the wind speed. Cumulative probability distributions of wind velocity at Goldstone are given in Module 105.

### 3.2 System Operating Noise Temperature

The system operating noise temperature ( $T_{o p}$ ) varies as a function of elevation angle due to changes in the path length through the atmosphere and ground noise received by the sidelobe pattern of the antenna. Figures 7 through 13 show the combined effects of these factors at L-, S-, and X-bands in a hypothetical vacuum (no atmosphere) and no cosmic noise condition for selected antenna configurations, and with the three weather conditions, including cosmic noise, as described above. The equations and parameters for these curves are provided in Appendix A of this module. The models use a flat-Earth, horizontally stratified atmosphere approximation.

The system operating noise temperature, $T_{o p}$, consists of two parts, an antennamicrowave component, $T_{A M W}$, for the contribution of the antenna and microwave hardware only, and a sky component, $T_{\text {sky }}$, that consists of the atmosphere noise plus the cosmic microwave background noise, attenuated by the atmosphere loss. $T_{A M W}$ is shown in Figures 7, 8, 11, 12, and 13 as "ANT-UWV". The system operating noise temperature is given by

$$
T_{o p}(\theta)=T_{A M W}+T_{\text {sky }}=\left[T_{1}+T_{2} e^{-a \theta}\right]+\left[T_{a t m}(\theta)+T_{C M B}^{\prime}(\theta)\right]
$$

where
$T_{\text {sky }}=T_{\text {atm }}(\theta)+T_{C M B}^{\prime}(\theta)$
$T_{1}, T_{2}$, and $a$ are coefficients and exponent given in Appendix A, Table A-3
$T_{a t m}$ is the atmosphere contribution term, calculated from Module 105
$T_{C M B}^{\prime}$ is the attenuated cosmic contribution, calculated from Module 105
More details of this calculation are given in Appendix A of this module.
Figure 7 shows the L-band ( 1668 MHz ) system noise temperature as a function of elevation angle, for all antennas, referenced to the feedhorn aperture. Figure 8 shows the Sband ( 2295 MHz ) system noise temperature curves for DSS 14, LNA-1, non-diplexed, referenced to the feedhorn aperture. S-band curves for other antennas and configurations can be calculated by using the parameters given in Appendix A. Figures 9 and 10 show S-band system noise temperatures at 6 degrees elevation for all antennas at the eastern and western horizons. These data were measured specifically for rise and set azimuth ranges appropriate for the Galileo spacecraft during the time period 1995 through 1998, but are usable with any spacecraft operating at S-band. All S-band noise temperatures presented here are for an antenna configuration where both LNAs are HEMTs. The X-band ( 8420 MHz ) system noise temperatures referenced to the feedhorn aperture for the three antennas are shown in Figures 11 through 13. Each figure shows the noise temperature with the antenna in the lowest noise, Xonly configuration, with the $\mathrm{S} / \mathrm{X}$ dichroic reflector retracted. The higher $\mathrm{S} / \mathrm{X}$ configuration noise temperatures can be calculated using the parameters given in Appendix A.

The $T_{A M W}$ noise temperature values in Table 2 are stated with reference to the feedhorn aperture and arise from antenna and microwave hardware contribution only. No atmosphere or cosmic background contribution is included. Table 4 presents values (for all antenna frequencies and configurations, at zenith, with average-clear $\mathrm{CD}=0.25$ weather) of $T_{A M W}, T_{s k y}$, and $T_{o p}$. The values of $T_{\text {sky }}$ in Table 4 are calculated by methods presented in Module 105, using year-average attenuation values in Tables $10-15$ of that module

Tables 5 through 10 give S-band system noise temperatures to be expected during average clear weather conditions at elevation angles near the horizon, corresponding to rise and set azimuths of spacecraft with declinations of approximately $-15^{\circ}$ to $-25^{\circ}$. These data were gathered specifically to support the Galileo Mission during the 1995 through 1998 period.

Tables 5 and 6 are for rise and set azimuths at DSS-14 (Goldstone) using the Sband SPD cone (the standard S-band receiving system with a HEMT LNA). Tables 7 and 8 are for rise and set azimuths at DSS-43 (Canberra) using the SPD cone with a HEMT LNA, and Tables 9 and 10 give rise and set noise temperatures for DSS-63 (Madrid) using the SPD cone
with a HEMT LNA. S-band noise temperatures above the maximum angles given in the tables can be calculated using the parameters given in Appendix A.

## $3.3 \quad$ Pointing

Figure 15 shows the effects of pointing error on effective transmit and receive gain of the antenna (pointing loss) for the S-band transmit and the L- and S-band receive frequencies. The effects of pointing error at the X-band transmit and receive frequencies are shown in Figure 16. These curves are Gaussian approximations based on theoretical antenna beamwidths. Data have been normalized to eliminate elevation and wind-loading effects. The equation used to generate the curves is provided in Appendix A.

The Gaussian approximation underestimates the exact gain drop off by about 0.3 dB at the -5 dB pointing-loss position, and about 0.5 dB at the -6 dB position. Beyond this, the Gaussian approximation will greatly underestimate the pointing loss, as the actual pattern has a null at a position off boresight approximately equal to the full half-power beamwidth. If this is a concern, the exact antenna beam shape should be obtained and pointing loss estimates from that should be made.

## 4 Proposed Capabilities

All 70-meter antennas will receive significant upgrades to their S-band and Xband transmitting systems over the next several years. The S-band 20 kW and the DSS-43 400 kW transmitters will be replaced by 100 kW transmitters. The X-band 20 kW transmitters will be replaced by 80 kW transmitters. The X-band uplink frequency band will be widened to 7145 7235 MHz , up from the present $7145-7190 \mathrm{MHz}$. The X-band feeds will be modified to allow high-power transmission.

Following an approximately 10-month downtime, the following return-to-service dates for the 70-meter antennas are expected to be:

DSS-43, December 2020
DSS-63, December 2022
DSS-14, December 2024

Table 1. S- and X-Band Transmit Characteristics

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA |  |  |
| Gain |  | At elevation angle of peak gain, referenced to feedhorn aperture for matched polarization; no atmosphere included |
| S-band (2115 MHz) | $62.95 \pm 0.2 \mathrm{dBi}$ | All stations, S/X dichroic extended |
| X-band ( 7145 MHz ) | $73.23 \pm 0.2 \mathrm{dBi}$ | All stations, S/X dichroic retracted |
| X-band ( 7145 MHz ) | $72.92 \pm 0.2 \mathrm{dBi}$ | All stations, S/X dichroic extended |
| Transmitter Waveguide Loss |  |  |
| S-band |  |  |
|  | $0.2 \pm 0.02 \mathrm{~dB}$ | 400-kW transmitter output to feedhorn aperture (DSS-43 only) |
|  | $0.3 \pm 0.02 \mathrm{~dB}$ | 20-kW transmitter output to feedhorn aperture (All stations) |
| X-band | $0.45 \pm 0.02 \mathrm{~dB}$ | 20-kW transmitter output to feedhorn aperture (All stations) |
| Half-Power Beamwidth |  | Angular width (2-sided) between halfpower points at specified frequency |
| S-band | $0.128 \pm 0.013 \mathrm{deg}$ |  |
| X-band | $0.038 \pm 0.004 \mathrm{deg}$ | Note: When operating in the X-only configuration ( $\mathrm{S} / \mathrm{X}$ dichroic retracted), the transmit beam is moved approximately 8.5 mdeg to the left (XEL direction, looking outward from the antenna) relative to the beam in $\mathrm{S} / \mathrm{X}$ configuration. Existing pointing models correct for this. |
| Polarization | RCP or LCP | One polarization at a time, remotely selected |
| Ellipticity, RCP or LCP |  | Ellipticity is defined as the ratio of peak-totrough received voltages with a rotating, linearly polarized source and a circularly (elliptically) polarized receiving antenna. Ellipticity $(\mathrm{dB})=20 \log \left(V_{2} / V_{1}\right)$. |
| S-band | 2.2 dB (max) | All stations |
| X-band | $\leq 1.0 \mathrm{~dB}$ | All stations |

Table 1. S- and X-Band Transmit Characteristics (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA (Continued) |  |  |
| Pointing Loss |  |  |
| Angular | See Module 302 | Also, see Figures 14 and 15. |
| CONSCAN |  |  |
| S-band |  |  |
|  | 0.1 dB | Recommended value |
|  | 0.03 dB | At S-band, using X-band CONSCAN reference set for 0.1 dB loss |
| X-band |  |  |
|  | 0.1 dB | Recommended value |
| EXCITER AND TRANSMITTER |  |  |
| RF Power Output |  | Nominal output power, referenced to transmitter port; settability is limited to 0.25 dB by measurement equipment precision |
| S-band |  | Can be used only above 10-deg elevation (above 17.4-deg for the $400-\mathrm{kW}$ transmitter). |
| 20-kW Power Amplifier | $\begin{aligned} & 73.0,+0.0,-1.0 \mathrm{dBm} \\ & 70.0,+0.0,-1.0 \mathrm{dBm} \end{aligned}$ | $\begin{aligned} & 2110 \text { to } 2118 \mathrm{MHz} \\ & 2118 \text { to } 2120 \mathrm{MHz} \end{aligned}$ <br> 2110 to 2120 MHz not available at DSS-63 due to NASA/SETSI agreement. |
| 400-kW Power Amplifier - <br> Limited to 100 kW . | 80.0, +0.0, -1.0 dBm | 2110 to 2118 MHz <br> Only available at DSS-43. Cannot be used above 100 kW . No operation below 17.4 degrees elevation is allowed, no matter what the power is. |
| X-band |  | Can be used only above 10-deg elevation. |
| 20-kW Power <br> Amplifier | 73.0, +0.0, -1.0 dBm |  |
| Both S-band and X-band transmitters employ variable-beam klystron power amplifiers. The output from this kind of amplifier varies across the bandwidth and may be as much as 1 dB below the nominal rating, as indicated by the tolerance. Performance will also vary from tube to tube. Normal procedure is to run the tubes saturated, but unsaturated operation is also possible. The point at which saturation is achieved depends on drive power and beam voltage. The $20-\mathrm{kW}$ tubes are normally saturated for power levels greater than $60 \mathrm{dBm}(1 \mathrm{~kW})$ and the $400-\mathrm{kW}$ tubes are saturated above $83 \mathrm{dBm}(200 \mathrm{~kW})$, however the 400 kW transmitter at DSS-43 is not used above 100 kW . Minimum power out of the $20-\mathrm{kW}$ tubes is about $53 \mathrm{dBm}(200 \mathrm{~W})$ and about $73 \mathrm{dBm}(20 \mathrm{~kW}$ ) for the $400-\mathrm{kW}$ tubes. Efficiency of the tubes drops off rapidly below nominal rated output. |  |  |

Table 1. S- and X-Band Transmit Characteristics (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| EXCITER AND <br> TRANSMITTER (Continued) |  |  |
| EIRP |  | At elevation angle of peak gain, referenced to feedhorn aperture |
| S-band | $\begin{aligned} & 135.6,+0.0,-1.0 \mathrm{dBm} \\ & 132.6,+0.0,-1.0 \mathrm{dBm} \end{aligned}$ | 20-kW transmitter, S/X dichroic extended 2110 to 2118 MHz 2118 to 2120 MHz 2110 to 2120 MHz not available at DSS-63 due to NASA/SETSI agreement. |
|  | 142.7, +0.0, -1.0 dBm | DSS-43 400-kW transmitter at $100 \mathrm{~kW}, \mathrm{~S} / \mathrm{X}$ dichroic extended, 2110 to 2118 MHz . |
| X-band | 145.8, +0.0, -1.0 dBm | 20-kW transmitter, S/X dichroic retracted |
|  | $145.5,+0.0,-1.0 \mathrm{dBm}$ | 20-kW transmitter, S/X dichroic extended |
| Frequency Range Covered |  |  |
| S-band |  |  |
| 1-dB Bandwidth | 2110 to 2118 MHz | Power decreases above 2118 MHz |
| Coherent with Deep Space S-band D/L Allocation | 2110.2 to 2117.7 MHz | 240/221 turnaround ratio |
| Coherent with Deep Space X-band D/L Allocation | 2110.2 to 2119.8 MHz | 880/221 turnaround ratio |
| X-band |  |  |
| 1-dB Bandwidth | 7145 to 7190 MHz |  |
| Coherent with Deep Space S-band D/L Allocation | 7147.3 to 7177.3 MHz | 240/749 turnaround ratio |
| Coherent with Deep Space X-band D/L Allocation | 7149.6 to 7188.9 MHz | 880/749 turnaround ratio |
| Tunability |  | At S-band or X-band transmitter output frequency |
| Phase Continuous <br> Tuning Range | 2.0 MHz | About any frequency within covered frequency ranges |
| Maximum Tuning Rate | $\pm 12.1 \mathrm{kHz} / \mathrm{s}$ |  |

Table 1. S- and X-Band Transmit Characteristics (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| EXCITER AND <br> TRANSMITTER (Continued) |  |  |
| Frequency Error | 0.012 Hz | Average over 100 ms with respect to frequency specified by predicts |
| Ramp Rate Error | $0.001 \mathrm{~Hz} / \mathrm{s}$ | Average over 4.5 s with respect to rate calculated from frequency predicts |
| S-Band Stability |  | At transmitter output frequency |
| Output Power Stability |  | 12-h period |
| Saturated Drive | $\pm 0.25 \mathrm{~dB}$ | 20-kW transmitter |
| Saturated Drive | $\pm 0.5 \mathrm{~dB}$ | 400-kW transmitter, with 100-kW limit |
| Unsaturated Drive | $\pm 1.0 \mathrm{~dB}$ | 20-kW and 400-kW transmitters |
| Frequency ( $\Delta \mathrm{f} / \mathrm{f}$ ), 1000-s <br> Averaging | $5 \times 10^{-15}$ | Allan deviation |
| Phase Stability |  | In 1-Hz bandwidth |
| $1-10 \mathrm{~Hz}$ Offset | -60 dBc | Below carrier |
| $10 \mathrm{~Hz}-1 \mathrm{kHz}$ Offset | -70 dBc | Below carrier |
| Group Delay Stability | $\leq 3.3$ ns | Ranging modulation signal path over 12-h period (see Module 203) |
| Spurious Output |  |  |
| 2nd Harmonic | -85 dBc | Below carrier |
| 3rd Harmonic | -85 dBc | Below carrier |
| 4th Harmonic | -140 dBm | 20-kW transmitter |
| 4th Harmonic | TBD | $400-\mathrm{kW}$ transmitter - limited to 100 kW . |
| X-Band Stability |  | At transmitter output frequency |
| Output Power Stability |  | 12-h period |
| Saturated Drive | $\pm 0.25 \mathrm{~dB}$ |  |
| Unsaturated Drive | $\pm 1.0 \mathrm{~dB}$ |  |
| Frequency ( $\Delta \mathrm{f} / \mathrm{f}$ ), 1000-s Averaging | $2.3 \times 10^{-15}$ | Allan deviation |

Table 1. S- and X-Band Transmit Characteristics (Continued)

| Parameter | Value | Remarks |
| :---: | :--- | :--- |
| EXCITER AND <br> TRANSMITTER (Continued) |  | At transmitter output frequency |
| X-Band Stability (Continued) |  | In 1-Hz bandwidth |
| Phase Stability |  | Below carrier |
| $1-10 \mathrm{~Hz}$ Offset | -50 dBc | Below carrier |
| $10 \mathrm{~Hz}-1 \mathrm{kHz}$ Offset | -60 dBc | Ranging modulation signal path over <br> 12 h period (see Module 203) |
| Group Delay Stability | $\leq 1.0 \mathrm{~ns}$ |  |
| Spurious Output |  | Below carrier |
| 2nd Harmonic | -75 dBc | Below carrier |
| 3rd, 4th \& 5th Harmonics | -60 dBc |  |

Table 2. L-, S-, and X-Band Receive Characteristics

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA |  |  |
| Gain |  | At elevation angle of peak gain for matched polarization, no atmosphere included. <br> Favorable (+) and adverse (-) tolerances have a triangular PDF. See Figures 3-6 for elevation dependency. |
| L-Band ( 1668 MHz ) | $61.04 \pm 0.3 \mathrm{dBi}$ | Referenced to feedhorn aperture |
| S-Band ( 2295 MHz ), All Stations | $63.59 \pm 0.1 \mathrm{dBi}$ | Referenced to feedhorn aperture. S/X dichroic extended. |
| X-Band ( 8420 MHz ), <br> X-only Configuration |  | Referenced to feedhorn aperture. S/X dichroic retracted. |
| DSS-14 | $74.55 \pm 0.1 \mathrm{dBi}$ |  |
| DSS-43 | $74.63 \pm 0.1 \mathrm{dBi}$ |  |
| DSS-63 | $74.66 \pm 0.1 \mathrm{dBi}$ |  |
| X-Band ( 8420 MHz ), S/X Configuration |  | Referenced to feedhorn aperture. S/X dichroic extended. |
| DSS-14 | $74.35 \pm 0.1 \mathrm{dBi}$ |  |
| DSS-43 | $74.36 \pm 0.1 \mathrm{dBi}$ |  |
| DSS-63 | $74.19 \pm 0.1 \mathrm{dBi}$ |  |
| Half-Power Beamwidth |  | Angular width (2-sided) between half-power points at specified frequency |
| L-Band ( 1668 MHz ) | $0.162 \pm 0.016 \mathrm{deg}$ |  |
| S-Band ( 2295 MHz ) | $0.118 \pm 0.012 \mathrm{deg}$ |  |
| X-Band (8420 MHz) | $0.032 \pm 0.003 \mathrm{deg}$ | Note: When operating in the X-only configuration ( $\mathrm{S} / \mathrm{X}$ dichroic retracted) the receive beam is moved approximately 8.5 mdeg to the left (XEL direction, looking outward from the antenna) relative to the beam in $\mathrm{S} / \mathrm{X}$ configuration. Existing pointing models correct for this. |

Table 2. L-, S-, and X-Band Receive Characteristics (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA (Continued) |  |  |
| Polarization |  |  |
| L-Band, All Stations | LCP | RCP available by changing mechanical configuration of feed |
| S-Band, All Stations | RCP and LCP | Both polarizations are available simultaneously. Choice of diplexed or nondiplexed path is remotely selectable. |
| X-Band, All Stations | RCP and LCP | Both polarizations are available simultaneously. |
| Ellipticity |  | See definition in Table 1. |
| L-Band | 2.0 dB (max) |  |
| S-Band | 0.6 dB (max) |  |
| X-Band | 0.8 dB (max) |  |
| Pointing Loss |  |  |
| Angular | See Module 302 | Also, see Figures 14 and 15. |
| CONSCAN |  |  |
| S-Band | $0.03 \mathrm{~dB}, 3$ sigma | At S-band using X-band CONSCAN reference set for 0.1 dB loss at X-band |
|  | 0.1 dB, 3 sigma | Recommended value when using S-band CONSCAN reference |
| X-Band | 0.1 dB, 3 sigma | Recommended value when using X-band CONSCAN reference |
| LOW NOISE AMPLIFIERS AND RECEIVERS |  | Two tracking receivers are normally provided, which may be operated as one S- and one Xband receiver. RCP and LCP are simultaneously available at S- and X-bands so one receiver can be used on each polarization. When tracking at L-band, S- and X-band are not available. Additional receivers per polarization can be scheduled subject to availability. |

Table 2. L-, S-, and X-Band Receive Characteristics (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| LOW NOISE AMPLIFIERS AND RECEIVERS (Continued) |  |  |
| Frequency Ranges Covered |  | 1 dB bandwidth |
| L-Band | 1628 to 1708 MHz |  |
| S-Band | 2200 to 2300 MHz |  |
| X-Band | 8200 to 8600 MHz | deep space downlink telemetry allocation is 8400 to 8450 MHz |
| Recommended Maximum Signal Power | -80.0 dBm | At LNA input terminal |
| Antenna-Microwave Noise Temperature ( $T_{\text {Amw }}$ ) |  | Near zenith, no atmosphere (vacuum) or cosmic noise included. See Table 4 for $25 \%$ CD average clear sky noise contribution. Favorable (-) and adverse (+) tolerances have triangular PDF. |
| L-Band, all stations ( $1628-1708 \mathrm{MHz}$ ) LNA-1 or -2, HEMT | $26.68 \pm 2 \mathrm{~K}$ | With respect to feedhorn aperture. See Figure 7 for elevation dependency. |
| $\begin{aligned} & \text { S-Band } \\ & (2200-2300 \mathrm{MHz}) \end{aligned}$ |  | With respect to feedhorn aperture. See Figure 8 for DSS-14 elevation dependency. |
| DSS-14, LNA-1, <br> HEMT, non-diplexed | $12.22 \pm 1 \mathrm{~K}$ |  |
| DSS-14, LNA-1, <br> HEMT, diplexed | $15.86 \pm 1 \mathrm{~K}$ |  |
| DSS-14, LNA-2, <br> HEMT, non-diplexed | $18.80 \pm 1 \mathrm{~K}$ |  |
| DSS-14, LNA-2, <br> HEMT, diplexed | $23.74 \pm 1 \mathrm{~K}$ |  |
| DSS-43, LNA-1, <br> HEMT, non-diplexed | $13.57 \pm 1 \mathrm{~K}$ |  |
| DSS-43, LNA-1, <br> HEMT, diplexed | $17.67 \pm 1 \mathrm{~K}$ |  |

Table 2. L-, S-, and X-Band Receive Characteristics (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| LOW NOISE AMPLIFIERS AND RECEIVERS (Continued) |  |  |
| Antenna-Microwave Noise Temperature ( $T_{A m w}$ ) |  |  |
| $\begin{aligned} & \text { S-Band } \\ & \text { (2200-2300 MHz), } \\ & \text { (Continued) } \end{aligned}$ |  |  |
| DSS-43, LNA-2, HEMT, non-diplexed | $19.59 \pm 1 \mathrm{~K}$ |  |
| DSS-43, LNA-2, HEMT, diplexed | $24.72 \pm 1 \mathrm{~K}$ |  |
| DSS-63, LNA-1, <br> HEMT, non-diplexed | $15.30 \pm 1 \mathrm{~K}$ |  |
| DSS-63, LNA-1, HEMT, diplexed | $19.00 \pm 1 \mathrm{~K}$ |  |
| DSS-63, LNA-2, <br> HEMT, non-diplexed | $21.24 \pm 1 \mathrm{~K}$ |  |
| DSS-63, LNA-2, HEMT, diplexed | $26.85 \pm 1 \mathrm{~K}$ |  |
| X-Band ( $8400-8500 \mathrm{MHz}$ ), <br> X-Only Configuration |  | Referenced to feedhorn aperture. No atmosphere (vacuum) or cosmic noise included. $\mathrm{S} / \mathrm{X}$ dichroic plate retracted. See Figures 11-13 for elevation dependency. |
| $\begin{aligned} & \text { DSS-14, LNA-1/-2, } \\ & \text { HEMT } \end{aligned}$ | $11.65 \pm 1 \mathrm{~K}$ |  |
| DSS-43, LNA-1/-2, HEMT | $12.10 \pm 1 \mathrm{~K}$ |  |
| DSS-63, LNA-1/-2, HEMT | $11.46 \pm 1 \mathrm{~K}$ |  |
| $\begin{aligned} & \text { X-Band } \\ & \text { (8400-8500 MHz) } \\ & \text { S/X Configuration } \end{aligned}$ |  | Referenced to feedhorn aperture. No atmosphere (vacuum) or cosmic noise included. $\mathrm{S} / \mathrm{X}$ dichroic plate extended. |
| $\begin{aligned} & \text { DSS-14, LNA-1/-2, } \\ & \text { HEMT } \end{aligned}$ | $12.59 \pm 1 \mathrm{~K}$ |  |
| DSS-43, LNA-1/-2, HEMT | $13.32 \pm 1 \mathrm{~K}$ |  |
| DSS-63, LNA-1/-2, HEMT | $12.64 \pm 1 \mathrm{~K}$ |  |
| Carrier Tracking Loop Noise B/W | $0.25-200 \mathrm{~Hz}$ | Effective one-sided, noise-equivalent carrier loop bandwidth ( $B_{L}$ ). See Module 202. |

Table 3. Gain Reduction Due to Wind Loading, 70-m Antenna

| Wind Speed |  | Gain Reduction (dB)* $^{*}$ |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{k m} / \mathbf{h}$ | $\mathbf{m p h}$ | S-Band | X-Band |
| 32 | 20 | Negligible | 0.1 |
| 48 | 30 | Negligible | 0.3 |
| 72 | 45 | 0.15 | 1.5 |

* Assumes antenna is maintained on-point using CONSCAN or an equivalent. L-band gain reduction is negligible for wind speeds up to $72 \mathrm{~km} / \mathrm{h}$ ( 45 mph ). Worst case with antenna in most adverse orientation for wind.

Table 4. $T_{A M W}, T_{\text {sky }}$, and $T_{o p}$ for CD=25\% Average Clear Weather at Zenith, Referenced to Feedhorn Aperture

| Configuration and Stations | Noise Temperatures, K |  |  |
| :--- | :---: | :---: | :---: |
|  | $\boldsymbol{T}_{\text {AMw }}$ | $\boldsymbol{T}_{\text {sky }}$ | $\boldsymbol{T}_{\text {op }}$ |
| L-band, all stations, LNA-1 or -2, HEMT, LCP, non-diplexed | 26.68 | 4.78 | 31.46 |
| S-band, DSS 14, SPD cone, LNA-1, HEMT, non-diplexed | 12.22 | 4.68 | 16.90 |
| S-band, DSS 14, SPD cone, LNA-1, HEMT, diplexed | 15.86 | 4.68 | 20.54 |
| S-band, DSS 14, Mod III, LNA-2, HEMT, non-diplexed | 18.80 | 4.68 | 23.48 |
| S-band, DSS 14, Mod III, LNA-2, HEMT, diplexed | 23.74 | 4.68 | 28.42 |
| S-band, DSS 43, SPD cone, LNA-1, HEMT, non-diplexed | 13.57 | 4.86 | 18.43 |
| S-band, DSS 43, SPD cone, LNA-1, HEMT, diplexed | 17.67 | 4.86 | 22.53 |
| S-band, DSS 43, Mod III, LNA-2, HEMT, non-diplexed | 19.59 | 4.86 | 24.45 |
| S-band, DSS 43, Mod III, LNA-2, HEMT, diplexed | 24.72 | 4.86 | 29.58 |
| S-band, DSS 63, SPD cone, LNA-1, HEMT, non-diplexed | 15.30 | 4.80 | 20.10 |
| S-band, DSS 63, SPD cone, LNA-1, HEMT, diplexed | 19.00 | 4.80 | 23.80 |
| S-band, DSS 63, Mod III, LNA-2, HEMT, non-diplexed | 21.24 | 4.80 | 26.04 |
| S-band, DSS 63, Mod III, LNA-2, HEMT, diplexed | 26.85 | 4.80 | 31.65 |

Table 4. $T_{A M W}, T_{\text {sky }}$, and $T_{o p}$ for CD=25\% Average Clear Weather at Zenith, Referenced to Feedhorn Aperture (Continued)

| Configuration and Stations | Noise Temperatures, K |  |  |
| :--- | :---: | :---: | :---: |
|  | $\boldsymbol{T}_{\text {AMw }}$ | $\boldsymbol{T}_{\text {sky }}$ | $\boldsymbol{T}_{\text {op }}$ |
| X-band, DSS 14, XTR cone, LNA-1, HEMT, RCP, X-only mode | 11.65 | 5.04 | 16.69 |
| X-band, DSS 14, XTR cone, LNA-2, HEMT, LCP, X-only mode | 11.65 | 5.04 | 16.69 |
| X-band, DSS 14, XTR cone, LNA-1, HEMT, RCP, S/X mode | 12.59 | 5.04 | 17.63 |
| X-band, DSS 14, XTR cone, LNA-2, HEMT, LCP, S/X mode | 12.59 | 5.04 | 17.63 |
| X-band, DSS 43, XTR cone, LNA-1, HEMT, RCP, X-only mode | 12.10 | 5.39 | 17.49 |
| X-band, DSS 43, XTR cone, LNA-2, HEMT, LCP, X-only mode | 12.10 | 5.39 | 17.49 |
| X-band, DSS 43, XTR cone, LNA-1, HEMT, RCP, S/X mode | 13.32 | 5.39 | 18.71 |
| X-band, DSS 43, XTR cone, LNA-2, HEMT, LCP, S/X mode | 13.32 | 5.39 | 18.71 |
| X-band, DSS 63, XTR cone, LNA-1, HEMT, RCP, X-only mode | 11.46 | 5.27 | 16.73 |
| X-band, DSS 63, XTR cone, LNA-2, HEMT, LCP, X-only mode | 11.46 | 5.27 | 16.73 |
| X-band, DSS 63, XTR cone, LNA-1, HEMT, RCP, S/X mode | 12.64 | 5.27 | 17.91 |
| X-band, DSS 63, XTR cone, LNA-2, HEMT, LCP, S/X mode | 12.64 | 5.27 | 17.91 |

NOTE: $T_{\text {sky }}$ calculated from attenuation values in Module 105, Tables 10-15.

810-005
101, Rev. G

Table 5. DSS 14 Eastern Horizon S-Band $T_{o p}(\mathrm{~K})$ with SPD Cone

| $\begin{gathered} \text { ELEV, } \\ \text { deg } \end{gathered}$ | AZIMUTH, deg |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 23 | 124 | 125 | 126 | 127 | 128 | 129 | 130 |
| 20.0 | 22.8 | 22.9 | 22.8 | 22.8 | 22.8 | 22.9 | 22.8 | 22.8 | 22.8 | 22.9 | 22.9 | 23.0 | 22.9 | 22.9 | 22.9 | 22.9 | 22.9 | 22.9 | 22.9 | 22.9 | 22.9 |
| 19.0 | 23.3 | 23. | 23. | 23.3 | 23.3 | 23.3 | 23.4 | 23.5 | 23.5 | 23.5 | 23.4 | 23.4 | 23.5 | 23.5 | 23.5 | 23.6 | 23.6 | 23.5 | 2 4 | 23.4 | 23.4 |
| 18.0 | 23.9 | 23.8 | 23.8 | 23.8 | 23.8 | 23.7 | 23.7 | 23.8 | 23.8 | 23.8 | 23.9 | 23.8 | 23.8 | 23.8 | 23.9 | 23.9 | 23.8 | 23.8 | 23.8 | 23.7 | 23.8 |
| 17.0 | 24.1 | 24.0 | 24.0 | 24.0 | 23.9 | 24.0 | 24.0 | 24.1 | 24.0 | 24.0 | 24.0 | 24.0 | 24.0 | 24.0 | 24.0 | 24.0 | 24.1 | 24.0 | 24.0 | 24.1 | 24.1 |
| 16.0 | 24.5 | 24.5 | 24.5 | 24.4 | 24.5 | 24.4 | 24.4 | 24.4 | 24.5 | 24.5 | 24.4 | 24.5 | 24.5 | 24.5 | 24.4 | 24.5 | 24.5 | 24.5 | 24.5 | 24.7 | 24.8 |
| 15.0 | 25.0 | 25.0 | 25.0 | 25. | 2.0 | 5.0 | 25.1 | 25.1 | 25.0 | 5.1 | 25.2 | 25.3 | 25.3 | 25. | 25. | 25. | 25. | 25. | 25.4 | 25.4 | 25.5 |
| 14.0 | 25.5 | 25.5 | 25.5 | 25.6 | 25.6 | 25.6 | 25.7 | 25.7 | 25.7 | 25.8 | 25.9 | 25.9 | 25.8 | 25.8 | 25.8 | 25.8 | 25.9 | 26.1 | 26.1 | 6.0 | 26. |
| 13.0 | 26.4 | 26.3 | 26.3 | 26.4 | 26.4 | 26.3 | 26.3 | 26.4 | 26.4 | 26.4 | 26.4 | 26.5 | 26.5 | 26.5 | 26.6 | 26.6 | 26.5 | 26.6 | 26.6 | 26.7 | 6, |
| 12.0 | 27.0 | 27.0 | 27.0 | 27.0 | 27.0 | 27.0 | 27.1 | 27.1 | 27.1 | 27.2 | 27.2 | 27.1 | 27.2 | 27.2 | 27.1 | 27.1 | 27.2 | 27.2 | 27.2 | 27.3 | 27.3 |
| 11.0 | 27.8 | 27. | 27.9 | 27.9 | 27.8 | 27.9 | 27.9 | 27.9 | 27.9 | 27.9 | 28.0 | 28.0 | 28.0 | 28.0 | 28.0 | 28.0 | 28.1 | 28.1 | 28.1 | 28.2 | 28.3 |
| 10.0 | 28.9 | 29.0 | 29.0 | 28.9 | 29.0 | 28.9 | 29.0 | 29.0 | 28.9 | 29.0 | 29.0 | 29.1 | 29.1 | 29.1 | 29.2 | 29.1 | 29.1 | 29.2 | 29.2 | 29.3 | 29.2 |
| 9.5 | 29.2 | 29.3 | 29.3 | 29.4 | 29.3 | 29.4 | 29.4 | 29.4 | 29.4 | 29.4 | 29.4 | 29.5 | 29.6 | 29.4 | 29.5 | 29.5 | 29. | 29.7 | 29.8 | 29.7 | 29.8 |
| 9.0 | 29.7 | 29. | 30.0 | 30.0 | 29.6 | 29.6 | 29.6 | 29.6 | 29.6 | 29. | 29.7 | 29.8 | 29.8 | 29. | 29.8 | 29. | 29 | 30 | 30.3 | 30.0 |  |
| 8.5 | 31.0 | 31.0 | 0.9 | 30.9 | 31.0 | 30.9 | 30.8 | 0.8 | 30.9 | 30.9 | 30.9 | 30.9 | 31.0 | 31.1 | 31.3 | 31.3 | 31.2 | 31.1 | 31.2 | 31. | 31.3 |
| 8.0 | 31.4 | 31.4 | 31.5 | 31.5 | 31.7 | 31.7 | 31.6 | 31.5 | 31.6 | 31.6 | 31.6 | 31.8 | 31.8 | 31.7 | 31.7 | 31. | 31.7 | 31.8 | 31.8 | 31.9 | 31.9 |
| 7.5 | 32.2 | 32.1 | 32.1 | 32.2 | 32.2 | 32.2 | 32.3 | 32.2 | 32.2 | 32.3 | 32.2 | 32.3 | 32.6 | 32.4 | 32. | 32. | 32 | 32. | 32 | 32. | 32.7 |
| 7.0 | 32.9 | 33.0 | 33.0 | 33.0 | 33.0 | 33.2 | 33.2 | 33.0 | 33.1 | 33.1 | 33.1 | 33.1 | 33.1 | 33.2 | 33.2 | 33.2 | 33.3 | 33.3 | 33.3 | 33.4 | 33.5 |
| 6.5 | 33 | 34.0 | 34.3 | 34.1 | 34.1 | 34.4 | 34.2 | 34.2 | 34.2 | 34.3 | 34.3 | 34.4 | 34.3 | 34.3 | 34.3 | 34.4 | 34.5 | 34.4 | 34.5 | 34.6 | 34.6 |
| 6.0 | 34.1 | 34. | 34.8 | 34 | 34. | 34.8 | 34.9 | 35.0 | 35. | 35.0 | 35.1 | 35.1 | 35.1 | 35.1 | 35.1 | 35.2 | 35.3 | 35.4 | 35.4 | 35.4 | 356 |
| AZIMUTH, deg |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 50 |
| 20.0 | 22 | 22.9 | 22.9 | 22.9 | 22.9 | 23.0 | 23.0 | 23.5 | 23.4 | 22.9 | 23.0 | 23.0 | 23.0 | 23.0 | 22.9 | 22.9 | 23.0 | 23.0 | 23.0 | 23.0 | 23.0 |
| 19.0 | 23.4 | 23.4 | 23.4 | 23.4 | 23.4 | 23.4 | 23.3 | 23.5 | 23.9 | 23.6 | 23.4 | 23.6 | 23.8 | 23.4 | 23.4 | 23.9 | 23.7 | 23. | 23.4 | 23.4 |  |
| 18.0 | 23.8 | 23.8 | 23.7 | 23 | 23.7 | 23.8 | 23.8 | 23.7 | 23.8 | 23.9 | 23 | 23.9 | 24.3 | 24.4 | 23. | 24. | 24.6 | 24.3 | 23.9 | 24.1 | 24.6 |
| 17. | 24.1 | 24.2 | 24.3 | 24.4 | 24.3 | 24.3 | 24.3 | 24.2 | 24.3 | 24.3 | 24.4 | 24.4 | 24.4 | 24.4 | 24.3 | 24.3 | 24.3 | 24.4 | 24.3 | 24.4 | 24.5 |
| 16.0 | 24.8 | 24.6 | 24.6 | 24.7 | 24.7 | 24.7 | 24.8 | 24.8 | 24.9 | 24.9 | 24.9 | 25.0 | 25.1 | 25.0 | 24.9 | 25.1 | 25.1 | 24.9 | 24.9 | 25.0 | 25.0 |
| 15.0 | 25.5 | 25.4 | 25.4 | 25.5 | 25.4 | 25.4 | 25.4 | 25.5 | 25.5 | 25.5 | 25.6 | 25.6 | 25.6 | 25.6 | 25.6 | 25.5 | 25.5 | 25.6 | 25.6 | 25.5 | 25.5 |
| 14.0 | 26.0 | 26.0 | 26.0 | 26.0 | 26.3 | 26.7 | 26.4 | 26.3 | 26.3 | 26.3 | 26.3 | 26.2 | 26.2 | 26 | 26. | 26.3 | 26.3 | 26.5 | 26.8 | 26.4 | 26.4 |
| 13.0 | 26.7 | 26.7 | 26.8 | 26.8 | 26.9 | 27.0 | 26.8 | 26.6 | 26.8 | 26.9 | 27. | 27.0 | 27. | 27.1 | 27.1 | 27.1 | 27.1 | 27.3 | 27.3 | 27.3 | 27.3 |
| 12.0 | 27.3 | 27.3 | 27.3 | 27.4 | 27.4 | 27.4 | 27.4 | 27.4 | 27.5 | 27.5 | 27.5 | 27.6 | 27.6 | 27.7 | 27.7 | 27. | 27.7 | 27.8 | 27.8 | 27. | , |
| 11.0 | 28.3 | 28.3 | 28.3 | 28.7 | 29.3 | 28.6 | 28.6 | 29.1 | 28.6 | 28.4 | 28.4 | 28.5 | 28.4 | 28.5 | 28.5 | 28.5 | 28.5 | 28.6 | 28.7 | 28.7 | 28.7 |
| 10.0 | 29.2 | 29.3 | 29. | 29.5 | 29. | 29. | 29.5 | 29. | 29. | 29.6 | 29.6 | 29. | 29.6 | 29. | 29.5 | 29 | 29.3 | 29. | 29.1 | 29. | 29.9 |
| 9.5 | 29.8 | 29.8 | 29.9 | 29.9 | 30.0 | 29.9 | 29.9 | 29.9 | 29.9 | 30.0 | 30.0 | 30.1 | 30.1 | 30.1 | 30.2 | 30.2 | 30.2 | 30.3 | 30.2 | 30. | 30.2 |
| 9.0 | 30.0 | 30.1 | 30.1 | 30.2 | 30.2 | 30.2 | 30.3 | 30.3 | 30.4 | 30.4 | 30.3 | 30.4 | 30.5 | 30.6 | 30.5 | 30.6 | 30.6 | 30.7 | 30.7 | 30. | 30.7 |
| 8.5 | 31.3 | 31.4 | 1.5 | 31.4 | 11.5 | 1.7 | 31.7 | 31.7 | 31.8 | 31.4 | 31.7 | 31.9 | 31.6 | 31.6 | 31.8 | 31.8 | 31.7 | 31.7 | 31.8 | 31.8 | 31.8 |
| 8.0 | 31.9 | 31. | 32. | 32.0 | 32. | 32.3 | 32.2 | 32.1 | 32.2 | 32.3 | 32.2 | 32.3 | 32.2 | 32.1 | 32.3 | 32.4 | 32.4 | 32. | 32. | 32. | 32.6 |
| 7.5 | 32.7 | 32.7 | 32.7 | 32.9 | 3.0 | 33.0 | 33.0 | 33.0 | 33.1 | 33.2 | 33.3 | 33.2 | 33.2 | 33.2 | 33.3 | 33.3 | 33.3 | 33. | 33. | 33.5 | 33.6 |
| 7.0 | 33.5 | 33.6 | 33.7 | 33.6 | 33.8 | 33.9 | 33.9 | 34.0 | 33.9 | 33.8 | 33.9 | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 | 34.1 | 34.2 | 34.3 | 34.6 | 34.7 |
| 6.5 | 34.6 | 34.7 | 34.7 | 34.8 | 34.9 | 35.0 | 35.0 | 35.0 | 35.0 | 35.1 | 35.4 | 35.3 | 35.2 | 35.2 | 35.2 | 35.3 | 35.4 | 35.5 | 35.7 | 35.9 | 36.0 |
| 6.0 | 35.6 | 35. | 35.6 | 35.8 | 35.8 | 35.8 | 35.9 | 35.9 | 35.9 | 36.1 | 36.1 | 36.2 | 36.2 | 36.3 | 4 | 36.4 | 36.5 | 36.6 | 36.8 | 37.0 |  |

Table 6. DSS 14 Western Horizon S-Band $T_{o p}(\mathrm{~K})$ with SPD Cone

| ELEV, deg | AZIMUTH, deg |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 |
| 9.0 | 31.5 | 31.8 | 32.8 | 33.8 | 33.3 | 32.4 | 31.8 | 31.4 | 31.1 | 31.1 | 31.0 | 30.9 | 30.8 | 30.8 | 30.6 | 30.8 | 30.8 | 30.9 | 30.8 | 30.8 | 30.8 |
| 8.5 | 32.8 | 33.1 | 34.1 | 34.1 | 33.0 | 32.4 | 32.1 | 31.8 | 31.7 | 31.5 | 31.5 | 31.5 | 31.4 | 31.4 | 31.3 | 31.3 | 31.3 | 31.3 | 31.3 | 31.3 | 31.3 |
| 8.0 | 29.0 | 33.3 | 33.7 | 34.9 | 35.6 | 34.2 | 33.1 | 32.9 | 32.8 | 32.5 | 32.4 | 32.3 | 32.3 | 32.6 | 32.2 | 32.1 | 32.2 | 32.5 | 32.3 | 32.2 | 32.3 |
| 7.5 | 36.5 | 36.7 | 36.7 | 36.7 | 36.3 | 35.1 | 34.1 | 33.8 | 33.5 | 33.2 | 33.1 | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 | 32.9 | 32.8 | 32.7 | 32.8 | 32.9 |
| 7.0 | 36.1 | 36.1 | 36.1 | 36.0 | 36.0 | 36.0 | 35.6 | 34.8 | 34.3 | 34.0 | 33.9 | 33.5 | 33.7 | 33.7 | 33.7 | 33.6 | 33.6 | 33.6 | 33.5 | 33.5 | 33.6 |
| 6.5 | 36.2 | 36.1 | 36.0 | 36.1 | 36.0 | 35.6 | 35.2 | 34.8 | 34.7 | 34.8 | 34.6 | 34.6 | 34.6 | 34.6 | 34.8 | 34.6 | 34.6 | 34.5 | 34.5 | 34.5 | 34.5 |
| 6.0 | 36.4 | 35.9 | 36.5 | 36.6 | 36.6 | 36.5 | 36.2 | 35.8 | 35.6 | 35.5 | 35.5 | 35.5 | 35.5 | 35.5 | 35.4 | 35.4 | 35.4 | 35.3 | 35.4 | 35.3 | 35.4 |
|  | AZIMUTH, deg |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 |
| 9.0 | 30.8 | 30.7 | 30.7 | 30.7 | 30.9 | 30.9 | 30.7 | 30.9 | 31.2 | 30.7 | 30.6 | 30.6 | 30.6 | 30.5 | 30.6 | 30.6 | 30.5 | 30.5 | 30.6 | 30.7 | 30.8 |
| 8.5 | 31.3 | 31.2 | 31.2 | 31.2 | 31.3 | 31.5 | 31.3 | 31.3 | 31.2 | 31.1 | 31.2 | 31.2 | 31.2 | 31.2 | 31.2 | 31.2 | 31.2 | 31.3 | 31.3 | 31.3 | 31.3 |
| 8.0 | 32.3 | 32.1 | 32.0 | 32.0 | 31.9 | 32.0 | 32.0 | 31.7 | 31.8 | 31.9 | 32.0 | 32.0 | 32.0 | 31.9 | 31.9 | 31.9 | 31.8 | 31.9 | 32.0 | 32.0 | 32.1 |
| 7.5 | 32.9 | 32.8 | 32.8 | 32.8 | 32.7 | 32.7 | 32.7 | 32.8 | 32.8 | 32.7 | 32.4 | 32.7 | 32.9 | 32.8 | 32.8 | 32.9 | 32.7 | 32.7 | 32.7 | 32.5 | 32.3 |
| 7.0 | 33.6 | 33.6 | 33.5 | 33.5 | 33.6 | 33.6 | 33.5 | 33.5 | 33.5 | 33.5 | 33.5 | 33.5 | 33.4 | 33.4 | 33.4 | 33.2 | 33.4 | 33.5 | 33.5 | 33.4 | 33.5 |
| 6.5 | 34.5 | 34.4 | 34.4 | 34.4 | 34.4 | 34.4 | 34.4 | 34.4 | 34.4 | 34.4 | 34.4 | 34.3 | 34.3 | 34.4 | 34.4 | 34.3 | 34.3 | 34.3 | 34.4 | 34.3 | 34.3 |
| 6.0 | 35.4 | 35.5 | 35.4 | 35.5 | 35.7 | 35.7 | 35.6 | 35.6 | 35.7 | 35.6 | 35.6 | 35.6 | 35.6 | 35.5 | 35.5 | 35.5 | 35.5 | 35.5 | 35.6 | 35.6 | 35.6 |

## 810-005

101, Rev. G

Table 7. DSS 43 Eastern Horizon S-Band $T_{o p}(\mathrm{~K})$ with SPD Cone

| $\begin{gathered} \text { ELEV, } \\ \text { deg } \end{gathered}$ | AZIMUTH, deg |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 |
| 20.0 | 25.6 | 25.3 | 24.8 | 25.5 | 25.0 | 25.3 | 25.6 | 25.4 | 25.0 | 25.3 | 25.4 | 25.1 | 24.8 | 25.5 | 25.2 | 25.3 | 24.9 | 25.6 | 24.9 | 24.7 | 25.3 |
| 19.0 | 26.0 | 26.1 | 25.9 | 25.8 | 26.1 | 26.7 | 26.2 | 26.0 | 25.9 | 25.9 | 25.5 | 25.3 | 25.8 | 26.0 | 25.4 | 26.0 | 25.6 | 25.6 | 25.5 | 25.7 | 25.4 |
| 18.0 | 26.9 | 26.6 | 26.8 | 26.2 | 26.3 | 26.5 | 26.7 | 26.8 | 26.7 | 26.5 | 26.8 | 26.2 | 26.8 | 26.7 | 26.5 | 26.4 | 26.2 | 26.1 | 26.6 | 26.2 | 26.0 |
| 17.0 | 27.7 | 27.8 | 27.0 | 27.2 | 27.5 | 27.0 | 27.8 | 27.4 | 27.8 | 27.7 | 27.3 | 27.5 | 27.4 | 27.0 | 27.0 | 27.5 | 27.5 | 26.9 | 26.8 | 26.9 | 27.3 |
| 16.0 | 28.1 | 28.1 | 27.7 | 28.3 | 27.9 | 28.1 | 28.0 | 28.2 | 28.0 | 27.7 | 28.2 | 27.9 | 28.2 | 27.9 | 28.0 | 28.1 | 28.1 | 27.8 | 27.8 | 27.3 | 27.6 |
| 15.0 | 29.4 | 29.3 | 28.6 | 29.0 | 28.8 | 28.9 | 28.6 | 29.3 | 28.7 | 29.3 | 28.9 | 28.8 | 29.0 | 28.9 | 28.2 | 28.7 | 28.9 | 28.9 | 28.6 | 28.4 | 28.4 |
| 14.0 | 29.9 | 30.2 | 29.8 | 30.1 | 30.1 | 29.6 | 29.9 | 29.7 | 29.7 | 29.8 | 29.8 | 30.1 | 29.9 | 29.9 | 29.4 | 29.5 | 29.6 | 29.7 | 29.0 | 29.4 | 29.0 |
| 13.0 | 30.9 | 30.3 | 30.6 | 30.9 | 30.4 | 31.2 | 30.7 | 30.3 | 30.6 | 30.9 | 30.3 | 30.5 | 30.5 | 30.7 | 30.4 | 30.4 | 30.3 | 30.4 | 30.6 | 30.1 | 30.2 |
| 12.0 | 31.7 | 31.9 | 31.8 | 32.3 | 31.8 | 32.1 | 32.0 | 32.0 | 31.8 | 32.2 | 31.7 | 31.9 | 31.6 | 31.6 | 31.5 | 31.6 | 31.7 | 31.5 | 31.0 | 31.4 | 31.2 |
| 11.0 | 33.1 | 33.5 | 33.0 | 32.6 | 32.7 | 33.3 | 32.9 | 33.5 | 34 | 33.4 | 33.7 | 34.1 | 33.5 | 33.4 | 33.6 | 32.6 | 32.6 | 32.7 | 32.6 | 32.5 | 32.4 |
| 10.0 | 40.2 | 39.4 | 37.2 | 36.3 | 36.0 | 36.0 | 36.7 | 39.9 | 46.5 | 58.0 | 64.9 | 65.7 | 62.7 | 55.2 | 43.7 | 37.3 | 35.3 | 34.4 | 34.6 | 33.9 | 33.8 |
| 9.5 | 57.1 | 56.7 | 53.5 | 48.3 | 45.1 | 45.8 | 51.6 | 60.5 | 74 | 88.8 | 101 | 105 | 101 | 89.0 | 73.9 | 59.9 | 46.9 | 38.3 | 36.5 | 35.6 | . 3 |
| 9.0 | 83.6 | 82.7 | 78.2 | 73.2 | 71.6 | 76.3 | 87.1 | 103 | 121 | 138 | 148 | 149 | 140 | 123 | 103 | 84.5 | 67.0 | 52.4 | 45.2 | 40.7 | 37.9 |
| 8.5 | 118 | 119 | 118 | 114 | 111 | 111 | 119 | 132 | 150 | 168 | 184 | 194 | 191 | 180 | 162 | 141 | 118 | 97.5 | 81.7 | 71.0 | 61.2 |
| 8.0 | 158 | 157 | 155 | 152 | 153 | 158 | 168 | 184 | 20 | 218 | 229 | 230 | 222 | 208 | 189 | 167 | 148 | 131 | 116 | 103 | 88.8 |
| 7.5 | 197 | 198 | 198 | 195 | 192 | 194 | 202 | 214 | 229 | 241 | 247 | 247 | 245 | 243 | 234 | 218 | 202 | 185 | 172 | 160 | 141 |
| 7.0 | 226 | 227 | 227 | 225 | 223 | 227 | 234 | 243 | 247 | 249 | 249 | 248 | 247 | 247 | 245 | 239 | 229 | 219 | 210 | 197 | 178 |
| 6.5 | 242 | 243 | 244 | 244 | 243 | 243 | 246 | 247 | 25 | 251 | 251 | 250 | 249 | 248 | 248 | 249 | 248 | 245 | 243 | 237 | 227 |
| 6.0 | 246 | 247 | 246 | 246 | 247 | 24 | 24 | 24 | 25 | 250 | 250 | 250 | 24 | 24 | 24 | 24 | 249 | 8 | 248 | 246 | 0 |
|  | AZIMUTH, deg |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 12 | 124 | 125 | 126 | 127 | 128 | 129 | 130 |
| 20.0 | 25.3 | 24.9 | 24.9 | 24.3 | 24.7 | 24.0 | 24.5 | 24.3 | 24.7 | 24.2 | 24.6 | 24.2 | 24.0 | 24.1 | 24.1 | 24.6 | 24.5 | 24.5 | 23.8 | 24.1 | 24.3 |
| 19.0 | 25.4 | 25.3 | 25.5 | 25.5 | 25.6 | 24.9 | 25.4 | 25.0 | 25.1 | 25.3 | 25.0 | 24.4 | 24.9 | 24.5 | 25.2 | 24.6 | 24.7 | 24.5 | 24.6 | 24.8 | 24.4 |
| 18.0 | 26.0 | 26.4 | 26.1 | 26.3 | 25.8 | 26.1 | 25.6 | 25.4 | 25.8 | 25.4 | 25.5 | 25.5 | 25.4 | 25.5 | 25.5 | 25.3 | 25.1 | 25.5 | 25.1 | 25.3 | 25.5 |
| 17.0 | 27.3 | 26.7 | 26.9 | 26.5 | 26.9 | 26.2 | 27.1 | 26.2 | 26.2 | 26.2 | 26.4 | 26.4 | 26.1 | 26.1 | 26.2 | 26.1 | 26.0 | 25.9 | 26.1 | 25.6 | 25.3 |
| 16.0 | 27.6 | 27.4 | 27.9 | 27.5 | 27.4 | 27.5 | 27.3 | 26.7 | 27.0 | 27.4 | 26.9 | 26.4 | 27.0 | 26.4 | 26.8 | 26.4 | 26.5 | 26.7 | 26.3 | 26.6 | 27.5 |
| 15.0 | 28.4 | 28.2 | 28.2 | 28.1 | 28.1 | 28.1 | 27.9 | 28.1 | 27.9 | 27.6 | 27.9 | 27.9 | 27.5 | 27.5 | 27.9 | 27.5 | 27.5 | 27.2 | 27.4 | 27.3 | 26.9 |
| 14.0 | 29.0 | 29.0 | 29.0 | 29.3 | 29.0 | 29.0 | 28.8 | 28.8 | 28.9 | 28.7 | 28.7 | 28.2 | 28.5 | 28.3 | 28.4 | 28.3 | 28.5 | 28.3 | 27.7 | 27.9 | 27.7 |
| 13.0 | 30.2 | 30.6 | 29.8 | 29.9 | 29.9 | 29.8 | 29.7 | 29.5 | 29.6 | 29.6 | 29.6 | 30.3 | 29.3 | 29.1 | 29.8 | 29.0 | 28.9 | 28.8 | 29.2 | 29.4 | 28.7 |
| 12.0 | 31.2 | 30.9 | 30.4 | 30.9 | 30.9 | 30.8 | 30.7 | 30.5 | 30.8 | 30.0 | 30.4 | 29.9 | 30.3 | 30.6 | 30.4 | 30.4 | 30.1 | 30.2 | 30.1 | 29.9 | 29.9 |
| 11.0 | 32.4 | 32.4 | 32.1 | 32.1 | 31.9 | 31.5 | 31.7 | 31.8 | 31.9 | 31.2 | 31.6 | 31.5 | 31.2 | 31.9 | 31.5 | 31.8 | 31.2 | 31.4 | 30.9 | 31.4 | 31.7 |
| 10.0 | 33.8 | 33.9 | 33.7 | 32.9 | 33.1 | 33.0 | 32.8 | 33.4 | 32.7 | 32.7 | 32.6 | 32.9 | 32.8 | 33.0 | 32.9 | 33.9 | 34.6 | 33.9 | 33.0 | 32.8 | 32.8 |
| 9.5 | 34.3 | 35.1 | 35.0 | 33.7 | 34.4 | 33.8 | 33.6 | 33.6 | 33.3 | 33.2 | 33.6 | 33.0 | 33.3 | 33.8 | 33.2 | 33.5 | 33.1 | 33.5 | 33.4 | 33.1 | 33.1 |
| 9.0 | 37.9 | 36.3 | 35.4 | 35.4 | 35.2 | 34.8 | 34.8 | 34.5 | 34.6 | 34.5 | 34.3 | 33.8 | 34.1 | 34.1 | 34.0 | 34.1 | 33.8 | 34.1 | 34.1 | 34.1 | 33.3 |
| 8.5 | 61.2 | 48.2 | 40.2 | 36.6 | 36.3 | 35.6 | 35.4 | 35.7 | 35.8 | 35.3 | 35.1 | 35.1 | 35.0 | 35.3 | 35.2 | 35.0 | 35.5 | 35.1 | 35.5 | 35.0 | 34.8 |
| 8.0 | 88.8 | 70.2 | 52.9 | 42.7 | 38.2 | 37.1 | 36.4 | 36.1 | 36.6 | 36.3 | 36.1 | 35.9 | 36.1 | 36.2 | 36.2 | 36.0 | 37.0 | 36.6 | 37.0 | 36.2 | 36.5 |
| 7.5 | 141 | 120 | 95.6 | 74.6 | 57.4 | 44.6 | 39.7 | 38.0 | 37.7 | 38.1 | 38.0 | 37.4 | 37.9 | 38.1 | 38.1 | 38.0 | 38.0 | 37.9 | 38.4 | 38.0 | 38.1 |
| 7.0 | 178 | 154 | 129 | 103 | 80.7 | 59.3 | 43.7 | 40.6 | 39.8 | 40.4 | 40.1 | 39.9 | 40.7 | 40.4 | 40.5 | 40.9 | 40.6 | 40.0 | 40.4 | 40.2 | 39.3 |
| 6.5 | 227 | 207 | 185 | 160 | 133 | 106 | 78.6 | 55.0 | 44.8 | 42.8 | 43.5 | 44.0 | 44.2 | 46.2 | 47.8 | 49.1 | 48.0 | 45.1 | 43.8 | 42.6 | 43.3 |
| 6.0 | 240 | 226 | 206 | 182 | 155 | 123 | 92.3 | 67.7 | 53.5 | 49.3 | 49.4 | 52.9 | 59.1 | 66.8 | 71.2 | 70.0 | 63.3 | 55.2 | 49.6 | 46.6 | 46.0 |

## 810-005

101, Rev. G

Table 8. DSS 43 Western Horizon S-Band $T_{o p}(\mathrm{~K})$ with SPD Cone

|  | AZIMUTH, deg |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| deg | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 50 |
| 20.0 | 24.0 | 23.9 | 24.0 | 24.1 | 23.9 | 24.2 | 24.0 | 24.1 | 24.3 | 24.1 | 24.1 | 24.1 | 24.0 | 24.2 | 24.3 | 24.0 | 24.2 | 24.2 | 24.1 | 24.2 | 24.1 |
| 19.0 | 24.6 | 24.6 | 24.8 | 24.7 | 24.8 | 24.8 | 24.7 | 24.8 | 24.7 | 24.9 | 24.9 | 24.8 | 24.9 | 25.1 | 24.9 | 24.8 | 24.7 | 24.8 | 24.9 | 24 | 24.8 |
| 18.0 | 25 | 25.2 | 25.3 | 25.3 | 25.4 | 25.6 | 25.4 | 25.3 | 25.5 | 25.6 | 25.6 | 25.5 | 25.5 | 25.6 | 25.4 | 25.5 | 25.5 | 25.4 | 25.5 | 25.5 | 25.3 |
| 7.0 | 26.0 | 25.9 | 26.1 | 26.0 | 26.0 | 26.0 | 26.0 | 26.2 | 26.1 | 26.0 | 26.2 | 26.1 | 26.2 | 26.0 | 26.1 | 26.0 | 26.0 | 26.1 | 25.9 | 26 | 26.1 |
| 16.0 | 26.6 | 26.7 | 26.6 | 26.8 | 27.0 | 26.8 | 26.8 | 26.9 | 26.9 | 26.8 | 26.9 | 26.9 | 26.8 | 26.7 | 26.8 | 26.8 | 27.0 | 26.7 | 26.8 | 26.7 | 26.9 |
| 15.0 | 27 | 27.5 | 7.6 | 27.5 | 27.6 | 27.6 | 27.6 | 27.6 | 27.7 | 27.7 | 27.6 | 27.7 | 27.7 | 27 | 27.6 | 27.6 | 27.6 | 27.5 | 27.7 | 27.8 | 27.5 |
| 14.0 | 28. | 28. | 28.2 | 28.2 | 28.2 | 28.3 | 28.5 | 28.4 | 28.5 | 28.4 | 28.5 | 28.5 | 28.6 | 28.5 | 28.5 | 28.5 | 28.5 | 28. | 28. | 28.3 | 28.3 |
| 13.0 | 29.1 | 29. | 29.3 | 29.2 | 29.2 | 29.2 | 29.2 | 29.3 | 29.2 | 29.3 | 29.3 | 29.4 | 29.4 | 29.2 | 29.4 | 29.3 | 29.3 | 29.3 | . 4 | 29.3 | 29.1 |
| 12.0 | 30.1 | 30.0 | 30.0 | 30.1 | 30.1 | 30.2 | 30.3 | 30.2 | 30.3 | 30.2 | 30.5 | 30.3 | 30.4 | 30.5 | 30.4 | 30.5 | 30.4 | 30.3 | 30.3 | 30 | 30.3 |
| 11.0 | 31.5 | 31.6 | 31.7 | 31.8 | 31.7 | 31.8 | 31.9 | 32.0 | 31.9 | 32.0 | 31.8 | 31.9 | 32.0 | 32. | 32 | 32.1 | 32.0 | 31.9 | 31. | 31 | 31.6 |
| 10.0 | 32. | 32.6 | 33.2 | 34. | 34.0 | 34.0 | 35.4 | 38.0 | 38.6 | 38.0 | 36.3 | 36.1 | 38.7 | 37.8 | 36.4 | 39.4 | 39.3 | 35.6 | 34.0 | 33.7 | 33.7 |
| 9.5 | 34.3 | 34.6 | 34.6 | 36.9 | 39.4 | 39.2 | 39.6 | 41.9 | 45.2 | 45.9 | 46.2 | 43.6 | 43.4 | 45.1 | 44.5 | 44.0 | 45.9 | 44.4 | 40.8 | 38.0 | 37.0 |
| 9.0 | 40.6 | 41.0 | 43.0 | 46.0 | 47.8 | 50.3 | 51.1 | 54.6 | 55.1 | 56.9 | 57.9 | 56.6 | 55.1 | 55.7 | 56.8 | 56.1 | 54.4 | 51.6 | 49.2 | 45.2 | 46.3 |
| 8.5 | 47.0 | 49.4 | 53.1 | 56. | 57 | 61.6 | 65.3 | 67.9 | 68. | 68.5 | 73. | 72.7 | 71.0 | 69. | 72.3 | 71 | 68 | 65 | 64.2 | 62.1 | 57.7 |
| 8.0 | 61 | 66.3 | 71.0 | 69.8 | 75.8 | 81.2 | 84.3 | 84.8 | 84.9 | 90.5 | 91.6 | 90.1 | 87.4 | 89.8 | 90.7 | 86.7 | 81.4 | 80.0 | 0.3 | 75.0 | 7.7 |
| 7.5 | 75.2 | 76.6 | 84.7 | 88.3 | 87.1 | 95.4 | 101 | 104 | 103 | 105 | 111 | 113 | 110 | 108 | 111 | 111 | 103 | 98.6 | 99.2 | 98.7 | 92.1 |
| 7.0 | 93.3 | 99.3 | 108 | 105 | 110 | 119 | 125 | 123 | 125 | 128 | 135 | 132 | 130 | 131 | 134 | 127 | 119 | 120 | 120 | 117 | 10 |
| 6.5 | 113 | 118 | 127 | 127 | 128 | 137 | 145 | 144 | 145 | 148 | 152 | 156 | 152 | 151 | 154 | 153 | 145 | 140 | 42 | 140 | 34 |
| 6.0 | 136 | 143 | 150 | 148 | 151 | 161 | 166 | 166 | 168 | 171 | 177 | 175 | 173 | 75 | 176 | 173 | 166 | 162 | 163 | 159 | 52 |
|  |  |  |  |  |  |  |  |  |  |  | TT | deg |  |  |  |  |  |  |  |  |  |
|  | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 |
| 20.0 | 24.1 | 24.2 | 23.9 | 24.2 | 23.9 | 24.0 | 24.0 | 24.1 | 24.0 | 24.0 | 24.0 | 24.0 | 24.0 | 24.0 | 23.9 | 24.1 | 24.1 | 24.0 | 23.9 | 24.0 | 24.2 |
| 19.0 | 24.8 | 24.8 | 24.8 | 24.7 | 24.7 | 24.8 | 24.6 | 24.7 | 24.6 | 24.6 | 24.6 | 24 | 24.7 | 24.6 | 24 | 24 | 24.5 | 24.5 | 24.5 | 24.4 | 24.6 |
| 18.0 | 25.3 | 25.5 | 25.4 | 25.4 | 25.5 | 25.4 | 25.4 | 25.3 | 25.2 | 25.2 | 25.2 | 25 | 25.2 | 25 | 25.1 | 25.2 | 25.1 | 25.2 | 25. | 25.1 | 5.2 |
| 17.0 | 26.1 | 25.9 | 25.7 | 26.1 | 26.0 | 5.9 | 25 | 25.8 | 25.7 | 25.8 | 25.9 | 25.8 | 25.8 | 25. | 25. | 25. | 25.7 | 25.8 | 25.6 | 25.6 | 5.6 |
| 16.0 | 26.9 | 26.9 | 26.8 | 26.8 | 26.6 | 26.7 | 26.7 | 26.7 | 26.6 | 26.6 | 26.6 | 26.5 | 26.6 | 26.5 | 26.5 | 26.4 | 26.5 | 26.4 | 26.3 | 26 | 6.0 |
| 15.0 | 27.5 | 27.4 | 27.6 | 27.6 | 27.5 | 27.5 | 27.5 | 27.4 | 27.4 | 27.5 | 27.5 | 27.5 | 27.5 | 27.4 | 27.2 | 27.3 | 27.3 | 27.1 | 27.1 | 27.2 | 27.0 |
| 14.0 | 28 | 28.4 | 28.5 | 28.2 | 28.4 | 28.3 | 28.3 | 28.3 | 28.3 | 28.4 | 28.1 | 28.3 | 28.3 | 28.3 | 28.1 | 28.0 | 28. | 28. | 28.1 | 28.0 | 8.1 |
| 13.0 | 29.1 | 29.3 | 29.2 | 29.2 | 29.2 | 29.2 | 29.2 | 29.2 | 29.2 | 29.1 | 29.2 | 29.2 | 29.2 | 29.1 | 29.0 | 29.0 | 28. | 28.9 | 29.1 | 28.8 | 29.1 |
| 12.0 | 30.3 | 30.4 | 30.3 | 30.4 | 30.2 | 30.2 | 30.3 | 30.2 | 30.2 | 30.1 | 30.1 | 30.2 | 30.1 | 30.2 | 30.1 | 30.0 | 30.0 | 29.9 | 30.0 | 29 | 29. |
| 11.0 | 31.6 | 31.7 | 31.7 | 31.5 | 31.5 | 31.4 | 31.4 | 31.4 | 31.2 | 31.3 | 31.3 | 31.0 | 31.2 | 31.1 | 31.1 | 31.0 | 31.1 | 31.0 | 30.9 | 30.9 | 30. |
| 10.0 | 33.7 | 34 | 34.0 | 33. | 33. | 33.1 | 32. | 32.5 | 32.5 | 32 | 32 | 32.4 | 32.3 | 32.3 | 32.2 | 32.2 | 32.4 | 32.2 | 32.1 | 32.0 | 31.9 |
| 9.5 | 37.0 | 38.7 | 39.8 | 37.2 | 35.9 | 36.8 | 35.2 | 33.8 | 33.3 | 33.3 | 33.2 | 33.0 | 33.0 | 33.1 | 32.9 | 32.8 | 32.9 | 32.8 | 32.8 | 32. | 32.4 |
| 9.0 | 46.3 | 47.6 | 45.0 | 42.4 | 42.2 | 39.9 | 36.7 | 34.9 | 34.4 | 34.1 | 34.0 | 33.9 | 33.9 | 33.7 | 33.6 | 33.5 | 33.7 | 33.6 | 33.5 | 33.5 | 33.6 |
| 8.5 | 57.7 | 57 | 55. | 55.0 | 52.9 | 47.5 | 42.9 | 41.9 | 37.9 | 35.8 | 35.0 | 34.9 | 34.7 | 34.6 | 34. | 34.4 | 34.4 | 34. | 34. | 34.3 | 34.1 |
| 8.0 | 70.7 | 69.5 | 70.6 | 67.7 | 62.5 | 55.1 | 54.1 | 50.5 | 43.8 | 38.5 | 36.3 | 35.8 | 35.7 | 35.4 | 35.7 | 35.3 | 35.4 | 35.2 | 35.4 | 35.2 | 35.1 |
| 7.5 | 92.1 | 87.7 | 86.8 | 87.0 | 82.6 | 74.6 | 69.7 | 66.5 | 58.4 | 49.9 | 42.7 | 38.7 | 37.2 | 37.0 | 36.8 | 36.7 | 36.8 | 36.6 | 36.8 | 36.4 | 36.6 |
| 7.0 | 110 | 105 | 105 | 104 | 97.9 | 89.5 | 86.2 | 78.3 | 67.7 | 58.6 | 50.4 | 43.5 | 40.5 | 39.1 | 38.2 | 37.9 | 37.9 | 37.8 | 37.7 | 37.8 | 7.8 |
| 6.5 | 134 | 126 | 125 | 126 | 122 | 112 | 108 | 100 | 87.6 | 77.7 | 68.3 | 59.0 | 51.4 | 47.4 | 42.5 | 40.5 | 39.9 | 39.5 | 39.4 | 39.4 | 39.4 |
| 6.0 | 152 | 147 | 147 | 148 | 139 | 132 | 127 | 116 | 103 | 92.6 | 83.0 | 72.4 | 63.6 | 58.8 | 51.7 | 45.6 | 43.8 | 44.1 | 43.5 | 42.3 | 42.0 |

810-005
101, Rev. G
Table 9. DSS 63 Eastern Horizon S-Band $T_{o p}(\mathrm{~K})$ with SPD Cone

|  | AZIMUTH, deg |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 13 |
| 40.0 | 23.0 | 23 | 23.1 | 23.0 | 23. | 22.9 | 22.7 | 22.7 | 22.7 | 22.7 | 22.7 | 22.9 | 22.9 | 23.0 | 22 | 22.7 | 22.8 | 22.8 | 22.8 | 22.8 |  |
| 35.0 | 23.3 | 23.3 | 23.4 | 23.3 | 23 | 23.3 | 23.2 | 23.2 | 23.2 | 23.2 | 23.1 | 23. | 23.1 | 23 | 23.1 | 23.0 | 23.1 | 23 | 23 | 23. |  |
| 30.0 | 23.5 | 23.6 | 23. | 23.6 | 23 | 23 | 23.5 | 23.7 | 23.6 | 23.6 | 23.6 | 23.7 | 23.6 | 23.6 | 23.8 | 23.7 | 23.7 | 23.7 | 23.9 | 23.8 |  |
| 25.0 | 24.6 | 24.5 | 24.7 | 24.7 | 24 | 24.7 |  | 24.6 | 24.6 | 24.6 | 24.5 | 24. | 24.6 |  | 24.4 | 24. |  | 24.4 | 24.4 |  |  |
| 20.0 | 26.1 | 26.1 | 26. | 26.3 | 26 | 26.3 | 26.3 | 26 | 26 | 26.2 | 26.0 | 26. | 26.0 | 26. | 26.3 | 26.4 | 26.4 | 26.3 | 26 | 26. |  |
| 19.0 | 26.4 | 26.4 | 26.5 | 26.5 | 26.5 | 26.5 | 26.5 | 26.5 | 26.5 | 26.6 | 26.7 | 26 | 26.9 | 26.6 | 26.7 | 26.5 | 26.5 | 26.4 | 26.3 |  |  |
| 18.0 | 27.4 | 27. | 27.5 | 27.8 | 27.9 | 27. | 27.7 | 27.6 | 27.5 | 27.6 | 27 | 27 | 27. | 27.6 | 27 | 27 | 27.4 | 27 | 27.3 | 27. |  |
| 17.0 | 27.4 | 27.4 | 27. | 27.6 | 27.4 | 27. | 7.5 | 27.5 | 27. | 27.6 | 27.6 | 27 | 27 | 27.6 | 27 | 27 | 27.7 | 27 | 27 | 27.6 |  |
| 16.0 | 28.5 | 28.7 | 28.8 | 28.7 | 28.4 | 28.6 | 28.6 | 28.5 | 28.3 | 28.2 | 28.3 | 28. | 28.1 | 28.3 | 28.2 | 28.1 | 28.2 | 28. | 28.0 | 28.0 |  |
| 15.0 | 29.0 | 29.0 | 29. | 29.0 | 29.1 | 29.0 | 29.0 | 28.9 | 29.0 | 28.8 | 29.1 | 29. | 29.1 | 29.2 | 29.3 | 29.3 | 29.3 | 29. | 29.3 | 29. |  |
| 14.0 | 29.6 | 29 | 29. | 29.7 | 29.7 | 29.7 | 29.9 | 29.9 | 29.8 | 29. | 29.9 | 29. | 29. | 29.9 | 29.8 | 29.8 | 29 | 29.8 | 29.9 | 29. |  |
| 13.0 | 30.8 | 30 | 30.8 | 30.8 | 30.8 | 30.9 | 30.8 | 30.9 | 30. | 31. | 30.9 | 30 | 30. | 31.0 | 30.9 | 30.9 | 30.6 | 30.6 | 30 |  |  |
| 12.0 | 32.0 | 32.1 | 32.2 | 32.0 | 31.9 | 32.0 | 31.9 | 32.0 | 31.9 | 31.7 | 31.9 | 31.7 | 31.7 | 31.8 | 31.8 | 31.8 | 31.9 | 32.0 | 32 |  |  |
| 11.0 | 32.7 | 32.8 | 32 | 32.7 | 32.5 | 32.5 | 32.6 | 32.6 | 32.5 | 32. | 32.7 | 32. | 32. | 32.6 | 32.3 | 32.6 | 32.7 | 32.8 | 32.6 | 22. |  |
| 0.0 | 34 | 34.7 | 34.5 | 34.6 | 34.4 | 34.5 | 4.3 | 4.4 | 34.2 | 34.0 | 33.9 | 33.9 | 33.8 | 33.7 | 33.6 | 3, | 33.8 | 33.7 | 33.8 |  |  |
| 9.5 | 34.9 | 34.9 | 34.9 | 34.8 | 34.8 | 34.6 | 34.8 | 34.6 | 34. | 34. | 34. | 34 | 34 | 34.1 | 34 | 34 |  | 34 | 34 |  |  |
| 9.0 | 34.9 | 34.9 | 35.2 | 34. | 34.7 | 34.9 | 34.8 | 34.9 | 35.0 | 34.8 | 34.6 | 34. | 34. | 34. | 34. | 34. | 34 | 34 | 34. |  |  |
| 8.5 | 35.7 | 35.9 | 35.7 | 35.5 | 35.4 | 35.3 | 35.4 | 35.5 | 35.7 | 35.7 | 35.9 | 35.8 | 35. | 35.7 | 35 | 35. | 35. | 35.6 | 35. | 35.6 |  |
| 8.0 | 36.8 | 37.1 | 37.2 | 37.0 | 37.2 | 37.0 | 37.2 | 36.9 | 37.2 | 37.0 | 36.9 | 36.9 | 37. | 37.1 | 37 | 37. | 37. | 37.0 | 37.0 | 36.9 |  |
| 7.5 | 37.8 | 38.0 | 38.0 | 37.8 | 37.8 | 7.9 | 8. 1 | 38.1 | 38.2 | 38.1 | 38.0 | 37.9 | 38.0 | 38.2 | 38.1 | 38. | 38.0 | 38.0 | 38.0 |  |  |
| 7.0 | 39.2 | 39.2 | 39. | 38.9 | 39.0 | 39.0 | 39.1 | 39.0 | 39.2 | 39.2 | 39.2 | 39.3 | 39.2 | 39.4 | 39.3 | 38.9 | 39.2 | 39.2 | 39 | 39.3 |  |
| 6.5 | 40.4 | 40.9 | 40.6 | 40.8 | 40.5 | 40.6 | 0.6 | 40.4 | 40.5 | 40.5 | 40.5 | 40 | 40.4 | 40.3 | 40.7 | 40. | 40.2 | 40.3 | 40. |  |  |
| 6.0 |  | 42 | 42.2 | 42 | 42.2 | , | 42.1 | 41.9 | 41.8 | 41.8 | 41.9 | 42. | 41.8 | 41.8 |  | 41 | 41. | 41 | 41 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | deg |  |  |  |  |  |  |  |  |  |
|  | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 |  |
| 40.0 | 22.8 | 22. | 22.9 | 22. | 22.9 | 22 | 22.9 | 23.0 | 23.0 | 23.0 | 22.7 | 22.6 | 22.7 | 22.7 | 22.8 | 22.8 | 23. | 23. | 23.1 | 22.9 |  |
| 35.0 | 23.2 | 23. | 23. | 23.3 | 23.3 | 23.3 | 23.5 | 23.5 | 23.5 | 23. | 23. | 23 | 23. | 23. | 23. | 23. | 23.2 | 23. | 23.3 | 23.4 |  |
| . 0 | 23.7 | 23.8 | 23.7 | 23.9 | 23.7 | 23.8 | 23.9 | 23.9 | 23.8 | 23.9 | 23.7 | 23.7 | 23. | 23.8 | 23.7 | 23 | 23. | 23.7 | 23.8 | 23.8 |  |
| 25.0 | 24.5 | 24.5 | 24.6 | 24.6 | 24.7 | 24 | 4.8 | 24.7 | 24. | 24.6 | 24.6 | 24.5 | 24.5 | 4.5 | 24.5 | 24.5 | 24 | 24.4 | 24. | 4.7 |  |
| 20.0 | 26.2 | 26. | 26. | 26.2 | . 3 | 26 | 26.4 | 26.4 | 26.5 | 26.2 | 26.3 | 26.4 | 26 | 26.3 | 2.2 | 26. | 26.3 | 26.5 | 26.4 |  |  |
| 19.0 | 26.5 | 26. | 26.6 | 26.6 | 26.5 | 26. | 26.9 | 26.7 | 26.8 | 6.7 | 26.6 | 26. | 26. | 6. | 26. | 26. | 26.9 | 26.8 | 26 |  |  |
| 18.0 | 27.2 | 27 | 27.3 | 27.0 | 27.3 | 27.3 | 27.2 | 27.3 | 27.4 | 27.4 | 27.4 | 27. | 27.4 | 27.2 | 27. | 27. | 27.0 | 27.2 | 27 | 27.3 |  |
| 17.0 | 27.6 | 27. | 27.5 | 27.4 | 27.5 | 27.5 | 7.5 | 27.4 | 27.5 | 27.5 | 27.7 | 27. | 28. | 28. | 28 | 28. | 28 | 28.0 | 28. |  |  |
| 16.0 | 28. | 28. | 28.1 | 27 | 27.8 | 27.9 | 28.0 | 28.3 | 28.2 | 28.3 | 28.4 | 28.4 | 28. | 28 | 28, | 28 | 28.4 | 28.5 | 28 |  |  |
| 15.0 | 29.3 | 29.2 | 29.1 | 29.3 | 29.4 | 29.3 | . 2 | 29.2 | 29.2 | 29. | 28.9 | 28.8 | 28. | 29. | 29 | 29.0 | 29.1 | 29 | 28.9 | 28.9 |  |
| 14.0 | 29.9 | 29.9 | 30.0 | 30.1 | 29.9 | 29.8 | 30.0 | 29.9 | 29.8 | 29. | 29. | 30.0 | 30. | 30. | 30 | 30.1 | 30.1 | 30 | 29 | 29. |  |
| 13.0 | 30.8 | 30.7 | 30.7 | 30.9 | 31.0 | 30.9 | 30.8 | 31.0 | 30.9 | 30. | 30.9 | 31.0 | 30.8 | 30. | 30 | 30. | 30.8 | 31 | 30 | 0.9 |  |
| 12.0 | 32.0 | 31.9 | 32.0 | 32.1 | 31.8 | 32.0 | 31.8 | 32.0 | 31.7 | 11.8 | 31.6 | 31. | 31. | 31. | 31 | 31.7 | 31. | 31. | 31 | 31.6 |  |
| 11.0 | 32.3 | 32 | 32.7 | 32.5 | 32. | 32.5 | 32.7 | 32.8 | 33.2 | 3.3 | 33.2 | 33.3 | 33.4 | 33.5 | 33.5 | 33.4 | 33 | 33. | 33.5 | 33.4 |  |
| 10.0 | 33.8 | 33 | 33.7 | 33.8 | 33.9 | 33.8 | 33.9 | 34.0 | 33.9 | 33.9 | 33.8 | 33 | 33.8 | 33.8 | 33.7 | 33.7 | 33. | 33.8 | 33.9 | 33.9 |  |
| 9.5 | 34.1 | 33.9 | 34.1 | 34.1 | 33.8 | 34.1 | 34.0 | 33.8 | 34.1 | 34. | 33.8 | 33.7 | 34. | 33.8 | 33. | 34. | 33.9 | 34.0 | 34.0 | 33.9 |  |
| 9.0 | 34.7 | 34.8 | 34.9 | 34.9 | 35.2 | 35.0 | 35.0 | 35.2 | 35.2 | 35.2 | 35.0 | 35.0 | 35.2 | 35.2 | 35. | 35.0 | 35. | 35.0 | 34. | 34. |  |
| 8.5 | 35.8 | 35.7 | 35.5 | 35.6 | 35.5 | 35.3 | 35.2 | 35.0 | 34.9 | 34.8 | 35.1 | 35.1 | 35.2 | 35.1 | 34 | 34.8 | 34.8 | 34. | 35.0 | 35 |  |
| 8.0 | 36.8 | 36. | 36.3 | 36.5 | 36.4 | 36.5 | 36.4 | 36.3 | 36.2 | 36. | 36.1 | 36. | 36.2 | 36.1 | 35. | 36.4 | 36. | 36.0 | 36. | 35. |  |
| 7.5 | 37.9 | 38. | 7.9 | 37.7 | 37.7 | 77.6 | 37.5 | 37.1 | 37.4 | 37.2 | 37.4 | 37. | 37.4 | 37.5 | 37 | 37. | 37. | 37 | 37. | 37. |  |
| 7.0 | 39.4 | 39.2 | 39.3 | 9.2 | 39.1 | 38.9 | 38.9 | 38.7 | 38.7 | 38.7 | 38.5 | 38.4 | 8. | 38.4 | 8. | 38.4 | 38 | 38. | 38 | 37 |  |
| 6.5 | 40.4 | 40.4 | 40.3 | 40.3 | 40.4 | 40.2 | 40.3 | 40.2 | 40.3 | 40.1 | 40.0 | 40. | 40.0 | 40.2 | 40 | 40. | 40. | - | 39. | 39 |  |
| 6.0 | 41.7 | 41.6 | 41.7 | 41. | 41.7 | 41. | 41.4 | 41 | 41. | 41.3 | 41 | 41.4 | 41.2 | 41.3 | 41.3 | 41.1 | 41.3 | 40 | 40.8 |  |  |

## 810-005

101, Rev. G
Table 10. DSS 63 Western Horizon S-Band $T_{o p}(\mathrm{~K})$ with SPD Cone

|  | AZIMUTH, deg |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 210 | 211 | 21 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 |
| 40.0 | 30.8 | 25.0 | 24.2 | 24.3 | 24.0 | 24.2 | 24.8 | 25.1 | 26.2 | 31. | 26.9 | 24. | 24.2 | 24. | 23. | 23.7 | 23. | 23.8 | 23.9 | 23.8 |  |
| 35.0 | 24.1 | 24 | 24. | 24.4 | 24.6 | 24.8 | 25.0 | 25.3 | 26.6 | 30.4 | 26.2 | 25 | 24.9 | 24.7 | 24 | 24. | 24.3 | 24.3 | 24 | 24. |  |
| 30.0 | 25.0 | 25 | 25.3 | 25.5 | 25.6 | 26.4 | 28.8 | 27.5 | 26.5 | 26. | 25.6 | 25. | 25.4 | 25.3 | 25.2 | 25. | 25.1 | 25.1 | 5.0 | 25. |  |
| 25.0 | 25.8 | 25 | 25 | 26 | 26.3 | 27.6 | 31.2 | 29.0 | 27. | 26.7 | 26.4 | 26. | 25.9 | 26. | 25.8 | 25.7 | 25.7 | 25.7 | 25.7 | 25. |  |
| 20.0 | 27 | 28 | 28 | 28 | 30.1 | 31.0 | 29.2 | 28.4 | 28.1 | 27.7 | 27.6 | 27.3 | 27.4 | 27.3 | 27. | 27. | 27.0 | 27.0 | 27 |  |  |
| 19.0 | 28.1 | 28. | 28.4 | 28.9 | 30.3 | 32.0 | 30.1 | 29.2 | 28.6 | 8.2 | 27. | 27. | 28. | 27. | 27. | 27. |  | 27. | 27.5 |  |  |
| 18.0 | 28.9 | 29 | 32 | 35.1 | 30.7 | 29.9 | 29.1 | 28.8 | 28.4 | 28.3 | 28.2 | 28 | 28. | 28.2 | 28.0 | 28.0 | 28.0 | 28.0 | 28.0 | 28. |  |
| 17.0 | 29.4 | 29 | 31.9 | 31.9 | 31.4 | 30.3 | 29.5 | 29.3 | 29.1 | 28.8 | 28. | 28 | 28.6 | 28 | 28 | 28.6 | 28.6 | 28 | 28 | 28. |  |
| 16.0 | 30.4 | 31.8 | 32.6 | 31.2 | 30.3 | 30.0 | 9.5 | 29.3 | 29.2 | 29. | 29.1 | 29. | 29. | 29.4 | 29 | 29 | 29.2 | 29 | 29 | 29. |  |
| 15.0 | 31.7 | 32.4 | 34.4 | 32.2 | 31.9 | 31.0 | 30.3 | 30.1 | 30.2 | 30.0 | 29.9 | 30.2 | 29. | 29.9 | 29.9 | 30 | 32. | 30. | 29.7 | 29.8 |  |
| 14.0 | 4.1 | 39.9 | 33. | 31.5 | 31.2 | 30 | 0.9 | 30.6 | 30.8 | 0.6 | 30. | 30.7 | 30.6 | 30.7 | 30. | 30.6 | 30 | 30.6 | 30. | 30.6 |  |
| 13.0 | 39.6 | 46.7 | 34.9 | 32.7 | 32.1 | 32.0 | 31.6 | 31.4 | 31.6 | 31.4 | 31.4 | 31.5 | 31.3 | 31.4 | 31.5 | 31.6 | 31 | 31.4 | 31.5 | 31.4 |  |
| 12.0 | 35.3 | 34 | 33.2 | 32.8 | 32.5 | 32.5 | 32.3 | 32.1 | 32.3 | 32. | 32.1 | 32 | 32 | 32.1 | 32 | 32.2 | 32. | 32 | 32 | 32. |  |
| 11.0 | 35.9 | 35.4 | 34.4 | 33.8 | 33.5 | 33.3 | 33.0 | 3.0 | 33.2 | 33.1 | 33.1 | 33.2 | 33. | 33.1 | 33.1 | 33.0 | 33.0 | 33.3 | 33.2 | 33.2 |  |
| 10.0 | 34.4 | 34.5 | 34.4 | 34.2 | 34.1 | 34.0 | 33.9 | 34.0 | 33.9 | 34.0 | 34.1 | 34.0 | 33.9 | 34.3 | 34.1 | 34.1 | 34.0 | 34.1 | 34.1 | 34. |  |
| 9.5 | 35.2 | 35.0 | 34.8 | 34.9 | 34.7 | 34.7 | 34.7 | 34.7 | 34.8 | 34.7 | 34.9 | 34.9 | 34.6 | 34.6 | 35.2 | 34.9 | 34.7 | 34.9 | 35.0 | 34. |  |
| 9.0 | 35.5 | 35.5 | 35.4 | 35.3 | 35.5 | 35.2 | 35.4 | 35.3 | 35.4 | 35.3 | 35.7 | 35 | 35. | 35. | 35.5 | 35.4 | 35.5 | 35.3 | 35.7 | 35. |  |
| 88.5 | 36.1 | 36.1 | 36.0 | 36.2 | 36.3 | 36.1 | 6.0 | 36.1 | 36.0 | 36.0 | 35.9 | 35 | 35. | 35.8 | 35.9 | 35.9 | 35. | 36 | 35 | 35.9 |  |
| 8.0 | 36.9 | 36.7 | 36.5 | 36.9 | 36.7 | 36.7 | 36.8 | 36.5 | 37.0 | 36.8 | 36.9 | 36. | 37.0 | 36.9 | 36 | 36 | 37. | 37 | 37. | 3. |  |
| 7.5 | 37.7 | 37.8 | 37.5 | 38.1 | 37.6 | 37.6 | 37.9 | 37.6 | 37.5 | 38.0 | 37.8 | 37.9 | 37.8 | 37.7 | 38.0 | 38. | 37.8 | 37. | 37.8 | 37.8 |  |
| 7.0 | 38.5 | 39 | 38.4 | 38.9 | 38.9 | 38.7 | 8.6 | 38.6 | 38.9 | 8.9 | 99.2 | 38.9 | 38.9 | 39.1 | 39 | 39. | 39.2 | 39.3 | 99.3 | 39.1 |  |
| 6.5 | 39.0 | 38. | 39.3 | 9.4 | 39.3 | 39.4 | 39.0 | 9.1 | 39.0 | 39.4 | 9. | 39.5 | 39.4 | 39.3 | 9, | 99.8 | 39 | 39. | 39.8 |  |  |
| 6.0 | 40.0 | 39.9 | 40 | 40.8 | 40.1 | 40.5 | 40.4 | 40.4 | 40.7 | 41.2 | 41.3 | 40.9 | 41.4 | 41.5 | 41.5 | 41.6 | 41.7 | 41.5 | 41.8 |  |  |
|  |  |  |  |  |  |  |  |  |  | ZIM |  | deg |  |  |  |  |  |  |  |  |  |
|  | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 48 | 249 |  |
| 40.0 | 23.7 | 23.6 | 23.5 | 23.5 | 23.5 | 23.4 | 23.4 | 23.4 | 23.5 | 23. | 23. | 23 | 23.5 | 23. | 23 | 23. | 23 | 23.5 | 23.5 | 23 |  |
| 5.0 | 24.3 | 24. | 24 | 24.0 | 23.9 | 24.1 | 24. | 23.9 | 24.1 | 24.0 | 23.8 | 23 | 24.0 | 24.0 | 23.8 | 23.7 | 23. | 23.9 | 24.0 | 23. |  |
| 30.0 | 24.8 | 24. | 24.8 | 24.8 | 24.9 | 24.8 | 24.8 | 24.7 | 24.7 | 24.6 | 24.7 | 24. | 4.5 | 2. | 24 | 24 | 24 | 24.6 | 24. | 24. |  |
| 25.0 | 25.5 | 25. | 25.8 | 25.7 | 25.4 | 25.5 | 25.5 | 25.5 | 25.5 | 25.5 | 25.6 | 25 | 25. | 25. | 25 | 25 | 25 | 25 |  |  |  |
| 20.0 | 27.1 | 27. | 27.3 | 27.1 | 27.2 | 27.2 | 27.1 | 27.5 | 27.3 | 27.3 | 27.2 | 27. | 27. | 27.1 | 27 | 27 | 27 | 27 | 27 | 27. |  |
| 19.0 | 27.5 | 27.6 | 27.6 | 27.6 | 27.6 | 27.6 | 27.6 | 27.6 | 27.6 | 27.8 | 27.7 | 27. | 27 | 27.7 | 27.7 | 27.7 | 27.7 | 27.7 | 27.8 |  |  |
| 18.0 | 28.1 | 28.1 | 28 | 28 | 28.2 | 28.2 | 28.3 | 28 | 28.3 | 8.4 | 28.4 | 28.5 | 28. | 28.3 | 28 | 28 |  |  | 28.4 |  |  |
| 17.0 | 28.5 | 28.5 | 28.7 | 28.7 | 28.7 | 28.7 | 28.7 | 28.7 | 28.9 | 8.9 | 28.9 | 28.9 | 28.8 | 28.8 | 28.8 | 28.8 | 28. | 28.8 | 28.8 | 28.9 |  |
| 16.0 | 29.1 | 29.2 | 29 | 29 | 29.3 | 29.4 | 29.4 | 29.4 | 29.4 | 29.5 | 29 | 29. | 29. | 29.2 | 29.3 | 29. | 29.5 | 29.4 | 29.5 | 29.5 |  |
| 15.0 | 29.6 | 29.8 | 29.8 | 29.8 | 29.7 | 29.9 | 29.8 | 29.9 | 29. | 29.9 | 30 | 30. | 30 | 30. | 30 | 30 | 30.2 | 30.2 | 30 | 3. |  |
| 14.0 | 30.7 | 30.6 | 30.7 | 30.7 | 30.8 | 30.8 | 30.8 | 30.9 | 30.8 | 30. | 31.0 | 30. | 30. | 30.9 | 31. | 31 | 31 | 31. | 31 | 31 |  |
| 13.0 | 31.4 | 31.5 | 31.4 | 31.4 | 31.4 | 1.5 | 31.5 | 1.5 | 31.5 | 31.6 | 31.6 | 31.6 | 31.7 | 1.7 | 31.7 | 31.7 | 31. | 31.7 | 31.8 | 11.8 |  |
| 12.0 | 32.4 | 32 | 32.3 | 32.3 | 32.4 | 32.4 | 32.4 | 32.4 | 32.5 | 2. | 32. | 32.5 | 32.5 | 32.5 | 32.6 | 32.6 | 32. | 32.7 | 32.7 | 32.8 |  |
| 11.0 | 33.2 | 33.2 | 33.1 | 3.1 | 3.2 | 33.1 | 33.2 | 33.4 | 3.3 | 33. | 33.5 | 33.4 | 33 | 33.4 | 33.4 | 33 | 33 | 33.5 | 33 | 33.6 |  |
| 10.0 | 34.3 | 34.1 | 34 | 34.1 | 34.2 | 34. | 34.2 | 34.3 | 34.4 | 34.5 | 34. | 34.4 | 34. | 34. | 34. | 34 | 34 | 34.6 | 34 | 34.7 |  |
| 9.5 | 34.8 | 35.0 | 34.9 | 34 | 34.9 | 34.9 | 34.8 | 35.1 | 35.0 | 35.0 | 35. | 35. | 35. | 35. | 35. | 35. | 35 | 35.3 | 35 |  |  |
| 9.0 | . 6 | 35. | 35.6 | 35.5 | 35.7 | 35.6 | 35.6 | 35.7 | 35.7 | 35.9 | 35.8 | 35. | 36. | 35.9 | 36. | 36.0 | 36. | 36 | 36.0 | 3. |  |
| 8.5 | 35.9 | 35.9 | 36.1 | 36.1 | 36.0 | 36.1 | 36.2 | 36.3 | 36.2 | 36.4 | 36.4 | 36.6 | 36.4 | 36.5 | 36. | 36.6 | 36. | 36.8. | 36.9 | 36. |  |
| 8.0 | 37.1 | 37.0 | 37.1 | 37.0 | 36.9 | 37.1 | 37.3 | 37.3 | 37.4 | 37.5 | 37.4 | 37.5 | 37.5 | 37.6 | 37. | 37.6 | 37.7 | 37.8 | 37. | 37. |  |
| 7.5 | 38.1 | 37.9 | 37.7 | 37.9 | 38.0 | 38.1 | 38.2 | 38.2 | 38.4 | 38.5 | 38.6 | 38.5 | 38.7 | 38.9 | 38.8 | 39.3 | 39.1 | 39.2 | 39.1 | 39. |  |
| 7.0 | 39.1 | 39.2 | 39.1 | 39.1 | 39.1 | 39.3 | 39.1 | 39.2 | 39.3 | 39.5 | 39.7 | 40.0 | 40.0 | 40.1 | 40.2 | 40. | 40.7 | 40. | 41.1 | 41.0 |  |
| 6.5 | 40.0 | 40.0 | 40.0 | 40.3 | 40.6 | 40.5 | 40.6 | 40.4 | 39.9 | 40.3 | 40.4 | 40.8 | 41.1 | 41.4 | 41.8 | 42.5 | 43.6 | 46.9 | 50.5 | 49.1 | 43.8 |
| 6.0 | 41.7 | 41.8 | 41. | 41.6 | 41.9 | 41.9 | 41.8 | 42 | 42.1 | 42.5 | 43.0 | 438 | 46.2 | 52.1 | 54.0 | 62.0 | 94.2 | 17 | 127 | 22 |  |

101, Rev. G



810-005
101, Rev. G


Figure 2. Functional Block Diagram of L-Band Microwave Equipment


Figure 3. S-Band Receive Gain, All Stations, at Feedhorn Aperture


Figure 4. X-Band Receive Gain, DSS 14 Antenna, X-Only Configuration (S/X Dichroic Retracted), at Feedhorn Aperture


Figure 5. X-Band Receive Gain, DSS 43 Antenna, X-Only Configuration (S/X Dichroic Retracted), at Feedhorn Aperture


Figure 6. X-Band Receive Gain, DSS 63 Antenna, X-Only Configuration (S/X Dichroic Retracted), at Feedhorn Aperture


Figure 7. L-Band System Noise Temperature, All Stations, at Feedhorn Aperture


Figure 8. S-Band System Noise Temperature, DSS 14 Antenna, LNA-1, Non-Diplexed, at Feedhorn Aperture


Figure 9. Eastern Horizon S-Band System Noise Temperature at $6^{\circ}$ Elevation Angle


Figure 10. Western Horizon S-Band System Noise Temperature at $6^{\circ}$ Elevation Angle


Figure 11. X-Band System Noise Temperature, DSS 14 Antenna, LNA-1 or LNA-2, X-Only Configuration (S/X Dichroic Retracted)


Figure 12. X-Band System Noise Temperature, DSS 43 Antenna, LNA-1 or LNA-2, X-Only Configuration (S/X Dichroic Retracted)


Figure 13. X-Band System Noise Temperature, DSS 63 Antenna, LNA-1 or LNA-2, X-Only Configuration (S/X Dichroic Retracted)


Figure 14. L-Band and S-Band Pointing Loss Versus Pointing Error


Figure 15. X-Band Pointing Loss Versus Pointing Error

## Appendix A

## Equations for Modeling

## A. 1 Equations for Gain Versus Elevation Angle

The following equation can be used to generate L-band receive, and S- and Xband transmit and receive gain versus elevation curves for DSS 14, DSS 43, and DSS 63. The gains are referenced to feedhorn aperture so different configurations (e.g., LNA-1 non-diplexed and LNA-2 diplexed) will have the same gain values. Examples of these curves are shown in Figures 3 through 6, for S- and X-bands. See paragraph 2.1.1.1 for frequency effect modeling and Module 105 for atmospheric attenuation at weather conditions corresponding to cumulative distributions from $0 \%$ to $99 \%$. The year-average atmosphere attenuations for $C D=0.00,0.50$, and 0.90 are also given in Table A-2.

$$
\begin{equation*}
G(\theta)=G_{0}-G_{1}(\theta-\gamma)^{2}-\frac{A_{Z E N}}{\sin \theta}, \mathrm{dBi} \tag{A1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\theta & =\text { antenna elevation angle (deg.) } 6 \leq \theta \leq 90 \\
G_{0}, G_{1}, \gamma= & \text { parameters from Table A-1 } \\
A_{\text {ZEN }} & = \\
& \text { zenith atmospheric attenuation from Table A-2 or from Tables } \\
& 10 \text { through } 15 \text { in Module } 105, \mathrm{~dB} .
\end{array}
$$

## A. 2 Equations for System Noise Temperature Versus Elevation Angle

The following equations can be used to generate L-, S-, and X-band receive system noise temperature versus elevation curves for DSS 14, DSS 43, and DSS-63. Examples of these curves are shown in Figures 7, 8, and 11 through 13. See Module 105 for atmospheric attenuation at weather conditions corresponding to cumulative distributions from $0 \%$ to $99 \%$. Atmosphere attenuations for $\mathrm{CD}=0.00,0.50$, and 0.90 are also given in Table A-2.

System operating noise temperature:

$$
\begin{equation*}
T_{o p}(\theta)=T_{A M W}+T_{\text {sky }}=\left[T_{1}+T_{2} e^{-a \theta}\right]+\left[T_{a t m}(\theta)+T_{C M B}^{\prime}(\theta)\right] \tag{A2}
\end{equation*}
$$

Sky noise contribution:

$$
\begin{equation*}
T_{\text {sky }}=T_{a t m}(\theta)+T_{C M B}^{\prime}(\theta) \tag{A3}
\end{equation*}
$$

Atmospheric attenuation:

$$
\begin{equation*}
A(\theta)=\frac{A_{z e n}}{\sin (\theta)}, \mathrm{dB} \tag{A4}
\end{equation*}
$$

Atmospheric loss factor:

$$
\begin{equation*}
L(\theta)=10^{\frac{A(\theta)}{10}} \text {, dimensionless, >1.0 } \tag{A5}
\end{equation*}
$$

Atmosphere mean effective radiating temperature:

$$
\begin{equation*}
T_{M}=255+25 \times C D, \mathrm{~K} \tag{A6}
\end{equation*}
$$

Atmospheric noise contribution:

$$
\begin{equation*}
T_{a t m}(\theta)=T_{M}[1-1 / L(\theta)], \mathrm{K} \tag{A7}
\end{equation*}
$$

Effective cosmic background noise:

$$
\begin{equation*}
T_{C M B}^{\prime}(\theta)=\frac{T_{C M B}}{L(\theta)}, \mathrm{K} \tag{A8}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta= & \text { antenna elevation angle (deg.), } 6 \leq \theta \leq 90 \\
T_{1}, T_{2}, a= & \text { antenna-microwave noise temperature parameters from Table A-3 } \\
A_{\text {ZEN }}= & \text { zenith atmospheric attenuation, } \mathrm{dB} \text {, from Table A-2 or from Tables } \\
& 10 \text { through } 15 \text { (L-, S-, X-bands) in Module } 105 \text { as a function of } \\
& \text { frequency, station, and cumulative distribution }(C D) \\
C D= & \text { cumulative distribution, } 0 \leq C D \leq 0.99, \text { used to select } A_{\text {ZEN }} \text { from } \\
& \text { Table A- } 2 \text { or from Tables } 10 \text { through } 15 \text { in Module } 105 \\
T_{C M B}= & 2.725 \mathrm{~K}, \text { cosmic microwave background noise temperature }
\end{aligned}
$$

## A. 3 Equation for Gain Reduction Versus Pointing Error

The following equation can be used to generate gain-reduction versus pointing error curves, examples of which are depicted in Figures 14 and 15.

$$
\begin{equation*}
\Delta G(\theta)=10 \log \left(e^{\frac{2.773 \theta^{2}}{H P B W^{2}}}\right), \mathrm{dBi} \tag{A9}
\end{equation*}
$$

where
$\theta=$ pointing error (deg.)
HPBW = half-power beamwidth in degrees (from Tables 1 or 2).

Table A-1. Vacuum Component of Gain Parameters, Referenced to Feedhorn Aperture

| Configuration and Stations | Parameters $\boldsymbol{\dagger}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{G}_{\mathbf{0}}$ <br> (Transmit) | $\mathbf{G}_{\mathbf{0}}$ <br> (Receive) | $\mathbf{G}_{\mathbf{1}}$ | $\gamma$ |
| L-Band, All Stations | - | 61.04 | 0.000084 | 45 |
| S-Band, All Stations | 62.95 | 63.59 | 0.0001 | 37 |
| X-Band, X-only Configuration |  |  |  |  |
| DSS 14 | 73.17 | 74.55 | 0.000285 | 38.35 |
| DSS 43 | 73.25 | 74.63 | 0.000300 | 41.53 |
| DSS 63 | 73.28 | 74.66 | 0.000560 | 44.93 |
| X-Band, S/X Configuration |  |  |  |  |
| DSS 14 | 72.97 | 74.35 | 0.000365 | 44.19 |
| DSS 43 | 72.98 | 74.36 | 0.000300 | 41.53 |
| DSS 63 | 72.81 | 74.19 | 0.000550 | 45.57 |

NOTE:
$\dagger G_{0}$ values are nominal at the frequency specified in Table 1 or Table 2. Other parameters apply to all frequencies within the same band.

Table A-2. Zenith Year-Average Atmosphere Attenuation Above Vacuum ( $\mathrm{A}_{\text {ZEN }}$ )

| Weather <br> Condition $\dagger$ | $\boldsymbol{A}_{\text {ZEN }}, \mathrm{dB}^{\star}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | L-Band | S-Band | X-Band |  |  |
|  | All Stations | All Stations | DSS 14 | DSS 43 | DSS 63 |
| Vacuum | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $\mathrm{CD}=0.00$ | 0.035 | 0.035 | 0.037 | 0.039 | 0.038 |
| $\mathrm{CD}=0.50$ | 0.035 | 0.035 | 0.040 | 0.047 | 0.045 |
| $\mathrm{CD}=0.90$ | 0.036 | 0.036 | 0.045 | 0.057 | 0.058 |

NOTES:

* From Tables 10 through 15 in Module 105, L- and S-band values are averages for all stations.
$\dagger \mathrm{CD}=$ cumulative distribution.

810-005
101, Rev. G
Table A-3. Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture

| Configuration and Stations | Parameters |  |  |
| :--- | :---: | :---: | :---: |
|  | $\boldsymbol{T}_{\mathbf{1}}$ | $\boldsymbol{T}_{\mathbf{2}}$ | $\boldsymbol{a}$ |
| L-band, all stations, LNA-1 or -2, HEMT, LCP, non-diplexed | 26.67 | 15.66 | 0.09 |
| S-band, DSS 14, SPD cone, LNA-1, HEMT, non-diplexed | 12.17 | 4.49 | 0.05 |
| S-band, DSS 14, SPD cone, LNA-1, HEMT, diplexed | 15.81 | 4.55 | 0.05 |
| S-band, DSS 14, Mod III, LNA-2, HEMT, non-diplexed | 18.74 | 4.61 | 0.05 |
| S-band, DSS 14, Mod III, LNA-2, HEMT, diplexed | 23.69 | 4.67 | 0.05 |
| S-band, DSS 43, SPD cone, LNA-1, HEMT, non-diplexed | 13.57 | 21.95 | 0.14 |
| S-band, DSS 43, SPD cone, LNA-1, HEMT, diplexed | 17.67 | 22.26 | 0.14 |
| S-band, DSS 43, Mod III, LNA-2, HEMT, non-diplexed | 19.59 | 22.51 | 0.14 |
| S-band, DSS 43, Mod III, LNA-2, HEMT, diplexed | 24.72 | 22.83 | 0.14 |
| S-band, DSS 63, SPD cone, LNA-1, HEMT, non-diplexed | 15.27 | 4.70 | 0.057 |
| S-band, DSS 63, SPD cone, LNA-1, HEMT, diplexed | 18.98 | 4.76 | 0.057 |
| S-band, DSS 63, Mod III, LNA-2, HEMT, non-diplexed | 21.20 | 4.82 | 0.057 |
| S-band, DSS 63, Mod III, LNA-2, HEMT, diplexed | 26.82 | 4.88 | 0.057 |
| X-band, DSS 14, LNA-1, HEMT, RCP, X-only configuration | 11.63 | 7.11 | 0.065 |
| X-band, DSS 14, LNA-2, HEMT, LCP, X-only configuration | 11.63 | 7.11 | 0.065 |
| X-band, DSS 14, LNA-1, HEMT, RCP, S/X configuration | 12.57 | 7.11 | 0.065 |
| X-band, DSS 14, LNA-2, HEMT, LCP, S/X configuration | 12.57 | 7.11 | 0.065 |
| X-band, DSS 43, LNA-1, HEMT, RCP, X-only configuration | 12.09 | 6.76 | 0.070 |
| X-band, DSS 43, LNA-2, HEMT, LCP, X-only configuration | 12.09 | 6.76 | 0.070 |
| X-band, DSS 43, LNA-1, HEMT, RCP, S/X configuration | 13.32 | 10.49 | 0.100 |
| X-band, DSS 43, LNA-2, HEMT, LCP, S/X configuration | 13.32 | 10.49 | 0.100 |
| X-band, DSS 63, LNA-1, HEMT, RCP, X-only configuration | 11.45 | 8.07 | 0.077 |
| X-band, DSS 63, LNA-2, HEMT, LCP, X-only configuration | 11.45 | 8.07 | 0.077 |
| X-band, DSS 63, LNA-1, HEMT, RCP, S/X configuration | 12.62 | 4.84 | 0.060 |
| X-band, DSS 63, LNA-2, HEMT, LCP, S/X configuration | 12.62 | 4.84 | 0.060 |

## 103

34-m HEF Subnet Telecommunications Interface

## Document Owner:

| Signature provided | $06 / 27 / 2023$ |
| :--- | :--- |
| Stephen D. Slobin | Date |
| Antenna System Engineer |  |

Prepared by:

| Signature provided | $06 / 27 / 2023$ |
| :--- | :--- |
| Stephen D. Slobin | Date |
| Antenna System Engineer |  |

Approved by:

| Signature provided | 06/08/2023 |
| :--- | :--- |
| Timothy Pham | Date |
| Communications Systems Chief <br> Engineer |  |

Released by:

| Signature provided | $08 / 03 / 2023$ |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 103, Rev. D
Issue Date: August 03, 2023
JPL D-19379; CL\#23-3962
Jet Propulsion Laboratory
California Institute of Technology

810-005
103, Rev. D

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature provided | $06 / 26 / 2023$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Jeff Berner | Signature not provided | Date |  |  |  |
| DSN Project Chief Engineer |  |  | John Cucchissi | Antenna System Engineer |  |

810-005
103, Rev. D
Document Change Log

| Rev | Issue Date | Prepared By | Affected Sections or pages | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| Initial | 11/30/2000 | Stephen Slobin Robert Sniffin | All | New Module |
| A | 04/02/2007 | Stephen Slobin <br> Robert Sniffin | ALL | Documents installation of a 200 W S-band uplink at DSS-45 and DSS-65. <br> Revised TAMW formulation for noise temperature to be consistent with Rev. B of module 105. |
| B | 09/19/2008 | Stephen Slobin <br> Robert Sniffin | 2. Table 1 \& 2 | Provides measured performance of S-band uplink at DSS 45 and DSS 65 and editorial changes. |
| C | 08/01/2014 | Stephen Slobin | Table 1 <br> Table 3 <br> Table 4 <br> Table 5 <br> Table A-3 <br> Figure 1a <br> Figure 1b <br> Figure 7 | Updated to include DSS-15 S-band transmitter. <br> New DSS-15 Tamw for X-band dual-HEMT feed. <br> New DSS-15/45/65 Tamw for low-gain mode. <br> New wind-effect gain model. <br> New Tamw and Top for DSS-15/45/65 X-band. <br> New T1, T2, a for DSS-15/45/65 X-band. <br> New for DSS-15. <br> Re-numbered to include DSS-45/65 only. <br> New noise temperatures for DSS-15 X-band. |
| D | 08/03/2023 | Stephen Slobin Christine Chang | Sections 1 and 2 Tables 1, 2, 3, 5 $\mathrm{A}-1, \mathrm{~A}-3$ <br> Old Figures 3, 4 7, 8 <br> New Figures 3-7 | DSS-15 and DSS-45 decommissioned. <br> Parameters shown only for DSS-65. <br> Gain and noise temperature for DSS-15 and DSS45 shown as N/A. <br> Removed <br> Renumbered |

## Contents

## Paragraph

## Page

1 Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope ..... 6
2 General Information ..... 6
2.1 Telecommunications Parameters ..... 7
2.1.1 Antenna Gain Variation ..... 7
2.1.1.1 Frequency Effects ..... 8
2.1.1.2 Elevation Angle Effects ..... 8
2.1.1.3 Wind Loading ..... 8
2.1.2 System Noise Temperature Variation ..... 9
2.1.3 Pointing Accuracy ..... 10
Appendix A Equations for Modeling ..... 26
A. 1 Equations for Gain Versus Elevation Angle ..... 26
A. 2 Equations for System Noise Temperature Versus Elevation Angle ..... 26
A. 3 Equation for Gain Reduction Versus Pointing Error ..... 28

810-005
103, Rev. D

## Illustrations

Figure
Page

Figure 1a. Functional Block Diagram of the DSS-15 HEF Antenna (Decommissioned) . 21
Figure 1b. Functional Block Diagram of the DSS-45 (Decommissioned) and DSS-65
HEF Antennas.............................................................................................. 22
Figure 2. S-Band Receive Gain, DSS-65 Antenna, at Feedhorn Aperture ..................... 23
Figure 3. X-Band Receive Gain, DSS-65 Antenna, at Feedhorn Aperture..................... 23
$\begin{array}{ll}\text { Figure 4. } & \begin{array}{l}\text { S-band System Noise Temperature, DSS-65, LNA-1, Non-Diplexed, at } \\ \text { Feedhorn Aperture .................................................................................... } 24\end{array}\end{array}$
$\begin{aligned} & \text { Figure 5. X-Band System Noise Temperature, DSS-65, LNA-1, Non-Diplexed, at } \\ & \text { Feedhorn Aperture ..................................................................................... } 24\end{aligned}$
Figure 6. S-Band Gain Reduction Versus Angle Off Boresight ..................................... 25
Figure 7. X-Band Gain Reduction Versus Angle Off Boresight..................................... 25

## Tables

Table
Page

Table 1. S-Band Transmit Characteristics, DSS-65......................................................... 11
Table 2. X-Band Transmit Characteristics, DSS-65................................................... 13
Table 3. S- and X-Band Receive Characteristics, DSS-65 .............................................. 15
Table 4. Gain Reduction Due to Wind Loading, 34-m HEF Antennas ........................... 18
Table 5. $T_{A M W}, T_{s k y}$, and $T_{O p}$ for $\mathrm{CD}=25 \%$ Average Clear Weather at Zenith,
Referenced to Feedhorn Aperture ................................................................... 19
Table A-1. Vacuum Component of Gain Parameters ........................................................ 28
Table A-2. S- and X-Band Year-Average Zenith Atmosphere Attenuation Above Vacuum (AZEN)28
Table A-3. Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture ..... 29

## 1 <br> Introduction

### 1.1 Purpose

This module provides the performance parameters for the Deep Space Network (DSN) Highefficiency (HEF) 34-meter antennas that are necessary to perform the nominal design of a telecommunications link. It also summarizes the capabilities of these antennas for mission planning purposes and for comparison with other ground station antennas. As of the issue date of this module, only DSS-65 (Madrid) is operational. DSS-15 (Goldstone) and DSS-45
(Canberra) have been decommissioned, but the antennas still exist at their original locations. Some information about the decommissioned antennas has been retained in this module, for historical/archive purposes. As such, in the Tables where different Values are shown for the different antennas, the values for DSS-15 and DSS-45 are given as "N/A", but the Parameter and Remarks columns have been retained.

In the future, when/if DSS-15 and DSS-45 are reactivated, their configurations are very likely to be slightly different than shown in the block diagrams (Figures 1a and 1b). It is likely that all HEF antennas will end up having two X-band HEMTs, one for RCP and one for LCP, as shown in the block diagram for DSS-15.

### 1.2 Scope

The scope of this module is limited to providing those parameters that characterize the RF performance of the 34-meter HEF antennas. The parameters do not include effects of weather, such as reduction of system gain and increase in system noise temperature that are common to all antenna types. These are discussed in module 105, Atmospheric and Environmental Effects. This module also does not discuss mechanical restrictions on antenna performance that are covered in module 302, Antenna Positioning, or the effects of terrain masking that are covered in Module 301, Coverage and Geometry.

## 2 General Information

The DSN 34-m Antenna HEF Subnet contains three 34-meter diameter highefficiency antennas. Only DSS-65 (Madrid) is still operational. Information about the equipment and configurations of the decommissioned antennas is retained in this section for historical purposes. These antennas employ an elevation over azimuth (AZ-EL) axis configuration, a single dual-frequency feedhorn, and a dual-shaped reflector design. Although this subnet is referred to as the High-Efficiency Subnet, the efficiency of the antennas is approximately the same as all other DSN antennas. The subnet was constructed when a subnet of lower-efficiency antennas ( 34 m HA-DEC and 26 m X-Y) was in existence, and the name has been retained. One antenna (DSS-15) is located at Goldstone, California; one (DSS-45) near Canberra, Australia; and one (DSS-65) near Madrid, Spain. The precise station locations are shown in Module 301, Coverage and Geometry.

Block diagrams of the 34-meter HEF microwave and transmitter equipment are shown in Figures 1a (DSS-15) and 1b (DSS-45 and DSS-65). Most of the microwave and transmitter equipment has been removed from DSS-15 and DSS-45. DSS-15 contained dual Xband HEMTs (one for RCP and one for LCP), while DSS-45 contained the older X-band maser and X-band HEMT configuration, with RCP and LCP, non-diplexed and diplexed, available for each low-noise amplifier (LNA). DSS-65 presently has a configuration identical to what existed at DSS-45. Additionally, DSS-65 offers a low-gain mode ( -20 dB ) for use at high received signal power levels for spacecraft near the Earth. DSS-65 has an orthomode junction for X-band that permits simultaneous RCP and LCP operation, although one polarization is in the nondiplexed mode and the other is in the higher-noise diplexed mode. DSS-15 was considered to be always-diplexed at X-band because it had a diplexing junction, and no lower-noise configuration was available. For X-band listen-only operation at DSS-65, or when transmitting and receiving on opposite polarizations, the low-noise path (orthomode upper arm) is used for reception. If the spacecraft receives and transmits simultaneously with the same polarization, the diplexed path must be used and the noise temperature will be higher. A waveguide labyrinth is used to couple S-band signals into and out of the feed. This would provide simultaneous RCP and LCP reception, although the presence of only one S-band low noise amplifier and receiver channel limits the use to selectable RCP or LCP. At DSS-65, the S-band polarization selection switch is used to implement a diplexed signal path in addition to the (non-simultaneous) non-diplexed, low-noise signal path. Either polarization can be low-noise or diplexed.

A 20 kW X-band transmitter is available at DSS-65. There is also a 250 W S-band transmitter intended for near-earth spacecraft support as an alternative to the beam waveguide (BWG) antennas DSS-24, $-26,-34,-36,-54$, and -56 described in module 104. The 250 W Sband transmitters at DSS-15 and DSS-45 have been removed and installed in the -6 BWG antennas, although they are still shown in the block diagrams for those antennas (Figures 1a and 1b). In addition to spacecraft tracking, the DSN 34-m antenna subnet is also used for very-long baseline interferometry and radio-source catalog maintenance.

### 2.1 Telecommunications Parameters

The significant parameters of the DSS-65 34-meter HEF antenna that influence telecommunications link design are listed in Tables 1,2, and 3. Variations in these parameters that are inherent in the design of the antennas are discussed below. Other factors that degrade link performance are discussed in modules 105 (Atmospheric and Environmental Effects) and 106 (Solar Corona and Wind Effects). Values for DSS-15 and DSS-45 are shown as N/A, to indicate that those antennas have been decommissioned.

### 2.1.1 Antenna Gain Variation

The antenna gains in Tables 1, 2, and 3 do not include the effect of atmospheric attenuation and should be regarded as vacuum gain at the specified reference point.

### 2.1.1.1 Frequency Effects

Antenna gains are specified at the indicated frequency $\left(f_{0}\right)$. For operation at higher frequencies in the same band, the gain $(\mathrm{dBi})$ must be increased by $20 \log \left(f / f_{0}\right)$. For operation at lower frequencies in the same band, the gain must be reduced by $20 \log \left(f / f_{0}\right)$.

### 2.1.1.2 Elevation Angle Effects

Structural deformation causes a reduction in gain whenever the antenna is operated at an elevation angle other than the angle where the reflector panels were aligned. The effective gain of the antenna is also reduced by atmospheric attenuation, which is a function of elevation. Figures 2 and 3 show the estimated DSS-65 gain versus elevation angle for the hypothetical vacuum condition (structural deformation only) and with $0 \%, 50 \%$, and $90 \%$ weather conditions, designated as CD (cumulative distribution) $=0.00,0.50$, and 0.90 . A CD of $0.00(0 \%)$ means the minimum weather effect (exceeded $100 \%$ of the time). A CD of 0.90 ( $90 \%$ ) means that effect which is exceeded only $10 \%$ of the time. Qualitatively, a CD of 0.00 corresponds to the driest condition of the atmosphere; a CD of 0.50 corresponds to humid or very light clouds; and 0.90 corresponds to very cloudy, but with no rain. A CD of 0.25 corresponds to average clear weather and often is used when comparing gains of different antennas. Comprehensive S-band and X-band weather effects models (for weather conditions up to $99 \%$ cumulative distribution) are provided in module 105 for detailed design control table use. Equations and parameters for the curves in Figures 2 through 5 are provided in Appendix A.

Figure 2 depicts the S-band ( 2295 MHz ) net gain for DSS-65 as a function of elevation angle and weather condition, including the vacuum condition. Net gain means vacuum-condition gain as reduced by atmosphere attenuation. Figure 3 presents the X-band $(8420 \mathrm{MHz})$ net gain for DSS-65. All gains are referred to the feedhorn aperture, and the equations and parameters of these curves are given in Appendix A. The models use a flat-Earth, horizontally stratified atmosphere approximation.

It should be noted in Appendix A, Table A-1, that the gain parameters do not vary for different configurations (e.g., LNA-1 non-diplexed vs. LNA-1 diplexed), as they do in Table A-3 for the noise temperature parameters. This is due to the fact that the gain is referenced to the feedhorn aperture, and configurations "downstream" (e.g., orthomode and diplexer paths) do not affect the value of gain at the aperture. When G and T are referenced to the LNA input, both the G and T parameters vary with antenna configuration. When referenced to the feedhorn aperture, only T varies with configuration. The observed differences in antenna G/T are attributed only to different values of noise temperature, because G and T are both referenced to the feedhorn aperture.

### 2.1.1.3 Wind Loading

The gain reduction at X -band due to wind loading is listed in Table 4. The tabular data are for structural deformation only and presume that the antenna is maintained on-point by conical scan (CONSCAN, discussed in module 302) or an equivalent process. In addition to structural deformation, wind introduces a pointing error that is related to the antenna elevation angle, the angle between the antenna and the wind, and the wind speed. The effects of pointing
error are discussed below. Cumulative probability distributions of wind velocity at Goldstone are given in module 105.

### 2.1.2 System Noise Temperature Variation

The operating system temperature $\left(T_{o p}\right)$ varies as a function of elevation angle due to changes in the path length through the atmosphere and ground noise received by the sidelobe pattern of the antenna. Figures 4 and 5 show the combined effects of these factors at $S$ - and Xbands for DSS-65 in a hypothetical vacuum (no atmosphere) and no cosmic noise condition ( $T_{\text {sky }}$ $=0$, see Appendix A.2), for non-diplexed antenna configurations, and with the three weather conditions described above. The equations and parameters for these curves are provided in Appendix A of this module. The models use a flat-Earth, horizontally stratified atmosphere approximation.

The system operating noise temperature, $T_{o p}$, consists of two parts, an antennamicrowave component, $T_{A M W}$, for the contribution of the antenna and microwave hardware only, and a sky component, $T_{s k y}$, that consists of the atmosphere noise plus the cosmic microwave background noise attenuated by the atmosphere loss. $T_{A M W}$ is shown in Figures 4 and 5 as "ANT-UWV". The system operating noise temperature is given by

$$
T_{o p}(\theta)=T_{A M W}+T_{\text {sky }}=\left[T_{1}+T_{2} e^{-a \theta}\right]+\left[T_{\text {atm }}(\theta)+T_{C M B}^{\prime}(\theta)\right]
$$

where

$$
T_{\text {sky }}=T_{\text {atm }}(\theta)+T_{C M B}^{\prime}(\theta)
$$

$T_{1}, T_{2}$ and $a$ are coefficients and exponent given in Appendix A, Table A-3
$T_{\text {atm }}$ is the atmosphere contribution term, calculated from Module 105
$T_{C M B}^{\prime}$ is the attenuated cosmic contribution, calculated from Module 105
More details of this calculation are given in Appendix A of this module.
Figure 4 shows the S-band ( 2295 MHz ) system noise temperature curves for DSS-65, LNA-1 (HEMT), non-diplexed, referenced to the feedhorn aperture. The DSS-65 Xband ( 8420 MHz ) system temperature referenced to the feedhorn aperture is shown in Figure 5, for LNA-1, RCP HEMT, non-diplexed. The diplexed configuration higher noise temperatures can be calculated using the parameters given in Appendix A.

The $T_{A M W}$ noise temperature values in Table 3 are stated with reference to the feedhorn aperture and arise from antenna and microwave hardware contribution only. No atmosphere or cosmic background contribution is included. Table 5 presents values for DSS-65 in all configurations at zenith, with average-clear $\mathrm{CD}=0.25$ weather. The values of $T_{A M W}, T_{s k y}$, and $T_{o p}$ in Table 5 are calculated by methods presented in Module 105 using year-average attenuation values in Tables 10-15 of that module.

When two low-noise amplifiers (LNAs) are available for use, as at X-band, the amplifier in the lowest noise configuration is designated as LNA-1. Under some conditions, LNA-2 may be used, and the higher noise temperature values apply.

### 2.1.3 Pointing Accuracy

Figures 6 and 7 show the effects of pointing error on effective transmit and receive gain of the antenna. These curves are Gaussian beam-shape approximations based on measured and predicted antenna beamwidths. Data have been normalized to eliminate elevation and wind-loading effects. The equations used to derive the curves are provided in Appendix A.

Table 1. S-Band Transmit Characteristics, DSS-65

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA |  |  |
| Gain at 2070 MHz (nearearth) | $55.40 \pm 0.2 \mathrm{dBi}$ | At elevation angle of peak gain, referenced to feedhorn aperture for matched polarization; no atmosphere included |
| Transmitter Waveguide Loss | $0.6 \pm 0.1 \mathrm{~dB}$ | 250 W transmitter output terminal (waterload switch) to feedhorn aperture |
| Half-Power Beamwidth | $0.258 \pm 0.004 \mathrm{deg}$ | Angular width (2-sided) between halfpower points at specified frequency |
| Polarization | RCP or LCP | Remotely selected. |
| Ellipticity | 1.0 dB (max) | Peak-to-peak axial ratio defined as the ratio of peak-to-trough received voltages with a rotating linearly polarized source and the feed configured as a circularly (elliptically) polarized receiving antenna |
| Pointing Loss |  |  |
| Angular | See module 302 | See also Figure 6 |
| CONSCAN | 0.03 dB | At S-band, using X-band CONSCAN reference set for 0.1 dB loss |
|  | 0.1 dB | At S-band, using S-band CONSCAN reference set for 0.1 dB loss |
| EXCITER AND TRANSMITTER |  |  |
| RF Power Output | $47.0-54.0, \pm 0.25 \mathrm{dBm}$ | Referenced to 250-W transmitter output terminal (waterload switch). Settability is limited to 0.25 dB by measurement equipment precision |
| Power output varies across the bandwidth and may be as much as 0.5 dB below the set value if the frequency is adjusted to a value other than where the power was set. In general, amplitude drift and variation with frequency will be less at higher output power, but specified performance is guaranteed over the operating range of 50 to 250 Watts. |  |  |
| EIRP (maximum) | $108.8, \pm 0.35 \mathrm{dBm}$ |  |

810-005
103, Rev. D

Table 1. S-Band Transmit Characteristics, DSS-65 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| EXCITER AND <br> TRANSMITTER (Continued) |  |  |
| Frequency Range Covered | 2025 to 2110 MHz | Near-earth |
| Instantaneous 1-dB Bandwidth | >85 MHz |  |
| Coherent with Earth Orbiter S-Band D/L Allocation | 2028.8-2108.7 MHz | 240/221 turnaround ratio |
| Tunability |  | At transmitter output frequency |
| Phase Continuous <br> Tuning Range | 2.0 MHz |  |
| Maximum Tuning Rate | $\pm 12.1 \mathrm{kHz} / \mathrm{s}$ |  |
| Frequency Error | 0.012 Hz | Average over 100 ms with respect to frequency specified by predicts |
| Ramp Rate Error | $0.001 \mathrm{~Hz} / \mathrm{s}$ | Average over 4.5 s with respect to rate calculated from frequency predicts |
| Stability |  | At transmitter output frequency |
| Output Power Stability | $-0.5,+1.0 \mathrm{~dB}$ | From initial calibration value over an 8-h period at a fixed frequency |
| Group Delay Stability | $\leq 3.0$ ns, RMS | Ranging modulation signal path over an 8-h period (see module 203) |
| Frequency Stability |  | Allan deviation |
| 1 s | $9.0 \times 10^{-13}$ |  |
| 10 s | $9.0 \times 10^{-14}$ |  |
| 1000-3600 s | $3.0 \times 10^{-15}$ |  |
| Spurious Output |  | Below carrier |
| $1-10 \mathrm{~Hz}$ | -60 dB |  |
| $10 \mathrm{~Hz}-1.5 \mathrm{MHz}$ | $-70 \mathrm{~dB}$ |  |
| $1.5 \mathrm{MHz}-8 \mathrm{MHz}$ | -80 dB |  |
| 2nd Harmonic | -80 dB |  |
| 3rd, 4th \& 5th Harmonics | -90 dB |  |

Table 2. X-Band Transmit Characteristics, DSS-65

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA |  |  |
| Gain at 7145 MHz (deepspace) | $67.05 \pm 0.2 \mathrm{dBi}$ | At elevation angle of peak gain, referenced to feedhorn aperture for matched polarization; no atmosphere included |
| Transmitter Waveguide Loss | $0.25 \pm 0.05 \mathrm{~dB}$ | 20-kW transmitter output terminal (waterload switch) to feedhorn aperture |
| Half-Power Beamwidth | $0.0777 \pm 0.004 \mathrm{deg}$ | Angular width (2-sided) between halfpower points at specified frequency |
| Polarization | RCP or LCP | One polarization at a time, remotely selected |
| Ellipticity | 1.0 dB (max) | Peak-to-peak axial ratio defined as the ratio of peak-to-trough received voltages with a rotating linearly polarized source and the feed configured as a circularly (elliptically) polarized receiving antenna |
| Pointing Loss |  |  |
| Angular | See module 302 | See also Figure 7 |
| CONSCAN | 0.1 dB | X-band CONSCAN reference set for 0.1 dB loss |
| EXCITER AND TRANSMITTER |  |  |
| RF Power Output | 73.0, +0.0, -1.0 dBm | Referenced to $20-\mathrm{kW}$ transmitter output terminal (waterload switch). Settability is limited to 0.25 dB by measurement equipment precision |
| Power output varies across the bandwidth and may be as much as 1 dB below nominal rating. Performance will also vary from tube to tube. Normal procedure is to run the tubes saturated, but unsaturated operation is also possible. The point at which saturation is achieved depends on drive power and beam voltage. The $20-\mathrm{kW}$ tubes are normally saturated for power levels greater than 63 $\mathrm{dBm}(2 \mathrm{~kW})$. Minimum power out of the $20-\mathrm{kW}$ tubes is about 53 dBm ( 200 W ). Efficiency of the tubes drops off rapidly below nominal rated output. |  |  |
| EIRP | $\begin{gathered} 139.8,+0.2,-1.0 \\ \mathrm{dBm} \end{gathered}$ |  |

810-005
103, Rev. D

Table 2. X-Band Transmit Characteristics, DSS-65 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| EXCITER AND <br> TRANSMITTER (Continued) |  |  |
| Frequency Range Covered | 7145 to 7190 MHz | Deep-space |
| Instantaneous 1-dB Bandwidth (MHz) | 45 MHz |  |
| Coherent with Deep <br> Space S-Band D/L <br> Allocation | 7151.9-7177.3 MHz | 240/749 turnaround ratio |
| Coherent with Deep Space S-Band D/L Allocation | 7151.9-7188.9 MHz | 880/749 turnaround ratio |
| Tunability |  | At transmitter output frequency |
| Phase Continuous Tuning Range | 2.0 MHz |  |
| Maximum Tuning Rate | $\pm 12.1 \mathrm{kHz} / \mathrm{s}$ |  |
| Frequency Error | 0.012 Hz | Average over 100 ms with respect to frequency specified by predicts |
| Ramp Rate Error | $0.001 \mathrm{~Hz} / \mathrm{s}$ | Average over 4.5 s with respect to rate calculated from frequency predicts |
| Output Power Stability |  | From initial calibration value over an 8-h period at a fixed frequency |
| Saturated Drive | $\pm 0.3 \mathrm{~dB}$, peak |  |
| Unsaturated Drive | $\pm 0.5 \mathrm{~dB}$, peak |  |
| Output Power Variation |  | Across any 2 MHz segment |
| Saturated Drive | $\leq 0.3 \mathrm{~dB}, \mathrm{p}-\mathrm{p}$ |  |
| Unsaturated Drive | $\leq 0.5 \mathrm{~dB}, \mathrm{p}-\mathrm{p}$ |  |
| Group Delay Stability | $\leq 1.5 \mathrm{~ns}$, RMS | Ranging modulation signal path over 8 h period (see module 203) |
| Frequency Stability |  | Allan deviation |
| 1 s | $1.0 \times 10^{-12}$ |  |
| 10 s | $1.0 \times 10^{-13}$ |  |
| 1000-3600 s | $3.0 \times 10^{-13}$ |  |

Table 2. X-Band Transmit Characteristics, DSS-65 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :--- |
| Spurious Output |  | Below carrier |
| $1-10 \mathrm{~Hz}$ | -50 dB |  |
| $10 \mathrm{~Hz}-1.5 \mathrm{MHz}$ | -60 dB |  |
| $1.5 \mathrm{MHz}-8 \mathrm{MHz}$ | -45 dB |  |
| 2nd Harmonic | -75 dB |  |
| 3rd, 4th \& 5th Harmonics | -60 dB |  |

Table 3. S- and X-Band Receive Characteristics, DSS-65

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA |  |  |
| Gain (deep-space) |  | At elevation angle of peak gain for matched polarization, no atmosphere included. Favorable (+) and adverse (-) tolerances have a triangular PDF. See Figures 2 and 3 for elevation dependency. |
| S-Band (2295 MHz) | $56.07 \pm 0.25 \mathrm{dBi}$ | Referenced to feedhorn aperture |
| X-Band ( 8420 MHz ) | $68.41 \pm 0.2 \mathrm{dBi}$ | Referenced to feedhorn aperture |
| Half-Power Beamwidth (deg.) |  | Angular width ( 2 -sided) between halfpower points at specified frequency |
| S-Band | $0.242 \pm 0.020 \mathrm{deg}$ |  |
| X-Band | $0.0660 \pm 0.004 \mathrm{deg}$ |  |
| Polarization |  | Remotely selected |
| S-Band | RCP or LCP |  |
| X-Band | RCP or LCP | Same or opposite from transmit polarization |
| Ellipticity (dB) | 0.7 dB | Peak-to-peak voltage axial ratio, RCP and LCP. See definition in Table 1. |
| S-Band | $\leq 1.0 \mathrm{~dB}$ |  |
| X-Band | $\leq 0.8 \mathrm{~dB}$ |  |

Table 3. S- and X-Band Receive Characteristics, DSS-65 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA (Continued) |  |  |
| Pointing Loss |  |  |
| Angular | See module 302 | See also Figures 6 and 7 |
| CONSCAN |  |  |
| S-Band | 0.03 dB, 3-sigma | Loss at S-band when using X-band CONSCAN reference set for 0.1 dB loss at X-band |
|  | 0.1 dB, 3-sigma | Recommended value when using S-band CONSCAN reference |
| X-Band | 0.1 dB, 3-sigma | Recommended value when using X-band CONSCAN reference |
| RECEIVER |  |  |
| Frequency Ranges Covered (MHz)) |  |  |
| S-Band | $2200-2300 \mathrm{MHz}$ | Deep-space |
| X-Band |  | Deep-space |
| Telemetry | $8400-8500 \mathrm{MHz}$ |  |
| VLBI | $8200-8600 \mathrm{MHz}$ | Wide-band HEMT LNA |
| Recommended Maximum Signal Power | $\begin{aligned} & -90.0 \mathrm{dBm} \\ & -70.0 \mathrm{dBm} \end{aligned}$ | At LNA input terminal (high-gain mode) AT LNA input terminal (low-gain mode) |
| Antenna-Microwave Noise Temperature ( $T_{\text {AMW }}$ ) |  | Near zenith, no atmosphere (vacuum) or cosmic noise included. See Table 5 for $25 \%$ CD average clear sky noise contribution. Favorable (-) and adverse (+) tolerances have triangular PDF. See Figures 4 and 5 for elevation dependency. |
| $\begin{aligned} & \text { S-Band } \\ & (2200-2300 \mathrm{MHz}) \end{aligned}$ |  | With respect to feedhorn aperture |
| DSS-65 | $34.00 \pm 2 \mathrm{~K}$ | LNA-1, HEMT, non-diplexed path |
| DSS-65 | $41.76 \pm 2 \mathrm{~K}$ | LNA-1, HEMT, diplexed path |

Table 3. S- and X-Band Receive Characteristics, DSS-65 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :--- |
| RECEIVER (continued) |  |  |
| X-Band Dual-HEMT LNAs |  | With respect to feedhorn aperture |
| High-Gain Mode |  | normal configuration |
| DSS-15, LNA-1, HEMT, RCP | N/A | diplexed, 8200-8600 MHz |
| DSS-15, LNA-2, HEMT, LCP | N/A | diplexed, 8200-8600 MHz |
| DSS-15, LNA-1, HEMT, RCP | N/A | diplexed, w/ radar filter, 8200-8500 MHz |
| DSS-15, LNA-2, HEMT, LCP | N/A | diplexed, w/ radar filter, 8200-8500 MHz |
| Low-Gain Mode |  | high spacecraft received power |
| DSS-15, LNA-1, HEMT, RCP | N/A | diplexed, 8200-8600 MHz |
| DSS-15, LNA-2, HEMT, LCP | N/A | diplexed, 8200-8600 MHz |
| DSS-15, LNA-1, HEMT, RCP | N/A | diplexed, w/ radar filter, 8200-8500 MHz |
| DSS-15, LNA-2, HEMT, LCP | N/A | diplexed, w/ radar filter, 8200-8500 MHz |
| X-Band Maser/HEMT LNAs, <br> High-Gain Mode, RCP/LCP |  |  |
| DSS-45 | N/A | LNA-1, maser, non-diplexed path, |
| DSS-65 | 15.43 $\pm 2 \mathrm{~K}$ | $8400-8500 \mathrm{MHz}$ |
| DSS-45 | N/A | LNA-1, maser, diplexed path, |
| DSS-65 | $24.83 \pm 2 \mathrm{~K}$ | $8400-8500 \mathrm{MHz}$ |
| DSS-45 | N/A | LNA-2, HEMT, non-diplexed path, |
| DSS-65 | $32.16 \pm 2 \mathrm{~K}$ | $8200-8600 \mathrm{MHz}$ (wide-band) |
| DSS-45 | N/A | LNA-2, HEMT, diplexed path, |
| DSS-65 | $41.56 \pm 2 \mathrm{~K}$ | $8400-8500 \mathrm{MHz}$ (narrowed due to diplexer) |

Table 3. S- and X-Band Receive Characteristics, DSS-65 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :--- |
| X-Band Maser/HEMT LNAs, <br> Low-Gain Mode, RCP/LCP |  |  |
| DSS-45 | N/A | LNA-1, maser, non-diplexed path, |
| $8400-8500 \mathrm{MHz}$ |  |  |

Table 4. Gain Reduction Due to Wind Loading, 34-m HEF Antennas

| Wind Speed |  | X-Band Gain Reduction (dB)* |
| :---: | :---: | :---: |
| $\mathbf{( k m} / \mathbf{h r})$ | $\mathbf{( m p h})$ |  |
| 10 | 6 | 0.0 |
| 30 | 19 | 0.01 |
| 50 | 31 | 0.06 |
| 70 | 43 | 0.21 |

* Assumes antenna is maintained on-point using CONSCAN or equivalent closed-loop pointing technique.
S-band gain reduction is less than 0.02 dB for wind speeds up to $70 \mathrm{~km} / \mathrm{hr}$.
Worst case, with most adverse wind orientation.

Table 5. $T_{A M W}, T_{s k y}$, and $T_{o p}$ for $\mathrm{CD}=25 \%$ Average Clear Weather at Zenith, Referenced to Feedhorn Aperture

| Configuration and Stations | Noise Temperatures, K |  |  |
| :---: | :---: | :---: | :---: |
|  | TAMW | $T_{\text {sky }}$ | $T_{\text {op }}$ |
| S-band DSS-65: |  |  |  |
| S-band, DSS-65, LNA-1, HEMT, non-diplexed | 34.00 | 4.80 | 38.80 |
| S-band, DSS-65, LNA-1, HEMT, diplexed | 41.76 | 4.80 | 46.56 |
| DSS-15 X-band High-Gain Mode (normal configuration): |  |  |  |
| X-band, DSS-15, LNA-1, HEMT, RCP, diplexed | N/A | 5.04 | N/A |
| X-band, DSS-15, LNA-2, HEMT, LCP, diplexed | N/A | 5.04 | N/A |
| X-band, DSS-15, LNA-1, HEMT, RCP, diplexed, w/ narrow-band radar filter | N/A | 5.04 | N/A |
| X-band, DSS-15, LNA-2, HEMT, LCP, diplexed, w/ narrow-band radar filter | N/A | 5.04 | N/A |
| DSS-15 X-band Low-Gain Mode (high s/c received power): |  |  |  |
| X-band, DSS-15, LNA-1, HEMT, RCP, diplexed | N/A | 5.04 | N/A |
| X-band, DSS-15, LNA-2, HEMT, LCP, diplexed | N/A | 5.04 | N/A |
| X-band, DSS-15, LNA-1, HEMT, RCP, diplexed, w/ narrow-band radar filter | N/A | 5.04 | N/A |
| X-band, DSS-15, LNA-2, HEMT, LCP, diplexed, w/ narrow-band radar filter | N/A | 5.04 | N/A |
| DSS-45 Maser/HEMT High-Gain Mode, RCP/LCP: |  |  |  |
| X-band, DSS-45, LNA-1, maser, non-diplexed | N/A | 5.39 | N/A |
| X-band, DSS-45, LNA-1, maser, diplexed | N/A | 5.39 | N/A |
| X-band, DSS-45, LNA-2, HEMT, non-diplexed | N/A | 5.39 | N/A |
| X-band, DSS-45, LNA-2, HEMT, diplexed | N/A | 5.39 | N/A |
| DSS-45 Maser/HEMT Low-Gain Mode, RCP/LCP: |  |  |  |
| X-band, DSS-45, LNA-1, maser, non-diplexed | N/A | 5.39 | N/A |
| X-band, DSS-45, LNA-1, maser, diplexed | N/A | 5.39 | N/A |
| X-band, DSS-45, LNA-2, HEMT, non-diplexed | N/A | 5.39 | N/A |
| X-band, DSS-45, LNA-2, HEMT, diplexed | N/A | 5.39 | N/A |

Table 5. $T_{A M W}, T_{s k y}$, and $T_{o p}$ for $\mathrm{CD}=25 \%$ Average Clear Weather at Zenith, Referenced to Feedhorn Aperture (Continued)

| Configuration and Stations | Noise Temperatures, K |  |  |
| :--- | :---: | :---: | :---: |
|  | $\boldsymbol{T}_{\boldsymbol{A M W}}$ | $\boldsymbol{T}_{\boldsymbol{s k y}}$ | $\boldsymbol{T}_{\boldsymbol{o p}}$ |
| DSS-65 Maser/HEMT High-Gain Mode RCP/LCP: |  |  |  |
| X-band, DSS-65, LNA-1, maser, non-diplexed | 15.43 | 5.27 | 20.70 |
| X-band, DSS-65, LNA-1, maser, diplexed | 24.83 | 5.27 | 29.10 |
| X-band, DSS-65, LNA-2, HEMT, non-diplexed | 32.16 | 5.27 | 37.43 |
| X-band, DSS-65, LNA-2, HEMT, diplexed | 41.56 | 5.27 | 46.83 |
| DSS-65 Maser/HEMT Low-Gain Mode, RCP/LCP: |  |  |  |
| X-band, DSS-65, LNA-1, maser, non-diplexed | 20.52 | 5.27 | 25.79 |
| X-band, DSS-65, LNA-1, maser, diplexed | 29.92 | 5.27 | 35.19 |
| X-band, DSS-65, LNA-2, HEMT, non-diplexed | 43.16 | 5.27 | 48.43 |
| X-band, DSS-65, LNA-2, HEMT, diplexed | 52.56 | 5.27 | 57.83 |

Fi



Figure 1b. Functional Block Diagram of the DSS-45 (Decommissioned) and DSS-65 HEF


Figure 2. S-Band Receive Gain, DSS-65 Antenna, at Feedhorn Aperture


Figure 3. X-Band Receive Gain, DSS-65 Antenna, at Feedhorn Aperture


Figure 4. S-band System Noise Temperature, DSS-65, LNA-1, Non-Diplexed, at Feedhorn Aperture


Figure 5. X-Band System Noise Temperature, DSS-65, LNA-1, Non-Diplexed, at Feedhorn Aperture


Figure 6. S-Band Gain Reduction Versus Angle Off Boresight


Figure 7. X-Band Gain Reduction Versus Angle Off Boresight

810-005
103, Rev. D

## Appendix A

## Equations for Modeling

## A. 1 Equations for Gain Versus Elevation Angle

The following equation can be used to generate S - and X -band transmit and receive gain versus elevation curves for DSS-65. The gains are referenced to the feedhorn aperture, so different configurations (e.g., LNA-1 non-diplexed and LNA-2 diplexed) will have the same gain values. Examples of these curves are shown in Figures 2 and 3 for S- and X-bands. See paragraph 2.1.1.1 for frequency effect modeling and Module 105 for atmospheric attenuation at weather conditions corresponding to cumulative distributions from $0 \%$ to $99 \%$. The yearaverage atmosphere attenuations for $\mathrm{CD}=0.00,0.50$, and 0.90 are also given in Table A-2.

$$
\begin{equation*}
G(\theta)=G_{0}-G_{1}(\theta-\gamma)^{2}-\frac{A_{Z E N}}{\sin \theta}, \mathrm{dBi} \tag{A1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\theta & =\text { antenna elevation angle (deg.) } 6 \leq \theta \leq 90 \\
G_{0}, G_{1}, \gamma= & \text { parameters from Table A-1 } \\
A_{\text {ZEN }}= & \text { zenith atmospheric attenuation from Table A-2 or from Tables } \\
& 10 \text { through } 15 \text { in Module } 105, \mathrm{~dB} .
\end{array}
$$

## A. 2 Equations for System Noise Temperature Versus Elevation Angle

The following equations can be used to generate S- and X-band receive system noise temperature versus elevation curves for DSS-65. Examples of these curves are shown in Figures 4 and 5. See Module 105 for atmospheric attenuation at weather conditions corresponding to cumulative distributions from $0 \%$ to $99 \%$. Atmosphere attenuations for $\mathrm{CD}=$ $0.00,0.50$, and 0.90 are also given in Table A-2.

System operating noise temperature:

$$
\begin{equation*}
T_{o p}(\theta)=T_{A M W}+T_{s k y}=\left[T_{1}+T_{2} e^{-a \theta}\right]+\left[T_{a t m}(\theta)+T_{C M B}^{\prime}(\theta)\right] \tag{A2}
\end{equation*}
$$

Sky noise contribution:

$$
\begin{equation*}
T_{s k y}=T_{a t m}(\theta)+T_{C M B}^{\prime}(\theta) \tag{A3}
\end{equation*}
$$

810-005
103, Rev. D

Atmospheric attenuation:

$$
\begin{equation*}
A(\theta)=\frac{A_{z e n}}{\sin (\theta)}, \mathrm{dB} \tag{A4}
\end{equation*}
$$

Atmospheric loss factor:

$$
L(\theta)=10^{\frac{A(\theta)}{10}} \text {, dimensionless, >1.0 }
$$

Atmospheric physical temperature:

$$
\begin{equation*}
T_{p}=255+25 \times C D, \mathrm{~K} \tag{A6}
\end{equation*}
$$

Atmospheric noise contribution:

$$
\begin{equation*}
T_{a t m}(\theta)=T_{p}\left[1-\frac{1}{L(\theta)}\right], \mathrm{K} \tag{A7}
\end{equation*}
$$

Effective cosmic background noise:

$$
\begin{equation*}
T_{C M B}^{\prime}(\theta)=\frac{T_{C M B}}{L(\theta)}, \mathrm{K} \tag{A8}
\end{equation*}
$$

where
$\theta=$ antenna elevation angle (deg.), $6 \leq \theta \leq 90$
$T_{1}, T_{2}, a=$ antenna-microwave noise temperature parameters from Table A-3
$A_{\text {ZEN }}=$ zenith atmospheric attenuation, dB , from Table A-2 or from Tables 10 through 15 (S-, X-bands) in Module 105 as a function of frequency, station, and cumulative distribution ( $C D$ )
$C D \quad=$ cumulative distribution, $0 \leq C D \leq 0.99$, used to select $A_{\text {ZEN }}$ from Table A-2 or from Tables 10 through 15 in Module 105
$T_{C M B}=2.725 \mathrm{~K}$, cosmic microwave background noise temperature

## A. 3 Equation for Gain Reduction Versus Pointing Error

The following equation can be used to generate gain-reduction versus pointing error curves examples of which are depicted in Figures 6 and 7.

$$
\begin{equation*}
\Delta G(\theta)=10 \log \left(e^{\frac{2.773 \theta^{2}}{H P B W^{2}}}\right), \mathrm{dB} \tag{3}
\end{equation*}
$$

where
$\theta \quad=$ pointing error (deg.)
$H P B W=$ half-power beamwidth in degrees (from Tables 1, 2, or 3)

Table A-1. Vacuum Component of Gain Parameters

| Configuration and Stations | Parameters $\dagger$ |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $\boldsymbol{G}_{\mathbf{0}}{ }^{*}$ <br> (Transmit) | $\boldsymbol{G}_{\mathbf{0}}{ }^{*}$ <br> (Receive) | $\boldsymbol{G}_{\mathbf{1}}$ | $\gamma$ |
| S-band, DSS-65 (Figure 2) | 55.40 | 56.07 | 0.000006 | 42.0 |
| X-band, DSS-65 (Figure 3) | 67.05 | 68.41 | 0.00008 | 42.0 |

NOTES:
$\dagger \mathrm{G}_{0}$ values are nominal at the frequency specified in Tables 1, 2, and 3. Other parameters apply to all frequencies within the same band.

* Favorable tolerance $=+0.5 \mathrm{~dB}$, adverse tolerance $=-0.5 \mathrm{~dB}$, with a triangular PDF.

Table A-2. S- and X-Band Year-Average Zenith Atmosphere Attenuation Above Vacuum ( $A_{\text {ZEN }}$ )

| Weather Condition $\dagger$ | $A_{\text {ZEN }}, \mathrm{dB} *$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S-band |  |  | X-band |  |  |
|  | $\begin{aligned} & \text { DSS-15 } \\ & \text { Goldstone } \end{aligned}$ | DSS-45 <br> Canberra | DSS-65 <br> Madrid | DSS-15 <br> Goldstone | DSS-45 <br> Canberra | DSS-65 <br> Madrid |
| Vacuum | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $C D=0.00$ | 0.033 | 0.036 | 0.035 | 0.037 | 0.039 | 0.038 |
| $C D=0.50$ | 0.034 | 0.036 | 0.035 | 0.041 | 0.047 | 0.044 |
| $C D=0.90$ | 0.034 | 0.037 | 0.036 | 0.045 | 0.058 | 0.057 |

NOTES:

* From Tables 10 through 15 in module 105
$\dagger \mathrm{CD}=$ cumulative distribution.

Table A-3. Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture

| Configuration and Stations | Parameters |  |  |
| :---: | :---: | :---: | :---: |
|  | $T_{1}{ }^{*}$ | $T_{2}$ | $a$ |
| S-band, DSS-65: |  |  |  |
| S-band, DSS-65, LNA-1, HEMT, non-diplexed | 31.80 | 7.10 | 0.013 |
| S-band, DSS-65, LNA-1, HEMT, diplexed | 39.40 | 7.60 | 0.013 |
| DSS-15, X-band, High-Gain Mode (normal configuration): |  |  |  |
| X-band, DSS-15, LNA-1, HEMT, RCP, diplexed | N/A | N/A | N/A |
| X-band, DSS-15, LNA-2, HEMT, LCP, diplexed | N/A | N/A | N/A |
| X-band, DSS-15, LNA-1, HEMT, RCP, diplexed, w/ narrow-band radar filter | N/A | N/A | N/A |
| X-band, DSS-15, LNA-2, HEMT, LCP, diplexed, w/ narrow-band radar filter | N/A | N/A | N/A |
| DSS-15, X-band, Low-Gain Mode (high s/c received power): |  |  |  |
| X-band, DSS-15, LNA-1, HEMT, RCP, diplexed | N/A | N/A | N/A |
| X-band, DSS-15, LNA-2, HEMT, LCP, diplexed | N/A | N/A | N/A |
| X-band, DSS-15, LNA-1, HEMT, RCP, diplexed, w/ narrow-band radar filter | N/A | N/A | N/A |
| X-band, DSS-15, LNA-2, HEMT, LCP, diplexed, w/ narrow-band radar filter | N/A | N/A | N/A |
| DSS-45, Maser/HEMT, High-Gain Mode, RCP/LCP: |  |  |  |
| X-band, DSS-45, LNA-1, maser, non-diplexed | N/A | N/A | N/A |
| X-band, DSS-45, LNA-1, maser, diplexed | N/A | N/A | N/A |
| X-band, DSS-45, LNA-2, HEMT, non-diplexed | N/A | N/A | N/A |
| X-band, DSS-45, LNA-2, HEMT, diplexed | N/A | N/A | N/A |
| DSS-45, Maser/HEMT, Low-Gain Mode, RCP/LCP: |  |  |  |
| X-band, DSS-45, LNA-1, maser, non-diplexed | N/A | N/A | N/A |
| X-band, DSS-45, LNA-1, maser, diplexed | N/A | N/A | N/A |
| X-band, DSS-45, LNA-2, HEMT, non-diplexed | N/A | N/A | N/A |
| X-band, DSS-45, LNA-2, HEMT, diplexed | N/A | N/A | N/A |

Table A-3. Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture (Continued)

| Configuration and Stations | Parameters |  |  |
| :--- | :---: | :---: | :---: |
|  | $\boldsymbol{T}_{\mathbf{1}}{ }^{*}$ | $\boldsymbol{T}_{\mathbf{2}}$ | $\boldsymbol{a}$ |
| DSS-65, Maser/HEMT, High-Gain Mode, RCP/LCP: |  |  |  |
| X-band, DSS-65, LNA-1, maser, non-diplexed | 15.43 | 5.00 | 0.10 |
| X-band, DSS-65, LNA-1, maser, diplexed | 24.83 | 6.10 | 0.10 |
| X-band, DSS-65, LNA-2, HEMT, non-diplexed | 32.16 | 5.50 | 0.10 |
| X-band, DSS-65, LNA-2, HEMT, diplexed | 41.56 | 6.60 | 0.10 |
| DSS-65, Maser/HEMT, Low-Gain Mode, RCP/LCP: |  |  |  |
| X-band, DSS-65, LNA-1, maser, non-diplexed | 20.52 | 5.00 | 0.10 |
| X-band, DSS-65, LNA-1, maser, diplexed | 29.92 | 6.10 | 0.10 |
| X-band, DSS-65, LNA-2, HEMT, non-diplexed | 43.16 | 5.50 | 0.10 |
| X-band, DSS-65, LNA-2, HEMT, diplexed | 52.56 | 6.60 | 0.10 |

NOTES:

* Favorable tolerance $=-2 \mathrm{~K}$, adverse tolerance $=+2 \mathrm{~K}$, with a triangular PDF.


## 104

## 34-m BWG Stations Telecommunications Interfaces

Document Owner:

| Signature provided | 07/27/2022 |
| :--- | :--- |
| Stephen D. Slobin | Date |
| Antenna System Engineer |  |

Prepared by:

| Signature provided | 07/27/2022 |
| :--- | :--- |
| Stephen D. Slobin | Date |
| Antenna System Engineer |  |

Approved by:

| Signature provided | 07/27/2022 |
| :--- | :--- |
| Timothy T. Pham | Date |
| Communications Systems Chief |  |
| Engineer |  |

Released by:

| Signature provided | 08/09/2022 |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 104, Rev. $O$
Issue Date: August 09, 2022
JPL D-19379; CL\#22-4056
Jet Propulsion Laboratory
California Institute of Technology

810-005
104, Rev. O

## Review Ackno wledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | 07/27/2022 | Signature Provided | 07/27/2022 |
| :---: | :---: | :---: | :---: |
| Jeff Berner DSN Project Chief Engineer | Date | John Cucchissi <br> Antenna System Engineer | Date |
| Signature not provided |  | Signature not provided |  |
| Michael Settember Uplink System Engineer | Date | David Rochblatt <br> Antenna System Engineer | Date |

Signature Provided 07/27/2022
Harvey Soldan
Date
System Engineering Group
Supervisor

810-005
104, Rev. O
Document Change Log

| Rev | Issue Date | Prepared By | Affected <br> Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| Initial | 11/30/2000 | S. Slobin <br> R. Sniffin | All | All |
| A | 2/5/2004 | S. Slobin <br> R. Sniffin | All | Added performance information for Ka-band capability at DSS-26 and for new station, DSS-55. Incorporated latest measurements for other stations. Incorporated text improvements. |
| B | 8/1/2005 | S. Slobin <br> R. Sniffin | Tables 4, 5, A-1, A-2, A-3, Figures 4, 9, 14, 20, and 25. | Revised performance information for DSS-34 to reflect addition of Kaband and X -band improvements. Required splitting of Table 4 into Tables 4 and 5 , renumbering subsequent tables, revision of Figures 9 and 20, and addition of Figures 4, 14, and 25. |
| C | 9/19/2008 | S. Slobin <br> R. Sniffin | Sections 2.1.3, 3.0; All Tables; Figures 1, 3, 4, 6-27 | Documents installation of an Xband acquisition capability at DSS24, -34, and -54. <br> Revised $T_{A M W}$ formulation for noise temperature to be consistent with Rev. B of module 105. <br> Added proposed 26 GHz capability at DSS-24, <br> -34, and -54. |
| D | 5/15/2009 | S. Slobin <br> R. Sniffin | Tables 6, 11 Figures 13-15, 27-29, 36 Table A-3 | Add K-band gain and noise temperature performance for DSS-$24,-34$, and -54 . |
| E | 9/15/2009 | S. Slobin | Table A-4 | Updated Ka-band G and T parameters for DSS-54 and DSS55. HEMT numbering has also been corrected in that Table. |
| F | 6/1/2010 | S. Slobin | Table 6 <br> Table 11 <br> Figures 27, 28, 29 <br> Table A-3 | New K-band receive Tamw values New K-band receive Tamw and Top values <br> New figures for K-band <br> New K-band Tamw parameters <br> Eliminated the Rev. E designation for the document series |

810-005
104, Rev. O

| Rev | Issue Date | Prepared By | Affected Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| G | 03/05/2013 | S. Slobin | Table 10 <br> Section 2.1.1.3 <br> Table A-5 <br> Figures 16-19 and 30-33; | Revised references to wind effects. Section 2.1.1.3 re-written to address gain and pointing effects due to wind. Values in Table A-5 changed slightly. Figures 16-19 and 30-33 changed slightly. Minor cosmetic changes throughout. |
| H | 04/01/2015 | Stephen Slobin Christine Chang | Rev.G Tables 3,9 <br> Figures 5,7,21 <br> Section 2 <br> \& Table 1 <br> Table 1 <br> Tables 1,4 <br> Table 3 <br> Tables 6 \& 7 <br> Table 7 <br> Table 8 <br> Table 9 <br> Figure 2 <br> Figure 3 <br> Figures 9, 18, 24, 33 <br> Tables A-2 \& A-4 <br> Table A-3 <br> Sections 2, 3 <br> Tables 1, 3 | Deleted. DSS-27 HSB antenna decommissioned. <br> Added DSS-35 capabilities. Clarified no simultaneous X-band RCP and LCP for DSS-34 and -54. Clarified simultaneous Ka-band RCP and LCP operation. Corrected S-band uplink power. Updated Ka-band uplink power. Added DSS-35 transmit values. Clarified location of $X$-band acquisition antennas. Added note about low-gain mode noise temperature increase at X - and Ka bands. <br> Added DSS-35 receive values. Corrected Ka-band polarizations. Revised X-band HEMT bandwidths. Updated wind effect gain reduction. Added DSS-35 Tamw and Top values. <br> Removed note on transmit table. Added DSS-35 to caption. Added DSS-35 X- and Ka-band gain and noise temperatures. Added DSS-35 gain and noise temperature parameters. Added notes about low-gain mode noise temperature increase at X - and Kabands. <br> Added note about low-gain mode noise temperature increase at K band. <br> Added details of 80 kW X-band transmitter at DSS-26. |

810-005
104, Rev. O

| Rev | Issue Date | Prepared By | Affected Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| I | 02/10/2017 | Stephen Slobin Christine Chang | Sections 2, 3 <br> Table 1 <br> Tables 1, 2, 3, $5,7,9$ <br> Figure 3 <br> Figure 5 <br> Figure 6 <br> Figures 7, 24 <br> Figures 12, 22 <br> Figures 29, 39 <br> Figures 1-44 <br> Tables A-1, A-2, A-4 <br> Table A-1 | Implementation dates for future antennas DSS-33, -53 , -56 , and 80 kW X-band transmitter additions at future antennas DSS-33, -53. <br> DSS-36 added. <br> DSS-55 removed, new high-power <br> X-band feed shown. <br> New for DSS-36. <br> New for DSS-55. <br> Re-drawn for DSS-34, replacing DSS-24. <br> New for DSS-36 X- and Ka-band gain. <br> New for DSS-36 X- and Ka-band noise temperatures. <br> Renumbered to accommodate four new DSS-36 figures and two additional block diagrams. DSS-36 added. <br> S-band $\mathrm{G}_{0}$ uplink gains for DSS-24, -34, -54 re-calculated. |
| J | 01/12/2018 | Stephen Slobin Christine Chang | Tables 1, 2, A-1 <br> Table 2 <br> Table 3 <br> Table 4 <br> Table 5 <br> All tables, including Appendix Tables A1, A2, A4 <br> Figure 2 <br> Figures 3, 4, 5, 6 <br> Figure 4 | DSS-36 S-band uplink clarified -near-earth only. <br> S-band gains and EIRP re-calculated. <br> X-band gains and EIRP re-calculated. <br> Ka-band gains and EIRP re-calculated. <br> New tolerances for K-band Tamw in S/K-mode. <br> Uplink and downlink bands center frequencies stated accurately. <br> Uplink and downlink gain adjustments noted for near-earth bands. <br> Ka-band hyperboloid redrawn. <br> Ka-band downconverter outputs clarified. <br> X-band downconverter outputs clarified. |

810-005
104, Rev. O

| Rev | Issue Date | Prepared By | $\begin{array}{c}\text { Affected } \\ \text { Paragraphs }\end{array}$ | Change Summary |
| :---: | :--- | :--- | :--- | :--- |
| K | 07/17/2019 | $\begin{array}{l}\text { Stephen Slobin } \\ \text { Christine Chang }\end{array}$ | $\begin{array}{l}\text { Section 3 } \\ \text { Table 1 } \\ \text { Tables 2, 5, 9 } \\ \text { Tables 4, 7,9 } \\ \text { Figures 1-12 } \\ \text { Appendix A-1 } \\ \text { Appendix A-2 } \\ \text { Appendix A-4 } \\ \text { Figures 14, 31 } \\ \text { Figures 24, 41 }\end{array}$ | $\begin{array}{l}\text { Updated operational dates } \\ \text { New } \\ \text { DSS-26 added for S-band } \\ \text { New DSS-25 G, T }\end{array}$ |
| Re-drawn and re-numbered |  |  |  |  |
| DSS-26 added for S-band |  |  |  |  |
| New DSS-25 X-band G, T |  |  |  |  |
| New DSS-25 Ka-band G, T |  |  |  |  |
| New DSSS-25 X-band G, T |  |  |  |  |
| New DSS-25 Ka-band G, T |  |  |  |  |$]$

810-005
104, Rev. O

| Rev | Issue Date | Prepared By | Affected Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 08/09/2022 | Stephen Slobin Christine Chang | Section 3 <br> Table 2 <br> Table 5 <br> Tables 6-11 <br> Table 11 <br> Table A-2 <br> Table A-3 <br> Table A-4 <br> Figures 2, 4, 6, 8, 10, 12 | Updated <br> New, for M6 and M7 reflectors <br> New, for K-band transmit <br> Re-numbered from previous revision <br> Updated for DSS-53 (X\&Ka-bands) and DSS-26 (K-band) <br> Added DSS-53 X-band G, T <br> Added DSS-26 K-band G, T <br> Added NOTES regarding K-band uplink <br> Added DSS-53 Ka-band G, T <br> K-band uplink equipment added |

## Table of Contents

Section 1 Introduction ..... 13
$1.1 \quad$ Purpose ..... 13
$1.2 \quad$ Scope ..... 13
Section 2 General Information ..... 14
2.1 Telecommunications Parameters ..... 16
2.1.1 Antenna Gain Variation ..... 16
2.1.1.1 Frequency Effects ..... 16
2.1.1.2 Elevation Angle Effects ..... 16
2.1.1.3 Wind Effects ..... 17
2.1.2 System Noise Temperature Variation ..... 17
2.1.3 Antenna Pointing ..... 18
2.1.3.1 Pointing Accuracy ..... 18
2.1.3.2 Pointing Loss ..... 19
2.1.3.3 CONSCAN-aided Pointing ..... 19
2.1.3.4 Monopulse-aided Pointing ..... 19
2.1.3.5 Ka-Band Aberration Correction ..... 19
2.1.3.6 X-Band Acquisition ..... 19
Section 3 Proposed Capabilities ..... 21
Appendix A Equations for Modeling ..... A-1
A. 1 Equations for Gain Versus Elevation Angle ..... A-1
A. 2 Equations for System Temperature Versus Elevation Angle ..... A-1
A. 3 Equation for Gain Reduction Versus Pointing Error ..... A-3
A. 4 Equation for Transmit Aberration Gain Reduction ..... A-3

## List of Tables

Table 1. Summary of Available Configurations for Each Antenna ..... 22
Table 2. M6 and M7 Reflector Locations and Implementation Dates ..... 26
Table 3. S-Band Trans mit Characteristics, DSS-24, -26, -34, -36, -54, and -56 ..... 28
Table 4. $\quad X$ Band Transmit Characteristics, DSS-23, -24, -25, -26, -33, -34, -35, -36, $-53,-54,-55$, and -56. ..... 31
Table 5. K-band Transmit Characteristics, DSS-24, -26, -34, -36, -54, and -56 ..... 34
Table 6. Ka-Band Transmit Characteristics, DSS-25 ..... 36
Table 7. S- and K-Band Receive Characteristics, DSS-24, -26, -34, -36, -54, and - 56 ..... 38
Table 8. X-Band Receive Characteristics, DSS-24 ..... 40
Table 9. $\quad \mathrm{X}$ - and Ka-Band Receive Characteristics, DSS-23, -25, -26, -33, -34, -35, $-36,-53,-54,-55$, and -56 ..... 42
Table 10. Gain Reduction Due to Wind Effects on Structural Deformation and Pointing Error ..... 47
Table 11. $T_{A M W}, T_{s k y}$, and $T_{o p}$ for $\mathrm{CD}=25 \%$ Average Clear Weather at Zenith, Referenced to Feedhorn Aperture ..... 48
Table A-1. S-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture ..... A-4
Table A-2. X-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture ..... A-6
Table A-3. K-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture ..... A-9
Table A-4. Ka-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture ..... A-13
Table A-5. S-, X-, K-, and Ka-Band Zenith Atmospheric Attenuation ( $A_{z e n}$ ) ..... A-16

## List of Figures

Figure 1. Functional B lock Diagram of the DSS-23 Antenna. ..... 52
Figure 2. Functional Block Diagram of the DSS-24 Antenna ..... 53
Figure 3. Functional Block Diagram of the DSS- 25 Antenna ..... 54
Figure 4. Functional Block Diagram of the DSS-26 Antenna ..... 55
Figure 5. Functional Block Diagram of the DSS-33 Antenna ..... 56
Figure 6. Functional Block Diagram of the DSS-34 Antenna ..... 57
Figure 7. Functional Block Diagram of the DSS-35 Antenna ..... 58
Figure 8. Functional B lock Diagram of the DSS-36 Antenna ..... 59
Figure 9. Functional B lock Diagram of the DSS-53 Antenna ..... 60
Figure 10. Functional Block Diagram of the DSS-54 Antenna ..... 61
Figure 11. Functional Block Diagram of the DSS-55 antenna ..... 62
Figure 12. Functional Block Diagram of the DSS-56 Antenna ..... 63
Figure 13. DSS-34 (Canberra) S-Band Receive Gain versus Elevation Angle, S/X- Mode (S/X Dichroic In Place), 2.3 GHz ..... 64
Figure 14. DSS-25 (Goldstone) X-Band Receive Gain versus Elevation Angle, X/Ka- Mode, 8.4 GHz ..... 64
Figure 15. DSS-26 (Goldstone) X-Band Receive Gain versus Elevation Angle, X/Ka- Mode, 8.4 GHz ..... 65
Figure 16. DSS-34 (Canberra) X-Band Receive Gain versus Elevation Angle, X/Ka- Mode (S/X Dichroic Retracted), 8.4 GHz ..... 65
Figure 17. DSS-35 (Canberra) X-Band Receive Gain versus Elevation Angle, X/Ka- Mode, 8.4 GHz ..... 66
Figure 18. DSS-36 (Canberra) X-band Receive Gain versus Elevation Angle, X/Ka- Mode, 8.4 GHz ..... 66
Figure 19. DSS-54 (Madrid) X-Band Receive Gain versus Elevation Angle, X/Ka-Mode (S/X Dichroic Retracted), 8.4 GHz ..... 67
Figure 20. DSS-55 (Madrid) X-Band Receive Gain versus Elevation Angle, X/Ka Mode, 8.4 GHz ..... 67
Figure 21. DSS-24 (Goldstone) K-Band Receive Gain versus Elevation Angle, K-Only Mode (S/K Dichroic Retracted), 26 GHz ..... 68
Figure 22. DSS-34 (Canberra) K-Band Receive Gain versus Elevation Angle, K-Only Mode (S/K Dichroic Retracted), 26 GHz ..... 68
Figure 23. DSS-54 (Madrid) K-Band Receive Gain versus Elevation Angle, K-Only Mode (S/K Dichroic Retracted), 26 GHz ..... 69
Figure 24. DSS-25 (Goldstone) Ka-Band Receive Gain versus Elevation Angle, X/Ka- Mode, 32 GHz ..... 69
810-005104, Rev. O
Figure 25. DSS-26 (Goldstone) Ka-Band Receive Gain versus Elevation Angle, X/Ka- Mode, 32 GHz ..... 70
Figure 26. DSS-34 (Canberra) Ka-Band Receive Gain versus Elevation Angle, X/Ka- Mode, 32 GHz ..... 70
Figure 27. DSS-35 (Canberra) Ka-Band Receive Gain versus Elevation Angle, X/Ka- Mode, 32 GHz ..... 71
Figure 28. DSS-36 (Canberra) Ka-Band Receive Gain versus Elevation Angle,X/Ka- Mode, 32 GHz ..... 71
Figure 29. DSS-55 (Madrid) Ka-Band Receive Gain versus Elevation Angle,X/Ka- Mode, 32 GHz ..... 72
Figure 30. DSS-34 (Canberra) S-Band System Temperature versus Elevation Angle, S/X-Mode (S/X Dichroic In Place), Non-Diplexed Path, 2.3 GHz ..... 72
Figure 31. DSS-25 (Goldstone) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 8.4 GHz ..... 73
Figure 32. DSS-26 (Goldstone) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 8.4 GHz ..... 73
Figure 33. DSS-34 (Canberra) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode (S/X Dic hroic Retracted), 8.4 GHz ..... 74
Figure 34. DSS-35 (Canberra) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 8.4 GHz ..... 74
Figure 35. DSS-36 (Canberra) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 8.4 GHz ..... 75
Figure 36. DSS-54 (Madrid) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode (S/X Dichroic Retracted), 8.4 GHz ..... 75
Figure 37. DSS-55 (Madrid) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 8.4 GHz ..... 76
Figure 38. DSS-24 (Goldstone) K-Band RCP System Temperature versus Elevation Angle, K-only Mode (S/K Dichroic Retracted), 26 GHz ..... 76
Figure 39. DSS-34 (Canberra) K-Band RCP System Temperature versus Elevation Angle, K-only Mode (S/K Dichroic Retracted), 26 GHz ..... 77
Figure 40. DSS-54 (Madrid) K-Band RCP System Temperature versus Elevation Angle, K-only Mode (S/K Dichroic Retracted), 26 GHz ..... 77
Figure 41. DSS-25 (Goldstone) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz ..... 78
Figure 42. DSS-26 (Goldstone) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz ..... 78
Figure 43. DSS-34 (Canberra) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz ..... 79
Figure 44. DSS-35 (Canberra) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz ..... 79
Figure 45. DSS-36 (Canberra) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz . ..... 80
Figure 46. DSS-55 (Madrid) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz ..... 80
Figure 47. S-Band Gain Reduction versus Angle off Boresight ..... 81
Figure 48. X-Band Gain Reduction versus Angle off Boresight ..... 81
Figure 49. K- and Ka-Band Gain Reduction versus Angle off Boresight ..... 82
Figure 50. Ka-Band Transmit Gain Reduction Due to Aberration Correction ..... 82

810-005
104, Rev. O

## Section 1 <br> Introduction

### 1.1 Purpose

This module provides the performance parameters for the Deep Space Network (DSN) 34m Beam Waveguide (BWG) antennas that are necessary to perform the nominal design of a telecommunications link. It also summarizes the capabilities of these antennas for mission planning purposes and for comparison with other ground station antennas.
Because of the large number of BWG antennas, the four frequency bands, and the large number of operating modes and configurations, the reader will find it helpful to refer to Tables A-1 through A-4, in addition to Table 1, to keep the capabilities and differences among the antennas clear. Reference to the antenna block diagrams (Figures 1 through 12) will clearly show the microwave equipment configurations

### 1.2 Scope

The scope of this module is limited to providing those parameters that characterize the RF performance of the 34-meter BWG antennas, including the effects of weather for a limited number of weather conditions. A more complete discussion of weather effects is given in module 105, Atmospheric and Environmental Effects. This module does not discuss mechanical restrictions on antenna performance covered in module 302, Antenna Positioning.

## Section 2 General Information

The 34-meter diameter BWG (beam waveguide) antennas are the latest generation of antennas built for use in the DSN. These antennas differ from more conventional antennas (for example, the 34 -meter HEF antennas, described in module 103) in the fact that a series of mirrors, approximately 2.4 meters in diameter, direct microwave energy from the region above the main reflector to a location in a pedestal room at the base of the antenna. The pedestal room is located below the azimuth track of the antenna and is below ground level.

In this configuration, several "positions" of microwave equipment contained in the pedestal room can be accessed by rotation of an ellipsoidal mirror located in the center of the pedestal room floor beneath the azimuth axis of the antenna. This enables great versatility of design and allows tracking with equipment at one position while equipment installation or maintenance is carried out at the other positions. Since cryogenic low-noise amplifiers (LNAs) do not tip as they do when located above the elevation axis, certain state-of-the-art low noise amplifier and feed designs can be implemented.
The capabilities of each antenna differ depending on the microwave transmitting and receiving equipment installed. A summary of these capabilities is provided in Table 1. Functional block diagrams for each antenna are provided in Figures 1 through 12. K-band equipment is shown in the block diagrams, even though this equipment is not presently installed at some antennas. See the implementation dates in Section 3 and Tables 1 and 2. Future Ka-uplink equipment will be added to the block diagrams for DSS-35 (Figure 7) and DSS-55 (Figure 11) at a future date. Block diagrams for future antennas DSS-23 and DSS-33 are also shown. In general, each antenna has at least one LNA for each supported frequency band. However, stations that can support simultaneous right circular polarization (RCP) and left circular polarization (LCP) in the same band have an LNA for each. In addition, the stations that support Ka-band contain an additional LNA to enable monopulse tracking when using RCP polarization. Each antenna also has at least one transmitter. S-band uplink can be used in conjunction K-band uplink, and X-band uplink can be used in conjunction with K-band uplink, when the appropriate K-band equipment is installed at the -4 and -6 antennas in the future.

There are six stations, DSS-24, $-26,-34,-36,-54$, and -56 that are capable of receiving selectable (one polarization at a time) RCP or LCP at S-band. DSS-24, -34, and -54 are also capable of simultaneously (with S-band) or independently receiving selectable (one polarization at a time) RCP or LCP at X-band due to the fact that there is only a single LNA at DSS-24, and a single Xband downconverter at DSS-34, and -54 . The remaining BWG stations, DSS-25, -26, -35, -36, -55 , and -56 can receive both X-band polarizations simultaneously. K-band ( 26 GHz ) receive capability with selectable (one polarization at a time) RCP or LCP presently exists at DSS-24, $-26,-34,-54$. and -56 . Ka-band capability, including monopulse-assisted tracking of RCP signals, exists at DSS-25, $-26,-34,-35,-36,-53,-54,-55$, and -56 . These stations can also receive Ka-band RCP and LCP simultaneously for radio science investigations, without monopulse-assisted tracking. Future antennas DSS-23 and DSS-33 are not discussed here at this time. Their proposed capabilities are shown in Table 1.

The K-band 26 GHz receive capability can be used independently, or in combination with the station's S-band capability (with an M6A S/K dichroic) or X-band capability (with an M7A X/K
dichroic), to provide a high data rate capability for spacecraft operating at near-Earth distances (less than $2 \times 10^{6} \mathrm{~km}$ ). The implementation dates for the $\mathrm{X} / \mathrm{K}$ dichroics are coincident with the Kband uplink dates given in Section 3 and Tables 1 and 2. A low-gain mode is included to accommodate high signal levels that are expected during the early post-launch phase of 26 GHz missions. Prior to receiving the M7A X/K dichroic, those antennas with X-band or Ka-band capabilities will be unable to receive X-band or Ka-band because the retractable mirror over the X-band or X/Ka-band feeds must be retracted for K-band reception. S-band performance in the $\mathrm{S} / \mathrm{X}$ and $\mathrm{S} / \mathrm{K}$ modes is identical. The S-band transmitters at DSS-26, -36, and -56 are 250 W , and due to the low power are usable only for near-earth applications. The S-band transmitters at DSS-24, $-34,-54$ are 20 kW , however DSS-54 is not available for use in the deep space frequency band ( $2110-2120 \mathrm{MHz}$ ) due to conflict with IMT-2000 users, per agreement between NASA and Secretaria de Estado de Telecomunicaciones y para la Sociedad de la Informacion (SETSI), January, 2001. These S-band transmitters, and the X-band transmitter at DSS-24, are coupled into the microwave path using a frequency-selective diplexer. Because the diplexer increases the operating system noise temperature, a non-diplexed path for receive-only operation is provided at all of these antennas. The X-band diplexing function at DSS-25, $-26,-34,-35,-36$, $-53,-54,-55$, and -56 is accomplished using the frequency-selective characteristics of the feed in conjunction with an external polarizing network. This technique does not affect the operating system temperature, so these antennas are considered to be always-diplexed and no lower-noise non-diplexed configuration is available. All BWG antennas have a 20 kW X-band transmitter; and additionally, DSS-26 has an 80 kW X-band transmitter.
When an S-band uplink is required, the received $S$-band polarization must be the same as is being transmitted. X -band uplinks can be of either polarization, independent of the polarization of any signals being received. X-band uplinks are not available in conjunction with S-band downlinks due to bandwidth restrictions of the $\mathrm{S} / \mathrm{X}$ dichroic plate. This dichroic plate must be retracted for X-band uplink operation, and simultaneous S-band downlink is no longer available; thus the X -band uplink gain for the $\mathrm{S} / \mathrm{X}$ mode is shown as "N/A" in Table A-2.
An S/X or $S / K$ dichroic must be extended for operation at $S$-band (uplink and/or downlink). DSS-24, -26, -34, -36, -54, and -56 have a retractable S/X dichroic plate to enable operation in an S/X downlink mode, or X-only if the dichroic plate is retracted. Additionally, DSS-24, -26, -34, -54 , and -56 also have a retractable $\mathrm{S} / \mathrm{K}(\mathrm{S} / 26 \mathrm{GHz})$ dichroic plate for operation in an $\mathrm{S} / \mathrm{K}$ mode, or K-only if both dichroic plates are retracted. DSS-26 has a second-generation S/K dichroic [M6A(2)]) which allows simultaneous S-up/down and K-up/down operation,

The S-band transmitters at DSS-24, -34, and -54, when operated near their maximum power rating, produce sufficient $13^{\text {th }}$ harmonic power to adversely affect telemetry reception in the 26 GHz band. Mission designers selecting an uplink frequency between 2025 and 2076.9 MHz and requiring a radiated power in excess of 5.0 kW should select a downlink frequency such that the $13^{\text {th }}$ harmonic of the uplink frequency does not fall within the bandwidth required for their telemetry.
When simultaneous X-band uplink and downlink of the same polarization are required at the only station with a waveguide diplexer (DSS-24), reception must be through the diplexer, and the noise will be increased over that of the non-diplexed path. DSS-25, -26, -34, -35, -36, -54, -55, and -56 have two X-band LNAs, one for each polarization. As these stations do not have waveguide diplexers, the system noise temperature in each polarization is approximately the
same. Although there are two X-band LNAs at DSS-34 and DSS-54, there is only a singlechannel X-band downconverter, thus simultaneous RCP and LCP reception is not possible.

Additionally, all BWG antennas offer a low-gain mode ( -20 dB ) for use at high received signal power levels for spacecraft near the Earth. The X- and Ka-band low-gain equipment is not shown in the antenna block diagrams in this module (only K-band is, for DSS-24, -34, and -54). Reference to the HEF antenna block diagrams of 810-005 module 103 will show the X-band low-gain equipment for those antennas.

### 2.1 Telecommunications Parameters

The significant parameters of the 34 -meter BWG antennas that influence the design of the telecommunications link are listed in Tables 3-9, and 11. Variations of these parameters that are inherent in the design of the antennas are discussed below. Other factors that degrade link performance are discussed in modules 105 (Atmospheric and Environmental Effects) and 106 (Solar Corona and Solar Wind Effects).
The values in Tables 3-9 do not include the effects of the atmosphere. Table 11 gives system noise temperature, $T_{o p}$, including $25 \% \mathrm{CD}$ (cumulative distribution) average-clear weather. The attenuation and noise-temperature effects of weather for three specific weather conditions are included in the figures at the end of the module so that they may be used for a quick estimate of telecommunications link performance for those specific conditions, without reference to module 105. For detailed design control table use, the more comprehensive and detailed S-, X-, K-, and Ka-band weather effects models (for weather conditions up to $99 \%$ cumulative distribution) in module 105 should be used.

### 2.1.1 Antenna Gain Variation

Because the gain is referenced to the feedhorn aperture, such items as diplexers and waveguide runs to alternate LNAs that are "downstream" (below the feedhorn aperture, toward the LNA), do not affect the gain at the reference plane. Dichroic plates that are "upstream" of the feedhorn aperture cause a reduction in gain.

### 2.1.1.1 Frequency Effects

Antenna gains are specified at the indicated frequency $\left(f_{0}\right)$. The gain varies as frequencysquared. For operation at higher or lower frequencies in the same band, the gain ( dBi ) must be increased or reduced, respectively, by $20 \log \left(f / f_{0}\right)$.

### 2.1.1.2 Elevation Angle Effects

Structural deformation causes a reduction in gain when the antenna is operated at an elevation angle other than where the reflector panels were aligned, at approximately 45 degrees. The effective gain of the antenna is also reduced by atmospheric attenuation, which is a function of elevation. Figures 13 through 29 show representative curves of gain versus elevation angle for selected stations and configurations. These figures typically show the highest gain configuration for each stated antenna and frequency band (e.g, X-band for DSS-34 in the X/Ka-mode with the S/X dichroic retracted, rather than in the S/X-mode with the $\mathrm{S} / \mathrm{X}$ dichroic extended). The gain curves show the hypothetical vacuum (no atmosphere) condition, and the gain with $0 \%, 50 \%$,
and $90 \%$ weather conditions, designated as CD (cumulative distribution) $=0.00,0.50$, and 0.90 . $0 \%$ means minimum weather effect (exceeded $100 \%$ of the time); $90 \%$ means that effect which is exceeded only $10 \%$ of the time. Qualitatively, $0 \%$ corresponds to the driest, lowest-loss condition of the atmosphere; $25 \%$ corresponds to average clear; $50 \%$ corresponds to humid or very light clouds; and $90 \%$ corresponds to very cloudy, but with no rain. Appendix A provides the complete set of parameters from which these curves were created. The atmospheric parameters used to generate these curves are from module 105 , Rev. D, as shown in Table A-5. These parameters, in combination with the weather effects parameters from module 105 , can be used to calculate the gain versus elevation angle curves for any antenna, in any configuration, for weather conditions up to $99 \%$ CD.

### 2.1.1.3 Wind Effects

A study of tracking data from the Kepler spacecraft at Ka-band during windy conditions shows minimal effects on gain degradation (due to structural deformation of the antenna) and pointing loss (due to gusty winds of varying direction). A realistic upper limit of these effects at Ka-band can be considered to be 0.8 dB for wind speeds up to $50 \mathrm{~km} / \mathrm{hr}$. The effects at S -, X-, and Kbands, all lower frequencies, are expected to be even less than at Ka-band. Cumulative probability distributions of wind velocity at Goldstone are given in module 105. At Goldstone, the windiest of the DSN antenna locations, $50 \mathrm{~km} / \mathrm{hr}$ wind is exceeded about $2 \%$ of the year and $5 \%$ of the worst month (April). An estimate of these effects at S-, X-, K-, and Ka-bands at wind speeds of 10,30 , and $50 \mathrm{~km} / \mathrm{hr}$ is shown in Table 10.

### 2.1.2 System Noise Temperature Variation

The operating system temperature $\left(T_{o p}\right)$ varies as a function of elevation angle due to changes in the path length through the atmosphere and ground noise received by the sidelobe pattern of the antenna. Figures 30 through 46 show the combined effects of these factors for the same set of stations and configurations selected above. These figures typically show the lowest noise configuration for each stated antenna and frequency band (e.g., X-band for DSS-34 in the X/Kamode with the $S / X$ dichroic retracted, rather than in the $S / X$-mode the $S / X$ dichroic extended). The figures show the antenna and microwave contribution alone, and also the system operating noise temperature ( $T_{o p}$ ) with $0 \%, 50 \%$, and $90 \%$ weather conditions. The equations and parameters for these curves are provided in Appendix A. 2 and can be used, in combination with the weather effects parameters from module 105 , to calculate the system temperature versus elevation curve for any antenna, in any configuration, for weather conditions up to $99 \%$ CD. The values of zenith atmospheric attenuation $\left(A_{z e n}\right)$ used in generating these figures are given in Table A-5, using module 105, Rev. D values.

The system operating noise temperature, $T_{o p}$, consists of two parts, an antenna-microwave component, $T_{A M W}$, for the contribution of the antenna and microwave hardware only, and a sky component, $T_{\text {sky }}$, that consists of the atmosphere noise, plus the cosmic microwave background (CMB) noise attenuated by the atmosphere loss. $T_{A M W}$ is shown in Figures 30 through 46 as "ANT-UWV". The system operating noise temperature is given by

$$
T_{o p}(\theta)=T_{A M W}+T_{\text {sky }}=\left[T_{1}+T_{2} e^{-a \theta}\right]+\left[T_{a t m}(\theta)+T_{C M B}^{\prime}(\theta)\right]
$$

where
$T_{1}, T_{2}$ and $a$ are coefficients and exponent given in Appendix A, Table A-1 through Table A-4
$T_{a t m}$ is the atmosphere contribution term, calculated from Module 105
$T_{C M B}^{\prime}$ is the attenuated cosmic contribution, calculated from Module 105
More details of this calculation are given in Appendix A of this module.
The $T_{A M W}$ noise temperature values in Tables 7-9 are stated with reference to the feedhorn aperture and arise from antenna and microwave hardware contribution only. No atmosphere or cosmic background contribution is included. Table 11 presents values of $T_{A M W}, T_{\text {sky }}$, and $T_{o p}$ for all antenna frequencies and configurations at zenith, with average-clear $\mathrm{CD}=0.25$ weather. The values of $T_{\text {sky }}$ in Table 11 are calculated by methods presented in Module 105, using yearaverage attenuation values of that module. The values of $A_{z e n}$ used in calculating $T_{s k y}$ for average clear weather are given in Table A-5 (Module 105, Rev. E).

System noise temperature increases in the low-gain mode can be approximated for telecom modeling purposes as +20 K at X-band, +180 K at K -band, and +70 K at Ka-band.

### 2.1.3 Antenna Pointing

### 2.1.3.1 Pointing Accuracy

The pointing accuracy of an antenna, often referred to as its blind-pointing performance, is the difference between the calculated (or commanded) beam direction and the actual beam direction. The error is typically random (after the systematic contributions have been removed by a "blind pointing model'") and can be divided into two major categories. The first of these includes the computational errors and uncertainties associated with the radio sources used to calibrate the antenna, and the location of the spacecraft provided by its navigation team. The second has many components associated with converting a calculated beam direction to the physical positioning of a large mechanical structure. Included are such things as atmospheric wind and refraction effects, servo and encoder errors, thermally and gravitationally induced structural deformation, azimuth track leveling (for an azimuth-elevation antenna), and both seismic and diurnal ground tilt.
Blind pointing is modeled by assuming equal pointing performance in the elevation (EL) and cross-elevation (XEL) directions. That is, the random pointing errors in each direction have uncorrelated Gaussian distributions with the same standard deviation. This results in a Rayleigh distribution for pointing error where the mean radial error is 1.2533 times the standard deviation of the EL and XEL components. For a Rayleigh distribution, the probability that the pointing error will be less than or equal to the mean radial error is $54.4 \%$. Conversely, the probability that the mean radial error will be exceeded is $45.6 \%$.

810-005 module 302 (Antenna Positioning) presents blind pointing performance (mean radial error) for the DSN antennas.

### 2.1.3.2 Pointing Loss

Figures 47 through 49 show the effects of pointing error on effective transmit and receive gain of the antenna. These curves are Gaussian approximations based on measured and predicted antenna beamwidths. The equations used to derive the curves are provided in Appendix A.3.

### 2.1.3.3 CONSCAN-aided Pointing

CONSCAN (conical scan) pointing is accomplished during tracking by moving the antenna beam in a circular motion around the predicted position of a spacecraft, with a radius such that the pointing loss is typically a constant 0.1 dB , as given in Tables 3-9. When the predicted spacecraft position deviates from the actual spacecraft position (for example, due to errors in the blind-pointing model), a "sinusoidal" error signal is generated, and a small correction to antenna pointing is applied so as to maintain the constant 0.1 dB pointing loss. A further description of CONSCAN pointing is given in 810-005 module 302.

### 2.1.3.4 Monopulse-aided Pointing

Ka-band monopulse-aided pointing uses a monopulse tracking coupler within the cryogenic feed package to establish a feed pattern with a theoretical null on-axis. The magnitude of the pointing error is proportional to the magnitude of the signal received by this pattern and the azimuthal error is proportional to the phase difference between the sum and difference outputs of the coupler. Thus, by measuring the complex ratio of the sum and difference signals, pointing corrections can be generated to instruct the antenna servo system to drive the pointing error to zero. The system achieves its specified performance when the ratio of the signal in the sum channel (that is, the signal from which tracking and telemetry information will be derived) to the noise level in the difference channel is greater than $26 \mathrm{~dB}-\mathrm{Hz}$.

### 2.1.3.5 Ka-Band Aberration Correction

The extremely narrow beamwidth at Ka band requires that a Ka-band uplink signal be aimed at where the spacecraft will be when the signal arrives, while simultaneously receiving a signal that left the spacecraft one one-way light-time previously. This is accomplished by mounting the Kaband transmit feed at DSS- 25 on a movable X-Y platform that can displace the transmitted beam as much as 30 millidegrees from the received beam.
DSS-25 is the only antenna with a Ka-band transmit capability. In the future, DSS-35 and DSS-
55 will also receive a Ka-band uplink. The fact that the transmit feed is displaced from its optimum focus causes the gain reduction depicted in Figure 50. The equation used to generate this curve is provided in Appendix A.4.

### 2.1.3.6 X-Band Acquisition

A 1.2-m X-band acquisition antenna and receiver has been installed at the quadripod apex (above the subreflector) of the DSS-24, DSS-34, and DSS-54 antennas. The acquisition receiver employs the monopulse technique to develop pointing commands for the antenna during the launch phase when launch time and trajectory uncertainties make predict-driven pointing impractical. During acquisition, the acquisition system is responsible for antenna pointing, however uplink and downlink services are provided by the main antenna beam. The
characteristics of the acquisition antennas are given in Table 7 (for DSS-24) and in Table 8 (for DSS-34 and DSS-54).

## Section 3 Proposed Capabilities

The DSN is in the process of increasing the number of 34 m BWG antennas. Future BWG antennas will be:

DSS-56 (Madrid), 12/2020, (S-up/down, X-up/down, K-down, Ka-down) (completed)
DSS-53 (Madrid), 12/2021, (X-up/down, Ka-down) (completed)
DSS-23 (Goldstone), 12/2025, (X-up/down, Ka-down)
DSS-33 (Canberra), 9/2028, (X-up/down, Ka-down)

K-band ( 26 GHz ) downlink will be installed in the following antennas:
DSS-26 (Goldstone), 2/2022 (completed)
DSS-36 (Canberra), 12/2022

250 W K-band uplink will be installed in the following antennas:
DSS-26 (Goldstone), 2/2022 (completed)
DSS-36 (Canberra), 12/2022
DSS-24 (Goldstone), 10/2023
DSS-56 (Madrid), 4/2024
DSS-34 (Canberra), 7/2025
DSS-54 (Madrid), 9/2026

800 W Ka-band uplink will be installed in the following antennas:
DSS-35 (Canberra), 9/2026
DSS-55 (Madrid), 6/2027
DSS-25 (Goldstone), 6/2028

DSS-36 and DSS-56 will receive 80 kW X-band uplink at some time in the future, but the dates have not been presently established.

Table 1. Summary of Available Configurations for Each Antenna

| ANTENNA |  | S-UP | S-DOWN | X-UP | X-DOWN | Ka-UP | Ka-DOWN | K-UP/DOWN | OTHER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DEEP <br> SPACE <br> NEAR <br> EARTH | nominal freq <br> band <br> nominal freq band | $\begin{gathered} 2115 \mathrm{MHz} \\ 2110-2120 \\ \\ 2067.5 \mathrm{MHz} \\ 2025-2110 \\ \mathrm{MHz} \end{gathered}$ | $\begin{gathered} 2295 \mathrm{MHz} \\ 2290-2300 \\ \\ 2245 \mathrm{MHz} \\ 2200-2290 \\ \mathrm{MHz} \end{gathered}$ | $\begin{gathered} 7167.5 \mathrm{MHz} \\ 7145-7190 \\ \\ 7212.5 \mathrm{MHz} \\ 7190-7235 \\ \mathrm{MHz} \end{gathered}$ | $\begin{gathered} 8425 \mathrm{MHz} \\ 8400-8450 \\ \\ 8475 \mathrm{MHz} \\ 8450-8500 \\ \mathrm{MHz} \end{gathered}$ | $\begin{gathered} 34450 \mathrm{MHz} \\ 34.2-34.7 \\ \mathrm{GHz} \\ -------- \\ --- \end{gathered}$ | $\begin{gathered} 32050 \mathrm{MHz} \\ 31.8-32.3 \mathrm{GHz} \end{gathered}$ | $\begin{gathered} 26250 \mathrm{MHz} \\ 25.5-27.0 \mathrm{GHz} \\ \text { uplink } \\ 22.55-23.15 \\ \mathrm{GHz} \\ \hline \end{gathered}$ |  |
| ANTENNA |  | S-UP | S-DOWN | X-UP | X-DOWN | Ka-UP | Ka-DOWN | K-UP/DOWN | OTHER |
| DSS-23 <br> Goldstone 12/2025 | Figure 1 | --- | ----- | $\begin{aligned} & 20 \mathrm{~kW} \\ & (\mathrm{DS}+\mathrm{NE}) \\ & (17.4 \mathrm{~kW}) \\ & \text { high power } \\ & \text { feed } \\ & \hline \end{aligned}$ | RCP and LCP | ----- | RCP and LCP <br> or <br> RCP monopulse | ----- |  |
| DSS-24 <br> Goldstone | Figure 2 | $\begin{gathered} 20 \mathrm{~kW} \\ \mathrm{DS}+\mathrm{NE} \\ (17.4 \mathrm{~kW}) \end{gathered}$ | RCP or LCP | $\begin{gathered} 20 \mathrm{~kW} \\ (\mathrm{DS}+\mathrm{NE}) \\ (18.2 \mathrm{~kW}) \end{gathered}$ | RCP or LCP | ----- | ----- | RCP or LCP 250 W uplink 10/2023 | X-band Acq Aid |

Table 1. Summary of Available Configurations for Each Antenna (Continued)

| ANTENNA |  | S-UP | S-DOWN | X-UP | X-DOWN | Ka-UP | Ka-DOWN | K-UP/DOWN | OTHER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSS-25 <br> Goldstone | Figure 3 | ----- | ----- | $\begin{gathered} 20 \mathrm{~kW} \\ (\mathrm{DS}+\mathrm{NE}) \\ (17.4 \mathrm{~kW}) \end{gathered}$ | RCP and LCP | $\begin{gathered} 300 \text { W (DS) } \\ (283 \mathrm{~W}) \\ \text { LCP only } \\ \\ 800 \mathrm{~W} \text { (DS) } \\ (6 / 2028) \end{gathered}$ | RCP and LCP <br> or <br> RCP monopulse | ----- |  |
| DSS-26 <br> Goldstone | Figure 4 | $\begin{gathered} 250 \text { W } \\ \text { NE } \\ (200 \mathrm{~W}) \end{gathered}$ | RCP or LCP | $\begin{gathered} 20 \mathrm{~kW} \\ (\mathrm{DS}+\mathrm{NE}) \\ (17.4 \mathrm{~kW}) \\ 80 \mathrm{~kW} \\ (\mathrm{DS}+\mathrm{NE}) \\ (67.6 \mathrm{~kW}) \\ \text { high power } \\ \text { feed } \end{gathered}$ | RCP and LCP | --- | RCP and LCP <br> or <br> RCP monopulse | RCP or LCP <br> 250 W uplink |  |
| DSS-33 <br> Canberra <br> 9/2028 | Figure 5 | ----- | ----- | 20 kW (DS+NE) <br> (17.4 kW) <br> high power feed | RCP and LCP | ----- | RCP and LCP <br> or RCP monopulse | ---- |  |

Table 1. Summary of Available Configurations for Each Antenna (Continued)

| ANTENNA |  | S-UP | S-DOWN | X-UP | X-DOWN | Ka-UP | Ka-DOWN | K-UP/DOWN | OTHER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSS-34 <br> Canberra | Figure 6 | $\begin{gathered} 20 \mathrm{~kW} \\ \mathrm{DS}+\mathrm{NE} \\ (17.4 \mathrm{~kW}) \end{gathered}$ | RCP or LCP | $\begin{gathered} 20 \mathrm{~kW} \\ (\mathrm{DS}+\mathrm{NE}) \\ (17.4 \mathrm{~kW}) \end{gathered}$ | RCP or LCP | ----- | $\begin{aligned} & \text { RCP and LCP } \\ & \text { or } \\ & \text { RCP } \\ & \text { monopulse } \\ & \hline \end{aligned}$ | RCP or LCP <br> 250 W uplink 7/2025 | X-band Acq Aid |
| DSS-35 <br> Canberra | Figure 7 | ----- | ----- | $\begin{gathered} 20 \mathrm{~kW} \\ (\mathrm{DS}+\mathrm{NE}) \\ (17.4 \mathrm{~kW}) \\ \text { high power } \\ \text { feed } \end{gathered}$ | RCP and LCP | $\begin{gathered} 800 \text { W (DS) } \\ (9 / 2026) \end{gathered}$ | RCP and LCP <br> or <br> RCP <br> monopulse | ----- |  |
| DSS-36 <br> Canberra | Figure 8 | $\begin{gathered} 250 \mathrm{~W} \\ \text { NE } \\ (200 \mathrm{~W}) \end{gathered}$ | RCP or LCP | $\begin{gathered} 20 \mathrm{~kW} \\ (\mathrm{DS}+\mathrm{NE}) \\ \text { (17.4 kW) } \\ \text { high power } \\ \text { feed } \\ 80 \mathrm{~kW} \\ \text { (future) } \\ \hline \end{gathered}$ | RCP and LCP | ----- | RCP and LCP <br> or <br> RCP monopulse | $\begin{aligned} & \text { RCP or LCP } \\ & \text { 12/2022 } \\ & 250 \text { W uplink } \\ & 12 / 2022 \end{aligned}$ |  |
| DSS-53 <br> Madrid | Figure 9 | ----- | --- | $\begin{aligned} & 20 \mathrm{~kW} \\ & (\mathrm{DS}+\mathrm{NE}) \\ & (17.4 \mathrm{~kW}) \\ & \text { high power } \\ & \text { feed } \end{aligned}$ | RCP and LCP | ---- | RCP and LCP <br> or <br> RCP monopulse | ---- |  |

810-005
104, Rev. O
Table 1. Summary of Available Configurations for Each Antnna (Continued)

| ANTENNA |  | S-UP | S-DOWN | X-UP | X-DOWN | Ka-UP | Ka-DOWN | K-UP/DOWN | OTHER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSS-54 <br> Madrid | Figure 10 | $\begin{gathered} 20 \mathrm{~kW} \\ \mathrm{NE} \text { only } \\ (17.4 \mathrm{~kW}) \end{gathered}$ | RCP or LCP | $\begin{gathered} 20 \mathrm{~kW} \\ (\mathrm{DS}+\mathrm{NE}) \\ (17.4 \mathrm{~kW}) \end{gathered}$ | RCP or LCP | ----- | RCP and LCP <br> or <br> RCP monopulse | RCP or LCP $\begin{aligned} & 250 \text { W uplink } \\ & \text { 9/2026 } \end{aligned}$ | X-band Acq Aid |
| DSS-55 <br> Madrid | Figure 11 | ----- | ----- | $\begin{gathered} 20 \mathrm{~kW} \\ (\mathrm{DS}+\mathrm{NE}) \\ (17.4 \mathrm{~kW}) \end{gathered}$ | RCP and LCP | $\begin{gathered} 800 \text { W (DS) } \\ (6 / 2027) \end{gathered}$ | RCP and LCP <br> or <br> RCP monopulse | ----- |  |
| DSS-56 <br> Madrid | Figure 12 | $\begin{gathered} 250 \mathrm{~W} \\ \mathrm{NE} \\ (200 \mathrm{~W}) \end{gathered}$ | RCP or LCP | $\begin{gathered} 20 \mathrm{~kW} \\ \text { (DS }+\mathrm{NE} \text { ) } \\ (17.4 \mathrm{~kW} \text { ) } \\ \text { high power } \\ \text { feed } \\ 80 \mathrm{~kW} \\ \text { (future) } \end{gathered}$ | RCP and LCP | -- | RCP and LCP <br> or <br> RCP monopulse | RCP or LCP <br> 250 W uplink 4/2024 |  |

NOTES:

1. $\mathrm{DS}=$ deep-space. $\mathrm{NE}=$ near-earth.
2. $(200 \mathrm{~W}),(17.4 \mathrm{~kW})$ is power at feedhorn aperture, after transmitter waveguide loss
3. X-band uplink is not available when S -band downlink is required ( $\mathrm{S} / \mathrm{X}$ dichroic in place)
4. Simultaneous X-band RCP and LCP not available at DSS-34 and DSS-54 due to having only a single-channel X-band downconverter, thus RCP "or" LCP.
5. DSS-26, $-36,-56 \mathrm{n} / \mathrm{a}$ for S -band deep-space uplink due to low transmit power ( 250 W ). DSS- $54 \mathrm{n} / \mathrm{a}$ for S -band deep-space uplink due to frequency restriction.
6. Simultaneous Ka-band RCP and LCP prevents use of RCP monopulse.
7. Simultaneous K-band RCP and LCP not available due to having only a single K-band downconverter, thus RCP "or" LCP.
8. ORANGE highlight $=$ future antennas. GREEN highlight $=$ low-power S-band transmitters. YELLOW highlight $=$ future Ka-band 800 W transmitters.

Table 2. M6 and M7 Reflector Locations and Implementation Dates

| ANTENNA | M6 REFLECTORS |  |  | M7 REFLECTORS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M6-dichroic $\begin{aligned} & S / X \\ & S S X \end{aligned}$ | $\begin{gathered} \text { M6A(1)-dichroic } \\ \text { S/K } \\ \text { SSK } \end{gathered}$ | $\begin{gathered} \text { M6A(2)-dichroic } \\ \text { S/K } \\ \text { SSKK } \end{gathered}$ | $\begin{gathered} \text { M7-mirror } \\ \text { X/Ка } \\ \text { XХКа } \end{gathered}$ | M7-dichroic X/Ka ХХКаКа | M7A-dichroic X/K XXKK |
|  | S-down S-up X-down | S-down S-up K-down | S-down S-up K-down K-up | $\begin{aligned} & \text { X-down } \\ & \text { X-up } \\ & \text { Ka-down } \end{aligned}$ | ```X-down X-up Ka-down Ka-up``` | X-down <br> X-up K-down K-up |
| DSS-23 |  |  |  | 12/2025 |  |  |
| DSS-24 | X | X -->> | 10/2023 | X |  | 10/2023 |
| DSS-25 |  |  |  |  | X--(6/2028) |  |
| DSS-26 | X |  | X | X |  | X |
| DSS-33 |  |  |  | 9/2028 |  |  |
| DSS-34 | X | X -->> | 7/2025 | X |  | 7/2025 |
| DSS-35 |  |  |  | X | 9/2026 |  |
| DSS-36 | X |  | 12/2022 | X |  | 12/2022 |
| DSS-53 |  |  |  | X |  |  |
| DSS-54 | X | X -->> | 9/2026 | X |  | 9/2026 |
| DSS-55 |  |  |  | X | 6/2027 |  |
| DSS-56 | X | X -->> | 4/2024 | X |  | 4/2024 |

## NOTES:

1. Mirror/dichroic descriptions current as of date of Module 104.
2. "X" indicates existing mirror/dichroic.

810-005
104, Rev. O
3. "X-->>" indicates that existing $M 6 A(1)$ dichroic will be replaced by new $M 6 A(2)$ dichroic on date to the right.
4. Dates for DSS-23 and DSS-33 are new-antenna operational dates with M7-mirror.
5. Dates for M6A(2) and M7A are when antenna will receive dichroics and 250 W K-band uplink.
6. Dates for M7-dichroic are when antenna will receive 800 W Ka-band uplink (DSS-25,35,55) and new M7 dichroic (DSS-35,55).

Table 3. S-Band Transmit Characteristics, DSS-24, -26, -34, -36, -54, and -56

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA |  |  |
| Gain at 2067.5 MHz (center of near-earth band, 2025-2110 MHz) | $\begin{gathered} 55.9+0.2 /-0.3 \mathrm{dBi} \\ \text { (DSS-24, -26, -34,-36, } \\ -54,-56) \end{gathered}$ | At peak of gain versus elevation curve, referenced to feedhorn aperture for matched polarization; no atmosphere included; triangular probability density function (PDF) tolerance. |
| Gain at 2115 MHz (center of deep-space band, $2110-2120 \mathrm{MHz}$ ) | $\begin{gathered} 56.2+0.2 /-0.3 \mathrm{dBi} \\ \text { (DSS-24, }-34 \text { only) } \\ \text { (DSS-26, -36, }-54,-56 \\ \text { n/a for deep space) } \end{gathered}$ | At peak of gain versus elevation curve, referenced to feedhorn aperture for matched polarization; no atmosphere included; triangular probability density function (PDF) tolerance |
| Transmitter Waveguide Loss | $\begin{aligned} & 0.6 \pm 0.1 \mathrm{~dB} \\ & 1.0 \pm 0.1 \mathrm{~dB} \end{aligned}$ | 20-kW transmitter output terminal (waterload switch) to feedhorn aperture (DSS-24,-34,-54) DSS-26,-36,-56, 250-W transmitter |
| Half-Power Beamwidth | $0.263 \pm 0.020 \mathrm{deg}$ | Angular width (2-sided) between half-power points at specified frequency |
| Polarization | RCP or LCP | One polarization at a time, remotely selected. Polarization must be the same as received polarization. |
| Ellipticity | 1.0 dB (max) | Peak-to-peak axial ratio defined as the ratio of peak-to-trough received voltages with a rotating linearly polarized source and the feed configured as a circularly (elliptically) polarized receiving antenna. |
| Pointing Loss |  |  |
| Angular | See module 302 | See also Figure 47. |
| CONSCAN | 0.01 dB | S-band loss using X-band CONSCAN |
|  | 0.1 dB | S-band loss using S-band CONSCAN |

Table 3. S-Band Transmit Characteristics, DSS-24, -26, -34, -36, -54, and -56 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| EXCITER AND TRANSMITTER |  |  |
| Frequency Range Covered | $2025-2120 \mathrm{MHz}$ | Power amplifier is step-tunable over the specified range in six $20-\mathrm{MHz}$ segments, with 5MHz overlap between segments. Tuning between segments can be accomplished in 30 seconds. |
| Instantaneous 1-dB bandwidth | 20 MHz |  |
| Coherent with near-earth S-band D/L allocation | 2028.8-2108.7 MHz | 240/221 turnaround ratio |
| Coherent with deep space S-band D/L channels | 2110.2-2117.7 MHz | 240/221 turnaround ratio |
| Coherent with deep space X-band D/L channels | 2110.2-2119.8 MHz | 880/221 turnaround ratio |
| RF Power Output |  | Referenced to transmitter output terminal (waterload switch). Setability is limited to 0.25 dB by measurement equipment precision. |
| 2025-2110 MHz (near-earth band) 2110-2120 MHz (deep-space band) | $\begin{gathered} 53.0-73.0+0.0 /-1.0 \\ \mathrm{dBm} \\ 54.0+0.0 /-1.0 \mathrm{dBm} \end{gathered}$ | DSS-24,-34 (200 W - 20 kW, near-earth and deep-space bands) DSS-54 (200 W - 20 kW , near-earth band only) DSS-26,-36,-56 (250 W, near-earth band only) |
| Power output varies across the bandwidth and may be as much as 1 dB below nominal rating. Performance will also vary from tube to tube. Normal procedure is to run the tubes saturated, but unsaturated operation is also possible. The point at which saturation is achieved depends on drive power and beam voltage. The 20-kW tubes are normally saturated for power levels greater than $60 \mathrm{dBm}(1 \mathrm{~kW})$. Minimum power out of the $20-\mathrm{kW}$ tubes is about 53 dBm ( 200 W ). Efficiency of the tubes drops off rapidly below nominal rated output. |  |  |
| EIRP (maximum, near-earth band) | $\begin{gathered} 128.3+0.2 /-1.0 \mathrm{dBm} \\ \text { (DSS-24, -34, -54) } \\ 108.9+0.2 /-1.0 \mathrm{dBm} \\ (\mathrm{DSS}-26,-36,-56) \end{gathered}$ | At gain set elevation angle, referenced to feedhorn aperture |
| EIRP (maximum, deepspace band) | $\begin{aligned} & 128.6+0.2 /-1.0 \mathrm{dBm} \\ & \text { (DSS-24, -34 only) } \end{aligned}$ | At gain set elevation angle, referenced to feedhorn aperture. DSS-26, -36, -54, -56 n/a for deep-space. |

Table 3. S-Band Transmit Characteristics, DSS-24, -26, -34, -36, -54, and -56 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| Tunability |  | At transmitter output frequency |
| Phase Continuous Tuning Range | 2.0 MHz |  |
| Maximum Tuning Rate | $\pm 12.1 \mathrm{kHz} / \mathrm{s}$ |  |
| Frequency Error | 0.012 Hz | Average over 100 ms with respect to frequency specified by predicts |
| Ramp Rate Error | $0.001 \mathrm{~Hz} / \mathrm{s}$ | Average over 4.5 s with respect to rate calculated from frequency predicts |
| Stability |  | At transmitter output frequency |
| Output Power Stability |  | From initial calibration value over 8 hours at a fixed frequency |
| Saturated Drive | $\pm 0.3 \mathrm{~dB}$ peak |  |
| Unsaturated Drive | $\pm 0.5 \mathrm{~dB}$ peak |  |
| Output Power Variation |  | Across any 600 kHz segment |
| Saturated Drive | $\leq 0.3 \mathrm{~dB} \mathrm{p-p}$ |  |
| Unsaturated Drive | $\leq 0.5 \mathrm{~dB} \mathrm{p-p}$ |  |
| Group Delay Stability | $\leq 3.5 \mathrm{~ns} \mathrm{rms}$ | Ranging modulation signal path (see module 203) over 8 h period |
| Spurious Output | $1-10 \mathrm{~Hz}-50 \mathrm{~dB}$ $10 \mathrm{~Hz}-1.5 \mathrm{MHz}-60 \mathrm{~dB}$ $1.5 \mathrm{MHz}-8 \mathrm{MHz}-45 \mathrm{~dB}$ | Below carrier |
| 2nd Harmonic | -85 dB |  |
| 3rd Harmonic | -85 dB |  |
| 4th Harmonic | -140 dB | At input to X -band horn, with transmitter set for 20-kW output |
| 13th Harmonic |  | The 13th harmonic of the transmitter lies within the $25.5-27.0 \mathrm{GHz}$ allocation for transmitter frequencies from 2025 to 2076.9 MHz and is presently unfiltered - of concern for 20 kW only |

Table 4. $X$ Band Transmit Characteristics, DSS-23, -24, -25, -26, -33, -34, -35, -36, $-53,-54,-55$, and -56

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA |  |  |
| Gain at 7167.5 MHz (center of $7145-7190 \mathrm{MHz}$ deep-space band) <br> Gain at 7212.5 MHz (center of 7190-7235 MHz near-earth band) | $66.98+0.2 /-0.3 \mathrm{dBi}$ $67.03+0.2 /-0.3 \mathrm{dBi}$ | At peak of gain versus elevation angle curve, referenced to feedhorn aperture for matched polarization; no atmosphere included; triangular PDF tolerance. |
| Transmitter Waveguide Loss |  | 20 kW or 80 kW transmitter output terminal (waterload switch) to feedhorn aperture |
| DSS-24 | $0.4 \pm 0.1 \mathrm{~dB}$ | 20 kW transmitter |
| $\begin{aligned} & \text { DSS-23, -25, -26, -33, -34, } \\ & -35,-36,-53,-54,-55,-56 \end{aligned}$ | $\begin{aligned} & 0.6 \pm 0.1 \mathrm{~dB} \\ & 0.7 \pm 0.1 \mathrm{~dB} \end{aligned}$ | 20 kW transmitter <br> 80 kW transmitter (DSS-26) |
| Half-Power Beamwidth | $0.077 \pm 0.004 \mathrm{deg}$ | Angular width (2-sided) between halfpower points at specified frequency |
| Polarization | RCP or LCP | One polarization at a time, remotely selected, independent of received polarization. |
| Ellipticity | 1.0 dB (max) | Peak-to-peak axial ratio. See Table 3 for definition. |
| Pointing Loss |  |  |
| Angular | See module 302 | See also Figure 48. |
| CONSCAN | 0.1 dB | X-band loss with X-band CONSCAN reference set for 0.1 dB loss |
| EXCITER AND TRANSMITTER |  |  |
| Frequency range covered | $7145-7235 \mathrm{MHz}$ | S-band downlink is not available with X band uplink because S/XDichroic Plate will not pass X-band uplink frequencies. |
| Coherent with deep space X-band D/L channels | 7149.6-7188.9 MHz | 880/749 turnaround ratio |
| Coherent with deep space Ka-band D/L allocation | 7149.6-7234.6 MHz | 3344/749 turnaround ratio. Note: X-band uplink frequencies greater than 7190 MHz are outside deep space X -band uplink allocation. |

Table 4. X-Band Transmit Characteristics, DSS-23, -24, -25, -26, -33, -34, -35, $-36,-53,-54,-55$, and -56 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| RF Power Output |  | Referenced to 20/80-kW transmitter output terminal (waterload switch). Setability is limited to 0.25 dB by measurement equipment precision. |
| 7145.0-7190.0 MHz | $53.0-73.0 \pm 0.5 \mathrm{dBm}$ | Deep-space uplink allocation, 20 kW xmtr. |
| 7145.0-7190.0 MHz | $53.0-79.0 \pm 0.5 \mathrm{dBm}$ | Deep-space uplink allocation, 80 kW xmtr. (DSS-26 only). |
| 7190.0-7235.0 MHz | $53.0-73.0 \pm 0.5 \mathrm{dBm}$ | Near-earth uplink allocation, 20 kW transmitter. |
| 7190.0-7235.0 MHz | $53.0-79.0 \pm 0.5 \mathrm{dBm}$ | Near-earth uplink allocation, 80 kW transmitter (DSS-26 only). |
| Power output varies across the bandwidth and may be as much as 1 dB below nominal rating. Performance will also vary from tube to tube. Normal procedure is to run the tubes saturated, but unsaturated operation is also possible. The point at which saturation is achieved depends on drive power and beam voltage. Minimum power out of the $20-\mathrm{kW}$ and $80-\mathrm{kW}$ tubes is about 53 dBm ( 200 W). Efficiency of the tubes drops off rapidly below nominal rated output. |  |  |
| EIRP (maximum) |  | At gain set elevation angle, referenced to feedhorn aperture |
| DSS-24 |  |  |
| $7145.0-7190.0 \mathrm{MHz}$ | $139.6 \pm 0.7 \mathrm{dBm}$ | Deep-space allocation, 20 kW transmitter. |
| $7190.0-7235.0 \mathrm{MHz}$ | $139.7 \pm 0.7 \mathrm{dBm}$ | Near-earth allocation, 20 kW transmitter. |
| $\begin{aligned} & \text { DSS-23, -25, -26, -33, -34, } \\ & -35,-36,-53,-54,-55,-56 \end{aligned}$ |  |  |
| $7145.0-7190.0 \mathrm{MHz}$ | $139.4 \pm 0.7 \mathrm{dBm}$ | Deep-space allocation, 20 kW transmitter. |
| 7145.0-7190.0 MHz | $145.2 \pm 0.7 \mathrm{dBm}$ | Deep-space allocation, 80 kW transmitter (DSS-26 only). |
| $7190.0-7235.0 \mathrm{MHz}$ | $139.5 \pm 0.7 \mathrm{dBm}$ | Near-earth allocation, 20 kW transmitter. |
| 7190.0-7235.0 MHz | $145.3 \pm 0.7 \mathrm{dBm}$ | Near-earth allocation, 80 kW transmitter (DSS-26 only). |

Table 4. X-Band Transmit Characteristics, DSS-23, -24, -25, -26, -33, -34, -35, $-36,-53,-54,-55$, and -56 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| Tunability |  | At transmitter output frequency |
| Phase Continuous Tuning Range | 2.0 MHz |  |
| Maximum Tuning Rate | $\pm 12.1 \mathrm{kHz} / \mathrm{s}$ |  |
| Frequency Error | 0.012 Hz | Average over 100 ms with respect to frequency specified by predicts |
| Ramp Rate Error | $0.001 \mathrm{~Hz} / \mathrm{s}$ | Average over 4.5 s with respect to rate calculated from frequency predicts |
| Stability |  | At transmitter output frequency |
| Output Power Stability |  | From initial calibration value over 8 hours at a fixed frequency |
| Saturated Drive | $\pm 0.3 \mathrm{~dB}$ peak |  |
| Unsaturated Drive | $\pm 0.5 \mathrm{~dB}$ peak |  |
| Output Power Variation |  | Across any 2 MHz segment |
| Saturated Drive | $\leq 0.3 \mathrm{~dB} \mathrm{p-p}$ |  |
| Unsaturated Drive | $\leq 0.5 \mathrm{~dB} \mathrm{p-p}$ |  |
| Group Delay Stability | $\leq 1.5 \mathrm{~ns} \mathrm{rms}$ | Ranging modulation signal path over 8 h period (see module 203) |
| Spurious Output |  | Below carrier |
| $1-10 \mathrm{~Hz}$ | $-50 \mathrm{~dB}$ |  |
| $10 \mathrm{~Hz}-1.5 \mathrm{MHz}$ | -60 dB |  |
| $1.5 \mathrm{MHz}-8 \mathrm{MHz}$ | $-45 \mathrm{~dB}$ |  |
| 2nd Harmonic | $-75 \mathrm{~dB}$ |  |
| 3rd, 4th \& 5th Harmonics | -60 dB |  |

Table 5. K-band Transmit Characteristics, DSS-24, -26, $-34,-36,-54$, and -56

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA |  |  |
| Gain at 22850 MHz (center of $22550-23150 \mathrm{MHz}$ near-earth band) | $76.1+0.2 /-0.3 \mathrm{~dB}$ | At peak of gain versus elevation angle curve, referenced to feedhorn aperture for matched polarization; no atmosphere included; triangular PDF tolerance. |
| Transmitter Waveguide Loss | $2.4 \pm 0.1 \mathrm{~dB}$ | 250W power amplifier output terminal (before filters) to feedhorn aperture |
| Half-Power Beam width | $0.024 \pm 0.002 \mathrm{deg}$ | Angular width (2-sided) between halfpower points at specified frequency |
| Polarization | RCP or LCP | One polarization at a time, remotely selected, independent of received polarization. |
| Ellipticity | 1.0 dB (max) | Peak-to-peak axial ratio. See Table 3 for definition. |
| Pointing Loss |  |  |
| Angular | See module 302 | See also Figure 48. |
| CONSCAN | 0.1 dB | K-band loss with K-band CONSCAN reference set for 0.1 dB loss |
| EXCITER AND TRANSMITTER |  |  |
| Frequency range covered | 22550-23150 MHz | Near-earth allocation, 250W transmitter. See implementation dates in Section 3. |
|  | $\begin{gathered} 22565.6-23150 \mathrm{MHz} \\ 22550-23150 \mathrm{MHz} \\ 22550-23078.5 \mathrm{MHZ} \end{gathered}$ | 2720/2407 turnaround ratio 2760/2407 turnaround ratio 2816/2407 turnaround ratio |
| RF Power Output | $\begin{gathered} 40.0-54.0 \pm 0.5 \mathrm{dBm} \\ (10 \mathrm{~W}-250 \mathrm{~W}) \end{gathered}$ | Referenced to 250W transmitter power amplifier output terminal (before filters and air load switch). Setability is limited to 0.25 dB by measurement equipment precision. |
| EIRP (maximum) | $127.7 \pm 0.7 \mathrm{dBm}$ | At gain set elevation angle, referenced to feedhorn aperture |

810-005
104, Rev. O

Table 5. K-Band Transmit Characteristics, DSS-24, -26, -34, -36, -54 and -56 (Continued)

| Parameter | Value | Remarks |
| :--- | :---: | :--- |
| Tunability | 4.0 MHz | At transmitter output frequency |
| Phase Continuous <br> Tuning Range | $\pm 60.5 \mathrm{kHz} / \mathrm{s}$ |  |
| Maximum Tuning Rate | 0.012 Hz | Average over 100 ms with respect to <br> frequency specified by predicts |
| Frequency Error | $0.001 \mathrm{~Hz} / \mathrm{s}$ | Average over 4.5 s with respect to rate <br> calculated from frequency predicts |
| Ramp Rate Error | $\pm 0.5 \mathrm{~dB}$ peak | From initial calibration value over 8 hours <br> at a fixed frequency |
| Stability | $\leq 0.5 \mathrm{~dB} \mathrm{p-p}$ | Across any 10 MHz segment |
| Output Power Stability | $\leq 1.0 \mathrm{~ns} \mathrm{rms}$ | Ranging modulation signal path over 8 h <br> period (see module 203) |
| Output Power Variation |  | Below carrier |
| Group Delay Stability | -50 dBc |  |
| Spurious Output | -50 dBc |  |
| $1-10 \mathrm{~Hz}$ | -29 dBc |  |
| $10 \mathrm{~Hz}-100 \mathrm{MHz}$ | -54 dBc |  |
| $2 n d$ Harmonic |  |  |
| $3 \mathrm{3rd}, 4 \mathrm{th}, 5$ th Harmonics |  |  |

Table 6. Ka-Band Transmit Characteristics, DSS-25

| Parameter | Value | Remarks |
| :--- | :---: | :--- |
| ANTENNA |  |  |
| Gain at 34450 MHz | At peak of gain versus elevation angle <br> curve, referenced to feedhorn aperture for <br> matched polarization; no atmosphere <br> included; triangular PDF tolerance. |  |
| X/Ka-mode | $79.03+0.2 /-0.3 \mathrm{dBi}$ |  |
| Transmitter Waveguide Loss | $0.25 \pm 0.1 \mathrm{~dB}$ | 300 W transmitter output terminal <br> (waterload switch) to feedhorn aperture |
| Half-Power Beamwidth | $0.016 \pm 0.001$ deg | Angular width (2-sided) between half- <br> power points at specified frequency |
| Polarization | 1.0 dB (max) | RCP is available by changing mechanical <br> configuration of feed |
| Ellipticity | Peak-to-peak axial ratio. See Table 3. <br> for definition. |  |
| Pointing Loss | 0.12 dB | Monopulse aided tracking with minimum <br> required signal level |
| Angular | See module 302 | See also Figure 49 and Figure 50. |

Table 6. Ka-Band Transmit Characteristics, DSS-25 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| EXCITER AND TRANSMITTER |  |  |
| Frequency range covered |  |  |
| Exciter | $34200-34700 \mathrm{MHz}$ |  |
| Transmitter | $34315-34415 \mathrm{MHz}$ |  |
| Coherent with deep space Ka-band D/L channels | $34317.8-34406.3 \mathrm{MHz}$ | 3360/3599 turnaround ratio |
| Coherent with deep space X-band D/L channels | $34354.3-34409.8 \mathrm{MHz}$ | 880/3599 turnaround ratio |
| RF Power Output | $47.0-54.8 \pm 0.5 \mathrm{dBm}$ $59.0 \text { dBm }$ | Referenced to 300 W transmitter output terminal (transmitter RF drawer rear panel flange). Settability is limited to 0.25 dB by measurement equipment precision. <br> 800 W transmitter (DSS-25 in 6/2028, DSS-35 in 9/2026, DSS-55 in 6/2027) |
| Minimum power output is about 47 dBm ( 50 W ) and may operate unsaturated. |  |  |
| EIRP (maximum) | $133.6+0.6 /-0.5 \mathrm{dBm}$ | At gain set elevation angle, referenced to feedhorn aperture. 300 W transmitter. |
| Output Power Variation | $\leq \pm 1.0 \mathrm{~dB}$ | Across frequency band over 8 hours |
| Spurious Output |  | Below carrier |
| $1-10 \mathrm{~Hz}$ | $-50 \mathrm{~dB}$ |  |
| $10 \mathrm{~Hz}-1.5 \mathrm{MHz}$ | -60 dB |  |

Table 7. S- and K-Band Receive Characteristics, DSS-24, -26, -34, -36, -54, and 56

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ANTENNA |  |  |
| Gain |  | At peak of gain versus elevation angle curve, referenced to feedhorn aperture (feed and feedline losses are accounted for in system temperature), for matched polarization; no atmosphere included; triangular PDF tolerance. See Figure 13 and Figures 21 - 23 for representative gain versus elevation curves. |
| S-band (2295 MHz) | $56.74+0.1 /-0.2 \mathrm{dBi}$ |  |
| K-band ( 26250 MHz ) | $77.2+0.0 /-0.2 \mathrm{dBi}$ | See implementation dates in Section 3. |
| Half-Power Beamwidth |  | Angular width (2-sided) between halfpower points at specified frequency |
| S-band | $0.242 \pm 0.020 \mathrm{deg}$ |  |
| K-band | $0.021 \pm 0.002 \mathrm{deg}$ |  |
| Polarization | RCP or LCP | Remotely selected. S-band must be same as transmit polarization |
| Ellipticity | $\leq 1.0 \mathrm{~dB}$ | Peak-to-peak voltage axial ratio, RCP and LCP. See definition in Table 3. |
| Pointing Loss |  |  |
| Angular | See module 302 | See also Figure 47 and Figure 49. |
| CONSCAN | 0.1 dB | Recommended value for S-, X, or K-band tracking |
| S-BAND RECEIVER |  |  |
| Frequency Range Covered | $2200-2300 \mathrm{MHz}$ |  |
| Recommended Maximum Signal Power | -85.0 dBm | At HEMT input terminal |
| Antenna-Microwave Noise Temperature ( $T_{A M W}$ ) |  | Near zenith, no atmosphere or cosmic noise included. See also Table 11. <br> Favorable (-) and adverse (+) tolerances have triangular PDF. |
| Non-Diplexed Path |  | Referenced to feedhorn aperture. $\text { LNA }=\text { HEMT- } 1$ |
| DSS-24 | 26.10-1.0/+2.0 K |  |
| DSS-26 | 17.60-1.0/+2.0 K |  |
| DSS-34 | 24.88-1.0/+/2.0 K |  |
| DSS-36 | 21.57-1.0/+2.0 K |  |
| DSS-54 | 25.73-1.0/+2.0 K |  |

Table 7. S- and K-Band Receive Characteristics, DSS-24, -26, -34, -36, -54, and -56 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| S-BAND RECEIVER (Continued) |  |  |
| DSS-56 | 20.63-1.0/+2.0 K |  |
| Diplexed Path | Add 8.00 K to above | DSS-24, -26, -34, -36, -54, -56 |
| K-BAND RECEIVER |  |  |
| Frequency Range Covered | 25500-27000 MHz |  |
| Recommended Maximum Signal Power |  | At HEMT input terminal |
| Normal Mode | -85.0 dBm |  |
| Low-gain Mode | -65.0 dBm | For high received power levels |
| Antenna-Microwave Noise Temperature ( $T_{\text {AMW }}$ ) |  | RCP/LCP average at 26000 MHz . Referenced to feedhorn aperture. See also Table 11. |
| DSS-24 K-only mode | 20.7-1.0/+3.0 K |  |
| DSS-24 S/K-mode | $26.5-1.0 /+3.0 \mathrm{~K}$ |  |
| DSS-26 K-only mode | $31.3-1.0 /+3.0 \mathrm{~K}$ |  |
| DSS-26 S/K mode | $39.9-1.0 /+3.0 \mathrm{~K}$ |  |
| DSS-34 K-only mode | $25.6-1.0 /+3.0 \mathrm{~K}$ | . |
| DSS-34 S/K-mode | $31.4-1.0 /+3.0 \mathrm{~K}$ |  |
| DSS-36 K-only mode | Not presently available | Available in 12/2022 |
| DSS-36 S/K mode | Not presently available | Available in 12/2022 |
| DSS-54 K-only mode | 28.8-1.0/+3.0 K |  |
| DSS-54 S/K-mode | $34.6-1.0 /+3.0 \mathrm{~K}$ |  |
| DSS-56 K-only mode | $33.8-1.0 /+3.0 \mathrm{~K}$ |  |
| DSS-56 S/K-mode | $39.6-1.0 /+3.0 \mathrm{~K}$ |  |
| Low-Gain Mode |  | Required for signal levels in excess of $-85.0 \mathrm{dBm}$ |
| K-only (All Stations) | 156-11.0/+33.0 K |  |
| S/K-only (All Stations) | 185-11.0/+33.0 K |  |
| Tunability | 1 Hz resolution |  |
| Carrier Tracking Loop Noise B/W | $0.1 \%$ of symbol rate | Effective one-sided, noise-equivalent carrier loop bandwidth ( $\mathrm{B}_{\mathrm{L}}$ ) |
| Symbol Loop Acquisition B/W | 0.3\% of symbol rate |  |

Table 8. X-Band Receive Characteristics, DSS-24

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| M AIN ANTENNA |  |  |
| Gain (8425 MHz) |  | At peak of gain versus elevation angle curve, referenced to feedhorn aperture (feed and feedline losses are accounted for in system temperature), for matched polarization; no atmosphere included; triangular PDF tolerance. |
| X-only Mode | $68.24+0.1 /-0.2 \mathrm{dBi}$ | $\mathrm{S} / \mathrm{X}$ and $\mathrm{S} / \mathrm{K}$ dichroic plates retracted. |
| S/X Mode | $68.19+0.1 /-0.2 \mathrm{dBi}$ | S/X dichroic plate extended. |
| Half-Power Beamwidth | $0.066 \pm 0.004 \mathrm{deg}$ | Angular width (2-sided) between halfpower points at specified frequency |
| Polarization | RCP or LCP | Remotely Selected. Same as or opposite from transmit polarization |
| Ellipticity | $\leq 0.7 \mathrm{~dB}$ | Peak-to-peak voltage axial ratio, RCP and LCP. See definition in Table 3. . |
| Pointing Loss |  |  |
| Angular | See module 302 | See also Figure 48. |
| CONSCAN | 0.1 dB | Recommended value when using X-band CONSCAN reference |
| RECEIVER |  |  |
| Frequency Range Covered | $8400-8500 \mathrm{MHz}$ |  |
| Recommended Maximum Signal Power | -90.0 dBm | At maser input terminal |
| Antenna-Microwave Noise Temperature ( $T_{A M W}$ ) | Low-gain mode add +20 K to values below | Near zenith, no atmosphere or cosmic noise included. See also Table 11. <br> Favorable (-) and adverse (+) tolerances have triangular PDF. |
| Non-Diplexed Path ( $8400-8500 \mathrm{MHz}$ ) LNA = MASER-1 | 21.28-1.0/+2.0 K | X-band-only operation (S/X-band dichroic plate retracted). Referenced to feedhorn aperture. |
| Diplexed Path ( $8400-8500 \mathrm{MHz}$ ) LNA = MASER-1 | 30.39-1.0/+2.0 K | X-band-only operation (S/X-band dichroic plate retracted). Referenced to feedhorn aperture. |
| Non-Diplexed Path ( $8400-8500 \mathrm{MHz}$ ) LNA = MASER-1 | 22.72-1.0/+2.0 K | S/X-band operation (S/X-band dichroic plate extended). Referenced to feedhorn aperture. |
| Diplexed Path ( $8400-8500 \mathrm{MHz}$ ) LNA = MASER- 1 | $31.89-1.0 /+2.0 \mathrm{~K}$ | S/X-band operation (S/X-band dichroic plate extended). Referenced to feedhorn aperture. |
| Tunability | Continuous |  |
| Carrier Tracking Loop Noise $\mathrm{B} / \mathrm{W}(\mathrm{~Hz})$ | 0.25-200 | Effective one-sided, noise-equivalent carrier loop bandwidth ( $\mathrm{B}_{\mathrm{L}}$ ) |

Table 8. X-Band Receive Characteristics, DSS-24 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| ACQUISITION ANTENNA AND RECEIVER - DSS-24 |  |  |
| Gain (8425 MHz) | $38.0 \pm 0.5 \mathrm{~dB}$ | Referenced to acquisition downconverter input terminals (includes feedline losses) |
| Half-Power Beamwidth | 2.1 deg | Angular width (2-sided) between halfpower points at specified frequency |
| Polarization | RCP | LCP is available by manual selection at feed |
| Frequency Range Covered | $8400-8500 \mathrm{MHz}$ |  |
| System Temperature | $280 \pm 30 \mathrm{~K}$. | Near Zenith |
| Tracking Bandwidths |  | Two-sided bandwidths |
| Residual Carrier | 4 kHz |  |
| Frequency Acquisition | $\pm 150 \mathrm{kHz}$ |  |
| Doppler Tracking | $\pm 400 \mathrm{kHz}$ |  |
| Suppressed Carrier | 280 kHz | Open-loop operation |
| Tunability | 1 kHz resolution |  |
| Signal Acquisition Range |  |  |
| Residual Carrier | -90 to -135 dBm |  |
| Suppressed Carrier | -90 to -119 dBm. |  |

Table 9. X-and Ka-Band Receive Characteristics, DSS-23, -25, -26, -33, -34, -35, $-36,-53,-54,-55$, and -56

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| MAIN ANTENNA |  |  |
| Gain |  | At peak of gain versus elevation angle curve, referenced to feedhorn aperture (feed and feedline losses are accounted for in system temperature), for matched polarization; no atmosphere included; triangular PDF tolerance. See Figures 14 20 and Figures 24-29 for representative gain versus elevation curves. |
| X-band ( 8425 MHz ) | $68.27+0.1 /-0.2 \mathrm{dBi}$ | DSS-26, -34, -36, -54, -56, S/X-band operation (S/Xdichroic plate extended). DSS-23, $-25,-33,-35,-53,-55$ do not have S-band capability. |
| X-band ( 8425 MHz ) | $68.32+0.1 /-0.2 \mathrm{dBi}$ | DSS-23, -25, -26, -33, -34, -35, -36, -53, -54, -55, -56, X/Ka-band operation |
| Ka-band (32050 MHz) | $79.0+0.3 /-0.3 \mathrm{dBi}$ | DSS-23, -25, -26, -33, -34, -35, -36, -53, $-54,-55,-56$, XVKa-band operation |
| Half-Power Beamwidth |  | Angular width (2-sided) between half-power points at specified frequency |
| X-band | $0.066 \pm 0.004 \mathrm{deg}$ |  |
| Ka-band | $0.017 \pm 0.002 \mathrm{deg}$ |  |
| Polarization |  |  |
| $\begin{aligned} & \hline \text { X-band DSS-23, -25, -26, } \\ & -33,-35,-36,-53,-55,-56 \end{aligned}$ | RCP and LCP | Simultaneously |
| X-band DSS-24, -34, -54 | RCP or LCP | Remotely selected. Independent of transmit polarization. Only one X-band downconverter at DSS-34/-54, thus "or". |
| $\begin{aligned} & \text { Ka-band DSS-23, -25, } \\ & -26,-33,-34,-35,-36, \\ & -53,-54,-55, \&-56 \end{aligned}$ | RCP and LCP | Monopulse is available only at RCP. |
| Ellipticity |  | Peak-to-peak voltage axial ratio. See definition in Table 3. |
| X-band | $\leq 0.7 \mathrm{~dB}$ | RCP and LCP |
| Ka-band | $\leq 1.0 \mathrm{~dB}$ | RCP and LCP |
| Pointing Loss |  |  |
| Angular | See module 302 | See also Figures 48 and 49. |
| CONSCAN |  |  |
| X-band | 0.1 dB | Recommended value when using X-band CONSCAN |

Table 9. X- and Ka-Band Receive Characteristics, DSS-23, -25, -26, -33, -34, -35, -36, $-53,-54,-55$, and -56 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| Ka-band | 0.1 dB | Recommended value when using Ka-band CONSCAN if monopulse not available or for dual-polarization Ka-band reception. |
| Monopulse |  |  |
| X-band | 0.007 dB | Using Ka-band monopulse reference |
| Ka-band | 0.11 dB | Sum channel signal to error channel noise ratio $\geq 26 \mathrm{~dB}-\mathrm{Hz}$ |
| RECEIVER |  |  |
| Frequency Ranges |  |  |
| X-band | 8200-8600 MHz | General frequency range. Specific antenna bandwidth restrictions listed below. |
| Ka-band | $31800-32300 \mathrm{MHz}$ | Tracking receiver covers bandwidth with 5 overlapping bands of 160 MHz |
| Recommended Maximum Signal Power | $\begin{aligned} & -85.0 \mathrm{dBm} \\ & -65.0 \mathrm{dBm} \end{aligned}$ | At HEMT input terminal (DSS-23, -25, -26, $-33,-34,-35,-36,-53,-54,-55,-56)$ <br> At HEMT input terminal (DSS-23, -25, -26, $-33,-34,-35,-36,-53,-54,-55,-56$ ) for high received power level in low-gain mode. |
| Antenna-Microwave Noise Temperature ( ${ }^{T} A M W$ ) | Low-gain mode add +20 K for X-band, +70 K for Ka-band, to values below | Near zenith, no atmosphere or cosmic noise included. See also Table 11. Favorable (-) and adverse (+) tolerances have triangular PDF. |
| X-band (8200-8600 MHz) |  | DSS-23,-25,-26,-33,-34,-35,-36,-53,-54,-$55,-56$ with always-diplexed dual-HEMT XIXIKa feed. With or without transmitter operating. Referenced to feedhorn aperture. |
| DSS-23 (RCP) | TBD | X/Ka-mode, LNA = HEMT-1 |
| DSS-23 (RCP) | TBD | X/Ka-mode, LNA = HEMT 2 |
| DSS-25 (RCP) | 16.2-1.0/+2.0 K | X/Ka-mode, LNA = HEMT-1 |
| DSS-25 (LCP) | 16.0-1.0/+2.0 K | XKKa-mode, LNA = HEMT-2 |
| DSS-26 (RCP) | 16.29-1.0/+2.0 K | XIKa-mode, LNA = HEMT-1 |
| DSS-26 (LCP) | 15.43-1.0/+2.0 K | X/Ka-mode, LNA = HEMT-2 |
| DSS-26 (RCP) | 18.01-1.0/+2.0 K | S/X-mode, LNA = HEMT-1 |
| DSS-26 (LCP) | 17.15-1.0/+2.0 K | S/X-mode, LNA = HEMT-2 |
| DSS-33 (RCP) | TBD | X/Ka-mode, LNA = HEMT-1 |
| DSS-33 (LCP) | TBD | X/Ka-mode, LNA = HEMT-2 |
| DSS-34 (RCP) | 16.28-1.0,+2.0 K | X/Ka-mode, LNA = HEMT-1 |

Table 9. X- and Ka-Band Receive Characteristics, DSS-23, -25, -26, -33, -34, -35, -36, $-53,-54,-55$, and -56 (Continued)

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| DSS-34 (LCP) | 16.71-1.0/+2.0 K | X/Ka-mode, LNA = HEMT-2 |
| DSS-34 (RCP) | 17.99-1.0/+2.0 K | S/X-mode, LNA = HEMT-1 |
| DSS-34 (LCP) | 18.43-1.0/+2.0 K | S/X-mode, LNA = HEMT-2 |
| DSS-35 (RCP) | 14.7-1.0/+2.0 K | X/Ka-mode, LNA = HEMT-1 |
| DSS-35 (LCP) | 15.0-1.0/+2.0 K | XKKa-mode, LNA = HEMT-2 |
| DSS-36 (RCP) | 12.59-1.0/+2.0 K | X/Ka-mode, LNA = HEMT-1 |
| DSS-36 (LCP) | 13.95-1.0/+2.0 K | XKa-mode, LNA = HEMT-2 |
| DSS-36 (RCP) | 14.31-1.0/+2.0 K | S/X-mode, LNA = HEMT-1 |
| DSS-36 (LCP) | 15.67-1.0/+2.0 K | S/X-mode, LNA = HEMT-2 |
| DSS-53 (RCP) | 13.1-1.0/+2.0 K | X/Ka-mode, LNA = HEMT-1 |
| DSS-53 (LCP) | 13.2-1.0/+2.0 K | X/Ka-mode, LNA = HEMT-2 |
| DSS-54 (RCP) | 18.31-1.0/+2.0 K | X/Ka-mode, LNA = HEMT-1 |
| DSS-54 (LCP) | 18.31-1.0/+2.0 K | X/Ka-mode, LNA = HEMT-2 |
| DSS-54 (RCP) | 20.03-1.0/+2.0 K | S/X-mode, LNA = HEMT-1 |
| DSS-54 (LCP) | 20.03-1.0/+2.0 K | S/X-mode, LNA = HEMT-2 |
| DSS-55 (RCP) | $17.42-1.0 /+2.0 \mathrm{~K}$ | X/Ka-mode, LNA = HEMT-1 |
| DSS-55 (LCP) | 17.82-1.0/+2.0 K | XKa-mode, LNA = HEMT-2 |
| DSS-56 (RCP) | $14.47-1.0 /+2.0 \mathrm{~K}$ | XIKa-mode, LNA = HEMT-1 |
| DSS-56 (LCP) | 13.96-1.0/+2.0 K | XKKa-mode, LNA = HEMT-2 |
| DSS-56 (RCP) | 16.19-1.0/+2.0 K | S/X-mode, LNA = HEMT-1 |
| DSS-56 (LCP) | 15.68-1.0/+2.0 K | S/X-mode, LNA = HEMT-2 |
| $\begin{aligned} & \text { Ka-band (31800-32300 } \\ & \mathrm{MHz}) \\ & \hline \end{aligned}$ |  | XIKa-band operation referenced to feedhorn aperture, |
| DSS-23 (RCP) | TBD | LNA = HEMT-1 |
| DSS-23 (RCP Error) | TBD | LNA = HEMT-2 |
| DSS-23 (LCP) | TBD | LNA = HEMT-3 |
| DSS-25 (RCP) | 24.2-1.0/+2.0 K | LNA = HEMT-1 |
| DSS-25 (RCP Error) | $25.7-1.0 /+2.0 \mathrm{~K}$ | LNA = HEMT-2 |
| DSS-25 (LCP) | 23.0-1.0/+2.0 K | LNA $=$ HEMT-3 |
| DSS-26 (RCP) | 19.36-1.0/+2.0 K | LNA = HEMT-1 |
| DSS-26 (RCP Error) | $24.55-1.0 /+2.0 \mathrm{~K}$ | LNA = HEMT-2 |
| DSS-26 (LCP) | 20.77-1.0/+2.0 K | LNA = HEMT-3 |
| DSS-33 (RCP) | TBD | LNA = HEMT-1 |
| DSS-33 (RCP Error) | TBD | LNA $=$ HEMT-2 |
| DSS-33 (LCP) | TBD | LNA = HEMT-3 |
| DSS-34 (RCP) | 19.38-1.0/+2.0 K | LNA $=$ HEMT-1 |

Table 9. X-and Ka-Band Receive Characteristics, DSS-23, -25, -26, -33, -34, -35, -36, $-53,-54,-55$, and -56 (Continued)

| Parameter | Value | Remarks |
| :--- | :---: | :--- |
| DSS-34 (RCP Error) | $23.25-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-2 |
| DSS-34 (LCP) | $19.61-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-3 |
| DSS-35 (RCP) | $17.3-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-1 |
| DSS-35 (RCP Error) | TBD | LNA $=$ HEMT-2 |
| DSS-35 (LCP) | $17.2-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-3 |
| DSS-36 (RCP) | $12.54-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-1 |
| DSS-36 (RCP Error) | TBD | LNA $=$ HEMT-2 |
| DSS-36 (LCP) | $12.18-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-3 |
| DSS-53 (RCP) | $13.0-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-1 |
| DSS-53 (RCP Error) | $18.0-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-2 |
| DSS-53 (LCP) | $13.4-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-3 |
| DSS-54 (RCP) | $21.80-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-1 |
| DSS-54 (RCP Error) | $25.00-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-2 |
| DSS-54 (LCP) | $21.80-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-3 |
| DSS-55 (RCP) | $20.80-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-1 |
| DSS-55 (RCP Error) | $21.98-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-2 |
| DSS-55 (LCP) | $19.83-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-3 |
| DSS-56 (RCP) | $16.5-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-1 |
| DSS-56 (RCP Error) | TBD | LNA $=$ HEMT-2 |
| DSS-56 (LCP | $17.0-1.0 /+2.0 \mathrm{~K}$ | LNA $=$ HEMT-3 |
| Carrier Tracking Loop Noise <br> B/W | $0.25-200 \mathrm{~Hz}$ | Effective one-sided, noise-equivalent <br> carrier loop bandwidth (BL). See module <br> 202 |

Table 9. X- and Ka-Band Receive Characteristics, DSS-23, -25, -26, -33, -34, -35, -36, $-53,-54,-55$, and -56 (Continued)

| Parameter |  | Value |
| :--- | :---: | :--- |
| ACQUISITION ANTENNA AND RECEIVER - DSS-34 AND DSS-54 |  |  | Remarks

810-005
104, Rev. O
Table 10. Gain Reduction Due to Wind Effects on Structural Deformation and Pointing Error

| Wind Speed |  | Gain Reduction (dB)* $^{*}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{( k m / h r})$ | $\mathbf{( m p h})$ | S-Band | X-Band | K-Band | Ka-Band |
| 10 | 6 | negligible | negligible | 0.02 | 0.03 |
| 30 | 18 | negligible | 0.02 | 0.19 | 0.29 |
| 50 | 30 | negligible | 0.06 | 0.53 | 0.80 |

* Maximum total combined effects of structural deformation and pointing error at various wind speeds.

Table 11. $T_{A M W}, T_{s k y}$, and $T_{o p}$ for $C D=25 \%$ Average Clear Weather at Zenith, Referenced to Feedhorn Aperture

| Frequency, Station, and Configuration | Noise Temperatures, K |  |  |
| :---: | :---: | :---: | :---: |
|  | $T_{\text {AMW }}$ | $T_{\text {sky }}$ | Top |
| S-band, DSS-24, S/X or S/K, HEMT-1, RCP or LCP, non-diplexed | 26.10 | 4.68 | 30.78 |
| S-band, DSS-24, S/X or S/K, HEMT-1, RCP or LCP, diplexed | 33.47 | 4.68 | 38.15 |
| S-band, DSS-26, S/X or S/K, HEMT-1, RCP or LCP, non-diplexed | 17.6 | 4.68 | 22.3 |
| S-band, DSS-26, S/X or S/K, HEMT-1, RCP or LCP, diplexed | 23.4 | 4.68 | 28.1 |
| S-band, DSS-34, S/X or S/K, HEMT-1, RCP or LCP, non-diplexed | 24.88 | 4.86 | 29.74 |
| S-band, DSS-34, S/X or S/K, HEMT-1, RCP or LCP, diplexed | 34.46 | 4.86 | 39.32 |
| S-band, DSS-36, S/X or S/K, HEMT-1, RCP or LCP, non-diplexed | 21.57 | 4.86 | 26.43 |
| S-band, DSS-36, S/X or S/K, HEMT-1, RCP or LCP, diplexed | 30.43 | 4.86 | 35.29 |
| S-band, DSS-54, S/X or S/K, HEMT-1, RCP or LCP, non-diplexed | 25.73 | 4.80 | 30.53 |
| S-band, DSS-54, S/X or S/K, HEMT-1, RCP or LCP, diplexed | 35.35 | 4.80 | 40.15 |
| S-band, DSS-56, S/X or S/K, HEMT-1, RCP or LCP, non-diplexed | 20.63 | 4.80 | 25.43 |
| S-band, DSS-56, S/X or S/K, HEMT-1, RCP or LCP, diplexed | 27.33 | 4.80 | 32.13 |
| X-band, DSS-23, XIKa, HEMT-1, RCP, diplexed | TBD | 5.04 | TBD |
| X-band, DSS-23, X/Ka, HEMT-2, LCP, diplexed | TBD | 5.04 | TBD |
| X-band, DSS-24, X-only, MASER-1, RCP or LCP, non-diplexed | 21.28 | 5.04 | 26.32 |
| X-band, DSS-24, X-only, MASER-1, RCP or LCP, diplexed | 30.39 | 5.04 | 35.43 |
| X-band, DSS-24, S/X, MASER-1, RCP or LCP, non-diplexed | 22.72 | 5.04 | 27.76 |
| X-band, DSS-24, S/X, MASER-1, RCP or LCP, diplexed | 31.89 | 5.04 | 36.93 |
| X-band, DSS-25, XIKa, HEMT-1, RCP, diplexed | 16.2 | 5.04 | 21.2 |
| X-band, DSS-25, X/Ka, HEMT-2, LCP, diplexed | 16.0 | 5.04 | 21.0 |
| X-band, DSS-26, XIKa, HEMT-1, RCP, diplexed | 16.29 | 5.04 | 21.33 |
| X-band, DSS-26, X/Ka, HEMT-2, LCP, diplexed | 15.43 | 5.04 | 20.47 |
| X-band, DSS-26, S/X, HEMT-1, RCP, diplexed | 18.01 | 5.04 | 23.05 |
| X-band, DSS-26, S/X, HEMT-2, LCP, diplexed | 17.15 | 5.04 | 22.19 |
| X-band, DSS-33, XIKa, HEMT-1, RCP, diplexed | TBD | 5.39 | TBD |
| X-band, DSS-33, X/Ka, HEMT-2, LCP, diplexed | TBD | 5.39 | TBD |
| X-band, DSS-34, XIKa, HEMT-1, RCP, diplexed | 16.28 | 5.39 | 21.67 |
| X-band, DSS-34, X/Ka, HEMT-2, LCP, diplexed | 16.71 | 5.39 | 22.10 |
| X-band, DSS-34, S/X, HEMT-1, RCP, diplexed | 17.99 | 5.39 | 23.38 |
| X-band, DSS-34, S/X, HEMT-2, LCP, diplexed | 18.43 | 5.39 | 23.82 |
| X-band, DSS-35, XIKa, HEMT-1, RCP, diplexed | 14.7 | 5.39 | 20.09 |
| X-band, DSS-35, X/Ka, HEMT-2, LCP, diplexed | 15.0 | 5.39 | 20.45 |
| X-band, DSS-36, XIKa, HEMT-1, RCP, diplexed | 12.59 | 5.39 | 17.98 |
| X-band, DSS-36, X/Ka, HEMT-2, LCP, diplexed | 13.95 | 5.39 | 19.34 |
| X-band, DSS-36, S/X, HEMT-1, RCP, diplexed | 14.31 | 5.39 | 19.70 |
| X-band, DSS-36, S/X, HEMT-2, LCP, diplexed | 15.67 | 5.39 | 21.06 |

Table 11. $\boldsymbol{T}_{A M W}, \boldsymbol{T}_{s k y}$, and $\boldsymbol{T}_{o p}$ for $\mathrm{CD}=\mathbf{2 5 \%}$ Average Clear Weather at Zenith, Referenced to Feedhorn Aperture (Continued)

| Frequency, Station, and Configuration | Noise Temperatures, K |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{T}_{\text {AMWV }}$ | $T_{\text {sky }}$ | $T_{\text {op }}$ |
| X-band, DSS-53, XIKa, HEMT-1, RCP, diplexed | 13.1 | 5.27 | 18.37 |
| X-band, DSS-53, X/Ka, HEMT-2, LCP, diplexed | 13.2 | 5.27 | 18.47 |
| X-band, DSS-54, X/Ka, HEMT-1, RCP, diplexed | 18.31 | 5.27 | 23.58 |
| X-band, DSS-54, X/Ka, HEMT-2, LCP, diplexed | 18.31 | 5.27 | 23.58 |
| X-band, DSS-54, S/X, HEMT-1, RCP, diplexed | 20.03 | 5.27 | 25.30 |
| X-band, DSS-54, S/X, HEMT-2, LCP, diplexed | 20.03 | 5.27 | 25.30 |
| X-band, DSS-55, X/Ka, HEMT-1, RCP, diplexed | 17.42 | 5.27 | 22.69 |
| X-band, DSS-55, X/Ka, HEMT-2, LCP, diplexed | 17.82 | 5.27 | 23.09 |
| X-band, DSS-54, XIKa, HEMT-1, RCP, diplexed | 14.47 | 5.27 | 19.74 |
| X-band, DSS-54, X/Ka, HEMT-2, LCP, diplexed | 13.96 | 5.27 | 19.23 |
| X-band, DSS-54, S/X, HEMT-1, RCP, diplexed | 16.19 | 5.27 | 21.46 |
| X-band, DSS-54, S/X, HEMT-2, LCP, diplexed | 15.68 | 5.27 | 20.95 |
| K-band, DSS-24, K-only, HEMT-1, RCP, non-diplexed, 25.5 GHz | 19.8 | 10.3 | 30.1 |
| K-band, DSS-24, K-only, HEMT-2, LCP, non-diplexed, 25.5 GHz | 27.3 | 10.3 | 37.6 |
| K-band, DSS-24, S/K, HEMT-1, RCP, non-diplexed, 25.5 GHz | 30.4 | 10.3 | 40.7 |
| K-band, DSS-24, S/K, HEMT-2, LCP, non-diplexed, 25.5 GHz | 37.9 | 10.3 | 48.2 |
| K-band, DSS-24, K-only, HEMT-1, RCP, non-diplexed, 26.0 GHz | 17.7 | 10.1 | 27.8 |
| K-band, DSS-24, K-only, HEMT-2, LCP, non-diplexed, 26.0 GHz | 23.7 | 10.1 | 33.8 |
| K-band, DSS-24, S/K, HEMT-1, RCP, non-diplexed, 26.0 GHz | 23.6 | 10.1 | 33.7 |
| K-band, DSS-24, S/K, HEMT-2, LCP, non-diplexed, 26.0 GHz | 29.6 | 10.1 | 39.7 |
| K-band, DSS-24, K-only, HEMT-1, RCP, non-diplexed, 27.0 GHz | 21.0 | 10.1 | 31.1 |
| K-band, DSS-24, K-only, HEMT-2, LCP, non-diplexed, 27.0 GHz | 25.6 | 10.1 | 35.7 |
| K-band, DSS-24, S/K, HEMT-1, RCP, non-diplexed, 27.0 GHz | 30.6 | 10.1 | 40.7 |
| K-band, DSS-24, S/K, HEMT-2, LCP, non-diplexed, 27.0 GHz | 35.2 | 10.1 | 45.3 |
| K-band, DSS-26, K-only, HEMT-1, RCP, diplexed, 26.0 GHz | 31.8 | 10.1 | 41.9 |
| K-band, DSS-26, K-only, HEMT-2, LCP, diplexed, 26.0 GHz | 30.8 | 10.1 | 40.9 |
| K-band, DSS-26, S/K, HEMT-1, RCP, diplexed, 26.0 GHz | 40.4 | 10.1 | 50.5 |
| K-band, DSS-26, S/K, HEMT-2, LCP, diplexed, 26.0 GHz | 39.4 | 10.1 | 49.5 |
| K-band, DSS-34, K-only, HEMT-1, RCP, non-diplexed, 25.5 GHz | 25.1 | 13.3 | 38.4 |
| K-band, DSS-34, K-only, HEMT-2, LCP, non-diplexed, 25.5 GHz | 26.5 | 13.3 | 39.8 |
| K-band, DSS-34, S/K, HEMT-1, RCP, non-diplexed, 25.5 GHz | 35.7 | 13.3 | 49.0 |
| K-band, DSS-34, S/K, HEMT-2, LCP, non-diplexed, 25.5 GHz | 37.1 | 13.3 | 50.4 |
| K-band, DSS-34, K-only, HEMT-1, RCP, non-diplexed, 26.0 GHz | 25.5 | 13.0 | 38.5 |
| K-band, DSS-34, K-only, HEMT-2, LCP, non-diplexed, 26.0 GHz | 25.6 | 13.0 | 38.6 |
| K-band, DSS-34, S/K, HEMT-1, RCP, non-diplexed, 26.0 GHz | 31.4 | 13.0 | 44.4 |

Table 11. $\boldsymbol{T}_{A M W}, \boldsymbol{T}_{s k y}$, and $\boldsymbol{T}_{o p}$ for $\mathrm{CD}=\mathbf{2 5 \%}$ Average Clear Weather at Zenith, Referenced to Feedhorn Aperture (Continued)

| Frequency, Station, and Configuration | Noise Temperatures, K |  |  |
| :---: | :---: | :---: | :---: |
|  | $T_{\text {AMM }}$ | $T_{\text {sky }}$ | $T_{\text {op }}$ |
| K-band, DSS-34, S/K, HEMT-2, LCP, non-diplexed, 26.0 GHz | 31.5 | 13.0 | 44.5 |
| K-band, DSS-34, K-only, HEMT-1, RCP, non-diplexed, 27.0 GHz | 23.9 | 12.8 | 36.7 |
| K-band, DSS-34, K-only, HEMT-2, LCP, non-diplexed, 27.0 GHz | 24.7 | 12.8 | 37.5 |
| K-band, DSS-34, S/K, HEMT-1, RCP, non-diplexed, 27.0 GHz | 33.5 | 12.8 | 46.3 |
| K-band, DSS-34, S/K, HEMT-2, LCP, non-diplexed, 27.0 GHz | 34.3 | 12.8 | 47.1 |
| K-band, DSS-36, K-only, HEMT-1, RCP, non-diplexed, 26.0 GHz | TBD | 13.0 | TBD |
| K-band, DSS-36, K-only, HEMT-2, LCP, non-diplexed, 26.0 GHz | TBD | 13.0 | TBD |
| K-band, DSS-36, S/K, HEMT-1, RCP, non-diplexed, 26.0 GHz | TBD | 13.0 | TBD |
| K-band, DSS-36, S/K, HEMT-2, LCP, non-diplexed, 26.0 GHz | TBD | 13.0 | TBD |
| K-band, DSS-54, K-only, HEMT-1, RCP, non-diplexed, 25.5 GHz | 28.4 | 11.9 | 40.3 |
| K-band, DSS-54, K-only, HEMT-2, LCP, non-diplexed, 25.5 GHz | 30.9 | 11.9 | 42.8 |
| K-band, DSS-54, S/K, HEMT-1, RCP, non-diplexed, 25.5 GHz | 39.0 | 11.9 | 50.9 |
| K-band, DSS-54, S/K, HEMT-2, LCP, non-diplexed, 25.5 GHz | 41.5 | 11.9 | 53.4 |
| K-band, DSS-54, K-only, HEMT-1, RCP, non-diplexed, 26.0 GHz | 28.3 | 11.7 | 40.0 |
| K-band, DSS-54, K-only, HEMT-2, LCP, non-diplexed, 26.0 GHz | 29.2 | 11.7 | 40.9 |
| K-band, DSS-54, S/K, HEMT-1, RCP, non-diplexed, 26.0 GHz | 34.2 | 11.7 | 45.9 |
| K-band, DSS-54, S/K, HEMT-2, LCP, non-diplexed, 26.0 GHz | 35.1 | 11.7 | 46.8 |
| K-band, DSS-54, K-only, HEMT-1, RCP, non-diplexed, 27.0 GHz | 26.9 | 11.6 | 38.5 |
| K-band, DSS-54, K-only, HEMT-2, LCP, non-diplexed, 27.0 GHz | 26.8 | 11.6 | 38.4 |
| K-band, DSS-54, S/K, HEMT-1, RCP, non-diplexed, 27.0 GHz | 36.5 | 11.6 | 48.1 |
| K-band, DSS-54, S/K, HEMT-2, LCP, non-diplexed, 27.0 GHz | 36.4 | 11.6 | 48.0 |
| K-band, DSS-56, K-only, HEMT-1, RCP, non-diplexed, 26.15 GHz | 33.8 | 11.7 | 45.5 |
| K-band, DSS-56, K-only, HEMT-2, LCP, non-diplexed, 26.15 GHz | 33.8 | 11.7 | 45.5 |
| K-band, DSS-56, S/K, HEMT-1, RCP, non-diplexed, 26.15 GHz | 39.8 | 11.7 | 51.5 |
| K-band, DSS-56, S/K, HEMT-2, LCP, non-diplexed, 26.15 GHz | 39.8 | 11.7 | 51.5 |
| Ka-band, DSS-23, XIKa, HEMT-1, RCP, non-diplexed | TBD | 11.50 | TBD |
| Ka-band, DSS-23, X/Ka, HEMT-2, RCP-error, non-diplexed | TBD | 11.50 | TBD |
| Ka-band, DSS-23, X/Ka, HEMT-3, LCP, non-diplexed | TBD | 11.50 | TBD |
| Ka-band, DSS-25, X/Ka, HEMT-1, RCP, diplexed | 24.2 | 11.50 | 35.70 |
| Ka-band, DSS-25, X/Ka, HEMT-2, RCP-error, diplexed | 25.7 | 11.50 | 37.20 |
| Ka-band, DSS-25, X/Ka, HEMT-3, LCP, diplexed | 23.0 | 11.50 | 34.50 |
| Ka-band, DSS-26, XIKa, HEMT-1, RCP, non-diplexed | 19.36 | 11.50 | 30.86 |
| Ka-band, DSS-26, XIKa, HEMT-2, RCP-error, non-diplexed | 24.55 | 11.50 | 36.05 |
| Ka-band, DSS-26, X/Ka, HEMT-3, LCP, non-diplexed | 20.77 | 11.50 | 32.27 |
| Ka-band, DSS-33, X/Ka, HEMT-1, RCP, non-diplexed | TBD | 14.81 | TBD |

Table 11. $T_{A M W}, T_{s k y}$, and $T_{o p}$ for $\mathrm{CD}=\mathbf{2 5 \%}$ Average Clear Weather at Zenith, Referenced to Feedhorn Aperture (Continued)

| Frequency, Station, and Configuration |  | Noise Temperatures, K |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $\boldsymbol{T}_{\text {AMw }}$ | $\boldsymbol{T}_{\text {sky }}$ | $\boldsymbol{T}_{\text {op }}$ |  |
| Ka-band, DSS-33, X/Ka, HEMT-2, RCP-error, non-diplexed | TBD | 14.81 | TBD |  |
| Ka-band, DSS-33, X/Ka, HEMT-3, LCP, non-diplexed | TBD | 14.81 | TBD |  |
| Ka-band, DSS-34, X/Ka, HEMT-1, RCP, non-diplexed | 19.38 | 14.81 | 34.19 |  |
| Ka-band, DSS-34, X/Ka, HEMT-2, RCP-error, non-diplexed | 23.25 | 14.81 | 38.06 |  |
| Ka-band, DSS-34, X/Ka, HEMT-3, LCP, non-diplexed | 19.61 | 14.81 | 34.42 |  |
| Ka-band, DSS-35, X/Ka, HEMT-1, RCP, diplexed (9/2026) | 17.3 | 14.81 | 32.11 |  |
| Ka-band, DSS-35, X/Ka, HEMT-2, RCP-error, diplexed (9/2026) | TBD | 14.81 | TBD |  |
| Ka-band, DSS-35, X/Ka, HEMT-3, LCP, diplexed (9/2026) | 17.2 | 14.81 | 32.01 |  |
| Ka-band, DSS-36, X/Ka, HEMT-1, RCP, non-diplexed | 12.54 | 14.81 | 27.35 |  |
| Ka-band, DSS-36, X/Ka, HEMT-2, RCP-error, non-diplexed | TBD | 14.81 | TBD |  |
| Ka-band, DSS-36, X/Ka, HEMT-3, LCP, non-diplexed | 12.18 | 14.81 | 26.99 |  |
| Ka-band, DSS-53, X/Ka, HEMT-1, RCP, non-diplexed | 13.0 | 13.91 | 26.91 |  |
| Ka-band, DSS-53, X/Ka, HEMT-2, RCP-error, non-diplexed | TBD | 13.91 | TBD |  |
| Ka-band, DSS-53, X/Ka, HEMT-3, LCP, non-diplexed | 13.4 | 13.91 | 27.31 |  |
| Ka-band, DSS-54, X/Ka, HEMT-1, RCP, non-diplexed | 21.80 | 13.91 | 35.71 |  |
| Ka-band, DSS-54, X/Ka, HEMT-2, RCP-error, non-diplexed | 25.00 | 13.91 | 38.91 |  |
| Ka-band, DSS-54, X/Ka, HEMT-3, LCP, non-diplexed | 21.80 | 13.91 | 35.71 |  |
| Ka-band, DSS-55, X/Ka, HEMT-1, RCP, diplexed (6/2027) | 20.80 | 13.91 | 34.71 |  |
| Ka-band, DSS-55, X/Ka, HEMT-2, RCP-error, diplexed (6/2027) | 21.98 | 13.91 | 35.89 |  |
| Ka-band, DSS-55, X/Ka, HEMT-3, LCP, diplexed (6/2027) | 19.83 | 13.91 | 33.74 |  |
| Ka-band, DSS-56, X/Ka, HEMT-1, RCP, non-diplexed | 16.5 | 13.91 | 30.41 |  |
| Ka-band, DSS-56, X/Ka, HEMT-2, RCP-error, non-diplexed | TBD | 13.91 | TBD |  |
| Ka-band, DSS-56, X/Ka, HEMT-3, LCP, non-diplexed | 17.0 | 13.91 | 30.91 |  |

NOTE: For low-gain mode add +20 K (X-band), +180 K (K-band), +70 K (Ka-band)

810-005
104, Rev. O

Figure 1. Functional Block Diagram of the DSS-23 Antenna.

810-005
104, Rev. O


810-005
104, Rev. O


Figure 3. Functional Block Diagram of the DSS-25 Antenna.
810-005
104, Rev. O



810-005
104, Rev. O


810-005
104, Rev. O


Figure 7. Functional Block Diagram of the DSS-35 Antenna.
810-005
104, Rev. O

Figure 8. Functional Block Diagram of the DSS-36 Antenna.


Figure 9. Functional Block Diagram of the DSS-53 Antenna.
810-005
104, Rev. O

Figure 10. Functional Block Diagram of the DSS-54 Antenna.


Figure 11. Functional Block Diagram of the DSS-55 Antenna.
810-005
104, Rev. O

Figure 12. Functional Block Diagram of the DSS-56 Antenna.


Figure 13. DSS-34 (Canberra) S-Band Receive Gain versus Ele vation Angle, S/XMode (S/X Dichroic In Place), 2.3 GHz


Figure 14. DSS-25 (Goldstone) X-Band Receive Gain versus Ele vation Angle, X/KaMode, 8.4 GHz


Figure 15. DSS-26 (Goldstone) X-Band Receive Gain versus Ele vation Angle, X/KaMode, 8.4 GHz


Figure 16. DSS-34 (Canberra) X-Band Receive Gain versus Ele vation Angle, X/KaMode (S/X Dichroic Retracted), 8.4 GHz


Figure 17. DSS-35 (Canberra) X-Band Receive Gain versus Elevation Angle, X/KaMode, 8.4 GHz


Figure 18. DSS-36 (Canberra) X-band Receive Gain versus Elevation Angle, X/KaMode, 8.4 GHz

810-005
104, Rev. O


Figure 19. DSS-54 (Madrid) X-Band Receive Gain versus Elevation Angle, X/KaMode (S/X Dichroic Retracted), 8.4 GHz


Figure 20. DSS-55 (Madrid) X-Band Receive Gain versus Elevation Angle, X/Ka Mode, 8.4 GHz


Figure 21. DSS-24 (Goldstone) K-Band Receive Gain versus Elevation Angle, KOnly Mode (S/K Dichroic Retracted), 26 GHz


Figure 22. DSS-34 (Canberra) K-Band Receive Gain versus Elevation Angle, KOnly Mode (S/K Dichroic Retracted), 26 GHz


Figure 23. DSS-54 (Madrid) K-Band Receive Gain versus Elevation Angle, K-Only Mode (S/K Dichroic Retracted), 26 GHz


Figure 24. DSS-25 (Goldstone) Ka-Band Receive Gain versus Elevation Angle, X/Ka-Mode, 32 GHz


Figure 25. DSS-26 (Goldstone) Ka-Band Receive Gain versus Elevation Angle, X/Ka-Mode, 32 GHz


Figure 26. DSS-34 (Canberra) Ka-Band Receive Gain versus Elevation Angle, X/KaMode, 32 GHz


Figure 27. DSS-35 (Canberra) Ka-Band Receive Gain versus Ele vation Angle, X/KaMode, 32 GHz


Figure 28. DSS-36 (Canberra) Ka-Band Receive Gain versus Elevation Angle, X/KaMode, 32 GHz


Figure 29. DSS-55 (Madrid) Ka-Band Receive Gain versus Elevation Angle, X/KaMode, 32 GHz


Figure 30. DSS-34 (Canberra) S-Band System Temperature versus Elevation Angle, S/X-Mode (S/X Dichroic In Place), Non-Diplexed Path, 2.3 GHz


Figure 31. DSS-25 (Goldstone) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 8.4 GHz


Figure 32. DSS-26 (Goldstone) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 8.4 GHz


Figure 33. DSS-34 (Canberra) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode (S/X Dichroic Retracted), 8.4 GHz


Figure 34. DSS-35 (Canberra) X-Band RCP System Temperature versus Ele vation Angle, X/Ka-Mode, 8.4 GHz


Figure 35. DSS-36 (Canberra) X-Band RCP System Temperature versus Ele vation Angle, X/Ka-Mode, 8.4 GHz


Figure 36. DSS-54 (Madrid) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode (S/X Dichroic Retracted), 8.4 GHz


Figure 37. DSS-55 (Madrid) X-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 8.4 GHz


Figure 38. DSS-24 (Goldstone) K-Band RCP System Temperature versus Ele vation Angle, K-only Mode (S/K Dichroic Retracted), 26 GHz


Figure 39. DSS-34 (Canberra) K-Band RCP System Temperature versus Elevation Angle, K-only Mode (S/K Dichroic Retracted), 26 GHz


Figure 40. DSS-54 (Madrid) K-Band RCP System Temperature versus Elevation Angle, K-only Mode (S/K Dichroic Retracted), 26 GHz


Figure 41. DSS-25 (Goldstone) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz


Figure 42. DSS-26 (Goldstone) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz


Figure 43. DSS-34 (Canberra) Ka-Band RCP System Temperature versus Ele vation Angle, X/Ka-Mode, 32 GHz


Figure 44. DSS-35 (Canberra) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz


Figure 45. DSS-36 (Canberra) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz


Figure 46. DSS-55 (Madrid) Ka-Band RCP System Temperature versus Elevation Angle, X/Ka-Mode, 32 GHz


Figure 47. S-Band Gain Reduction versus Angle off Boresight


Figure 48. X-Band Gain Reduction versus Angle off Boresight


Figure 49. K- and Ka-Band Gain Reduction versus Angle off Boresight


Figure 50. Ka-Band Transmit Gain Reduction Due to Aberration Correction

## Appendix A <br> Equations for Modeling

## A. 1 Equations for Gain Versus Ele vation Angle

The following equation can be used to generate S -, X -, K -, and Ka -band transmit and receive gain versus elevation angle curves. Examples of these curves for selected stations and configurations are shown in Figures 13-29. See paragraph 2.1.1.1 for frequency effect modeling and module 105 for atmospheric attenuation at weather conditions other than $0 \%, 50 \%$, and $90 \%$ cumulative distribution.

$$
\begin{equation*}
G(\theta)=G_{0}-G_{1}(\theta-\gamma)^{2}-\frac{A_{z e n}}{\sin \theta}, \mathrm{dBi} \tag{A-1}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta= & \text { antenna elevation angle (deg.) } 6 \leq \theta \leq 90 \\
G_{0}, G_{l}, \gamma= & \text { parameters from Table A-1 through Table A-4 } \\
A_{z e n}= & \text { zenith atmospheric attenuation, } \mathrm{dB}, \text { from this module, Table A-5 } \\
& \text { (Module 105, Rev. E), or from Tables } 10 \text { through } 21 \text { in module } \\
& 105
\end{aligned}
$$

## A. 2 Equations for System Temperature Versus Elevation Angle

The following equation can be used to generate S -, X , and Ka -band system temperature versus elevation angle curves. Examples of these curves are shown in Figures 30-46. See module 105 for atmospheric attenuation at weather conditions other than $0 \%, 50 \%$, and $90 \%$ cumulative distribution.

System operating noise temperature:

$$
\begin{equation*}
T_{o p}(\theta)=T_{A M W}+T_{\text {sky }}, \quad \mathrm{K} \tag{A2}
\end{equation*}
$$

Antenna-Microwave noise contribution:

$$
\begin{equation*}
T_{A M W}=T_{1}+T_{2} e^{-a \theta}, \quad \mathrm{~K} \tag{A3}
\end{equation*}
$$

Sky noise contribution:

$$
\begin{equation*}
T_{s k y}=T_{\text {atm }}(\theta)+T_{C M B}^{\prime}(\theta), \quad \mathrm{K} \tag{A4}
\end{equation*}
$$

Atmospheric attenuation:

$$
\begin{equation*}
A(\theta)=\frac{A_{z e n}}{\sin (\theta)}, \mathrm{dB} \tag{A5}
\end{equation*}
$$

Atmospheric loss factor:

$$
\begin{equation*}
L(\theta)=10^{\frac{A(\theta)}{10}} \text {, dimensionless, }>1.0 \tag{A6}
\end{equation*}
$$

Atmosphere mean physical temperature:

$$
\begin{equation*}
T_{p}=255+25 \times C D, \quad \mathrm{~K} \tag{A7}
\end{equation*}
$$

Atmospheric noise contribution:

$$
\begin{equation*}
T_{a t m}(\theta)=T_{p}\left[1-\frac{1}{L(\theta)}\right], \mathrm{K} \tag{A8}
\end{equation*}
$$

Effective cosmic background noise:

$$
\begin{equation*}
T_{C M B}^{\prime}(\theta)=\frac{T_{C M B}}{L(\theta)}, \quad \mathrm{K} \tag{A9}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta= & \text { antenna elevation angle (deg.), } 6 \leq \theta \leq 90 \\
T_{1}, T_{2}, a= & \text { antenna-microwave noise temperature parameters from Tables A-1 } \\
& \text { through A-4 } \\
A_{z e n}= & \text { zenith atmospheric attenuation, } \mathrm{dB}, \text { from this module, Table A-5 } \\
& \text { (Module } 105, \text { Rev. E), or from Tables } 10-21 \text { in Module } 105 \text { as a } \\
& \text { function of frequency, station, and cumulative distribution }(C D) \\
= & \text { cumulative distribution, } 0 \leq C D \leq 0.99, \text { used to select } A_{z e n} \text { from } \\
& \text { Table A-5 or from Tables } 10-21 \text { in Module } 105
\end{aligned}
$$

## A. 3 Equation for Gain Reduction Versus Pointing Error

The following equation can be used to generate gain reduction versus pointing error curves examples of which are depicted in Figures 47-49.

$$
\begin{equation*}
\Delta G(\theta)=10 \log \left(e^{\frac{2.773 \theta^{2}}{H P B W^{2}}}\right), \mathrm{dB} \tag{A-3}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\theta & =\text { pointing error, deg } \\
H P B W & =\text { half-power beamwidth (from Tables 2-7) }
\end{array}
$$

## A. 4 Equation for Transmit Abe rration Gain Reduction

The following equation can be used to generate the Ka-band transmit gain reduction curve depicted in Figure 50.

$$
\begin{equation*}
\Delta G(\phi)=-0.0038 \phi^{2}, \mathrm{~dB} \tag{A-4}
\end{equation*}
$$

where

$$
\phi=\text { transmit beam offset, mdeg }
$$

810-005
104, Rev. O
Table A-1. S-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture

| Station and Configuration | Vacuum Gain Parameters |  |  |  | Antenna-Microwave Noise Temperature Parameters |  |  | Figures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{G}_{0}$ Transmit | $G_{0}$ Receive | $\mathrm{G}_{1}$ | $\gamma$ | T1 | T ${ }_{2}$ | $a$ |  |
| DSS-24 (Goldstone) |  |  |  |  |  |  |  |  |
| S/X or S/K, HEMT-1, RCP or LCP, Non-Diplexed | - | 56.87 | 0.000032 | 90.0 | 26.04 | 5.2 | 0.05 |  |
| S/X or S/K, HEMT-1, RCP or LCP, Diplexed | 56.20 | 56.87 | 0.000032 | 90.0 | 33.41 | 5.6 | 0.05 |  |
| DSS-26 (Goldstone) |  |  |  |  |  |  |  |  |
| S/X or S/K, HEMT-1, RCP or LCP, Non-Diplexed | - | 56.56 | 0.000033 | 63.9 | 17.6 | 14 | 0.11 |  |
| S/X or S/K, HEMT-1, RCP or LCP, Diplexed, NearEarth Band | 55.89 | 56.56 | 0.000033 | 63.9 | 23.4 | 14 | 0.11 | N/A for deep space |
| DSS-34 (Canberra) |  |  |  |  |  |  |  |  |
| S/X or S/K, HEMT-1, RCP or LCP, Non-Diplexed | - | 56.83 | 0.000042 | 43.19 | 24.88 | 20.0 | 0.16 | Figure 13 <br> Figure 30 |
| $\begin{aligned} & \text { S/X or S/K, HEMT-1, RCP } \\ & \text { or LCP. Diplexed } \end{aligned}$ | 56.16 | 56.83 | 0.000042 | 43.19 | 34.46 | 20.0 | 0.16 |  |
| DSS-36 (Canberra) |  |  |  |  |  |  |  |  |
| S/X or S/K, HEMT-1, RCP or LCP, Non-Diplexed | - | 56.63 | 0.000042 | 45.00 | 21.57 | 28.0 | 0.20 |  |
| S/X or S/K, HEMT-1, RCP or LCP, Diplexed, NearEarth Band | 55.96 | 56.63 | 0.000042 | 45.00 | 30.43 | 28.0 | 0.20 | N/A for deep space |
| DSS-54 (Madrid) |  |  |  |  |  |  |  |  |
| S/X or S/K, HEMT-1, RCP or LCP, Non-Diplexed | - | 56.83 | 0.000042 | 45.00 | 25.72 | 12.0 | 0.08 |  |
| S/X or S/K, HEMT-1, RCP or LCP, Diplexed | 56.16 | 56.83 | 0.000042 | 45.00 | 35.34 | 12.0 | 0.08 | N/A for deep space |
| DSS-56 (Madrid) |  |  |  |  |  |  |  |  |
| S/X or S/K, HEMT-1, RCP or LCP, Non-Diplexed | - | 56.76 | 0.000037 | 40.92 | 20.63 | 20.0 | 0.15 |  |
| S/X or S/K, HEMT-1, RCP or LCP, Diplexed | 56.09 | 56.76 | 0.000037 | 40.92 | 27.33 | 20.0 | 0.15 | N/A for deep space |

## NOTES:

Figures referenced are typically for highest performance configuration for each stated antenna. See Sections 2.1.1.2 and 2.1.2.

Values in above table are for S-band deep-space uplink (transmit) and downlink (receive) frequencies.

Nominal S-band deep-space uplink frequency is 2115 MHz .
Nominal S-band deep-space downlink frequency is 2295 MHz .
Nominal S-band near-earth uplink frequency is 2067.5 MHz .
Nominal S-band near-earth downlink frequency is 2245 MHz .
For near-earth uplink Go gain, reduce above Go transmit gains by 0.19 dB .
For near-earth downlink Go gain, reduce above $G_{0}$ receive gains by 0.19 dB .
DSS-26, DSS-36, and DSS-56 not available for S-band deep-space uplink due to low transmit power (250 W). DSS-54 and DSS-56 not available for S-band deep-space uplink due to frequency restriction.

810-005
104, Rev. O
Table A-2. X-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture

| Station and Configuration | Vacuum Gain Parameters |  |  |  | Antenna-Microwave Noise Temperature Parameters |  |  | Figures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \mathrm{G}_{0} \\ \text { Transmit } \end{gathered}$ | Go <br> Receive | $\mathrm{G}_{1}$ | $\gamma$ | T1 | T2 | $a$ |  |
| DSS-23 (Goldstone) |  |  |  |  |  |  |  |  |
| X/Ka, HEMT-1, RCP, Diplexed | TBD | TBD |  |  | TBD |  |  |  |
| X/Ka, HEMT-2, LCP, Diplexed | TBD | TBD |  |  | TBD |  |  |  |
| DSS-24 (Goldstone) |  |  |  |  |  |  |  |  |
| X-Only, MASER-1, RCP or LCP, Non-Diplexed | - | 68.24 | 0.000027 | 51.50 | 21.28 | 1.5 | 0.11 |  |
| X-Only, MASER-1, RCP or LCP, Diplexed | 66.88 | 68.24 | 0.000027 | 51.50 | 30.39 | 2.9 | 0.11 |  |
| S/X, MASER-1, RCP or LCP, Non-Diplexed | - | 68.19 | 0.000027 | 51.50 | 22.72 | 1.5 | 0.11 |  |
| S/X, MASER-1, RCP or LCP, Diplexed | N/A | 68.19 | 0.000027 | 51.50 | 31.89 | 2.9 | 0.11 |  |
| DSS-25 (Goldstone) |  |  |  |  |  |  |  |  |
| X/Ka, HEMT-1, RCP, Diplexed | 66.86 | 68.22 | 0.000047 | 42.44 | 16.2 | 12.0 | 0.2 | Figure 14 Figure 31 |
| X/Ka, HEMT-2, LCP, Diplexed | 66.86 | 68.22 | 0.000047 | 42.44 | 16.0 | 12.0 | 0.2 |  |
| DSS-26 (Goldstone) |  |  |  |  |  |  |  |  |
| X/Ka, HEMT-1, RCP, Diplexed | 66.93 | 68.29 | 0.000059 | 42.46 | 16.29 | 5.2 | 0.08 | Figure 15 <br> Figure 32 |
| X/Ka, HEMT-2, LCP, Diplexed | 66.93 | 68.29 | 0.000059 | 42.46 | 15.43 | 5.2 | 0.08 |  |
| S/X, HEMT-1, RCP, Diplexed | N/A | 68.24 | 0.000059 | 42.46 | 18.01 | 5.2 | 0.08 |  |
| S/X, HEMT-2, LCP, Diplexed | N/A | 68.24 | 0.000059 | 42.46 | 17.15 | 5.2 | 0.08 |  |
| DSS-33 (Canberra) |  |  |  |  |  |  |  |  |
| X/Ka, HEMT-1, RCP, Diplexed | TBD | TBD |  |  | TBD |  |  |  |
| X/Ka, HEMT-2, LCP, Diplexed | TBD | TBD |  |  | TBD |  |  |  |

Table A-2. X-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture (continued)

| Station and Configuration | Vacuum Gain Parameters |  |  |  | Antenna-Microwave Noise Temperature Parameters |  |  | Figures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Go <br> Transmit |  | $\mathrm{G}_{1}$ | $\gamma$ | $\mathrm{T}_{1}$ | $\mathrm{T}_{2}$ | a |  |
| DSS-34 (Canberra) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, Diplexed | 66.97 | 68.33 | 0.000045 | 48.64 | 16.28 | 5.0 | 0.15 | Figure 16 Figure 33 |
| X/Ka, HEMT-2, LCP, Diplexed | 66.97 | 68.33 | 0.000045 | 48.64 | 16.71 | 5.0 | 0.15 |  |
| S/X, HEMT-1, RCP, Diplexed | N/A | 68.28 | 0.000045 | 48.64 | 17.99 | 5.0 | 0.15 |  |
| S/X, HEMT-2, LCP, Diplexed | N/A | 68.28 | 0.000045 | 48.64 | 18.43 | 5.0 | 0.15 |  |
| DSS-35 (Canberra) |  |  |  |  |  |  |  |  |
| X/Ka, HEMT-1, RCP, Diplexed | 66.99 | 68.35 | 0.000045 | 45.00 | 14.7 | 0.0 | 0.00 | Figure 17 Figure 34 |
| X/Ka, HEMT-2, LCP, Diplexed | 66.99 | 68.35 | 0.000045 | 45.00 | 15.0 | 0.0 | 0.00 |  |
| DSS-36 (Canberra) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, <br> Diplexed | 66.98 | 68.34 | 0.000045 | 45.00 | 12.59 | 15.0 | 0.20 | Figure 18 Figure 35 |
| X/Ka, HEMT-2, LCP Diplexed | 66.98 | 68.34 | 0.000045 | 45.00 | 13.95 | 12.0 | 0.20 |  |
| S/X, HEMT-1, RCP, Diplexed | N/A | 68.29 | 0.000045 | 45.00 | 14.31 | 15.0 | 0.20 |  |
| S/X, HEMT-2, LCP, Diplexed | N/A | 68.29 | 0.000045 | 45.00 | 15.67 | 12.0 | 0.20 |  |
| DSS-53 (Madrid) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, Diplexed | 66.89 | 68.25 | 0.000046 | 43.0 | 13.1 | 20.0 | 0.4 |  |
| XIKa, HEMT-2, LCP, Diplexed | 66.89 | 68.25 | 0.000046 | 43.0 | 13.2 | 20.0 | 0.4 |  |
| DSS-54 (Madrid) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, Diplexed | 67.01 | 68.37 | 0.000058 | 45.25 | 18.31 | 11.0 | 0.15 | Figure 19 Figure 36 |
| X/Ka, HEMT-2, LCP, Diplexed | 67.01 | 68.37 | 0.000058 | 45.25 | 18.31 | 11.0 | 0.15 |  |
| S/X, HEMT-1, RCP, Diplexed | N/A | 68.32 | 0.000058 | 45.25 | 20.03 | 11.0 | 0.15 |  |
| S/X, HEMT-2, LCP, Diplexed | N/A | 68.32 | 0.000058 | 45.25 | 20.03 | 11.0 | 0.15 |  |
| DSS-55 (Madrid) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, Diplexed | 66.98 | 68.34 | 0.000035 | 43.55 | 17.42 | 13.2 | 0.15 | Figure 20 <br> Figure 37 |
| X/Ka, HEMT-2, LCP, Diplexed | 66.98 | 68.34 | 0.000035 | 43.55 | 17.82 | 13.2 | 0.15 |  |

810-005
104, Rev. O

Table A-2. X-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture (continued)

| Station and Configuration | Vacuum Gain Parameters |  |  |  |  | Antenna-Microwave <br> Noise Temperature <br> Parameters |  | Figures |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{G}_{0}$ <br> Transmit | $\mathrm{G}_{0}$ <br> Receive | $\mathrm{G}_{1}$ | $\gamma$ | $\mathrm{~T}_{1}$ | $\mathrm{~T}_{2}$ | $a$ |  |
|  | DSS-56 (Madrid) |  |  |  |  |  |  |  |  |
| XVK, HEMT-1, RCP, <br> Diplexed | 66.75 | 68.11 | 0.000054 | 49.94 | 14.47 | -0.9 | 0.05 |  |
| XVKa, HEMT-2, LCP, <br> Diplexed | 66.75 | 68.11 | 0.000054 | 49.94 | 13.96 | -0.9 | 0.05 |  |
| S/X, HEMT-1, RCP, Diplexed | N/A | 68.06 | 0.000054 | 49.94 | 16.19 | -0.9 | 0.05 |  |
| S/X, HEMT-2, LCP, Diplexed | N/A | 68.06 | 0.000054 | 49.94 | 15.68 | -0.9 | 0.05 |  |

## NOTES:

Figures referenced are typically for highest performance configuration for each stated antenna. See Sections 2.1.1.2 and 2.1.2.

Values in above table are for X-band deep-space uplink (transmit) and downlink (receive) frequencies.

Nominal $X$-band deep-space uplink frequency is 7167.5 MHz .
Nominal X-band deep-space downlink frequency is 8425 MHz .
Nominal X-band near-earth uplink frequency is 7212.5 MHz .
Nominal X -band near-earth downlink frequency is 8475 MHz .
For near-earth uplink Go gain, increase above Go transmit gains by 0.05 dB .
For near-earth downlink Go gain, increase above Go receive gains by 0.05 dB .
For low-gain mode add +20 K to $\mathrm{T}_{1}$ values (X-band).
X-band uplink not available in $\mathrm{S} / \mathrm{X}$ mode, with $\mathrm{S} / \mathrm{X}$ dichroic extended.

810-005
104, Rev. O
Table A-3. K-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture

| Station and Configuration | Vacuum Gain Parameters |  |  | Antenna-Microwave Noise Temperature Parameters |  |  | Figures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Receive | $\mathrm{G}_{1}$ | $\square$ | T ${ }_{1}$ | $\mathrm{T}_{2}$ | a |  |
| DSS-24 (Goldstone) |  |  |  |  |  |  |  |
| K-only, HEMT-1, RCP, 25.5 GHz, Non-Diplexed | 77.03 | 0.00029 | 45.0 | 19.6 | 19.6 | 0.05 |  |
| K-only, HEMT-2, LCP, 25.5 GHz, Non-Diplexed | 77.03 | 0.00029 | 45.0 | 27.1 | 19.6 | 0.05 |  |
| S/K, HEMT-1, RCP, 25.5 GHz, Non-Diplexed | 76.99 | 0.00029 | 45.0 | 30.3 | 20.4 | 0.065 |  |
| $\begin{aligned} & \text { S/K, HEMT-2, LCP, } \\ & 25.5 \mathrm{GHz}, \text { Non-Diplexed } \end{aligned}$ | 76.99 | 0.00029 | 45.0 | 37.8 | 20.4 | 0.065 |  |
| K-only, HEMT-1, RCP, 26.0 GHz, Non-Diplexed | 77.20 | 0.00029 | 45.0 | 17.5 | 19.6 | 0.05 | Figure 21 Figure 38 |
| K-only, HEMT-2, LCP, 26.0 GHz, Non-Diplexed | 77.20 | 0.00029 | 45.0 | 23.5 | 19.6 | 0.05 |  |
| S/K, HEMT-1, RCP, <br> 26.0 GHz, Non-Diplexed | 77.16 | 0.00029 | 45.0 | 23.5 | 20.4 | 0.065 |  |
| S/K, HEMT-2, LCP, 26.0 GHz, Non-Diplexed | 77.16 | 0.00029 | 45.0 | 29.5 | 20.4 | 0.065 |  |
| K-only, HEMT-1, RCP, 27.0 GHz, Non-Diplexed | 77.53 | 0.00029 | 45.0 | 20.8 | 19.6 | 0.05 |  |
| K-only, HEMT-2, LCP, 27.0 GHz, Non-Diplexed | 77.53 | 0.00029 | 45.0 | 25.4 | 19.6 | 0.05 |  |
| S/K, HEMT-1, RCP, 27.0 GHz, Non-Diplexed | 77.49 | 0.00029 | 45.0 | 30.5 | 20.4 | 0.065 |  |
| $\begin{aligned} & \text { S/K, HEMT-2, LCP, } \\ & 27.0 \mathrm{GHz} \text {, Non-Diplexed } \end{aligned}$ | 77.49 | 0.00029 | 45.0 | 35.1 | 20.4 | 0.065 |  |
| DSS-26 (Goldstone) |  |  |  |  |  |  |  |
| K-only, HEMT-1, RCP, 26.0 GHz, Diplexed | 77.38 | 0.00094 | 45.0 | 31.8 | -1.3 | 0.05 |  |
| K-only, HEMT-2, LCP, 26.0 GHz, Diplexed | 77.38 | 0.00094 | 45.0 | 30.8 | -1.3 | 0.05 |  |
| S/K, HEMT-1, RCP, <br> 26.0 GHz, Diplexed | 77.34 | 0.00094 | 45.0 | 40.4 | -1.3 | 0.05 |  |
| S/K, HEMT-2, LCP, 26.0 GHz, Diplexed | 77.34 | 0.00094 | 45.0 | 39.4 | -1.3 | 0.05 |  |

810-005
104, Rev. O

Table A-3. K-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture (continued)

| Station and Configuration | Vacuum Gain Parameters |  |  | Antenna-Microwave Noise Temperature Parameters |  |  | Figures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{G}_{1}$ | $\gamma$ | T ${ }_{1}$ | T ${ }_{2}$ | $a$ |  |
| DSS-34 (Canberra) |  |  |  |  |  |  |  |
| K-only, HEMT-1, RCP, 25.5 GHz, Non-Diplexed | 77.02 | 0.00029 | 48.0 | 24.9 | 19.6 | 0.05 |  |
| K-only, HEMT-2, LCP, 25.5 GHz, Non-Diplexed | 77.02 | 0.00029 | 48.0 | 26.3 | 19.6 | 0.05 |  |
| $\begin{aligned} & \text { S/K, HEMT-1, RCP, } \\ & 25.5 \text { GHz, Non-Diplexed } \end{aligned}$ | 76.98 | 0.00029 | 48.0 | 35.6 | 20.4 | 0.065 |  |
| S/K, HEMT-2, LCP, 25.5 GHz , Non-Diplexed | 76.98 | 0.00029 | 48.0 | 37.0 | 20.4 | 0.065 |  |
| K-only, HEMT-1, RCP, 26.0 GHz, Non-Diplexed | 77.19 | 0.00029 | 48.0 | 25.3 | 19.6 | 0.05 | Figure 22 <br> Figure 39 |
| K-only, HEMT-2, LCP, 26.0 GHz, Non-Diplexed | 77.19 | 0.00029 | 48.0 | 25.4 | 19.6 | 0.05 |  |
| S/K, HEMT-1, RCP, 26.0 GHz, Non-Diplexed | 77.15 | 0.00029 | 48.0 | 31.3 | 20.4 | 0.065 |  |
| $\begin{aligned} & \text { S/K, HEMT-2, LCP, } \\ & \text { 26.0 GHz, Non-Diplexed } \end{aligned}$ | 77.15 | 0.00029 | 48.0 | 31.4 | 20.4 | 0.065 |  |
| K-only, HEMT-1, RCP, 27.0 GHz, Non-Diplexed | 77.52 | 0.00029 | 48.0 | 23.7 | 19.6 | 0.05 |  |
| K-only, HEMT-2, LCP, 27.0 GHz, Non-Diplexed | 77.52 | 0.00029 | 48.0 | 24.5 | 19.6 | 0.05 |  |
| S/K, HEMT-1, RCP, 27.0 GHz, Non-Diplexed | 77.48 | 0.00029 | 48.0 | 33.4 | 20.4 | 0.065 |  |
| S/K, HEMT-2, LCP, 27.0 GHz, Non-Diplexed | 77.48 | 0.00029 | 48.0 | 34.2 | 20.4 | 0.065 |  |
| DSS-36 (Canberra) |  |  |  |  |  |  |  |
| K-only, HEMT-1, RCP, 26.0 GHz, Non-Diplexed | TBD |  |  | TBD |  |  |  |
| K-only, HEMT-2, LCP, 26.0 GHz, Non-Diplexed | TBD |  |  | TBD |  |  |  |

Table A-3. K-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture (continued)

| Station and Configuration | Vacuum Gain Parameters |  |  | Antenna-Microwave Noise Temperature Parameters |  |  | Figures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{G}_{1}$ | $\gamma$ | T1 | T ${ }_{2}$ | $a$ |  |
| S/K, HEMT-1, RCP, 26.0 GHz, Non-Diplexed | TBD |  |  | TBD |  |  |  |
| S/K, HEMT-2, LCP, 26.0 GHz, Non-Diplexed | TBD |  |  | TBD |  |  |  |
| DSS-54 (Madrid) |  |  |  |  |  |  |  |
| K-only, HEMT-1, RCP, 25.5 GHz , Non-Diplexed | 77.02 | 0.00029 | 45.0 | 28.2 | 19.6 | 0.05 |  |
| K-only, HEMT-2, LCP, 25.5 GHz, Non-Diplexed | 77.02 | 0.00029 | 45.0 | 30.7 | 19.6 | 0.05 |  |
| S/K, HEMT-1, RCP, 25.5 GHz, Non-Diplexed | 76.98 | 0.00029 | 45.0 | 38.9 | 20.4 | 0.065 |  |
| S/K, HEMT-2, LCP, 25.5 GHz, Non-Diplexed | 76.98 | 0.00029 | 45.0 | 41.4 | 20.4 | 0.065 |  |
| K-only, HEMT-1, RCP, 26.0 GHz, Non-Diplexed | 77.19 | 0.00029 | 45.0 | 28.1 | 19.6 | 0.05 | Figure 23 Figure 40 |
| K-only, HEMT-2, LCP, 26.0 GHz, Non-Diplexed | 77.19 | 0.00029 | 45.0 | 29.0 | 19.6 | 0.05 |  |
| S/K, HEMT-1, RCP, 26.0 GHz, Non-Diplexed | 77.15 | 0.00029 | 45.0 | 34.1 | 20.4 | 0.065 |  |
| S/K, HEMT-2, LCP, 26.0 GHz, Non-Diplexed | 77.15 | 0.00029 | 45.0 | 35.0 | 20.4 | 0.065 |  |
| K-only, HEMT-1, RCP, 27.0 GHz, Non-Diplexed | 77.52 | 0.00029 | 45.0 | 26.7 | 19.6 | 0.05 |  |
| K-only, HEMT-2, LCP, 27.0 GHz, Non-Diplexed | 77.52 | 0.00029 | 45.0 | 26.6 | 19.6 | 0.05 |  |
| S/K, HEMT-1, RCP, 27.0 GHz, Non-Diplexed | 77.48 | 0.00029 | 45.0 | 36.4 | 20.4 | 0.065 |  |
| S/K, HEMT-2, LCP, 27.0 GHz, Non-Diplexed | 77.48 | 0.00029 | 45.0 | 36.3 | 20.4 | 0.065 |  |
| DSS-56 (Madrid) |  |  |  |  |  |  |  |
| K-only, HEMT-1, RCP, 26.15 GHz, NonDiplexed | 77.57 | 0.00066 | 34.37 | 33.8 | 28.5 | 0.075 |  |
| K-only, HEMT-2, LCP, 26.15 GHz, NonDiplexed | 77.57 | 0.00066 | 34.37 | 33.8 | 28.5 | 0.075 |  |

Table A-3. K-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture (continued)

| Station and <br> Configuration | Vacuum Gain Parameters |  |  | Antenna-Microwave Noise <br> Temperature Parameters |  |  | Figures |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{G}_{0}$ <br> Receive | $\mathbf{G}_{1}$ | $\gamma$ | $\mathbf{T}_{\mathbf{1}}$ | $\mathbf{T}_{\mathbf{2}}$ | $\mathbf{a}$ |  |
| S/K, HEMT-1, RCP, <br> 26.15 GHz, Non- <br> Diplexed | 77.53 | 0.00066 | 34.37 | 39.8 | 28.5 | 0.075 |  |
| S/K, HEMT-2, LCP, <br> 26.15 GHz, Non- <br> Diplexed | 77.53 | 0.00066 | 34.37 | 39.8 | 28.5 | 0.075 |  |

## NOTES:

Figures referenced are typically for highest performance configuration for each stated antenna. See Sections 2.1.1.2 and 2.1.2.

Values in above table are for K-band near-earth downlink (receive) frequencies.
Nominal K-band near-earth downlink frequency is 26250 MHz.
Nominal K-band near-earth uplink frequency is 22850 MHz .
For K-band uplink, Go,transmit = Go,receive - 1.1 dB .
For low-gain mode add +180 K to $\mathrm{T}_{1}$ values (K-band).
See Section 3 and Table 1 for future K-band uplink and downlink implementation dates.

Table A-4. Ka-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture

| Station and Configuration | Vacuum Gain Parameters |  |  |  | Antenna-Microwave Noise Temperature Parameters |  |  | Figures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{G}_{0}$ Transmit | $\begin{gathered} \mathrm{G}_{0} \\ \text { Receive } \end{gathered}$ | $\mathrm{G}_{1}$ | $\gamma$ | T1 | T ${ }_{2}$ | $a$ |  |
| DSS-23 (Goldstone) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, Non-Diplexed | - | TBD |  |  | TBD |  |  |  |
| XIKa, HEMT-2, RCPerror, Non-Diplexed | - | - | - | - | TBD |  |  |  |
| X/Ka, HEMT-3, LCP, NonDiplexed | - | TBD |  |  | TBD |  |  |  |
| DSS-25 (Goldstone) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, Diplexed | 79.03 | 78.40 | 0.00036 | 53.83 | 24.2 | 10.0 | 0.15 | Figure 24 <br> Figure 41 |
| XIKa, HEMT-2, RCPerror, Diplexed | - | - | - | - | 25.7 | 10.0 | 0.15 |  |
| X/Ka, HEMT-3, LCP, Diplexed | 79.03 | 78.40 | 0.00036 | 53.83 | 23.0 | 10.0 | 0.15 |  |
| DSS-26 (Goldstone) |  |  |  |  |  |  |  |  |
| X/Ka, HEMT-1, RCP, Non-Diplexed | - | 79.13 | 0.00022 | 44.38 | 19.35 | 5.0 | 0.075 | Figure 25 <br> Figure 42 |
| XIKa, HEMT-2, RCPerror, Non-Diplexed | - | - | - | - | 24.54 | 5.0 | 0.075 |  |
| X/Ka, HEMT-3, LCP, NonDiplexed | - | 79.13 | 0.00022 | 44.38 | 20.76 | 5.0 | 0.075 |  |
| DSS-33 (Canberra) |  |  |  |  |  |  |  |  |
| X/Ka, HEMT-1, RCP, Non-Diplexed | - | TBD |  |  | TBD |  |  |  |
| XIKa, HEMT-2, RCPerror, Non-Diplexed | - | - | - | - | TBD |  |  |  |
| X/Ka, HEMT-3, LCP, Non-Diplexed | - | TBD |  |  | TBD |  |  |  |
| DSS-34 (Canberra) |  |  |  |  |  |  |  |  |
| XKKa, HEMT-1, RCP, <br> Non-Diplexed | - | 78.98 | 0.00031 | 44.30 | 19.38 | 0.0 | 0.000 | Figure 26 <br> Figure 43 |
| XIKa, HEMT-2, RCPerror, Non-Diplexed | - | - | - | - | 23.25 | 0.0 | 0.000 |  |
| X/Ka, HEMT-3, LCP, NonDiplexed | - | 78.98 | 0.00031 | 44.30 | 19.61 | 0.0 | 0.000 |  |
| DSS-35 (Canberra) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, Diplexed (8/2026) | TBD | 79.27 | 0.00031 | 45.00 | 17.3 | 1.0 | 0.1 | Figure 27 Figure 44 |
| XIKa, HEMT-2, RCPerror, Diplexed (8/2026) | - | - | - | - | not measured |  |  |  |
| XIKa, HEMT-3, LCP, Diplexed (8/2026) | TBD | 79.27 | 0.00031 | 45.00 | 17.2 | 1.0 | 0.1 |  |

Table A-4. Ka-Band Vacuum Gain and Antenna-Microwave Noise Temperature Parameters, Referenced to Feedhorn Aperture (continued)

| Station and Configuration | Vacuum Gain Parameters |  |  |  | Antenna-Microwave Noise Temperature Parameters |  |  | Figures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \mathrm{G}_{0} \\ \text { Transmit } \end{gathered}$ |  | $\mathrm{G}_{1}$ | $\gamma$ | $\mathrm{T}_{1}$ | $\mathrm{T}_{2}$ | a |  |
| DSS-36 (Canberra) |  |  |  |  |  |  |  |  |
| XKa, HEMT-1, RCP, Non-Diplexed | - | 79.34 | 0.00060 | 47.52 | 12.54 | -13.0 | 0.060 | Figure 28 Figure 45 |
| XIKa, HEMT-2, RCPerror, Non-Diplexed | - | - | - | - | Not measured |  |  |  |
| X/Ka, HEMT-3, LCP, Non-Diplexed | - | 79.34 | 0.00060 | 47.52 | 12.18 | -12.8 | 0.060 |  |
| DSS-53 (Madrid) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, Non-Diplexed | - | 78.90 | 0.00078 | 45.00 | 13.0 | 0.0 | 0.0 |  |
| XKKa, HEMT-2, RCPerror, Non-Diplexed | - | - | - | - | 18.0 | 0.0 | 0.0 |  |
| X/Ka, HEMT-3, LCP, Non-Diplexed | - | 78.90 | 0.00078 | 45.00 | 13.4 | 0.0 | 0.0 |  |
| DSS-54 (Madrid) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, Non-Diplexed | - | 78.38 | 0.00020 | 45.00 | 21.80 | 0.0 | 0.000 |  |
| XKKa, HEMT-2, RCPerror, Non-Diplexed | - | - | - | - | 25.00 | 0.0 | 0.000 |  |
| X/Ka, HEMT-3, LCP, Non-Diplexed | - | 78.38 | 0.00020 | 45.00 | 21.80 | 0.0 | 0.000 |  |
| DSS-55 (Madrid) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, <br> Diplexed (5/2027) | TBD | 79.13 | 0.00022 | 45.00 | 20.79 | 5.3 | 0.076 | Figure 29 <br> Figure 46 |
| XIKa, HEMT-2, RCPerror, Diplexed (5/2027) | - | - | - | - | 21.97 | 5.3 | 0.076 |  |
| X/Ka, HEMT-3, LCP, Diplexed (5/2027) | TBD | 79.13 | 0.00022 | 45.00 | 19.82 | 5.3 | 0.076 |  |
| DSS-56 (Madrid) |  |  |  |  |  |  |  |  |
| XIKa, HEMT-1, RCP, Non-Diplexed | - | 79.01 | 0.0011 | 43.24 | 16.5 | -5.0 | 0.2 |  |
| XIKa, HEMT-2, RCPerror, Non-Diplexed | - | - | - | - | Not measured |  |  |  |
| X/Ka, HEMT-3, LCP, Non-Diplexed | - | 79.01 | 0.0011 | 43.24 | 17.0 | -5.0 | 0.2 |  |

## NOTES:

Figures referenced are typically for highest performance configuration for each stated antenna.
See Sections 2.1.1.2 and 2.1.2.
Values in above table are for Ka-band deep-space uplink (transmit) and downlink (receive) frequencies.

Nominal Ka-band deep-space uplink frequency is 34450 MHz .
Nominal Ka-band deep-space downlink frequency is 32050 MHz.
For low-gain mode add +70 K to $\mathrm{T}_{1}$ values (Ka-band).
Noise temperatures for DSS-35 and DSS-36 RCP-error channels were not measured.

Table A-5. S-, X-, K-, and Ka-Band Zenith Atmospheric Attenuation ( $\boldsymbol{A}_{\text {zen }}$ )

| Station | $A_{\text {zen }}$, dB (Module 105, Rev. D, 9/2009) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Cumulative Distribution $=0.00$ | Cumulative Distribution $=0.25$ | Cumulative Distribution $=0.50$ | Cumulative Distribution $=0.90$ |
| S-Band |  |  |  |  |
| Goldstone | 0.033 | 0.033 | 0.034 | 0.034 |
| Canberra | 0.036 | 0.036 | 0.036 | 0.037 |
| Madrid | 0.035 | 0.035 | 0.035 | 0.036 |
| X-Band |  |  |  |  |
| Goldstone | 0.037 | 0.039 | 0.040 | 0.047 |
| Canberra | 0.039 | 0.044 | 0.046 | 0.058 |
| Madrid | 0.038 | 0.042 | 0.045 | 0.055 |
| K-Band |  |  |  |  |
| Goldstone | 0.078 | 0.125 | 0.150 | 0.232 |
| Canberra | 0.083 | 0.176 | 0.212 | 0.387 |
| Madrid | 0.082 | 0.153 | 0.186 | 0.385 |
| Ka-Band |  |  |  |  |
| Goldstone | 0.116 | 0.149 | 0.167 | 0.260 |
| Canberra | 0.124 | 0.195 | 0.229 | 0.403 |
| Madrid | 0.121 | 0.181 | 0.217 | 0.361 |

NOTE: Table values from earlier Module 105, Rev. D, 9/2009 (immediately above), have been used to generate the curves in Figures 13-46. Latest module 105, Rev. E, values are given below.

| Station | $A_{\text {zen }}, \mathrm{dB}$ (Module 105, Rev. E, 10/2015) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Cumulative Distribution $=0.00$ | Cumulative Distribution $=0.25$ | Cumulative Distribution $=0.50$ | Cumulative Distribution $=0.90$ |
| S-Band |  |  |  |  |
| Goldstone | 0.033 | 0.033 | 0.034 | 0.034 |
| Canberra | 0.036 | 0.036 | 0.036 | 0.037 |
| Madrid | 0.035 | 0.035 | 0.035 | 0.036 |
| X-Band |  |  |  |  |
| Goldstone | 0.037 | 0.039 | 0.040 | 0.045 |
| Canberra | 0.039 | 0.045 | 0.047 | 0.057 |
| Madrid | 0.038 | 0.043 | 0.045 | 0.058 |

810-005
104, Rev. O

| K-Band |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Goldstone | 0.078 | 0.125 | 0.150 | 0.232 |
| Canberra | 0.083 | 0.176 | 0.212 | 0.387 |
| Madrid | 0.082 | 0.153 | 0.186 | 0.385 |
| Ka-Band |  |  |  |  |
| Goldstone | 0.116 | 0.150 | 0.171 | 0.239 |
| Canberra | 0.124 | 0.208 | 0.238 | 0.384 |
| Madrid | 0.121 | 0.192 | 0.221 | 0.407 |

NOTE: Table A-5 values from latest Module 105, Rev. E, 10/2015 (immediately above), should be used with the equations in Appendix A.

## 105

## Atmospheric and Environmental Effects

Document Owner:
\(\left.$$
\begin{array}{llllll}\text { Signature Provided } & 09 / 15 / 2015 & & \text { Signature Provided } & 07 / 07 / 2015 \\
\begin{array}{lll}\text { Stephen D. Slobin } \\
\text { Antenna System Engineer }\end{array} & \text { Date } & & \begin{array}{l}\text { Timothy T. Pham } \\
\text { Communications Systems Chief } \\
\text { Engineer }\end{array}
$$ \& Date <br>

Prepared by: \& \& \& Released by:\end{array}\right]\)| Signature Provided | $09 / 15 / 2015$ |  | Signature Provided |
| :--- | :--- | :--- | :--- |

DSN No. 810-005, 105, Rev. E
Issue Date: October 22, 2015
JPL D-19379; CL\#15-4732

## Jet Propulsion Laboratory

California Institute of Technology

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | $09 / 11 / 2015$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
|  | Date |  | David Rochblatt | Date |
| DSN Project Chief Engineer |  |  | Antenna System Engineer |  |

## Change Log

| Rev | Issue Date | Affected <br> Paragraphs | Change Summary |
| :---: | :---: | :---: | :--- |
| Initial | $11 / 30 / 2000$ | All | All |
| A | $12 / 15 / 2002$ | All | Provides monthly weather statistics for all <br> stations and frequency bands |
| B | $5 / 26 / 2006$ | Sec. 2.1, 2.4 | Revised weather models, provides new methods <br> for calculating system operating noise <br> temperature and planetary noise effects |
| C | $8 / 1 / 2009$ | Various | Revised weather models and added models for <br> 26 GHz. Removed references to the 26-m subnet <br> which has been decommissioned |
| D | $9 / 15 / 2009$ | Page 18 | Corrected the order and labels for Equations (10) <br> and (11) |
| E | $10 / 22 / 2015$ | Sec. 2.1 <br> Sec. 2.4.1 <br> Sec. 2.4.3 <br> Tables 1-18 <br> Figures 1-9 <br> Figure 10 <br> Figure 11 <br> Figure 20 | Updated to describe new WVR data 2009-2013. <br> Solar flux calculations updated using Fig. 11. <br> Fig. 20 parameters explained. <br> Updated to include 2009-2013 AWVR data for <br> Goldstone and Madrid. <br> New, added Canberra and Madrid sites. <br> Updated to 2015. <br> Caption updated to describe parameters. |

## Contents

Paragraph Page
1 Introduction ..... 8
1.1 Purpose ..... 8
1.2 Scope ..... 8
2 General Information ..... 8
2.1 Atmospheric Attenuation and Noise Temperature ..... 8
2.1.1 Calculation of Atmosphere Mean Effective Radiating Temperature ..... 12
2.1.2 Elevation Angle Modeling ..... 12
2.1.3 Calculation of Noise Temperature From Attenuation ..... 13
2.1.4 Cosmic Background Adjustment ..... 13
2.1.5 Example of Use of Attenuation Statistics to Calculate Atmospheric Noise Temperature, $\mathrm{T}_{\mathbf{a t m}}(\mathrm{CD}, \theta)$, and $\mathrm{T}_{\mathbf{o p}}(\mathrm{CD}, \theta)$ ..... 14
2.1.6 Best/Worst Month Ranges of Atmospheric Noise Temperature and Attenuation ..... 15
2.2 Rainfall Statistics ..... 16
2.3 Wind Loading ..... 16
2.4 Hot Body Noise ..... 17
2.4.1 Solar Noise ..... 17
2.4.2 Lunar Noise ..... 20
2.4.3 Planetary Noise ..... 21
2.4.4 Galactic Noise ..... 23
Illustrations
Figure ..... Page
Figure 1. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L-Band and S-Band, Goldstone DSCC ..... 24
Figure 2. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L-Band and S-Band, Canberra DSCC ..... 25
Figure 3. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L-Band and S-Band, Madrid DSCC ..... 26
Figure 4. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X- Band, Goldstone DSCC ..... 27
810-005105, Rev. E
Figure 5. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X- Band, Canberra DSCC ..... 28
Figure 6. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X- Band, Madrid DSCC ..... 29
Figure 7. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka- Band, Goldstone DSCC ..... 30
Figure 8. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka- Band, Canberra DSCC ..... 31
Figure 9. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka- Band, Madrid DSCC ..... 32
Figure 10. Pass-Average Wind Speed Exceedance Probabilities for the Three DSN Antenna Complexes ..... 33
Figure 11. Solar Radio Flux at 2800 MHz ( 10.7 cm wavelength) from 2000 through 2018 (Covering the end of Solar Cycle 23 and all of Solar Cycle 24, including prediction) ..... 34
Figure 12. DSS-15 HEF Antenna X-Band System Noise Temperature Increases Due to the Sun at Various Offset Angles, Showing Larger Increases Perpendicular to Quadripod Directions ..... 35
Figure 13. Solar Noise Contribution for a 34-Meter Antenna at S-band at Various Offset Angles from the Sun ..... 36
Figure 14. DSS-12 S-Band Total System Noise Temperature at Various Declination and Cross-Declination Offsets from the Sun ..... 37
Figure 15. DSS-12 X-Band Total System Noise Temperature at Various Declination and Cross-Declination Offsets from the Sun ..... 38
Figure 16. DSS-13 Beam-Waveguide Antenna X-Band Noise Temperature Increase Versus Offset Angle, March 1996 ..... 39
Figure 17. DSS-13 Beam-Waveguide Antenna Ka-Band Noise Temperature Increase Versus Offset Angle, March 1996 ..... 39
Figure 18. Total S-Band System Noise Temperature for 70-m Antennas Tracking Spacecraft Near the Sun (Derived from 64-m Measurements) ..... 40
Figure 19. X-Band Noise Temperature Increase for $70-\mathrm{m}$ Antennas as a Function of Sun- Earth-Probe Angle, Nominal Sun, 23,000 K Disk Temperature ..... 41
Figure 20. Normalized Temperature Increase for Half-Power Beamwidth to Planetary Disk Diameter Ratios of 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, and 5.0 (top-to-bottom at the left side). ..... 42

## Tables

Table Page
Table 1. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S- Bands for Goldstone DSCC, K ..... 43
Table 2. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S- Bands for Canberra DSCC, K ..... 44
Table 3. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S- Bands for Madrid DSCC, K ..... 45
Table 4. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Goldstone DSCC, K ..... 46
Table 5. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Canberra DSCC, K. ..... 47
Table 6. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Madrid DSCC, K. ..... 48
Table 7. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Goldstone DSCC, K ..... 49
Table 8. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Canberra DSCC, K ..... 50
Table 9. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Madrid DSCC, K. ..... 51
Table 10. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Goldstone DSCC, dB ..... 52
Table 11. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Canberra DSCC, dB ..... 53
Table 12. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Madrid DSCC, dB ..... 54
Table 13. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Goldstone DSCC, dB ..... 55
Table 14. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Canberra DSCC, dB ..... 56
Table 15. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Madrid DSCC, dB ..... 57
Table 16. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Goldstone DSCC, dB ..... 58
Table 17. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Canberra DSCC, dB ..... 59
Table 18. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Madrid DSCC, dB ..... 60
Table 19. Cumulative Distributions of Year-Average Zenith Atmospheric Attenuation and Noise Temperature at K-Band for Goldstone DSCC. ..... 61
Table 20. Cumulative Distributions of Year-Average Zenith Atmospheric Attenuation and NoiseTemperature at K-Band for Canberra DSCC ..... 61
Table 21. Cumulative Distributions of Year-Average Zenith Atmospheric Attenuation and Noise Temperature at K-Band for Madrid DSCC ..... 62
Table 22. Monthly and Year-Average Rainfall Amounts at the DSN Antenna Locations. ..... 62
Table 23. Parameters for X-Band Planetary Noise Calculation, plus X-Band, K-band, and Ka-Band Noise Temperatures at Mean Minimum Distance from Earth ..... 63

## 1 Introduction

### 1.1 Purpose

This module provides sufficient information concerning atmospheric, environmental, and extraterrestrial effects to enable a flight project to design a telecommunications link at the L-band (1.7 GHz), S-band (2.3 GHz), X-band (8.4 GHz), K-band ( 26 GHz ), and Ka-band ( 32 GHz ) frequencies used by the DSN.

### 1.2 Scope

Statistics of atmospheric attenuation and noise temperature at each tracking antenna site are presented for those microwave frequencies used by the DSN. In this module, the values of attenuation and noise temperature increase are given relative to a no-atmosphere (vacuum) condition thus this presentation is compatible for use with the vacuum gain and antenna-microwave noise temperature presentations of antenna performance given in modules 101 for $70-\mathrm{m}$ antennas, 103 for $34-\mathrm{m}$ high-efficiency (HEF) antennas, and 104 for $34-\mathrm{m}$ beamwaveguide (BWG) antennas.

Statistics of wind speed at Goldstone are given. These are used both to determine the statistics of antenna gain reduction due to wind loading and also to ascertain the percentage of time an antenna will be unusable due to excessive wind speed.

Extraterrestrial effects are primarily the increased system noise temperature due to hot body noise from the Sun, Moon, planets, and galactic radio sources. These effects are significant only when the antenna beam is in the vicinity of these noise sources during tracking of spacecraft.

Charged-particle effects are given in module 106, Solar Corona and Solar Wind Effects.

## 2 General Information

### 2.1 Atmospheric Attenuation and Noise Temperature

The principal weather-related effects on telecommunications link performance are the atmospheric attenuation and noise temperature resulting from oxygen, water vapor, clouds, and rain. The two effects are related and higher atmospheric attenuation produces a higher noise contribution. Also, atmospheric effects generally increase with increasing frequency, except in the vicinity of the water vapor line at $22.235 \mathrm{GHz}(20-25 \mathrm{GHz})$, and the oxygen band from about
$55-65 \mathrm{GHz}$. K- and Ka-band effects are larger than X-band effects, which in turn are larger than S-band and L-band effects.

In the 810-005 antenna performance modules (modules 101, 103, and 104), effective antenna gain (vacuum gain minus atmospheric attenuation) is presented in the figures for various atmospheric attenuation values. Strictly speaking, the gain of an antenna is not a function of atmospheric attenuation; however for stand-alone use, the effective gain, including atmospheric loss, is a useful concept, and the equations for gain in the appendices of those modules include a term for atmospheric attenuation. Similarly, the antenna-microwave noise temperature, $T_{A M W}$ (due to spillover, LNA contribution, waveguide loss, etc.), is also not a function of atmosphere. However, the system operating noise temperature, $T_{o p}$, as presented in the appendices of the antenna performance modules, includes a term for sky noise, $T_{S K Y}$, which is a combination of atmospheric noise and effective cosmic microwave background noise. Thus the system operating noise temperature $T_{o p}=T_{A M W}+T_{S K Y}$.

Design control tables (DCTs) used for telecommunications link design typically carry separate entries for atmospheric attenuation of the received and transmitted signals and the atmospheric noise contribution to the system noise temperature as a function of elevation angle and weather condition. It is important in those DCTs that the antenna gain and antennamicrowave noise temperature values reflect the vacuum performance of the antenna by itself, so as to prevent double-bookkeeping of the atmospheric attenuation and noise temperature contributions.

Four atmospheric models are presented here. The first covers L-band (1.7 GHz) and S-band ( 2.3 GHz ). The second and third cover X-band ( 8.4 GHz ) and Ka-band ( 32.0 GHz ). The fourth, which is presented in a slightly different format in the tables, covers K-band ( 25.5 GHz to 27.0 GHz ). Atmospheric noise temperature and attenuation statistics are provided in the form of cumulative distributions (CDs) for each effect. For example, a cumulative distribution of 0.90 (" $90 \%$ weather") means that $90 \%$ of the time a particular weather effect (noise temperature or attenuation) is less than or equal to a given value. Conversely, that particular effect is exceeded $10 \%$ of the time. Qualitatively, the weather conditions associated with selected cumulative distributions are described as follows:

| $\mathrm{CD}=0.00$ | clear dry, lowest weather effect |
| :--- | :--- | :--- |
| $\mathrm{CD}=0.25$ | average clear weather |
| $\mathrm{CD}=0.50$ | clear humid, or very light clouds |
| $\mathrm{CD}=0.90$ | very cloudy, no rain |
| $\mathrm{CD}>0.95$ | very cloudy, with rain |

By their very natures, clouds and rain are poorly modeled, and the water vapor radiometer data used here are sparse for the larger rain-related weather effects, which are exceeded only $5 \%$ of the time.

The Ka-band model presented here is based on actual water vapor radiometer measurements of zenith sky brightness temperature at 31.4 GHz at all three DSN sites
(Goldstone, Canberra, and Madrid). Sky brightness temperature is a combination of the atmosphere noise temperature and the attenuated cosmic background noise. These models contain 202 months of Goldstone data covering the period October 1993 through December 2013, 112 months of Canberra data covering the period June 1999 through January 2009 (no new data were collected since 2009), and 248 months of Madrid data covering the period September 1990 through December 2013. There were missing months of data from each station. Note also that different numbers of months of data went into the model for each of the separate months (for example, there may have been 20 Februaries, but only 18 Marches). It is felt that because of the large amount of Madrid data (more than 20 years), the results will fairly accurately represent true long-term statistics. The 17 years of Goldstone data will also give a moderately accurate longterm model. The 9 years of Canberra data will probably give a reasonably accurate long-term model, and future updates, if any, of the Canberra model may show relatively large changes in the distributions, particularly at high CD levels (greater than 0.95). Atmosphere noise temperature can be deduced from the sky brightness temperature using an assumption about the mean effective radiating temperature of the atmosphere. Cumulative distributions of atmosphere noise temperature at 31.4 GHz for each of the 12 months were calculated, then increased by a small amount ( $0.3-3 \mathrm{~K}$, a function of frequency and noise temperature) to create a model for 32 GHz . Year-average models for each station and frequency were generated from a weighted average of the monthly statistics.

L/S-band and X-band attenuation statistics were created from the Ka-band $(32 \mathrm{GHz})$ statistics by subtracting out the $0 \% \mathrm{CD}$ baseline (calculated for nominal temperatures and pressures, with $0 \%$ relative humidity), frequency-squaring to the appropriate frequency (for example, $[8.42 / 32]^{2}$ ) and then adding in the $0 \% \mathrm{CD}$ baseline at the new frequency. Note that the $0 \%$ CD baselines for the DSN sites differ because of different heights above sea level. Noise temperature statistics were then derived from the frequency-modeled attenuation statistics.

Noise temperature statistics for zenith were created from the atmospheric attenuation statistics by methods given in Sections 2.1.1 and 2.1.3 below. The year-average noise temperature statistics were calculated from the year-average attenuation values.

For K-band statistics, a somewhat different method was used, rather than the frequency-squared technique described above. It was necessary to do this because atmosphere effects in the 26 GHz region, are on the high side of the 22 GHz water vapor line, where attenuation and noise temperature values are increasing with decreasing frequency. For this reason, the frequency-squaring technique would give inaccurate results. A series of "humid" and "wet" (liquid water cloud) atmosphere models were postulated that would give the existing Kaband noise temperature values for each CD value and each station. Then, using these atmospheres, the attenuation and noise temperature were calculated for 25.5, 26.0, 26.5, and 27.0 GHz for the range of CD values at each frequency. The technique and results are described more completely in JPL Publication 09-14 (Atmosphere Attenuation and Noise Temperature Models at DSN Antenna Locations for $1-45 \mathrm{GHz}$, by Anil Kantak and Stephen Slobin, March 2009). K-band statistics have not been updated from the original 2009 calculations, but addition of new data is expected to result in only small changes in the statistics.

It should be noted that although the noise temperature statistics are the best qualitative measures for comparison of different locations and different frequencies, especially when dealing with low-noise systems (where the atmospheric noise is a large part of the total system noise temperature), the basic database for the calculation of atmospheric effects is actually the attenuation statistics. Given a station location, frequency, and CD of interest, the attenuation database value is extracted, modeled to the elevation angle of interest (Section 2.1.2), and then the appropriate atmospheric noise temperature is calculated (Section 2.1.3). Monthly, year-average, and maximum and minimum monthly zenith noise temperature statistics are given in Tables 1 through 9. Similarly, the attenuation statistics are given in Tables 10 through 18. Monthly, maximum, and minimum values are not available for K -band (Tables 19-21). In module 105, Rev. D (2009), the year-average values are based on the cumulative distributions of the 31.4 GHz measured noise temperatures for the entire data set for all the years of data. In this module, Rev. E (2015), the year-average values are weighted (by number of days) averages of the cumulative distributions of the twelve individual months. The differences between Rev. D and Rev. E statistics are small (1-2 K) at Ka-band at the highest CD levels, except for the particular case of Madrid at the 0.97-0.99 CD levels, where the differences range from 3-9 K. This large change is not presently explainable.

The atmospheric models thus generated for a particular complex (for example, Goldstone) should be used for all antennas at that complex (for example, DSS-14, DSS-15, DSS24 , etc.), regardless of the small altitude differences among the antennas.

Zenith atmospheric noise temperature statistics for the three DSN sites at L- and S-band are provided in Tables 1 through 3. Tables 4 through 6 provide similar statistics for X-band, and Tables 7 through 9 cover Ka-band. The tables include the cumulative distributions for each month, the maximum and minimum monthly value for each CD level, and the weighted year-average for that CD level. These noise temperature statistics should be used only in a qualitative sense to describe the relative levels of atmospheric noise contributions for different locations and cumulative distributions. They should not be used for elevation modeling, as this is properly performed using the calculated attenuation at a given elevation angle as a starting point and following the process that is described below.

When a nominal antenna zenith $T_{o p}$ (operating system noise temperature) is stated, it is considered to include the $\mathrm{CD}=25 \%$ (average clear sky) value for the appropriate frequency and location.

Tables 10 through 18 provide similar presentations for zenith atmospheric attenuation. The tolerances of atmospheric noise temperature and attenuation, as given in Tables 1 through 18 , should be considered to be $5 \%$ of the stated values at zenith, or $5 \%$ of the values calculated for elevation angles other than zenith. (see Section 2.1.5, below).

Tables 19-21 present year-average K-band zenith attenuation and noise temperature values for the three stations over the frequency range $25.5-27.0 \mathrm{GHz}$.

Figures 1, 2, and 3 show the L/S-band noise temperature statistics for Goldstone, Canberra, and Madrid respectively. Figures 4, 5, and 6 show X-band statistics for the three complexes. Figures 7, 8, and 9 provide the Ka-band statistics. On each figure, the year-average
cumulative distribution, the minimum envelope value, and the maximum envelope values are given for all the individual months at each CD value stated in Tables 1 through 9. Curves of zenith attenuation are not given, although using a rule-of-thumb that a medium with 1 dB attenuation at a physical temperature of about 20 C radiates a noise temperature of approximately 60 K , the noise temperature curves can be used to make rough estimates of the zenith attenuation at the various frequencies. This relationship is nearly linear over the range from 0 to 1 dB .

For other frequencies near to the L-, S-, X-, and Ka-bands (within about 5\% of the nominal frequencies), the weather-effects models presented here should be used without modification. These models should definitely not be used to infer statistics in the vicinity of the 22.235 GHz water vapor line $(20-25 \mathrm{GHz})$ or the 60 GHz oxygen band, ( $55-65 \mathrm{GHz}$ ).

### 2.1.1 Calculation of Atmosphere Mean Effective Radiating Temperature

The mean effective radiating temperature of the atmosphere is modeled to be a function of the cumulative distribution of weather effects. This reflects the assumption that those effects that are of larger value (for example, high noise temperature) occur closer to the surface (for example, rain, low moist clouds) and hence are at a higher average physical temperature than those that have a lesser effect (a clear sky with low humidity). The mean effective radiating temperature, $T_{M}$, is modeled as

$$
\begin{equation*}
T_{M}=255+25 \times C D, \mathrm{~K} \tag{1}
\end{equation*}
$$

where

$$
C D=\text { cumulative distribution of weather effect }(0.0 \leq \mathrm{CD} \leq 0.99) \text {. }
$$

Note that the maximum value of $T_{M}$ thus becomes nearly 280 K , or about 7 C .

### 2.1.2 Elevation Angle Modeling

Only the attenuation should be modeled as a function of elevation angle. The atmospheric noise temperature contribution at any elevation angle can be calculated from the modeled attenuation at that elevation angle. Elevation angle modeling can be performed using either a flat-Earth or a round-Earth model. A flat-Earth model is used here, wherein the attenuation increases with decreasing elevation angle:

$$
\begin{equation*}
A(\theta)=A_{z e n} \times A M=\frac{A_{z e n}}{\sin (\theta)}, \mathrm{dB} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta= & \text { elevation angle of antenna beam } \\
A_{z e n}= & \text { zenith atmospheric attenuation }(\mathrm{dB}) \text {, as given Tables } 10 \text { through } 18 \text { of } \\
& \text { this module } \\
A M= & \text { number of air masses }\left(\frac{1}{\sin (\theta)}=1.0 \text { at zenith }\right)
\end{aligned}
$$

105, Rev. E

The flat-Earth approximation produces a slightly higher attenuation then would be obtained with a round-Earth model for low elevation angles but is valid to within $1 \%$ to $3 \%$ at a 6-deg elevation angle, depending on the frequency and the amount of water vapor in the atmosphere. Note that in a telecom link design tool, if the atmosphere attenuation is carried as a separate line item, it should NOT also be included in the "effective" antenna gain (antenna gain minus atmosphere attenuation).

### 2.1.3 Calculation of Noise Temperature From Attenuation

An attenuating atmosphere creates a noise temperature contribution to ground antenna system temperature. The atmospheric noise temperature at any elevation angle $(\theta)$ is calculated from the attenuation by

$$
\begin{equation*}
T_{\operatorname{atm}}(\theta)=T_{M}[1-1 / L(\theta)], \mathrm{K} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{M}= & \text { atmosphere mean effective radiating temperature }(\mathrm{K}), \text { calculated } \\
& \text { above }
\end{aligned} \quad\left\lfloor\begin{array}{|c|c|}
\left.\hline \frac{A(\theta)}{10}\right\rfloor \\
L(\theta)= & \text { loss factor of atmosphere }=10^{-} \\
A(\theta)=\text { atmospheric attenuation at any elevation angle }(\mathrm{dB}), \text { calculated above }
\end{array}\right.
$$

Note that typical values of $L$ range from about 1.01 to $2.0(A=0.04 \mathrm{~dB}$ to 3 dB$)$

### 2.1.4 Cosmic Background Adjustment

The noise temperature contribution of the cosmic microwave background is reduced by atmospheric attenuation. For all DSN frequencies the cosmic background noise temperature before atmospheric attenuation is

$$
\begin{equation*}
T_{C M B}=2.725 \mathrm{~K} \tag{4}
\end{equation*}
$$

With atmosphere attenuation, the effective cosmic background becomes

$$
\begin{equation*}
T_{C M B}^{\prime}(\theta)=\frac{T_{C M B}}{L(\theta)}, \mathrm{K} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{C M B}= & \text { cosmic microwave background noise }(\mathrm{K}) \text { without atmosphere } \\
L(\theta)= & \text { loss factor of atmosphere at the elevation angle of interest, as calculated } \\
& \text { from Section 2.1.3. }
\end{aligned}
$$

## 810-005

105, Rev. E

The antenna modules (101, 103, and 104) present a system operating noise temperature, $T_{o p}$, consisting of two parts - an antenna-microwave component, $T_{A M W}$, for the contribution of the antenna and microwave hardware, and a sky component, $T_{s k y}$, which consists of the atmosphere noise plus the cosmic microwave background noise, attenuated by the atmosphere loss. The $T_{1}$ and $T_{2}$ coefficients associated with $T_{A M W}$, are given in the Appendices of the antenna modules, and the appropriate equation to use is also stated. Thus, for these modules, the system operating noise temperature with atmosphere and with attenuated cosmic contribution becomes

$$
\begin{equation*}
T_{o p}(\theta)=T_{A M W}+T_{s k y}=\left[T_{1}+T_{2} e^{-a \theta}\right]+\left[T_{a t m}(\theta)+T_{C M B}^{\prime}(\theta)\right] \tag{6}
\end{equation*}
$$

where
$T_{1}, T_{2}$ and $a$ are coefficients from the telecommunications interface modules
$T_{a t m}$ is the atmosphere noise term, given above
$T^{\prime}{ }_{C M B}$ is the attenuated cosmic noise, given above

### 2.1.5 Example of Use of Attenuation Statistics to Calculate Atmospheric Noise Temperature, $T_{a t m}(C D, \theta)$, and $T_{o p}(C D, \theta)$

The following example will show a typical calculation of atmospheric attenuation and noise temperature for a particular situation. The parameters for the example are

DSS-34, Canberra
Ka-band ( 32 GHz )
$90 \%$ year-average weather $(\mathrm{CD}=0.90)$
20-deg elevation angle (2.924 air masses)
From Table 17, the year-average zenith attenuation for $\mathrm{CD}=0.90$ is given as

$$
A_{\text {zen }}=0.384 \mathrm{~dB}
$$

The attenuation at 20-deg elevation is

$$
A\left(90 \%, 20^{\circ}\right)=0.384 / \sin (20)=1.123 \mathrm{~dB}
$$

Note that in a telecom link design tool, if the atmosphere attenuation is carried as a separate line item, it should NOT also be included in the effective antenna gain (antenna gain minus atmosphere attenuation).

The loss factor $L$ at 20 -deg elevation is

$$
L\left(90 \%, 20^{\circ}\right)=10^{1.123 / 10}=1.295
$$

The atmosphere mean effective radiating temperature is

$$
T_{M}=255+25 \times 0.90=277.5 \mathrm{~K}
$$

The atmospheric noise temperature at 20-deg elevation is

$$
T_{\text {atm }}\left(90 \%, 20^{\circ}\right)=277.5[1-1 /(1.295)]=63.214 \mathrm{~K}
$$

The effective cosmic background temperature at 20-deg elevation is

$$
T_{C M B}^{\prime}=2.725 / 1.295=2.104 \mathrm{~K}
$$

The system operating noise temperature at 20-deg elevation is

$$
T_{o p}\left(90 \%, 20^{\circ}\right)=T_{A M W}\left(20^{\circ}\right)+63.214+2.104=T_{A M W}\left(20^{\circ}\right)+65.318 \mathrm{~K}
$$

where
$T_{A M W}(\theta)$ is obtained from revisions of the telecommunications interface modules published after May, 2006.

### 2.1.6 Best/Worst Month Ranges of Atmospheric Noise Temperature and Attenuation

The absolute accuracy of the $31.4-\mathrm{GHz}$ water vapor radiometer measurements used to create the noise temperature statistics is thought to be a few tenths K to 2 K at zenith. The month-to-month variation of average noise temperature at any CD varies much more than this at all values of cumulative distribution greater than about $10 \%$. A particular month might be the "worst" at the $90 \%$ CD level, but merely "moderate" at lower CD levels. An example is a winter month that has a large amount of rain, but when not raining has low humidity and low noise temperature contribution. At this time, there are insufficient data to characterize "best" and "worst" months individually; however, tolerances on the mean statistics as given in Tables 1 through 18 can give the user a feeling of what yearly variations in atmospheric effects may be expected.

Inspection of Tables 1 through 18 and Figures 1 through 9 will show that fictitious "best month" and "worst month" statistics can be generated from the values giving the minimum and maximum envelope values of noise temperature and attenuation, without regard to the variability among the months as a function of CD . At high values of CD , the adverse (maximum envelope) yearly tolerances can be as high as $40 \%$ of the year-average value of an effect. It should be noted that adverse tolerances for both noise temperature and attenuation give INCREASES from the values in Tables 1 through 18. An adverse VALUE is a mean PLUS the adverse tolerance. For mission planning purposes, with no need to create a model for a specific month, it may be sufficient to use the year-average value at a particular CD, and use the maximum/minimum envelope values to define very conservative (large) adverse/favorable
tolerances, with a triangular distribution. For specific-month planning purposes, it may be sufficient to use the values given in Tables 1 through 18, with $\pm 5 \%$ tolerances (triangular distribution) as stated above. A very conservative approach (acknowledging that any individual month in the future can be well outside the historical range of available data) would be to use the "maximum" envelope as the model for a possible "bad" month. Note also that for particular months characterized by "bad weather", year-to-year variation of noise temperature and attenuation statistics can be quite large.

### 2.2 Rainfall Statistics

To assist the user in determining which months may have large rainfall-related atmospheric noise temperature and attenuation increases, rainfall data are presented for the three DSN antenna locations. Months with large average rainfall amounts may not necessarily correspond to months with large noise temperature and attenuation values. Comparison with Tables 1 through 18 should be made.

Table 22 presents the monthly and year-average rainfall amounts for the three DSN antenna locations. The Goldstone data (1973-2000) were taken at the administration center, located near the middle of the Goldstone antenna complex. Some antennas may be located as much as 10 miles from this location. The Canberra data (1966-2002) were taken at the Tidbinbilla Nature Reserve, located about 3 miles southwest of the antenna site. The Madrid data (1961-1990) are the averages of the rainfall at two locations: Avila, about 20 miles northwest of the antenna site, and Madrid (Quatro Vientos) about 20 miles east of the antenna site. Although these averages may not exactly reflect the rainfall at the antenna site, the relative monthly amounts are probably correct.

### 2.3 Wind Loading

The effect of wind loading must be modeled probabilistically, since wind velocity varies randomly over time and space. Figure 10 shows the wind speed exceedance percentages for the three DSN antenna sites. These data were taken during a six month period, January thru June, 2011, and represent the average wind speed during spacecraft tracks made on the 70-meter antennas. The wind load on a particular antenna is dependent on the design of that antenna. Consequently, information about wind-load effect on antenna gain is listed in the appropriate antenna module.

It is seen in Figure 10 that Goldstone is the windiest of the three DSN sites. For example, at Goldstone, $5 \%$ of the time a wind speed of $40 \mathrm{~km} / \mathrm{h}$ is exceeded, whereas at Canberra and Madrid, for the same percentage of time, the wind speed is only $15-18 \mathrm{~km} / \mathrm{h}$. These wind speed statistics are averages over an entire spacecraft track, whereas average wind speeds over shorter periods of time ( 5 minutes to 1 hour, for example) will be significantly higher. A rough estimate, based on Goldstone measurements, indicates that the short-term wind speeds can be double or more the speeds shown in Figure 10, for the same percentage of time.

DSN 70-meter and 34-meter antennas are stowed (pointed vertically) when the short-term wind speeds exceed $80.5 \mathrm{~km} / \mathrm{h}(50 \mathrm{mi} / \mathrm{h})$ under no-snow/ice conditions. It is seen

105, Rev. E
from Figure 10 that it is unlikely that any DSN antenna will need to be stowed for more than a few hours a year.

### 2.4 Hot Body Noise

### 2.4.1 Solar Noise

The increase in system noise when tracking a spacecraft angularly near the Sun depends on the intensity of solar radiation at the received frequency and on the position of the Sun relative to the antenna gain pattern. The subreflector support structure (typically a quadripod, but a tripod at the DSS-13 BWG antenna) introduces non-uniformities in the sidelobe structure. Increases in noise temperature are typically greater in directions at right angles to the planes established by the subreflector support legs and the center of the reflector surface. Thus, a quadripod-type antenna will have four regions of increased noise temperature, and a tripod-type antenna will have six. With an azimuth-elevation (AZ-EL) or X/Y mounted antenna, the plane containing the Sun-Earth-Probe (SEP) angle will rotate through the sidelobes during a tracking pass. This causes the solar noise to fluctuate during a track even if the SEP angle is constant.

A large number of measurements were made at Goldstone from 1987 to 1996 to determine the system noise temperature effects of tracking near the Sun (within about five deg from the center of the solar disk). These measurements were made at S-band on the $26-\mathrm{m}$ antennas (now decommissioned) and at S -, X -, and Ka-bands on the 34-meter antennas.

Figure 11 shows the $10.7-\mathrm{cm}(2800-\mathrm{MHz})$ solar radio flux during the period of January 2000 through December 2018 covering the end of solar cycle 23 and all of solar cycle 24 , including predicted values. The flux is measured in solar flux units (SFU) where one $\mathrm{SFU}=$ $1 \times 10^{-22} \mathrm{~W} / \mathrm{m}^{2} / \mathrm{Hz}$. Updated solar flux predictions can be found at the National Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center web site http://www.swpc.noaa.gov/products/solar-cycle-progression (Solar Cycle Progression Plots). Solar flux predictions can be used to model S- and X-band solar noise temperature contributions using the ratio of predicted solar flux to the solar flux that existed at the time the antenna noise temperatures were measured.

The general characteristic of the 11 -year cycle of $2800-\mathrm{MHz}$ solar flux is a rapid rise to a peak approximately $4-5$ years after the minimum, followed by a $7-6$ year gradual decrease. From cycle to cycle, the peak flux can vary by as much as a factor of two. The $10.7-\mathrm{cm}$ flux varied during solar cycle 23 from a minimum of about 70 SFU during 1996 to a maximum of about $220 \pm 15$ SFU in late 2001. Note that the peak of solar cycle 24 was about $150 \pm 20$ SFU during 2014, about $30 \%$ lower than in 2001

Figure 12 shows X -band system noise temperature increases as measured at the Goldstone DSS-15 HEF antenna. These measurements show the increased effect for the Sun located (offset) at right angles to the quadripod legs. The quadripod legs are arranged in an " $X$ " configuration, with 90-deg spacing. The measurements were made in November 1987 (near the beginning of the solar cycle) with a measured $2800-\mathrm{MHz}$ flux value of 101 SFU and an $8800-$

MHz flux value of 259 SFU . The following expression may be used as an upper limit of X-band solar noise contribution at DSS-15 as shown in Figure 12.

$$
\begin{equation*}
T_{\text {sun }}=800 e^{-2.0 \theta}, \mathrm{~K} \tag{8}
\end{equation*}
$$

where
$\theta=$ offset angle between center of beam and center of solar disk, deg

Figure 13 shows S-band ( 2295 MHz ) solar noise contribution for a 34 -meter diameter antenna. This curve is based on measurements made on the Goldstone DSS-16 26meter diameter antenna on December 20, 1989, and the angular offset values were modeled by the ratio of antenna beamwidths. This antenna has since been decomissioned. The reported $2800-\mathrm{MHz}$ solar flux at the time of the experiment was 194 SFU ; at 8800 MHz it was 290 SFU . Note that compared to the November 1987 flux (Figure 12), the $2800-\mathrm{MHz}$ flux has nearly doubled, but the $8800-\mathrm{MHz}$ flux has only increased about 12 percent. The S-band solar noise contribution shown in Figure 13 can be modeled as

$$
\begin{equation*}
T_{\text {sun }}=1400 e^{-1.8 \theta}, \mathrm{~K} \tag{9}
\end{equation*}
$$

where

$$
\theta=\text { offset angle between center of beam and center of solar disk, deg }
$$

This equation undoubtedly underestimates the solar noise contribution at offset angles less than 1 degree by hundreds of $K$.

Figures 14 and 15 are contour plots of the DSS-12, 34-m HA-DEC total system noise temperature versus declination and cross-declination antenna pointing offsets. Although DSS-12 has been decommissioned since the measurements were made, the figures are included because they are representative of the effects of the quadripod on solar noise at other antennas. The quadripod legs are arranged in a " + " configuration with $90-\mathrm{deg}$ spacing, hence the peaks at right angles to the legs.

Figure 14 is a contour plot of total S-band system noise temperature versus declination and cross-declination antenna pointing offsets at DSS-12. The contour interval is 50 K . These measurements were made on January 12, 1990. On this day the reported $2800-\mathrm{MHz}$ solar flux was 173 SFU .

Figure 15 is a contour plot of total X-band system noise temperature versus declination and cross-declination antenna pointing offsets at DSS-12. The contour interval, measurement date, and flux values are identical with those in Figure 14. The reported $8800-\mathrm{MHz}$ solar flux was 272 SFU .

Figures 16 and 17 show the X-band (8.4-GHz) and Ka-band (32-GHz) solar noise contributions at the DSS-13, 34-m research and development beam waveguide antenna as a function of offset angle from the center of the sun. These data were taken during mid-March, 1996, when the $10.7-\mathrm{cm}$ solar flux was about 70 SFU (the minimum at the end of solar cycle 22 and at the beginning of solar cycle 23) and should be considered as representative of what is expected at the operational DSN beam waveguide antennas.

The following expressions give an approximate upper envelope for the noise contributions shown in Figures 16 and 17 as a function of offset angle

$$
\begin{align*}
& T_{\text {sun }}=\left\lvert\, \begin{array}{l}
5000 e^{-6.6 \theta}, 0.35<\theta \leq 0.75 \mathrm{deg}, \text { at X-band. } \\
100 e^{-1.4 \theta}, \theta>0.75 \mathrm{deg}
\end{array}\right.,  \tag{10}\\
& T_{\text {sun }}=\left\lvert\, \begin{array}{l}
1400 e^{-5.1 \theta}, 0.35<\theta \leq 0.75 \mathrm{deg} \\
86 e^{-1.4 \theta}, \theta>0.75 \mathrm{deg}
\end{array}\right., \text { at Ka-band } \tag{11}
\end{align*}
$$

At offset angles less than 0.35 deg ( 0.08 deg from the edge of the solar disk), solar noise contributions are likely to be in excess of 300 K at both frequencies. At offsets greater than 4.0 degrees, the solar contribution is negligible.

All noise contribution expressions given above should be compared with values shown in the corresponding figures to assess their validity. Note that these expressions should be considered valid only for the flux values given at the time of measurement. For predictive purposes, Figure 11 may be used to obtain future predicted $2800-\mathrm{MHz}$ solar flux, and the noise contributions at S - and X -band can be modeled as described below.

During the 11-year solar cycle, the S-band flux varies by a factor of 3 (reference Figure 11) while the corresponding X-band flux varies by a factor of 2. For cycle 23, when the Sband range is expected to be from 70 SFU to as much as 210 SFU , the X -band range is predicted to be from about 200 SFU to about 400 SFU. The predicted X-band flux can be derived from the predicted S-band flux by the following expression.

$$
\begin{equation*}
\text { FLUX, } X=200+\frac{200(\text { FLUX,S }-70)}{140} \tag{12}
\end{equation*}
$$

For example, in April 2016 the mean S-band flux is predicted to be 100 SFU (from Figure 11). The mean predicted X-band flux would be 243 SFU.

The predicted solar noise contribution can be calculated based on measured noise contributions described above. For example, using the equation provided for Figure 12 (Equation 8) and the predicted X-band solar flux in April 2016 (243 SFU), the predicted X-band solar noise contribution for a 2-degree offset angle using the 34-m HEF antenna would be

$$
\begin{gather*}
810-005 \\
105, \text { Rev. E } \\
T_{\text {sun }}=(243 / 259) \times 800 e^{-2.0 \times 2.0}=13.75 \mathrm{~K} \tag{13}
\end{gather*}
$$

At Ka-band, the solar flux varies little over the solar cycle and the relationship between noise temperature increase and offset angle depicted in Figure 17 can be used at all times.

Figure 18 shows examples of measured S-band system noise temperature made with a $64-\mathrm{m}$ antenna tracking Pioneer 8 (November 1968, near the solar maximum) and Helios (April 1975, near the solar minimum). For all practical purposes, these curves may be used to predict S-band performance for the DSN 70-m antennas. The "maximum" and "minimum" curves for each month show the solar "clock angle" effect due to sidelobes at right angles to the quadripod legs.

Figure 19 shows a theoretical curve of X-band 70-m antenna noise temperature as a function of SEP angle. This curve is generated based on an assumed X-band blackbody disk temperature of $23,000 \mathrm{~K}$, representing an "average" value during the solar cycle. An expression giving quiet Sun brightness temperature, $T_{b}(\mathrm{~K})$, as a function of wavelength ( mm ) has been found to be

$$
\begin{equation*}
T_{b}=5672 \lambda^{0.24517}, \quad \mathrm{~K} \tag{14}
\end{equation*}
$$

For S-band (2.3 GHz), $T_{b}=18700 \mathrm{~K}$. For X-band (8.5 GHz) $T_{b}=13600 \mathrm{~K}$. For Ka-band ( 32 GHz ) $T_{b}=9750 \mathrm{~K}$. The active Sun may be expected to have an X-band brightness temperature of as much as two to four times as high as the 13600 K calculated above. Other studies give the X-band solar disk temperature minimum, average, and maximum values over the solar cycle as $14,000 \mathrm{~K}, 22,000 \mathrm{~K}$, and $30,000 \mathrm{~K}$, respectively. At Ka -band these values are $7500 \mathrm{~K}, 10,000 \mathrm{~K}$, and $12,500 \mathrm{~K}$.

### 2.4.2 Lunar Noise

For an antenna pointed near the Moon, a noise temperature determination similar to that made for the Sun should be carried out. The blackbody disk temperature of the Moon is about 240 K at X- and Ka-bands, somewhat lower at S-band ( 220 K ), and its apparent diameter is almost exactly that of the Sun's (approximately 0.5 deg ). Figures 12 through 19 may be used for lunar calculations, with the noise temperature values scaled by 240/23000. Figures 13, 14, 15, and 18 include clear-sky system noise temperatures, which must be subtracted out before scaling in order to determine the lunar noise temperature increase. Nevertheless, at offset angles greater than 2 deg, the lunar noise contribution is negligible. For rough calculations using antenna patterns with half-power beamwidths less than about $20 \%$ of the lunar diameter (all DSN antennas at X- and Ka-bands and the $70-\mathrm{m}$ antennas at S-band), more than $90 \%$ of the antenna power is on the lunar disk when centered on the moon. In this case, the maximum noise temperature seen is roughly

$$
\begin{equation*}
T_{\text {moon }}=T_{b} \times 0.90 \times \eta_{\text {ant }}, \mathrm{K} \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{b} & =240 \mathrm{~K} \\
\eta_{\text {ant }} & =\text { antenna efficiency } \approx 0.70 \text { for most large antennas }
\end{aligned}
$$

Thus, the peak noise contribution from the moon for any DSN antenna except the 34-m BWG antenna at S-band will be approximately 150 K . Measurements on the DSS-13 34-m beam waveguide antenna (S-band half-power beamwidth $\approx 0.25$ deg) yield a noise temperature increase due to the moon of about 136 K , which is nearly constant over the lunar monthly cycle. Measurements at new moon yield a noise contribution of 188 K at X-band, and 156 K at Kaband. Peak noise temperatures about 3-4 days after full moon at X-band and Ka-band were in the range of about 190-200 K.

### 2.4.3 Planetary Noise

The increase in system noise temperature when tracking near a planet can be calculated by the formula

$$
\begin{equation*}
T_{p l}=\left(\frac{T_{k} G d^{2}}{16 R^{2}}\right) e^{-2.77\left(\theta / \theta_{0}\right)^{2}}, \mathrm{~K} \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{k} & =\text { blackbody disk temperature of the planet, } \mathrm{K} \\
d & =\text { planet diameter, } \mathrm{km} \\
R & =\text { distance to planet, } \mathrm{km} \\
\theta & =\text { angular distance from planet center to antenna beam center } \\
\theta_{0} & =\text { antenna half-power beamwidth (full beamwidth at half power) } \\
G & =\text { antenna gain ratio }\left\lfloor 10^{(G(\mathrm{dBi}) / 10)}\right\rfloor \text { including atmospheric attenuation. }
\end{aligned}
$$

An alternative method for calculating the noise contribution for a planetary disk somewhat smaller than the antenna beamwidth is presented in JPL document D-33697 (System Noise Temperature Increase from the Sun, Moon, or Planet Blackbody Disk Temperature, by Anil Kantak and Stephen Slobin, December 1, 2005). Figure 20 shows an excerpt from that document (Figure 8), that indicates the percentage of total antenna power on a planetary disk, for ratios of half-power beamwidth to disk angular diameter in the range 1.75 to 5.0. For other halfpower beamwidth/diameter ratios, that document should be consulted.

For a particular case (Venus on February 1, 2006, as seen from the DSS-13 34-m beam waveguide antenna at X-band), the following calculation is made:

$$
\text { planet diameter }(d)=12,104 \mathrm{~km}
$$

planet disk temperature $\left(T_{k}\right)=634 \mathrm{~K}$ at X-band (Table 23)
range from earth $(R)=0.318 \mathrm{AU}=47,572,800 \mathrm{~km}$
disk angular diameter $\left(\tan ^{-1}\left[\frac{d}{R}\right]\right)=0.0146$ degrees
half-power beamwidth $\left(\theta_{0}\right)=0.066$ degrees
beamwidth $/$ diameter $=4.521$
power ratio from Figure $20=0.034$
antenna efficiency $(\eta)=0.673$ without atmospheric loss at 39 deg. elevation
$=0.663$ with clear sky atmospheric loss at 39 deg. elevation
The noise temperature calculated for the Figure 20 example is

$$
T_{\text {venus }}=634 \times 0.034 \times 0.663=14.29 \mathrm{~K}
$$

Using Equation 16 above, the numerical gain of the DSS-13 antenna is first calculated using an efficiency of 0.663 (includes clear sky atmosphere loss),

$$
\begin{equation*}
G=\eta\left(\frac{\pi D}{\lambda}\right)^{2}=5,966,230 \tag{17}
\end{equation*}
$$

where

$$
\begin{array}{ll}
D & =\text { antenna diameter }=34 \mathrm{~m} \\
\lambda & =\text { wavelength }=0.0356 \mathrm{~m} \text { at } 8420 \mathrm{MHz}(\mathrm{X} \text {-band })
\end{array}
$$

therefore

$$
T_{\text {venus }}=\left(\frac{634 \times 5,966,230 \times 12,104^{2}}{16 \times 47,572,800^{2}}\right)=15.30 \mathrm{~K}
$$

The measured noise temperature increase from Venus was 16.18 K , so Equation (16) gives an estimate about $5.4 \%$ low, and the Figure 20 method gives an estimate about $8.8 \%$ low.

Table 23 presents all the parameters needed for calculation of planetary noise contributions. Also given are the maximum values of expected X-band and Ka-band noise contributions for the mean minimum distance from Earth, with the antenna beam pointed at the center of the planet $(\theta=0)$. Corresponding S-band noise temperature increases will be approximately $1 / 13$ as large as the X -band increases because of the lower antenna gain (wider beamwidth) at the lower frequency.

810-005
105, Rev. E

In the case of Jupiter, there is a significant and variable non-thermal component of the noise temperature. Thus the effective blackbody disk temperature at S-band appears to be much higher than at X-band. The S-band noise temperature increase will be approximately $1 / 6$ the X-band values for average Jupiter emission; it will be about $1 / 3$ the X-band values for maximum Jupiter emission. Except for Venus at inferior conjunction and Jupiter at opposition (minimum distances), the noise contribution from the planets at S -band is negligible.

The expression (Equation 16) for $T_{p l}$ assumes that the angular extent of the radiating source is small compared to the antenna beamwidth. This approximation is adequate at X-band except for Venus near inferior conjunction (apparent diameter $=0.018 \mathrm{deg}$ ) using a $70-\mathrm{m}$ antenna at X -band (beamwidth $=0.032$ deg). At Ka-band with a $34-\mathrm{m}$ antenna (beamwidth $=$ 0.0174 deg ), the approximation is not adequate for Venus near inferior conjunction and may not be adequate for Mars near oppositione 14 ? (apparent diameter $=0.005 \mathrm{deg}$ ). The expression also assumes that the antenna main beam has a Gaussian shape, with circular symmetry. Antenna gains and half-power beamwidths are given in modules 101, 103, and 104.

### 2.4.4 Galactic Noise

The center of the Milky Way galaxy is located near - 30 degrees declination, 17 h 40 min right ascension. It is possible for a spacecraft with a declination of -30 deg to be in the vicinity of the galactic center, and an increase of system noise temperature would then be observed. A declination of -30 degrees is not typically achieved by spacecraft moving in the plane of the ecliptic, but there are some circumstances (for example, a flight out of the ecliptic) where this location may be observed. Galactic noise temperature contributions at frequencies above 10 GHz are typically insignificant. At S-band, looking directly at the galactic center, a noise temperature increase of about 10 K would be observed. A map of the galactic noise distribution can be seen in chapter 8 of the classic reference J. D. Kraus, Radio Astronomy, Cygnus-Quasar Books, Powell, Ohio, 1986.


Figure 1. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L-Band and S-Band, Goldstone DSCC


Figure 2. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L-Band and S-Band, Canberra DSCC

105, Rev. E


Figure 3. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L-Band and S-Band, Madrid DSCC


Figure 4. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band, Goldstone DSCC


Figure 5. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band, Canberra DSCC


Figure 6. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band, Madrid DSCC


Figure 7. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band, Goldstone DSCC


Figure 8. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band, Canberra DSCC


Figure 9. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band, Madrid DSCC


Figure 10. Pass-Average Wind Speed Exceedance Probabilities for the Three DSN Antenna Complexes

ISES Solar Cycle F10.7cm Radio Flux Progression Observed data through Jun 2015


Updated 2015 Jul 6
NOAA/SWPC Boulder,CO USA

Figure 11. Solar Radio Flux at 2800 MHz ( 10.7 cm wavelength) from 2000 through 2018 (Covering the end of Solar Cycle 23 and all of Solar Cycle 24, including prediction)


Figure 12. DSS-15 HEF Antenna X-Band System Noise Temperature Increases Due to the Sun at Various Offset Angles, Showing Larger Increases Perpendicular to Quadripod Directions

105, Rev. E


Figure 13. Solar Noise Contribution for a 34-Meter Antenna at S-band at Various Offset Angles from the Sun


Figure 14. DSS-12 S-Band Total System Noise Temperature at Various Declination and CrossDeclination Offsets from the Sun

810-005
105, Rev. E


Figure 15. DSS-12 X-Band Total System Noise Temperature at Various Declination and CrossDeclination Offsets from the Sun


Figure 16. DSS-13 Beam-Waveguide Antenna X-Band Noise Temperature Increase Versus Offset Angle, March 1996


Figure 17. DSS-13 Beam-Waveguide Antenna Ka-Band Noise Temperature Increase Versus Offset Angle, March 1996

810-005
105, Rev. E


Figure 18. Total S-Band System Noise Temperature for 70-m Antennas Tracking Spacecraft Near the Sun (Derived from 64-m Measurements)


Figure 19. X-Band Noise Temperature Increase for 70-m Antennas as a Function of Sun-EarthProbe Angle, Nominal Sun, 23,000 K Disk Temperature


Figure 20. Normalized Temperature Increase for Half-Power Beamwidth to Planetary Disk Diameter Ratios of $1.75,2.0,2.5,3.0,3.5,4.0$, and 5.0 (top-to-bottom at the left side)

810-005
105, Rev. E

Table 1. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Goldstone DSCC, K

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 1.948 | 1.948 | 1.948 | 1.948 | 1.948 | 1.948 |
| 0.10 | 1.970 | 1.971 | 1.972 | 1.973 | 1.974 | 1.974 |
| 0.20 | 1.992 | 1.992 | 1.993 | 1.994 | 1.996 | 1.996 |
| 0.25 | 2.002 | 2.003 | 2.004 | 2.004 | 2.007 | 2.007 |
| 0.30 | 2.013 | 2.013 | 2.014 | 2.015 | 2.017 | 2.017 |
| 0.40 | 2.034 | 2.034 | 2.035 | 2.036 | 2.038 | 2.039 |
| 0.50 | 2.055 | 2.055 | 2.056 | 2.057 | 2.059 | 2.061 |
| 0.60 | 2.076 | 2.076 | 2.076 | 2.078 | 2.081 | 2.083 |
| 0.70 | 2.098 | 2.098 | 2.098 | 2.099 | 2.103 | 2.106 |
| 0.80 | 2.121 | 2.122 | 2.120 | 2.121 | 2.126 | 2.131 |
| 0.85 | 2.134 | 2.137 | 2.132 | 2.133 | 2.139 | 2.145 |
| 0.90 | 2.150 | 2.157 | 2.144 | 2.145 | 2.153 | 2.159 |
| 0.92 | 2.158 | 2.171 | 2.151 | 2.151 | 2.159 | 2.166 |
| 0.93 | 2.163 | 2.181 | 2.154 | 2.154 | 2.163 | 2.169 |
| 0.94 | 2.170 | 2.193 | 2.158 | 2.158 | 2.167 | 2.173 |
| 0.95 | 2.178 | 2.206 | 2.163 | 2.162 | 2.172 | 2.177 |
| 0.96 | 2.192 | 2.229 | 2.171 | 2.168 | 2.178 | 2.182 |
| 0.97 | 2.213 | 2.259 | 2.183 | 2.179 | 2.189 | 2.189 |
| 0.98 | 2.248 | 2.310 | 2.207 | 2.204 | 2.207 | 2.200 |
| 0.99 | 2.331 | 2.414 | 2.281 | 2.277 | 2.260 | 2.240 |

Table 1 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Goldstone DSCC, K

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 1.948 | 1.948 | 1.948 | 1.948 | 1.948 | 1.948 | 1.948 | 1.948 | 1.948 |
| 0.10 | 1.978 | 1.976 | 1.976 | 1.974 | 1.972 | 1.969 | 1.969 | 1.973 | 1.978 |
| 0.20 | 2.003 | 2.000 | 1.998 | 1.996 | 1.993 | 1.991 | 1.991 | 1.995 | 2.003 |
| 0.25 | 2.015 | 2.012 | 2.009 | 2.007 | 2.004 | 2.002 | 2.002 | 2.006 | 2.015 |
| 0.30 | 2.027 | 2.023 | 2.020 | 2.018 | 2.015 | 2.012 | 2.012 | 2.017 | 2.027 |
| 0.40 | 2.050 | 2.047 | 2.042 | 2.040 | 2.036 | 2.033 | 2.033 | 2.039 | 2.050 |
| 0.50 | 2.076 | 2.072 | 2.064 | 2.061 | 2.057 | 2.054 | 2.054 | 2.061 | 2.076 |
| 0.60 | 2.103 | 2.098 | 2.087 | 2.082 | 2.079 | 2.076 | 2.076 | 2.083 | 2.103 |
| 0.70 | 2.130 | 2.124 | 2.112 | 2.105 | 2.101 | 2.098 | 2.098 | 2.106 | 2.130 |
| 0.80 | 2.157 | 2.151 | 2.141 | 2.130 | 2.125 | 2.123 | 2.120 | 2.131 | 2.157 |
| 0.85 | 2.171 | 2.166 | 2.157 | 2.143 | 2.138 | 2.137 | 2.132 | 2.144 | 2.171 |
| 0.90 | 2.186 | 2.182 | 2.175 | 2.158 | 2.154 | 2.153 | 2.144 | 2.160 | 2.186 |
| 0.92 | 2.193 | 2.189 | 2.182 | 2.165 | 2.162 | 2.162 | 2.151 | 2.167 | 2.193 |
| 0.93 | 2.198 | 2.193 | 2.186 | 2.169 | 2.166 | 2.167 | 2.154 | 2.172 | 2.198 |
| 0.94 | 2.203 | 2.197 | 2.190 | 2.173 | 2.171 | 2.174 | 2.158 | 2.177 | 2.203 |
| 0.95 | 2.209 | 2.202 | 2.194 | 2.179 | 2.177 | 2.186 | 2.162 | 2.184 | 2.209 |
| 0.96 | 2.216 | 2.208 | 2.199 | 2.185 | 2.184 | 2.203 | 2.168 | 2.193 | 2.229 |
| 0.97 | 2.225 | 2.215 | 2.205 | 2.193 | 2.198 | 2.229 | 2.179 | 2.206 | 2.259 |
| 0.98 | 2.245 | 2.226 | 2.217 | 2.208 | 2.230 | 2.274 | 2.200 | 2.231 | 2.310 |
| 0.99 | 2.299 | 2.251 | 2.255 | 2.261 | 2.316 | 2.393 | 2.240 | 2.297 | 2.414 |

810-005
105, Rev. E

Table 2. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Canberra DSCC, K

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 2.076 | 2.076 | 2.076 | 2.076 | 2.076 | 2.076 |
| 0.10 | 2.121 | 2.131 | 2.122 | 2.115 | 2.113 | 2.109 |
| 0.20 | 2.149 | 2.159 | 2.149 | 2.141 | 2.137 | 2.132 |
| 0.25 | 2.162 | 2.173 | 2.161 | 2.153 | 2.148 | 2.144 |
| 0.30 | 2.175 | 2.187 | 2.174 | 2.165 | 2.160 | 2.155 |
| 0.40 | 2.202 | 2.214 | 2.200 | 2.189 | 2.183 | 2.178 |
| 0.50 | 2.228 | 2.242 | 2.226 | 2.213 | 2.205 | 2.202 |
| 0.60 | 2.256 | 2.269 | 2.254 | 2.238 | 2.229 | 2.227 |
| 0.70 | 2.286 | 2.299 | 2.282 | 2.264 | 2.253 | 2.254 |
| 0.80 | 2.321 | 2.337 | 2.314 | 2.292 | 2.282 | 2.284 |
| 0.85 | 2.342 | 2.363 | 2.333 | 2.308 | 2.299 | 2.301 |
| 0.90 | 2.368 | 2.397 | 2.359 | 2.329 | 2.325 | 2.328 |
| 0.92 | 2.385 | 2.421 | 2.371 | 2.342 | 2.341 | 2.346 |
| 0.93 | 2.396 | 2.439 | 2.378 | 2.350 | 2.351 | 2.359 |
| 0.94 | 2.409 | 2.469 | 2.388 | 2.361 | 2.363 | 2.376 |
| 0.95 | 2.427 | 2.510 | 2.402 | 2.377 | 2.378 | 2.404 |
| 0.96 | 2.452 | 2.571 | 2.424 | 2.400 | 2.398 | 2.443 |
| 0.97 | 2.504 | 2.657 | 2.458 | 2.429 | 2.427 | 2.494 |
| 0.98 | 2.606 | 2.785 | 2.520 | 2.480 | 2.479 | 2.567 |
| 0.99 | 2.787 | 3.064 | 2.657 | 2.591 | 2.590 | 2.693 |

Table 2 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Canberra DSCC, K

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 2.076 | 2.076 | 2.076 | 2.076 | 2.076 | 2.076 | 2.076 | 2.076 | 2.076 |
| 0.10 | 2.108 | 2.108 | 2.110 | 2.111 | 2.118 | 2.117 | 2.108 | 2.115 | 2.131 |
| 0.20 | 2.132 | 2.131 | 2.134 | 2.136 | 2.143 | 2.144 | 2.131 | 2.140 | 2.159 |
| 0.25 | 2.143 | 2.142 | 2.146 | 2.147 | 2.156 | 2.157 | 2.142 | 2.153 | 2.173 |
| 0.30 | 2.154 | 2.153 | 2.158 | 2.159 | 2.168 | 2.170 | 2.153 | 2.165 | 2.187 |
| 0.40 | 2.177 | 2.176 | 2.181 | 2.183 | 2.194 | 2.195 | 2.176 | 2.189 | 2.214 |
| 0.50 | 2.199 | 2.198 | 2.204 | 2.206 | 2.219 | 2.221 | 2.198 | 2.213 | 2.242 |
| 0.60 | 2.223 | 2.221 | 2.228 | 2.230 | 2.247 | 2.249 | 2.221 | 2.239 | 2.269 |
| 0.70 | 2.248 | 2.246 | 2.253 | 2.256 | 2.277 | 2.277 | 2.246 | 2.266 | 2.299 |
| 0.80 | 2.276 | 2.272 | 2.281 | 2.287 | 2.313 | 2.312 | 2.272 | 2.297 | 2.337 |
| 0.85 | 2.293 | 2.288 | 2.298 | 2.307 | 2.336 | 2.333 | 2.288 | 2.316 | 2.363 |
| 0.90 | 2.317 | 2.311 | 2.323 | 2.335 | 2.375 | 2.366 | 2.311 | 2.344 | 2.397 |
| 0.92 | 2.331 | 2.325 | 2.340 | 2.353 | 2.402 | 2.386 | 2.325 | 2.361 | 2.421 |
| 0.93 | 2.341 | 2.336 | 2.351 | 2.365 | 2.423 | 2.398 | 2.336 | 2.373 | 2.439 |
| 0.94 | 2.354 | 2.348 | 2.364 | 2.381 | 2.447 | 2.417 | 2.348 | 2.389 | 2.469 |
| 0.95 | 2.370 | 2.366 | 2.383 | 2.402 | 2.478 | 2.444 | 2.366 | 2.410 | 2.510 |
| 0.96 | 2.393 | 2.391 | 2.413 | 2.431 | 2.528 | 2.483 | 2.391 | 2.442 | 2.571 |
| 0.97 | 2.424 | 2.433 | 2.458 | 2.471 | 2.601 | 2.550 | 2.424 | 2.489 | 2.657 |
| 0.98 | 2.481 | 2.506 | 2.521 | 2.541 | 2.705 | 2.655 | 2.479 | 2.566 | 2.785 |
| 0.99 | 2.585 | 2.637 | 2.681 | 2.704 | 2.893 | 2.857 | 2.585 | 2.720 | 3.064 |

810-005
105, Rev. E

Table 3. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Madrid DSCC, K

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 2.035 | 2.035 | 2.035 | 2.035 | 2.035 | 2.035 |
| 0.10 | 2.061 | 2.061 | 2.065 | 2.069 | 2.074 | 2.077 |
| 0.20 | 2.085 | 2.085 | 2.089 | 2.092 | 2.099 | 2.103 |
| 0.25 | 2.097 | 2.096 | 2.100 | 2.104 | 2.111 | 2.115 |
| 0.30 | 2.109 | 2.107 | 2.112 | 2.116 | 2.123 | 2.127 |
| 0.40 | 2.132 | 2.130 | 2.135 | 2.139 | 2.146 | 2.151 |
| 0.50 | 2.156 | 2.153 | 2.158 | 2.163 | 2.170 | 2.174 |
| 0.60 | 2.182 | 2.178 | 2.182 | 2.187 | 2.194 | 2.198 |
| 0.70 | 2.211 | 2.204 | 2.208 | 2.212 | 2.219 | 2.223 |
| 0.80 | 2.245 | 2.237 | 2.242 | 2.242 | 2.247 | 2.249 |
| 0.85 | 2.272 | 2.261 | 2.267 | 2.266 | 2.265 | 2.263 |
| 0.90 | 2.321 | 2.310 | 2.316 | 2.311 | 2.299 | 2.279 |
| 0.92 | 2.358 | 2.348 | 2.351 | 2.340 | 2.325 | 2.288 |
| 0.93 | 2.384 | 2.375 | 2.372 | 2.359 | 2.343 | 2.293 |
| 0.94 | 2.416 | 2.406 | 2.399 | 2.385 | 2.365 | 2.301 |
| 0.95 | 2.456 | 2.444 | 2.431 | 2.416 | 2.395 | 2.312 |
| 0.96 | 2.507 | 2.488 | 2.475 | 2.455 | 2.434 | 2.329 |
| 0.97 | 2.567 | 2.545 | 2.533 | 2.510 | 2.489 | 2.358 |
| 0.98 | 2.643 | 2.634 | 2.614 | 2.592 | 2.568 | 2.419 |
| 0.99 | 2.776 | 2.848 | 2.744 | 2.737 | 2.730 | 2.560 |

Table 3 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Madrid DSCC, K

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 2.035 | 2.035 | 2.035 | 2.035 | 2.035 | 2.035 | 2.035 | 2.035 | 2.035 |
| 0.10 | 2.079 | 2.079 | 2.076 | 2.071 | 2.065 | 2.062 | 2.061 | 2.070 | 2.079 |
| 0.20 | 2.103 | 2.105 | 2.102 | 2.097 | 2.090 | 2.086 | 2.085 | 2.095 | 2.105 |
| 0.25 | 2.115 | 2.117 | 2.114 | 2.110 | 2.101 | 2.098 | 2.096 | 2.107 | 2.117 |
| 0.30 | 2.127 | 2.129 | 2.126 | 2.122 | 2.113 | 2.110 | 2.107 | 2.118 | 2.129 |
| 0.40 | 2.150 | 2.152 | 2.151 | 2.147 | 2.137 | 2.134 | 2.130 | 2.142 | 2.152 |
| 0.50 | 2.174 | 2.175 | 2.175 | 2.173 | 2.162 | 2.159 | 2.153 | 2.166 | 2.175 |
| 0.60 | 2.197 | 2.199 | 2.200 | 2.199 | 2.188 | 2.186 | 2.178 | 2.191 | 2.200 |
| 0.70 | 2.221 | 2.223 | 2.224 | 2.227 | 2.217 | 2.215 | 2.204 | 2.217 | 2.227 |
| 0.80 | 2.245 | 2.248 | 2.250 | 2.263 | 2.252 | 2.255 | 2.237 | 2.248 | 2.263 |
| 0.85 | 2.258 | 2.261 | 2.265 | 2.293 | 2.280 | 2.285 | 2.258 | 2.270 | 2.293 |
| 0.90 | 2.271 | 2.275 | 2.282 | 2.353 | 2.339 | 2.342 | 2.271 | 2.308 | 2.353 |
| 0.92 | 2.277 | 2.281 | 2.293 | 2.395 | 2.384 | 2.381 | 2.277 | 2.335 | 2.395 |
| 0.93 | 2.280 | 2.285 | 2.300 | 2.424 | 2.414 | 2.408 | 2.280 | 2.352 | 2.424 |
| 0.94 | 2.283 | 2.289 | 2.310 | 2.461 | 2.447 | 2.440 | 2.283 | 2.374 | 2.461 |
| 0.95 | 2.287 | 2.293 | 2.323 | 2.505 | 2.484 | 2.479 | 2.287 | 2.400 | 2.505 |
| 0.96 | 2.292 | 2.299 | 2.342 | 2.555 | 2.530 | 2.525 | 2.292 | 2.433 | 2.555 |
| 0.97 | 2.296 | 2.307 | 2.371 | 2.625 | 2.585 | 2.586 | 2.296 | 2.477 | 2.625 |
| 0.98 | 2.305 | 2.327 | 2.433 | 2.738 | 2.663 | 2.665 | 2.305 | 2.543 | 2.738 |
| 0.99 | 2.334 | 2.393 | 2.589 | 2.942 | 2.809 | 2.820 | 2.334 | 2.678 | 2.942 |

810-005
105, Rev. E

Table 4. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Goldstone DSCC, K

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 2.140 | 2.140 | 2.140 | 2.140 | 2.140 | 2.140 |
| 0.10 | 2.200 | 2.213 | 2.229 | 2.238 | 2.256 | 2.251 |
| 0.20 | 2.259 | 2.265 | 2.277 | 2.288 | 2.317 | 2.316 |
| 0.25 | 2.283 | 2.289 | 2.300 | 2.313 | 2.341 | 2.342 |
| 0.30 | 2.307 | 2.312 | 2.324 | 2.337 | 2.364 | 2.368 |
| 0.40 | 2.354 | 2.359 | 2.367 | 2.380 | 2.411 | 2.420 |
| 0.50 | 2.402 | 2.404 | 2.410 | 2.424 | 2.462 | 2.479 |
| 0.60 | 2.450 | 2.450 | 2.452 | 2.471 | 2.513 | 2.542 |
| 0.70 | 2.510 | 2.514 | 2.508 | 2.522 | 2.576 | 2.615 |
| 0.80 | 2.583 | 2.600 | 2.566 | 2.583 | 2.656 | 2.720 |
| 0.85 | 2.638 | 2.674 | 2.610 | 2.622 | 2.707 | 2.788 |
| 0.90 | 2.743 | 2.832 | 2.661 | 2.674 | 2.778 | 2.862 |
| 0.92 | 2.799 | 2.968 | 2.701 | 2.706 | 2.814 | 2.899 |
| 0.93 | 2.846 | 3.077 | 2.721 | 2.721 | 2.841 | 2.923 |
| 0.94 | 2.906 | 3.226 | 2.753 | 2.745 | 2.869 | 2.946 |
| 0.95 | 3.001 | 3.365 | 2.797 | 2.784 | 2.910 | 2.977 |
| 0.96 | 3.156 | 3.651 | 2.872 | 2.843 | 2.977 | 3.021 |
| 0.97 | 3.415 | 4.039 | 3.017 | 2.961 | 3.091 | 3.091 |
| 0.98 | 3.865 | 4.691 | 3.319 | 3.270 | 3.316 | 3.218 |
| 0.99 | 4.954 | 6.052 | 4.285 | 4.230 | 3.994 | 3.729 |

Table 4 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Goldstone DSCC, K

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 2.140 | 2.140 | 2.140 | 2.140 | 2.140 | 2.140 | 2.140 | 2.140 | 2.140 |
| 0.10 | 2.308 | 2.288 | 2.286 | 2.256 | 2.227 | 2.190 | 2.190 | 2.245 | 2.308 |
| 0.20 | 2.408 | 2.372 | 2.348 | 2.322 | 2.279 | 2.252 | 2.252 | 2.309 | 2.408 |
| 0.25 | 2.453 | 2.410 | 2.376 | 2.350 | 2.305 | 2.276 | 2.276 | 2.337 | 2.453 |
| 0.30 | 2.495 | 2.447 | 2.404 | 2.377 | 2.332 | 2.300 | 2.300 | 2.364 | 2.495 |
| 0.40 | 2.577 | 2.529 | 2.464 | 2.431 | 2.382 | 2.348 | 2.348 | 2.419 | 2.577 |
| 0.50 | 2.690 | 2.632 | 2.528 | 2.482 | 2.433 | 2.396 | 2.396 | 2.479 | 2.690 |
| 0.60 | 2.817 | 2.740 | 2.604 | 2.535 | 2.491 | 2.444 | 2.444 | 2.543 | 2.817 |
| 0.70 | 2.938 | 2.857 | 2.697 | 2.604 | 2.553 | 2.511 | 2.508 | 2.618 | 2.938 |
| 0.80 | 3.060 | 2.986 | 2.846 | 2.699 | 2.633 | 2.604 | 2.566 | 2.712 | 3.060 |
| 0.85 | 3.132 | 3.065 | 2.953 | 2.762 | 2.697 | 2.677 | 2.610 | 2.777 | 3.132 |
| 0.90 | 3.221 | 3.165 | 3.071 | 2.846 | 2.786 | 2.783 | 2.661 | 2.868 | 3.221 |
| 0.92 | 3.268 | 3.216 | 3.124 | 2.891 | 2.845 | 2.849 | 2.701 | 2.923 | 3.268 |
| 0.93 | 3.308 | 3.243 | 3.150 | 2.924 | 2.880 | 2.894 | 2.721 | 2.960 | 3.308 |
| 0.94 | 3.352 | 3.275 | 3.177 | 2.956 | 2.929 | 2.971 | 2.745 | 3.007 | 3.352 |
| 0.95 | 3.409 | 3.321 | 3.211 | 3.004 | 2.985 | 3.098 | 2.784 | 3.070 | 3.409 |
| 0.96 | 3.477 | 3.376 | 3.252 | 3.060 | 3.055 | 3.301 | 2.843 | 3.167 | 3.651 |
| 0.97 | 3.585 | 3.450 | 3.316 | 3.145 | 3.218 | 3.626 | 2.961 | 3.324 | 4.039 |
| 0.98 | 3.822 | 3.575 | 3.449 | 3.330 | 3.619 | 4.210 | 3.218 | 3.631 | 4.691 |
| 0.99 | 4.525 | 3.879 | 3.928 | 4.009 | 4.752 | 5.773 | 3.729 | 4.490 | 6.052 |

810-005
105, Rev. E

Table 5. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Canberra DSCC, K

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 2.280 | 2.280 | 2.280 | 2.280 | 2.280 | 2.280 |
| 0.10 | 2.636 | 2.764 | 2.648 | 2.555 | 2.526 | 2.478 |
| 0.20 | 2.757 | 2.899 | 2.758 | 2.652 | 2.594 | 2.536 |
| 0.25 | 2.810 | 2.960 | 2.802 | 2.690 | 2.624 | 2.564 |
| 0.30 | 2.860 | 3.023 | 2.847 | 2.723 | 2.652 | 2.590 |
| 0.40 | 2.963 | 3.136 | 2.937 | 2.788 | 2.708 | 2.650 |
| 0.50 | 3.068 | 3.250 | 3.044 | 2.861 | 2.764 | 2.718 |
| 0.60 | 3.188 | 3.372 | 3.162 | 2.953 | 2.823 | 2.807 |
| 0.70 | 3.344 | 3.525 | 3.295 | 3.053 | 2.903 | 2.916 |
| 0.80 | 3.562 | 3.781 | 3.475 | 3.177 | 3.036 | 3.060 |
| 0.85 | 3.715 | 4.006 | 3.603 | 3.265 | 3.148 | 3.170 |
| 0.90 | 3.948 | 4.335 | 3.816 | 3.425 | 3.363 | 3.405 |
| 0.92 | 4.125 | 4.594 | 3.933 | 3.543 | 3.529 | 3.603 |
| 0.93 | 4.245 | 4.818 | 4.004 | 3.626 | 3.641 | 3.741 |
| 0.94 | 4.391 | 5.193 | 4.108 | 3.753 | 3.774 | 3.948 |
| 0.95 | 4.603 | 5.718 | 4.273 | 3.942 | 3.949 | 4.293 |
| 0.96 | 4.912 | 6.504 | 4.542 | 4.225 | 4.191 | 4.797 |
| 0.97 | 5.581 | 7.617 | 4.974 | 4.582 | 4.552 | 5.454 |
| 0.98 | 6.908 | 9.280 | 5.764 | 5.239 | 5.219 | 6.391 |
| 0.99 | 9.274 | 12.890 | 7.563 | 6.695 | 6.680 | 8.041 |

Table 5 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Canberra DSCC, K

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 2.280 | 2.280 | 2.280 | 2.280 | 2.280 | 2.280 | 2.280 | 2.280 | 2.280 |
| 0.10 | 2.466 | 2.460 | 2.491 | 2.502 | 2.592 | 2.583 | 2.460 | 2.557 | 2.764 |
| 0.20 | 2.525 | 2.516 | 2.562 | 2.580 | 2.682 | 2.692 | 2.516 | 2.644 | 2.899 |
| 0.25 | 2.552 | 2.541 | 2.593 | 2.613 | 2.725 | 2.739 | 2.541 | 2.682 | 2.960 |
| 0.30 | 2.577 | 2.566 | 2.624 | 2.646 | 2.768 | 2.785 | 2.566 | 2.720 | 3.023 |
| 0.40 | 2.627 | 2.618 | 2.682 | 2.709 | 2.856 | 2.878 | 2.618 | 2.794 | 3.136 |
| 0.50 | 2.684 | 2.669 | 2.746 | 2.776 | 2.948 | 2.979 | 2.669 | 2.873 | 3.250 |
| 0.60 | 2.753 | 2.726 | 2.817 | 2.847 | 3.065 | 3.094 | 2.726 | 2.964 | 3.372 |
| 0.70 | 2.839 | 2.802 | 2.905 | 2.941 | 3.222 | 3.224 | 2.802 | 3.077 | 3.525 |
| 0.80 | 2.957 | 2.912 | 3.031 | 3.103 | 3.455 | 3.437 | 2.912 | 3.244 | 3.781 |
| 0.85 | 3.057 | 3.001 | 3.135 | 3.244 | 3.644 | 3.604 | 3.001 | 3.377 | 4.006 |
| 0.90 | 3.258 | 3.173 | 3.340 | 3.502 | 4.036 | 3.914 | 3.173 | 3.619 | 4.335 |
| 0.92 | 3.398 | 3.319 | 3.514 | 3.688 | 4.346 | 4.130 | 3.319 | 3.802 | 4.594 |
| 0.93 | 3.508 | 3.433 | 3.639 | 3.832 | 4.597 | 4.274 | 3.433 | 3.936 | 4.818 |
| 0.94 | 3.651 | 3.576 | 3.795 | 4.016 | 4.897 | 4.491 | 3.576 | 4.120 | 5.193 |
| 0.95 | 3.847 | 3.786 | 4.024 | 4.266 | 5.281 | 4.834 | 3.786 | 4.384 | 5.718 |
| 0.96 | 4.125 | 4.105 | 4.395 | 4.630 | 5.926 | 5.328 | 4.105 | 4.782 | 6.504 |
| 0.97 | 4.517 | 4.640 | 4.968 | 5.149 | 6.873 | 6.194 | 4.517 | 5.388 | 7.617 |
| 0.98 | 5.255 | 5.590 | 5.778 | 6.053 | 8.225 | 7.560 | 5.219 | 6.382 | 9.280 |
| 0.99 | 6.614 | 7.298 | 7.886 | 8.183 | 10.667 | 10.197 | 6.614 | 8.392 | 12.890 |

810-005
105, Rev. E

Table 6. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Madrid DSCC, K

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 2.239 | 2.239 | 2.239 | 2.239 | 2.239 | 2.239 |
| 0.10 | 2.346 | 2.343 | 2.398 | 2.442 | 2.521 | 2.556 |
| 0.20 | 2.422 | 2.413 | 2.469 | 2.514 | 2.603 | 2.657 |
| 0.25 | 2.456 | 2.442 | 2.499 | 2.548 | 2.641 | 2.700 |
| 0.30 | 2.490 | 2.472 | 2.529 | 2.582 | 2.678 | 2.737 |
| 0.40 | 2.557 | 2.533 | 2.591 | 2.651 | 2.749 | 2.809 |
| 0.50 | 2.634 | 2.597 | 2.659 | 2.726 | 2.819 | 2.879 |
| 0.60 | 2.731 | 2.676 | 2.737 | 2.802 | 2.894 | 2.956 |
| 0.70 | 2.872 | 2.783 | 2.845 | 2.892 | 2.983 | 3.043 |
| 0.80 | 3.089 | 2.976 | 3.044 | 3.052 | 3.115 | 3.143 |
| 0.85 | 3.334 | 3.182 | 3.266 | 3.247 | 3.239 | 3.205 |
| 0.90 | 3.866 | 3.710 | 3.798 | 3.724 | 3.562 | 3.299 |
| 0.92 | 4.310 | 4.174 | 4.209 | 4.071 | 3.870 | 3.366 |
| 0.93 | 4.630 | 4.510 | 4.474 | 4.303 | 4.083 | 3.418 |
| 0.94 | 5.036 | 4.898 | 4.808 | 4.614 | 4.358 | 3.500 |
| 0.95 | 5.543 | 5.381 | 5.215 | 5.010 | 4.730 | 3.617 |
| 0.96 | 6.196 | 5.938 | 5.768 | 5.502 | 5.231 | 3.817 |
| 0.97 | 6.973 | 6.678 | 6.514 | 6.216 | 5.929 | 4.181 |
| 0.98 | 7.945 | 7.824 | 7.570 | 7.279 | 6.960 | 4.974 |
| 0.99 | 9.679 | 10.615 | 9.254 | 9.168 | 9.065 | 6.832 |

Table 6 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Madrid DSCC, K

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 2.239 | 2.239 | 2.239 | 2.239 | 2.239 | 2.239 | 2.239 | 2.239 | 2.239 |
| 0.10 | 2.579 | 2.588 | 2.548 | 2.473 | 2.393 | 2.358 | 2.343 | 2.463 | 2.588 |
| 0.20 | 2.660 | 2.683 | 2.644 | 2.584 | 2.477 | 2.436 | 2.413 | 2.547 | 2.683 |
| 0.25 | 2.697 | 2.721 | 2.685 | 2.629 | 2.512 | 2.472 | 2.442 | 2.584 | 2.721 |
| 0.30 | 2.732 | 2.757 | 2.727 | 2.672 | 2.547 | 2.508 | 2.472 | 2.620 | 2.757 |
| 0.40 | 2.800 | 2.827 | 2.810 | 2.759 | 2.623 | 2.582 | 2.533 | 2.692 | 2.827 |
| 0.50 | 2.868 | 2.894 | 2.891 | 2.856 | 2.712 | 2.675 | 2.597 | 2.768 | 2.894 |
| 0.60 | 2.937 | 2.966 | 2.974 | 2.965 | 2.820 | 2.785 | 2.676 | 2.854 | 2.974 |
| 0.70 | 3.009 | 3.042 | 3.060 | 3.091 | 2.956 | 2.939 | 2.783 | 2.960 | 3.091 |
| 0.80 | 3.090 | 3.129 | 3.163 | 3.335 | 3.186 | 3.218 | 2.976 | 3.129 | 3.335 |
| 0.85 | 3.138 | 3.179 | 3.234 | 3.613 | 3.432 | 3.503 | 3.138 | 3.298 | 3.613 |
| 0.90 | 3.187 | 3.246 | 3.340 | 4.286 | 4.106 | 4.149 | 3.187 | 3.687 | 4.286 |
| 0.92 | 3.224 | 3.278 | 3.441 | 4.802 | 4.653 | 4.615 | 3.224 | 3.994 | 4.802 |
| 0.93 | 3.243 | 3.304 | 3.513 | 5.161 | 5.028 | 4.954 | 3.243 | 4.208 | 5.161 |
| 0.94 | 3.262 | 3.330 | 3.621 | 5.628 | 5.452 | 5.355 | 3.262 | 4.472 | 5.628 |
| 0.95 | 3.288 | 3.363 | 3.769 | 6.197 | 5.913 | 5.852 | 3.288 | 4.798 | 6.197 |
| 0.96 | 3.322 | 3.416 | 3.998 | 6.833 | 6.507 | 6.441 | 3.322 | 5.210 | 6.833 |
| 0.97 | 3.362 | 3.509 | 4.366 | 7.739 | 7.210 | 7.221 | 3.362 | 5.770 | 7.739 |
| 0.98 | 3.454 | 3.741 | 5.158 | 9.197 | 8.207 | 8.237 | 3.454 | 6.628 | 9.197 |
| 0.99 | 3.817 | 4.611 | 7.207 | 11.847 | 10.108 | 10.252 | 3.817 | 8.390 | 11.847 |

810-005
105, Rev. E

Table 7. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Goldstone DSCC, K

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 6.693 | 6.693 | 6.693 | 6.693 | 6.693 | 6.693 |
| 0.10 | 7.308 | 7.500 | 7.723 | 7.845 | 8.106 | 8.037 |
| 0.20 | 7.913 | 8.002 | 8.164 | 8.325 | 8.735 | 8.722 |
| 0.25 | 8.135 | 8.219 | 8.385 | 8.565 | 8.952 | 8.971 |
| 0.30 | 8.358 | 8.436 | 8.606 | 8.779 | 9.169 | 9.221 |
| 0.40 | 8.801 | 8.859 | 8.984 | 9.163 | 9.601 | 9.721 |
| 0.50 | 9.242 | 9.272 | 9.350 | 9.546 | 10.077 | 10.323 |
| 0.60 | 9.681 | 9.684 | 9.718 | 9.984 | 10.569 | 10.974 |
| 0.70 | 10.297 | 10.351 | 10.265 | 10.468 | 11.228 | 11.763 |
| 0.80 | 11.101 | 11.328 | 10.854 | 11.094 | 12.108 | 13.012 |
| 0.85 | 11.750 | 12.248 | 11.365 | 11.525 | 12.711 | 13.836 |
| 0.90 | 13.096 | 14.334 | 11.962 | 12.136 | 13.592 | 14.750 |
| 0.92 | 13.835 | 16.166 | 12.474 | 12.533 | 14.042 | 15.221 |
| 0.93 | 14.458 | 17.643 | 12.730 | 12.731 | 14.397 | 15.520 |
| 0.94 | 15.262 | 19.651 | 13.147 | 13.037 | 14.751 | 15.819 |
| 0.95 | 16.548 | 21.502 | 13.744 | 13.562 | 15.302 | 16.226 |
| 0.96 | 18.649 | 25.319 | 14.753 | 14.345 | 16.200 | 16.803 |
| 0.97 | 22.138 | 30.415 | 16.732 | 15.953 | 17.735 | 17.739 |
| 0.98 | 28.112 | 38.775 | 20.815 | 20.156 | 20.775 | 19.451 |
| 0.99 | 42.063 | 55.416 | 33.563 | 32.862 | 29.789 | 26.298 |

Table 7 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Goldstone DSCC, K

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 6.693 | 6.693 | 6.693 | 6.693 | 6.693 | 6.693 | 6.693 | 6.693 | 6.693 |
| 0.10 | 8.837 | 8.560 | 8.533 | 8.101 | 7.688 | 7.170 | 7.170 | 7.953 | 8.837 |
| 0.20 | 10.007 | 9.500 | 9.170 | 8.803 | 8.199 | 7.816 | 7.816 | 8.618 | 10.007 |
| 0.25 | 10.526 | 9.926 | 9.452 | 9.078 | 8.454 | 8.039 | 8.039 | 8.897 | 10.526 |
| 0.30 | 11.004 | 10.325 | 9.734 | 9.351 | 8.708 | 8.262 | 8.262 | 9.169 | 11.004 |
| 0.40 | 11.921 | 11.244 | 10.336 | 9.878 | 9.195 | 8.708 | 8.708 | 9.708 | 11.921 |
| 0.50 | 13.269 | 12.464 | 11.001 | 10.357 | 9.682 | 9.159 | 9.159 | 10.322 | 13.269 |
| 0.60 | 14.797 | 13.737 | 11.843 | 10.872 | 10.267 | 9.609 | 9.609 | 10.990 | 14.797 |
| 0.70 | 16.243 | 15.122 | 12.911 | 11.611 | 10.907 | 10.314 | 10.265 | 11.804 | 16.243 |
| 0.80 | 17.692 | 16.683 | 14.755 | 12.708 | 11.794 | 11.393 | 10.854 | 12.891 | 17.692 |
| 0.85 | 18.559 | 17.644 | 16.113 | 13.475 | 12.578 | 12.291 | 11.365 | 13.688 | 18.559 |
| 0.90 | 19.662 | 18.909 | 17.619 | 14.524 | 13.702 | 13.649 | 11.962 | 14.836 | 19.662 |
| 0.92 | 20.257 | 19.555 | 18.305 | 15.106 | 14.465 | 14.525 | 12.474 | 15.541 | 20.257 |
| 0.93 | 20.787 | 19.906 | 18.642 | 15.533 | 14.926 | 15.117 | 12.730 | 16.028 | 20.787 |
| 0.94 | 21.350 | 20.308 | 18.978 | 15.961 | 15.589 | 16.161 | 13.037 | 16.655 | 21.350 |
| 0.95 | 22.096 | 20.913 | 19.417 | 16.591 | 16.328 | 17.879 | 13.562 | 17.492 | 22.096 |
| 0.96 | 22.996 | 21.636 | 19.954 | 17.341 | 17.277 | 20.617 | 14.345 | 18.796 | 25.319 |
| 0.97 | 24.419 | 22.609 | 20.802 | 18.480 | 19.470 | 24.965 | 15.953 | 20.913 | 30.415 |
| 0.98 | 27.543 | 24.261 | 22.578 | 20.970 | 24.846 | 32.618 | 19.451 | 25.012 | 38.775 |
| 0.99 | 36.643 | 28.273 | 28.925 | 29.979 | 39.527 | 52.090 | 26.298 | 36.199 | 55.416 |

$$
810-005
$$

105, Rev. E

Table 8. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Canberra DSCC, K

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 7.173 | 7.173 | 7.173 | 7.173 | 7.173 | 7.173 |
| 0.10 | 11.932 | 13.702 | 12.103 | 10.806 | 10.396 | 9.720 |
| 0.20 | 13.379 | 15.336 | 13.382 | 11.911 | 11.104 | 10.290 |
| 0.25 | 13.982 | 16.057 | 13.874 | 12.326 | 11.398 | 10.559 |
| 0.30 | 14.559 | 16.792 | 14.377 | 12.666 | 11.677 | 10.812 |
| 0.40 | 15.737 | 18.113 | 15.383 | 13.329 | 12.210 | 11.408 |
| 0.50 | 16.946 | 19.422 | 16.616 | 14.093 | 12.748 | 12.116 |
| 0.60 | 18.347 | 20.852 | 17.995 | 15.125 | 13.339 | 13.105 |
| 0.70 | 20.233 | 22.675 | 19.571 | 16.273 | 14.200 | 14.386 |
| 0.80 | 22.953 | 25.872 | 21.783 | 17.734 | 15.807 | 16.130 |
| 0.85 | 24.876 | 28.734 | 23.384 | 18.818 | 17.227 | 17.525 |
| 0.90 | 27.860 | 32.908 | 26.109 | 20.880 | 20.040 | 20.608 |
| 0.92 | 30.141 | 36.204 | 27.619 | 22.419 | 22.231 | 23.232 |
| 0.93 | 31.676 | 39.029 | 28.526 | 23.518 | 23.714 | 25.054 |
| 0.94 | 33.554 | 43.699 | 29.867 | 25.184 | 25.461 | 27.771 |
| 0.95 | 36.251 | 50.110 | 32.005 | 27.665 | 27.765 | 32.256 |
| 0.96 | 40.158 | 59.425 | 35.457 | 31.358 | 30.918 | 38.704 |
| 0.97 | 48.413 | 72.023 | 40.908 | 35.950 | 35.556 | 46.862 |
| 0.98 | 64.059 | 89.600 | 50.625 | 44.197 | 43.945 | 58.075 |
| 0.99 | 89.543 | 123.144 | 71.405 | 61.596 | 61.418 | 76.624 |

Table 8 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Canberra DSCC, K

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 7.173 | 7.173 | 7.173 | 7.173 | 7.173 | 7.173 | 7.173 | 7.173 | 7.173 |
| 0.10 | 9.555 | 9.472 | 9.906 | 10.060 | 11.313 | 11.195 | 9.472 | 10.830 | 13.702 |
| 0.20 | 10.145 | 10.017 | 10.657 | 10.909 | 12.326 | 12.471 | 10.017 | 11.807 | 15.336 |
| 0.25 | 10.397 | 10.244 | 10.967 | 11.253 | 12.810 | 13.004 | 10.244 | 12.217 | 16.057 |
| 0.30 | 10.629 | 10.478 | 11.277 | 11.596 | 13.281 | 13.518 | 10.478 | 12.615 | 16.792 |
| 0.40 | 11.081 | 10.952 | 11.858 | 12.231 | 14.262 | 14.574 | 10.952 | 13.401 | 18.113 |
| 0.50 | 11.645 | 11.422 | 12.497 | 12.913 | 15.301 | 15.726 | 11.422 | 14.258 | 19.422 |
| 0.60 | 12.357 | 11.988 | 13.247 | 13.671 | 16.672 | 17.071 | 11.988 | 15.282 | 20.852 |
| 0.70 | 13.321 | 12.794 | 14.232 | 14.733 | 18.582 | 18.608 | 12.794 | 16.598 | 22.675 |
| 0.80 | 14.712 | 14.084 | 15.728 | 16.716 | 21.507 | 21.263 | 14.084 | 18.648 | 25.872 |
| 0.85 | 15.978 | 15.200 | 17.040 | 18.539 | 23.932 | 23.397 | 15.200 | 20.338 | 28.734 |
| 0.90 | 18.603 | 17.451 | 19.727 | 21.919 | 29.017 | 27.403 | 17.451 | 23.487 | 32.908 |
| 0.92 | 20.460 | 19.389 | 22.033 | 24.364 | 33.008 | 30.198 | 19.389 | 25.876 | 36.204 |
| 0.93 | 21.930 | 20.920 | 23.686 | 26.255 | 36.212 | 32.052 | 20.920 | 27.639 | 39.029 |
| 0.94 | 23.828 | 22.814 | 25.744 | 28.663 | 40.003 | 34.837 | 22.814 | 30.026 | 43.699 |
| 0.95 | 26.411 | 25.598 | 28.746 | 31.913 | 44.777 | 39.182 | 25.598 | 33.440 | 50.110 |
| 0.96 | 30.047 | 29.793 | 33.562 | 36.578 | 52.598 | 45.334 | 29.793 | 38.509 | 59.425 |
| 0.97 | 35.105 | 36.687 | 40.838 | 43.102 | 63.667 | 55.774 | 35.105 | 46.053 | 72.023 |
| 0.98 | 44.401 | 48.510 | 50.787 | 54.088 | 78.616 | 71.380 | 43.945 | 57.975 | 89.600 |
| 0.99 | 60.655 | 68.451 | 74.946 | 78.153 | 103.207 | 98.705 | 60.655 | 80.378 | 123.144 |

810-005
105, Rev. E

Table 9. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Madrid DSCC, K

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 7.031 | 7.031 | 7.031 | 7.031 | 7.031 | 7.031 |
| 0.10 | 8.300 | 8.262 | 9.033 | 9.661 | 10.764 | 11.252 |
| 0.20 | 9.137 | 9.007 | 9.787 | 10.420 | 11.666 | 12.419 |
| 0.25 | 9.493 | 9.301 | 10.089 | 10.785 | 12.080 | 12.902 |
| 0.30 | 9.848 | 9.593 | 10.390 | 11.144 | 12.476 | 13.291 |
| 0.40 | 10.557 | 10.215 | 11.029 | 11.869 | 13.232 | 14.057 |
| 0.50 | 11.390 | 10.876 | 11.732 | 12.666 | 13.956 | 14.785 |
| 0.60 | 12.509 | 11.738 | 12.592 | 13.489 | 14.763 | 15.622 |
| 0.70 | 14.229 | 12.989 | 13.846 | 14.503 | 15.755 | 16.577 |
| 0.80 | 16.979 | 15.427 | 16.363 | 16.477 | 17.335 | 17.717 |
| 0.85 | 20.213 | 18.143 | 19.284 | 19.023 | 18.917 | 18.459 |
| 0.90 | 27.220 | 25.147 | 26.311 | 25.336 | 23.167 | 19.623 |
| 0.92 | 32.975 | 31.210 | 31.671 | 29.869 | 27.220 | 20.487 |
| 0.93 | 37.060 | 35.530 | 35.068 | 32.869 | 30.003 | 21.160 |
| 0.94 | 42.163 | 40.434 | 39.302 | 36.839 | 33.556 | 22.240 |
| 0.95 | 48.391 | 46.414 | 44.372 | 41.816 | 38.288 | 23.793 |
| 0.96 | 56.207 | 53.142 | 51.106 | 47.873 | 44.545 | 26.440 |
| 0.97 | 65.184 | 61.807 | 59.915 | 56.422 | 53.017 | 31.205 |
| 0.98 | 75.953 | 74.643 | 71.858 | 68.618 | 65.028 | 41.312 |
| 0.99 | 93.935 | 103.023 | 89.670 | 88.796 | 87.744 | 63.550 |

Table 9 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Madrid DSCC, K

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 7.031 | 7.031 | 7.031 | 7.031 | 7.031 | 7.031 | 7.031 | 7.031 | 7.031 |
| 0.10 | 11.572 | 11.694 | 11.135 | 10.089 | 8.961 | 8.477 | 8.262 | 9.943 | 11.694 |
| 0.20 | 12.464 | 12.787 | 12.235 | 11.398 | 9.911 | 9.328 | 9.007 | 10.890 | 12.787 |
| 0.25 | 12.859 | 13.192 | 12.690 | 11.916 | 10.283 | 9.719 | 9.301 | 11.286 | 13.192 |
| 0.30 | 13.218 | 13.578 | 13.149 | 12.391 | 10.655 | 10.101 | 9.593 | 11.664 | 13.578 |
| 0.40 | 13.935 | 14.301 | 14.067 | 13.363 | 11.473 | 10.900 | 10.215 | 12.428 | 14.301 |
| 0.50 | 14.635 | 14.993 | 14.962 | 14.468 | 12.475 | 11.957 | 10.876 | 13.254 | 14.993 |
| 0.60 | 15.357 | 15.750 | 15.862 | 15.736 | 13.743 | 13.259 | 11.738 | 14.215 | 15.862 |
| 0.70 | 16.113 | 16.567 | 16.812 | 17.238 | 15.390 | 15.147 | 12.989 | 15.445 | 17.238 |
| 0.80 | 16.992 | 17.534 | 17.990 | 20.336 | 18.305 | 18.739 | 15.427 | 17.531 | 20.336 |
| 0.85 | 17.532 | 18.099 | 18.844 | 23.965 | 21.530 | 22.486 | 17.532 | 19.723 | 23.965 |
| 0.90 | 18.087 | 18.894 | 20.174 | 32.702 | 30.372 | 30.922 | 18.087 | 24.840 | 32.702 |
| 0.92 | 18.548 | 19.289 | 21.498 | 39.260 | 37.374 | 36.886 | 18.548 | 28.863 | 39.260 |
| 0.93 | 18.783 | 19.617 | 22.449 | 43.732 | 42.082 | 41.154 | 18.783 | 31.627 | 43.732 |
| 0.94 | 19.019 | 19.944 | 23.865 | 49.447 | 47.302 | 46.109 | 19.019 | 35.018 | 49.447 |
| 0.95 | 19.354 | 20.371 | 25.822 | 56.235 | 52.865 | 52.129 | 19.354 | 39.152 | 56.235 |
| 0.96 | 19.796 | 21.068 | 28.829 | 63.607 | 59.843 | 59.077 | 19.796 | 44.293 | 63.607 |
| 0.97 | 20.310 | 22.303 | 33.598 | 73.716 | 67.857 | 67.983 | 20.310 | 51.106 | 73.716 |
| 0.98 | 21.536 | 25.386 | 43.607 | 89.091 | 78.773 | 79.093 | 21.536 | 61.221 | 89.091 |
| 0.99 | 26.371 | 36.703 | 67.808 | 114.358 | 98.160 | 99.556 | 26.371 | 80.711 | 114.358 |

810-005
105, Rev. E

Table 10. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Goldstone DSCC, dB

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 |
| 0.10 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 |
| 0.20 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 |
| 0.25 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 |
| 0.30 | 0.033 | 0.033 | 0.033 | 0.033 | 0.034 | 0.034 |
| 0.40 | 0.033 | 0.033 | 0.033 | 0.033 | 0.034 | 0.034 |
| 0.50 | 0.033 | 0.033 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.60 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.70 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.80 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.85 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.90 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.92 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.93 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.94 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.95 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.96 | 0.034 | 0.035 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.97 | 0.035 | 0.035 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.98 | 0.035 | 0.036 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.99 | 0.036 | 0.038 | 0.036 | 0.035 | 0.035 | 0.035 |

Table 10 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Goldstone DSCC, dB

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 |
| 0.10 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 |
| 0.20 | 0.034 | 0.034 | 0.034 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.034 |
| 0.25 | 0.034 | 0.034 | 0.034 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.034 |
| 0.30 | 0.034 | 0.034 | 0.034 | 0.034 | 0.033 | 0.033 | 0.033 | 0.034 | 0.034 |
| 0.40 | 0.034 | 0.034 | 0.034 | 0.034 | 0.033 | 0.033 | 0.033 | 0.034 | 0.034 |
| 0.50 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.033 | 0.033 | 0.034 | 0.034 |
| 0.60 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.70 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.80 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.85 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.90 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.92 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.93 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.94 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 |
| 0.95 | 0.035 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.035 |
| 0.96 | 0.035 | 0.035 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.035 |
| 0.97 | 0.035 | 0.035 | 0.034 | 0.034 | 0.034 | 0.035 | 0.034 | 0.034 | 0.035 |
| 0.98 | 0.035 | 0.035 | 0.035 | 0.034 | 0.035 | 0.035 | 0.034 | 0.035 | 0.036 |
| 0.99 | 0.036 | 0.035 | 0.035 | 0.035 | 0.036 | 0.037 | 0.035 | 0.036 | 0.038 |

810-005
105, Rev. E

Table 11. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Canberra DSCC, dB

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.10 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.20 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.25 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.30 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.40 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.50 | 0.036 | 0.037 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.60 | 0.036 | 0.037 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.70 | 0.037 | 0.037 | 0.037 | 0.036 | 0.036 | 0.036 |
| 0.80 | 0.037 | 0.037 | 0.037 | 0.036 | 0.036 | 0.036 |
| 0.85 | 0.037 | 0.037 | 0.037 | 0.036 | 0.036 | 0.036 |
| 0.90 | 0.037 | 0.038 | 0.037 | 0.037 | 0.037 | 0.037 |
| 0.92 | 0.037 | 0.038 | 0.037 | 0.037 | 0.037 | 0.037 |
| 0.93 | 0.038 | 0.038 | 0.037 | 0.037 | 0.037 | 0.037 |
| 0.94 | 0.038 | 0.039 | 0.037 | 0.037 | 0.037 | 0.037 |
| 0.95 | 0.038 | 0.039 | 0.038 | 0.037 | 0.037 | 0.038 |
| 0.96 | 0.038 | 0.040 | 0.038 | 0.038 | 0.037 | 0.038 |
| 0.97 | 0.039 | 0.042 | 0.038 | 0.038 | 0.038 | 0.039 |
| 0.98 | 0.041 | 0.043 | 0.039 | 0.039 | 0.039 | 0.040 |
| 0.99 | 0.043 | 0.048 | 0.041 | 0.040 | 0.040 | 0.042 |

Table 11 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Canberra DSCC, dB

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.10 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.20 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.25 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.30 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.40 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.50 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.037 |
| 0.60 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.037 |
| 0.70 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.037 |
| 0.80 | 0.036 | 0.036 | 0.036 | 0.036 | 0.037 | 0.037 | 0.036 | 0.036 | 0.037 |
| 0.85 | 0.036 | 0.036 | 0.036 | 0.036 | 0.037 | 0.037 | 0.036 | 0.037 | 0.037 |
| 0.90 | 0.036 | 0.036 | 0.037 | 0.037 | 0.037 | 0.037 | 0.036 | 0.037 | 0.038 |
| 0.92 | 0.037 | 0.036 | 0.037 | 0.037 | 0.038 | 0.037 | 0.036 | 0.037 | 0.038 |
| 0.93 | 0.037 | 0.037 | 0.037 | 0.037 | 0.038 | 0.038 | 0.037 | 0.037 | 0.038 |
| 0.94 | 0.037 | 0.037 | 0.037 | 0.037 | 0.038 | 0.038 | 0.037 | 0.037 | 0.039 |
| 0.95 | 0.037 | 0.037 | 0.037 | 0.038 | 0.039 | 0.038 | 0.037 | 0.038 | 0.039 |
| 0.96 | 0.037 | 0.037 | 0.038 | 0.038 | 0.040 | 0.039 | 0.037 | 0.038 | 0.040 |
| 0.97 | 0.038 | 0.038 | 0.038 | 0.039 | 0.041 | 0.040 | 0.038 | 0.039 | 0.042 |
| 0.98 | 0.039 | 0.039 | 0.039 | 0.040 | 0.042 | 0.041 | 0.039 | 0.040 | 0.043 |
| 0.99 | 0.040 | 0.041 | 0.042 | 0.042 | 0.045 | 0.045 | 0.040 | 0.042 | 0.048 |

810-005
105, Rev. E

Table 12. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Madrid DSCC, dB

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.10 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.20 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.25 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.30 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.40 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.50 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.60 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.036 |
| 0.70 | 0.035 | 0.035 | 0.035 | 0.035 | 0.036 | 0.036 |
| 0.80 | 0.036 | 0.035 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.85 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.90 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.92 | 0.037 | 0.037 | 0.037 | 0.037 | 0.036 | 0.036 |
| 0.93 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.036 |
| 0.94 | 0.038 | 0.038 | 0.038 | 0.037 | 0.037 | 0.036 |
| 0.95 | 0.038 | 0.038 | 0.038 | 0.038 | 0.037 | 0.036 |
| 0.96 | 0.039 | 0.039 | 0.039 | 0.038 | 0.038 | 0.036 |
| 0.97 | 0.040 | 0.040 | 0.040 | 0.039 | 0.039 | 0.037 |
| 0.98 | 0.041 | 0.041 | 0.041 | 0.040 | 0.040 | 0.038 |
| 0.99 | 0.043 | 0.044 | 0.043 | 0.043 | 0.043 | 0.040 |

Table 12 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Madrid DSCC, dB

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.10 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.20 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.25 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.30 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.40 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.50 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |
| 0.60 | 0.035 | 0.036 | 0.036 | 0.036 | 0.035 | 0.035 | 0.035 | 0.035 | 0.036 |
| 0.70 | 0.036 | 0.036 | 0.036 | 0.036 | 0.035 | 0.035 | 0.035 | 0.035 | 0.036 |
| 0.80 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.035 | 0.036 | 0.036 |
| 0.85 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 |
| 0.90 | 0.036 | 0.036 | 0.036 | 0.037 | 0.037 | 0.037 | 0.036 | 0.036 | 0.037 |
| 0.92 | 0.036 | 0.036 | 0.036 | 0.038 | 0.037 | 0.037 | 0.036 | 0.037 | 0.038 |
| 0.93 | 0.036 | 0.036 | 0.036 | 0.038 | 0.038 | 0.038 | 0.036 | 0.037 | 0.038 |
| 0.94 | 0.036 | 0.036 | 0.036 | 0.039 | 0.038 | 0.038 | 0.036 | 0.037 | 0.039 |
| 0.95 | 0.036 | 0.036 | 0.036 | 0.039 | 0.039 | 0.039 | 0.036 | 0.038 | 0.039 |
| 0.96 | 0.036 | 0.036 | 0.037 | 0.040 | 0.040 | 0.039 | 0.036 | 0.038 | 0.040 |
| 0.97 | 0.036 | 0.036 | 0.037 | 0.041 | 0.040 | 0.040 | 0.036 | 0.039 | 0.041 |
| 0.98 | 0.036 | 0.036 | 0.038 | 0.043 | 0.042 | 0.042 | 0.036 | 0.040 | 0.043 |
| 0.99 | 0.036 | 0.037 | 0.040 | 0.046 | 0.044 | 0.044 | 0.036 | 0.042 | 0.046 |

810-005
105, Rev. E

Table 13. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Goldstone DSCC, dB

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 |
| 0.10 | 0.037 | 0.037 | 0.038 | 0.038 | 0.038 | 0.038 |
| 0.20 | 0.038 | 0.038 | 0.038 | 0.038 | 0.039 | 0.039 |
| 0.25 | 0.038 | 0.038 | 0.038 | 0.039 | 0.039 | 0.039 |
| 0.30 | 0.038 | 0.038 | 0.039 | 0.039 | 0.039 | 0.039 |
| 0.40 | 0.039 | 0.039 | 0.039 | 0.039 | 0.040 | 0.040 |
| 0.50 | 0.039 | 0.039 | 0.039 | 0.040 | 0.040 | 0.040 |
| 0.60 | 0.040 | 0.040 | 0.040 | 0.040 | 0.041 | 0.041 |
| 0.70 | 0.040 | 0.040 | 0.040 | 0.040 | 0.041 | 0.042 |
| 0.80 | 0.041 | 0.041 | 0.041 | 0.041 | 0.042 | 0.043 |
| 0.85 | 0.042 | 0.042 | 0.041 | 0.041 | 0.043 | 0.044 |
| 0.90 | 0.043 | 0.045 | 0.042 | 0.042 | 0.044 | 0.045 |
| 0.92 | 0.044 | 0.047 | 0.042 | 0.042 | 0.044 | 0.046 |
| 0.93 | 0.045 | 0.048 | 0.043 | 0.043 | 0.045 | 0.046 |
| 0.94 | 0.046 | 0.051 | 0.043 | 0.043 | 0.045 | 0.046 |
| 0.95 | 0.047 | 0.053 | 0.044 | 0.044 | 0.046 | 0.047 |
| 0.96 | 0.049 | 0.057 | 0.045 | 0.044 | 0.047 | 0.047 |
| 0.97 | 0.053 | 0.063 | 0.047 | 0.046 | 0.048 | 0.048 |
| 0.98 | 0.060 | 0.074 | 0.052 | 0.051 | 0.052 | 0.050 |
| 0.99 | 0.078 | 0.095 | 0.067 | 0.066 | 0.062 | 0.058 |

Table 13 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Goldstone DSCC, dB

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 |
| 0.10 | 0.039 | 0.039 | 0.039 | 0.038 | 0.038 | 0.037 | 0.037 | 0.038 | 0.039 |
| 0.20 | 0.040 | 0.040 | 0.039 | 0.039 | 0.038 | 0.038 | 0.038 | 0.039 | 0.040 |
| 0.25 | 0.041 | 0.040 | 0.040 | 0.039 | 0.038 | 0.038 | 0.038 | 0.039 | 0.041 |
| 0.30 | 0.041 | 0.041 | 0.040 | 0.040 | 0.039 | 0.038 | 0.038 | 0.039 | 0.041 |
| 0.40 | 0.042 | 0.042 | 0.041 | 0.040 | 0.039 | 0.039 | 0.039 | 0.040 | 0.042 |
| 0.50 | 0.044 | 0.043 | 0.041 | 0.040 | 0.040 | 0.039 | 0.039 | 0.040 | 0.044 |
| 0.60 | 0.046 | 0.044 | 0.042 | 0.041 | 0.040 | 0.039 | 0.039 | 0.041 | 0.046 |
| 0.70 | 0.047 | 0.046 | 0.043 | 0.042 | 0.041 | 0.040 | 0.040 | 0.042 | 0.047 |
| 0.80 | 0.049 | 0.047 | 0.045 | 0.043 | 0.042 | 0.041 | 0.041 | 0.043 | 0.049 |
| 0.85 | 0.050 | 0.048 | 0.047 | 0.044 | 0.043 | 0.042 | 0.041 | 0.044 | 0.050 |
| 0.90 | 0.051 | 0.050 | 0.048 | 0.045 | 0.044 | 0.044 | 0.042 | 0.045 | 0.051 |
| 0.92 | 0.051 | 0.051 | 0.049 | 0.045 | 0.045 | 0.045 | 0.042 | 0.046 | 0.051 |
| 0.93 | 0.052 | 0.051 | 0.049 | 0.046 | 0.045 | 0.045 | 0.043 | 0.046 | 0.052 |
| 0.94 | 0.053 | 0.051 | 0.050 | 0.046 | 0.046 | 0.047 | 0.043 | 0.047 | 0.053 |
| 0.95 | 0.053 | 0.052 | 0.050 | 0.047 | 0.047 | 0.049 | 0.044 | 0.048 | 0.053 |
| 0.96 | 0.054 | 0.053 | 0.051 | 0.048 | 0.048 | 0.052 | 0.044 | 0.050 | 0.057 |
| 0.97 | 0.056 | 0.054 | 0.052 | 0.049 | 0.050 | 0.057 | 0.046 | 0.052 | 0.063 |
| 0.98 | 0.060 | 0.056 | 0.054 | 0.052 | 0.057 | 0.066 | 0.050 | 0.057 | 0.074 |
| 0.99 | 0.071 | 0.061 | 0.061 | 0.063 | 0.074 | 0.091 | 0.058 | 0.070 | 0.095 |

810-005
105, Rev. E

Table 14. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Canberra DSCC, dB

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 |
| 0.10 | 0.045 | 0.047 | 0.045 | 0.043 | 0.043 | 0.042 |
| 0.20 | 0.046 | 0.049 | 0.046 | 0.045 | 0.044 | 0.043 |
| 0.25 | 0.047 | 0.049 | 0.047 | 0.045 | 0.044 | 0.043 |
| 0.30 | 0.048 | 0.050 | 0.047 | 0.045 | 0.044 | 0.043 |
| 0.40 | 0.049 | 0.052 | 0.048 | 0.046 | 0.045 | 0.044 |
| 0.50 | 0.050 | 0.053 | 0.050 | 0.047 | 0.045 | 0.044 |
| 0.60 | 0.052 | 0.055 | 0.051 | 0.048 | 0.046 | 0.045 |
| 0.70 | 0.054 | 0.057 | 0.053 | 0.049 | 0.047 | 0.047 |
| 0.80 | 0.057 | 0.060 | 0.055 | 0.050 | 0.048 | 0.049 |
| 0.85 | 0.059 | 0.063 | 0.057 | 0.052 | 0.050 | 0.050 |
| 0.90 | 0.062 | 0.068 | 0.060 | 0.054 | 0.053 | 0.054 |
| 0.92 | 0.065 | 0.072 | 0.062 | 0.056 | 0.055 | 0.057 |
| 0.93 | 0.067 | 0.076 | 0.063 | 0.057 | 0.057 | 0.059 |
| 0.94 | 0.069 | 0.082 | 0.065 | 0.059 | 0.059 | 0.062 |
| 0.95 | 0.072 | 0.090 | 0.067 | 0.062 | 0.062 | 0.067 |
| 0.96 | 0.077 | 0.102 | 0.071 | 0.066 | 0.066 | 0.075 |
| 0.97 | 0.088 | 0.120 | 0.078 | 0.072 | 0.071 | 0.086 |
| 0.98 | 0.109 | 0.147 | 0.091 | 0.082 | 0.082 | 0.100 |
| 0.99 | 0.146 | 0.205 | 0.119 | 0.105 | 0.105 | 0.127 |

Table 14 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Canberra DSCC, dB

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 |
| 0.10 | 0.042 | 0.042 | 0.042 | 0.042 | 0.044 | 0.044 | 0.042 | 0.043 | 0.047 |
| 0.20 | 0.042 | 0.042 | 0.043 | 0.043 | 0.045 | 0.045 | 0.042 | 0.044 | 0.049 |
| 0.25 | 0.043 | 0.042 | 0.043 | 0.044 | 0.046 | 0.046 | 0.042 | 0.045 | 0.049 |
| 0.30 | 0.043 | 0.043 | 0.044 | 0.044 | 0.046 | 0.046 | 0.043 | 0.045 | 0.050 |
| 0.40 | 0.043 | 0.043 | 0.044 | 0.045 | 0.047 | 0.047 | 0.043 | 0.046 | 0.052 |
| 0.50 | 0.044 | 0.044 | 0.045 | 0.045 | 0.048 | 0.049 | 0.044 | 0.047 | 0.053 |
| 0.60 | 0.045 | 0.044 | 0.046 | 0.046 | 0.050 | 0.050 | 0.044 | 0.048 | 0.055 |
| 0.70 | 0.045 | 0.045 | 0.047 | 0.047 | 0.052 | 0.052 | 0.045 | 0.049 | 0.057 |
| 0.80 | 0.047 | 0.046 | 0.048 | 0.049 | 0.055 | 0.055 | 0.046 | 0.052 | 0.060 |
| 0.85 | 0.048 | 0.047 | 0.050 | 0.051 | 0.058 | 0.057 | 0.047 | 0.053 | 0.063 |
| 0.90 | 0.051 | 0.050 | 0.053 | 0.055 | 0.064 | 0.062 | 0.050 | 0.057 | 0.068 |
| 0.92 | 0.053 | 0.052 | 0.055 | 0.058 | 0.068 | 0.065 | 0.052 | 0.060 | 0.072 |
| 0.93 | 0.055 | 0.054 | 0.057 | 0.060 | 0.072 | 0.067 | 0.054 | 0.062 | 0.076 |
| 0.94 | 0.057 | 0.056 | 0.060 | 0.063 | 0.077 | 0.071 | 0.056 | 0.065 | 0.082 |
| 0.95 | 0.060 | 0.059 | 0.063 | 0.067 | 0.083 | 0.076 | 0.059 | 0.069 | 0.090 |
| 0.96 | 0.065 | 0.064 | 0.069 | 0.073 | 0.093 | 0.084 | 0.064 | 0.075 | 0.102 |
| 0.97 | 0.071 | 0.073 | 0.078 | 0.081 | 0.108 | 0.097 | 0.071 | 0.085 | 0.120 |
| 0.98 | 0.082 | 0.088 | 0.091 | 0.095 | 0.130 | 0.119 | 0.082 | 0.100 | 0.147 |
| 0.99 | 0.104 | 0.115 | 0.124 | 0.129 | 0.169 | 0.161 | 0.104 | 0.132 | 0.205 |

810-005
105, Rev. E

Table 15. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Madrid DSCC, dB

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 |
| 0.10 | 0.040 | 0.040 | 0.041 | 0.041 | 0.043 | 0.043 |
| 0.20 | 0.041 | 0.040 | 0.041 | 0.042 | 0.044 | 0.045 |
| 0.25 | 0.041 | 0.041 | 0.042 | 0.043 | 0.044 | 0.045 |
| 0.30 | 0.041 | 0.041 | 0.042 | 0.043 | 0.045 | 0.046 |
| 0.40 | 0.042 | 0.042 | 0.043 | 0.044 | 0.045 | 0.046 |
| 0.50 | 0.043 | 0.042 | 0.043 | 0.044 | 0.046 | 0.047 |
| 0.60 | 0.044 | 0.043 | 0.044 | 0.045 | 0.047 | 0.048 |
| 0.70 | 0.046 | 0.045 | 0.046 | 0.046 | 0.048 | 0.049 |
| 0.80 | 0.049 | 0.047 | 0.048 | 0.048 | 0.049 | 0.050 |
| 0.85 | 0.053 | 0.050 | 0.052 | 0.051 | 0.051 | 0.051 |
| 0.90 | 0.061 | 0.058 | 0.060 | 0.059 | 0.056 | 0.052 |
| 0.92 | 0.068 | 0.066 | 0.066 | 0.064 | 0.061 | 0.053 |
| 0.93 | 0.073 | 0.071 | 0.070 | 0.068 | 0.064 | 0.054 |
| 0.94 | 0.079 | 0.077 | 0.076 | 0.073 | 0.068 | 0.055 |
| 0.95 | 0.087 | 0.085 | 0.082 | 0.079 | 0.074 | 0.057 |
| 0.96 | 0.098 | 0.093 | 0.091 | 0.086 | 0.082 | 0.060 |
| 0.97 | 0.110 | 0.105 | 0.103 | 0.098 | 0.093 | 0.066 |
| 0.98 | 0.125 | 0.123 | 0.119 | 0.115 | 0.110 | 0.078 |
| 0.99 | 0.153 | 0.168 | 0.146 | 0.145 | 0.143 | 0.107 |

Table 15 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Madrid DSCC, dB

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 |
| 0.10 | 0.044 | 0.044 | 0.043 | 0.042 | 0.041 | 0.040 | 0.040 | 0.042 | 0.044 |
| 0.20 | 0.045 | 0.045 | 0.044 | 0.043 | 0.042 | 0.041 | 0.040 | 0.043 | 0.045 |
| 0.25 | 0.045 | 0.045 | 0.045 | 0.044 | 0.042 | 0.041 | 0.041 | 0.043 | 0.045 |
| 0.30 | 0.045 | 0.046 | 0.045 | 0.044 | 0.042 | 0.042 | 0.041 | 0.044 | 0.046 |
| 0.40 | 0.046 | 0.047 | 0.046 | 0.045 | 0.043 | 0.043 | 0.042 | 0.044 | 0.047 |
| 0.50 | 0.047 | 0.047 | 0.047 | 0.047 | 0.044 | 0.044 | 0.042 | 0.045 | 0.047 |
| 0.60 | 0.048 | 0.048 | 0.048 | 0.048 | 0.046 | 0.045 | 0.043 | 0.046 | 0.048 |
| 0.70 | 0.048 | 0.049 | 0.049 | 0.050 | 0.047 | 0.047 | 0.045 | 0.047 | 0.050 |
| 0.80 | 0.049 | 0.050 | 0.050 | 0.053 | 0.051 | 0.051 | 0.047 | 0.050 | 0.053 |
| 0.85 | 0.050 | 0.050 | 0.051 | 0.057 | 0.054 | 0.055 | 0.050 | 0.052 | 0.057 |
| 0.90 | 0.050 | 0.051 | 0.053 | 0.068 | 0.065 | 0.065 | 0.050 | 0.058 | 0.068 |
| 0.92 | 0.051 | 0.052 | 0.054 | 0.076 | 0.073 | 0.073 | 0.051 | 0.063 | 0.076 |
| 0.93 | 0.051 | 0.052 | 0.055 | 0.081 | 0.079 | 0.078 | 0.051 | 0.066 | 0.081 |
| 0.94 | 0.051 | 0.052 | 0.057 | 0.089 | 0.086 | 0.084 | 0.051 | 0.070 | 0.089 |
| 0.95 | 0.052 | 0.053 | 0.059 | 0.098 | 0.093 | 0.092 | 0.052 | 0.075 | 0.098 |
| 0.96 | 0.052 | 0.054 | 0.063 | 0.108 | 0.102 | 0.101 | 0.052 | 0.082 | 0.108 |
| 0.97 | 0.053 | 0.055 | 0.068 | 0.122 | 0.114 | 0.114 | 0.053 | 0.091 | 0.122 |
| 0.98 | 0.054 | 0.059 | 0.081 | 0.145 | 0.129 | 0.130 | 0.054 | 0.104 | 0.145 |
| 0.99 | 0.060 | 0.072 | 0.113 | 0.188 | 0.160 | 0.162 | 0.060 | 0.132 | 0.188 |

810-005
105, Rev. E

Table 16. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Goldstone DSCC, dB

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 |
| 0.10 | 0.125 | 0.128 | 0.132 | 0.134 | 0.139 | 0.138 |
| 0.20 | 0.134 | 0.136 | 0.139 | 0.141 | 0.148 | 0.148 |
| 0.25 | 0.137 | 0.139 | 0.142 | 0.145 | 0.151 | 0.152 |
| 0.30 | 0.141 | 0.142 | 0.145 | 0.148 | 0.154 | 0.155 |
| 0.40 | 0.147 | 0.148 | 0.150 | 0.153 | 0.160 | 0.162 |
| 0.50 | 0.153 | 0.153 | 0.155 | 0.158 | 0.167 | 0.171 |
| 0.60 | 0.159 | 0.159 | 0.159 | 0.164 | 0.173 | 0.180 |
| 0.70 | 0.167 | 0.168 | 0.167 | 0.170 | 0.183 | 0.192 |
| 0.80 | 0.179 | 0.183 | 0.175 | 0.179 | 0.196 | 0.211 |
| 0.85 | 0.189 | 0.197 | 0.182 | 0.185 | 0.205 | 0.223 |
| 0.90 | 0.210 | 0.230 | 0.191 | 0.194 | 0.218 | 0.237 |
| 0.92 | 0.222 | 0.260 | 0.199 | 0.200 | 0.225 | 0.245 |
| 0.93 | 0.232 | 0.284 | 0.203 | 0.203 | 0.231 | 0.249 |
| 0.94 | 0.245 | 0.318 | 0.210 | 0.208 | 0.236 | 0.254 |
| 0.95 | 0.266 | 0.349 | 0.220 | 0.217 | 0.245 | 0.260 |
| 0.96 | 0.300 | 0.413 | 0.236 | 0.229 | 0.260 | 0.270 |
| 0.97 | 0.359 | 0.501 | 0.268 | 0.255 | 0.285 | 0.285 |
| 0.98 | 0.460 | 0.649 | 0.336 | 0.325 | 0.335 | 0.313 |
| 0.99 | 0.708 | 0.959 | 0.555 | 0.543 | 0.489 | 0.429 |

Table 16 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Goldstone DSCC, dB

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 |
| 0.10 | 0.152 | 0.147 | 0.146 | 0.139 | 0.132 | 0.123 | 0.123 | 0.136 | 0.152 |
| 0.20 | 0.170 | 0.162 | 0.156 | 0.150 | 0.139 | 0.133 | 0.133 | 0.146 | 0.170 |
| 0.25 | 0.179 | 0.168 | 0.160 | 0.154 | 0.143 | 0.136 | 0.136 | 0.150 | 0.179 |
| 0.30 | 0.186 | 0.174 | 0.164 | 0.158 | 0.147 | 0.139 | 0.139 | 0.154 | 0.186 |
| 0.40 | 0.200 | 0.188 | 0.173 | 0.165 | 0.153 | 0.145 | 0.145 | 0.162 | 0.200 |
| 0.50 | 0.221 | 0.207 | 0.182 | 0.171 | 0.160 | 0.151 | 0.151 | 0.171 | 0.221 |
| 0.60 | 0.245 | 0.227 | 0.195 | 0.178 | 0.168 | 0.157 | 0.157 | 0.180 | 0.245 |
| 0.70 | 0.267 | 0.248 | 0.211 | 0.189 | 0.177 | 0.168 | 0.167 | 0.192 | 0.267 |
| 0.80 | 0.289 | 0.272 | 0.239 | 0.205 | 0.190 | 0.184 | 0.175 | 0.209 | 0.289 |
| 0.85 | 0.302 | 0.287 | 0.261 | 0.217 | 0.202 | 0.198 | 0.182 | 0.221 | 0.302 |
| 0.90 | 0.319 | 0.306 | 0.285 | 0.233 | 0.220 | 0.219 | 0.191 | 0.239 | 0.319 |
| 0.92 | 0.329 | 0.317 | 0.296 | 0.243 | 0.232 | 0.233 | 0.199 | 0.250 | 0.329 |
| 0.93 | 0.337 | 0.322 | 0.301 | 0.249 | 0.239 | 0.243 | 0.203 | 0.258 | 0.337 |
| 0.94 | 0.346 | 0.329 | 0.307 | 0.256 | 0.250 | 0.260 | 0.208 | 0.268 | 0.346 |
| 0.95 | 0.359 | 0.339 | 0.314 | 0.267 | 0.262 | 0.288 | 0.217 | 0.281 | 0.359 |
| 0.96 | 0.374 | 0.351 | 0.322 | 0.279 | 0.278 | 0.333 | 0.229 | 0.303 | 0.413 |
| 0.97 | 0.397 | 0.367 | 0.336 | 0.297 | 0.314 | 0.407 | 0.255 | 0.338 | 0.501 |
| 0.98 | 0.451 | 0.394 | 0.366 | 0.339 | 0.404 | 0.539 | 0.313 | 0.407 | 0.649 |
| 0.99 | 0.610 | 0.463 | 0.474 | 0.492 | 0.662 | 0.895 | 0.429 | 0.602 | 0.959 |

810-005
105, Rev. E

Table 17. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Canberra DSCC, dB

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.124 | 0.124 | 0.124 | 0.124 | 0.124 | 0.124 |
| 0.10 | 0.206 | 0.237 | 0.209 | 0.186 | 0.179 | 0.167 |
| 0.20 | 0.229 | 0.264 | 0.229 | 0.204 | 0.190 | 0.175 |
| 0.25 | 0.239 | 0.275 | 0.237 | 0.210 | 0.194 | 0.179 |
| 0.30 | 0.248 | 0.287 | 0.245 | 0.215 | 0.198 | 0.183 |
| 0.40 | 0.266 | 0.307 | 0.260 | 0.224 | 0.205 | 0.191 |
| 0.50 | 0.284 | 0.327 | 0.279 | 0.235 | 0.212 | 0.201 |
| 0.60 | 0.306 | 0.349 | 0.300 | 0.250 | 0.220 | 0.216 |
| 0.70 | 0.335 | 0.377 | 0.324 | 0.267 | 0.232 | 0.236 |
| 0.80 | 0.379 | 0.429 | 0.358 | 0.290 | 0.257 | 0.263 |
| 0.85 | 0.410 | 0.477 | 0.384 | 0.306 | 0.280 | 0.285 |
| 0.90 | 0.459 | 0.548 | 0.429 | 0.340 | 0.326 | 0.335 |
| 0.92 | 0.498 | 0.606 | 0.454 | 0.365 | 0.362 | 0.379 |
| 0.93 | 0.525 | 0.656 | 0.470 | 0.384 | 0.387 | 0.410 |
| 0.94 | 0.558 | 0.741 | 0.493 | 0.412 | 0.416 | 0.456 |
| 0.95 | 0.605 | 0.861 | 0.530 | 0.454 | 0.456 | 0.534 |
| 0.96 | 0.675 | 1.040 | 0.590 | 0.518 | 0.510 | 0.649 |
| 0.97 | 0.827 | 1.295 | 0.688 | 0.599 | 0.591 | 0.798 |
| 0.98 | 1.131 | 1.679 | 0.868 | 0.748 | 0.743 | 1.012 |
| 0.99 | 1.675 | 2.520 | 1.280 | 1.080 | 1.077 | 1.390 |

Table 17 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Canberra DSCC, dB

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.124 | 0.124 | 0.124 | 0.124 | 0.124 | 0.124 | 0.124 | 0.124 | 0.124 |
| 0.10 | 0.164 | 0.163 | 0.170 | 0.173 | 0.195 | 0.193 | 0.163 | 0.187 | 0.237 |
| 0.20 | 0.173 | 0.171 | 0.182 | 0.186 | 0.211 | 0.213 | 0.171 | 0.202 | 0.264 |
| 0.25 | 0.176 | 0.174 | 0.186 | 0.191 | 0.218 | 0.222 | 0.174 | 0.208 | 0.275 |
| 0.30 | 0.180 | 0.177 | 0.191 | 0.196 | 0.225 | 0.230 | 0.177 | 0.214 | 0.287 |
| 0.40 | 0.186 | 0.183 | 0.199 | 0.205 | 0.240 | 0.246 | 0.183 | 0.225 | 0.307 |
| 0.50 | 0.193 | 0.190 | 0.208 | 0.215 | 0.256 | 0.263 | 0.190 | 0.238 | 0.327 |
| 0.60 | 0.203 | 0.197 | 0.218 | 0.226 | 0.277 | 0.284 | 0.197 | 0.253 | 0.349 |
| 0.70 | 0.218 | 0.209 | 0.233 | 0.241 | 0.307 | 0.307 | 0.209 | 0.273 | 0.377 |
| 0.80 | 0.239 | 0.228 | 0.256 | 0.272 | 0.354 | 0.349 | 0.228 | 0.305 | 0.429 |
| 0.85 | 0.259 | 0.246 | 0.277 | 0.302 | 0.394 | 0.384 | 0.246 | 0.332 | 0.477 |
| 0.90 | 0.301 | 0.282 | 0.320 | 0.357 | 0.480 | 0.452 | 0.282 | 0.384 | 0.548 |
| 0.92 | 0.332 | 0.314 | 0.359 | 0.398 | 0.549 | 0.499 | 0.314 | 0.424 | 0.606 |
| 0.93 | 0.357 | 0.339 | 0.386 | 0.430 | 0.606 | 0.532 | 0.339 | 0.454 | 0.656 |
| 0.94 | 0.388 | 0.371 | 0.421 | 0.472 | 0.673 | 0.580 | 0.371 | 0.495 | 0.741 |
| 0.95 | 0.432 | 0.418 | 0.473 | 0.528 | 0.760 | 0.658 | 0.418 | 0.555 | 0.861 |
| 0.96 | 0.495 | 0.490 | 0.557 | 0.610 | 0.907 | 0.770 | 0.490 | 0.645 | 1.040 |
| 0.97 | 0.583 | 0.612 | 0.687 | 0.728 | 1.124 | 0.968 | 0.583 | 0.783 | 1.295 |
| 0.98 | 0.751 | 0.828 | 0.871 | 0.934 | 1.434 | 1.281 | 0.743 | 1.010 | 1.679 |
| 0.99 | 1.061 | 1.219 | 1.354 | 1.423 | 1.999 | 1.890 | 1.061 | 1.471 | 2.520 |

810-005
105, Rev. E

Table 18. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Madrid DSCC, dB

| CD | January | February | March | April | May | June |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 |
| 0.10 | 0.142 | 0.142 | 0.155 | 0.166 | 0.185 | 0.194 |
| 0.20 | 0.155 | 0.153 | 0.167 | 0.178 | 0.199 | 0.213 |
| 0.25 | 0.161 | 0.157 | 0.171 | 0.183 | 0.206 | 0.220 |
| 0.30 | 0.166 | 0.162 | 0.175 | 0.188 | 0.211 | 0.226 |
| 0.40 | 0.177 | 0.171 | 0.185 | 0.199 | 0.222 | 0.237 |
| 0.50 | 0.189 | 0.180 | 0.195 | 0.211 | 0.233 | 0.247 |
| 0.60 | 0.206 | 0.193 | 0.207 | 0.223 | 0.244 | 0.259 |
| 0.70 | 0.233 | 0.212 | 0.226 | 0.238 | 0.259 | 0.273 |
| 0.80 | 0.277 | 0.251 | 0.266 | 0.268 | 0.283 | 0.289 |
| 0.85 | 0.330 | 0.295 | 0.314 | 0.310 | 0.308 | 0.300 |
| 0.90 | 0.448 | 0.413 | 0.433 | 0.416 | 0.379 | 0.319 |
| 0.92 | 0.548 | 0.517 | 0.525 | 0.494 | 0.448 | 0.332 |
| 0.93 | 0.621 | 0.593 | 0.585 | 0.546 | 0.496 | 0.344 |
| 0.94 | 0.713 | 0.681 | 0.661 | 0.616 | 0.558 | 0.361 |
| 0.95 | 0.828 | 0.791 | 0.753 | 0.706 | 0.642 | 0.387 |
| 0.96 | 0.977 | 0.918 | 0.879 | 0.818 | 0.755 | 0.432 |
| 0.97 | 1.154 | 1.086 | 1.049 | 0.980 | 0.914 | 0.515 |
| 0.98 | 1.377 | 1.349 | 1.291 | 1.223 | 1.150 | 0.695 |
| 0.99 | 1.777 | 1.995 | 1.678 | 1.658 | 1.635 | 1.119 |

Table 18 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Madrid DSCC, dB

| CD | July | August | September | October | November | December | Minimum | Year <br> Average | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 |
| 0.10 | 0.200 | 0.202 | 0.192 | 0.174 | 0.154 | 0.145 | 0.142 | 0.171 | 0.202 |
| 0.20 | 0.213 | 0.219 | 0.209 | 0.195 | 0.169 | 0.159 | 0.153 | 0.186 | 0.219 |
| 0.25 | 0.219 | 0.225 | 0.216 | 0.203 | 0.174 | 0.165 | 0.157 | 0.192 | 0.225 |
| 0.30 | 0.224 | 0.231 | 0.223 | 0.210 | 0.180 | 0.170 | 0.162 | 0.197 | 0.231 |
| 0.40 | 0.235 | 0.241 | 0.237 | 0.225 | 0.192 | 0.182 | 0.171 | 0.209 | 0.241 |
| 0.50 | 0.244 | 0.250 | 0.250 | 0.241 | 0.207 | 0.199 | 0.180 | 0.221 | 0.250 |
| 0.60 | 0.254 | 0.261 | 0.263 | 0.261 | 0.227 | 0.219 | 0.193 | 0.235 | 0.263 |
| 0.70 | 0.265 | 0.272 | 0.277 | 0.284 | 0.252 | 0.248 | 0.212 | 0.253 | 0.284 |
| 0.80 | 0.277 | 0.286 | 0.294 | 0.334 | 0.299 | 0.306 | 0.251 | 0.286 | 0.334 |
| 0.85 | 0.285 | 0.294 | 0.307 | 0.394 | 0.352 | 0.369 | 0.285 | 0.322 | 0.394 |
| 0.90 | 0.293 | 0.306 | 0.328 | 0.545 | 0.503 | 0.513 | 0.293 | 0.407 | 0.545 |
| 0.92 | 0.300 | 0.312 | 0.350 | 0.661 | 0.627 | 0.618 | 0.300 | 0.476 | 0.661 |
| 0.93 | 0.304 | 0.318 | 0.365 | 0.743 | 0.712 | 0.695 | 0.304 | 0.524 | 0.743 |
| 0.94 | 0.307 | 0.323 | 0.389 | 0.849 | 0.808 | 0.786 | 0.307 | 0.584 | 0.849 |
| 0.95 | 0.313 | 0.330 | 0.422 | 0.979 | 0.913 | 0.899 | 0.313 | 0.657 | 0.979 |
| 0.96 | 0.320 | 0.341 | 0.474 | 1.124 | 1.048 | 1.033 | 0.320 | 0.751 | 1.124 |
| 0.97 | 0.328 | 0.361 | 0.557 | 1.331 | 1.209 | 1.212 | 0.328 | 0.878 | 1.331 |
| 0.98 | 0.348 | 0.414 | 0.737 | 1.667 | 1.438 | 1.445 | 0.348 | 1.074 | 1.667 |
| 0.99 | 0.430 | 0.611 | 1.206 | 2.283 | 1.877 | 1.910 | 0.430 | 1.478 | 2.283 |

810-005
105, Rev. E

Table 19. Cumulative Distributions of Year-Average Zenith Atmospheric Attenuation and Noise Temperature at K-Band for Goldstone DSCC

| C CD | 25.5 GHz |  | 26.0 GHz |  | 26.5 GHz |  | 27.0 GHz |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $A_{\text {zen }} \mathrm{dB}$ | $T_{\text {zen }}, \mathrm{K}$ | $A_{\text {zen, }} \mathrm{dB}$ | $T_{\text {zen }}, \mathrm{K}$ | $A_{\text {zen, }} \mathrm{dB}$ | $T_{\text {zen }}, \mathrm{K}$ | $A_{\text {zen }} \mathrm{dB}$ | $T_{\text {zen }}, \mathrm{K}$ |
| 0.00 | 0.076 | 4.382 | 0.078 | 4.513 | 0.080 | 4.650 | 0.083 | 4.794 |
| 0.10 | 0.110 | 6.485 | 0.109 | 6.417 | 0.109 | 6.406 | 0.110 | 6.441 |
| 0.20 | 0.122 | 7.215 | 0.120 | 7.099 | 0.120 | 7.053 | 0.120 | 7.063 |
| 0.25 | 0.127 | 7.534 | 0.125 | 7.396 | 0.124 | 7.336 | 0.124 | 7.335 |
| 0.30 | 0.132 | 7.840 | 0.130 | 7.682 | 0.129 | 7.607 | 0.129 | 7.596 |
| 0.40 | 0.142 | 8.476 | 0.139 | 8.276 | 0.138 | 8.169 | 0.137 | 8.137 |
| 0.50 | 0.154 | 9.192 | 0.150 | 8.944 | 0.148 | 8.804 | 0.147 | 8.747 |
| 0.60 | 0.168 | 10.058 | 0.163 | 9.753 | 0.160 | 9.571 | 0.159 | 9.486 |
| 0.70 | 0.185 | 11.099 | 0.179 | 10.725 | 0.175 | 10.495 | 0.173 | 10.375 |
| 0.80 | 0.206 | 12.405 | 0.199 | 11.947 | 0.194 | 11.656 | 0.192 | 11.493 |
| 0.85 | 0.221 | 13.292 | 0.212 | 12.780 | 0.207 | 12.449 | 0.204 | 12.259 |
| 0.90 | 0.242 | 14.567 | 0.232 | 13.977 | 0.226 | 13.590 | 0.222 | 13.360 |
| 0.92 | 0.255 | 15.407 | 0.245 | 14.766 | 0.238 | 14.343 | 0.234 | 14.088 |
| 0.93 | 0.266 | 16.019 | 0.254 | 15.342 | 0.247 | 14.893 | 0.243 | 14.619 |
| 0.94 | 0.279 | 16.803 | 0.267 | 16.082 | 0.259 | 15.600 | 0.254 | 15.303 |
| 0.95 | 0.297 | 17.890 | 0.284 | 17.107 | 0.275 | 16.580 | 0.270 | 16.252 |
| 0.96 | 0.324 | 19.479 | 0.309 | 18.608 | 0.299 | 18.017 | 0.293 | 17.644 |
| 0.97 | 0.367 | 22.000 | 0.350 | 20.994 | 0.338 | 20.306 | 0.331 | 19.864 |
| 0.98 | 0.454 | 27.036 | 0.432 | 25.779 | 0.417 | 24.905 | 0.407 | 24.333 |
| 0.99 | 0.656 | 38.214 | 0.623 | 36.480 | 0.600 | 35.254 | 0.585 | 34.430 |

Table 20. Cumulative Distributions of Year-Average Zenith Atmospheric Attenuation and NoiseTemperature at K-Band for Canberra DSCC

| C CD | 25.5 GHz |  | 26.0 GHz |  | 26.5 GHz |  | 27.0 GHz |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $A_{\text {zen }, ~} \mathrm{~dB}$ | $T_{\text {zen }}, \mathrm{K}$ | $A_{\text {zen }} \mathrm{dB}$ | $T_{\text {zen }}, \mathrm{K}$ | $A_{\text {zen }} \mathrm{dB}$ | $T_{\text {zen }} \mathrm{K}$ | $A_{\text {zen }} \mathrm{dB}$ | $T_{\text {zen }}, \mathrm{K}$ |
| 0.00 | 0.081 | 4.698 | 0.083 | 4.838 | 0.086 | 4.985 | 0.088 | 5.140 |
| 0.10 | 0.155 | 9.190 | 0.151 | 8.995 | 0.150 | 8.896 | 0.150 | 8.872 |
| 0.20 | 0.173 | 10.316 | 0.169 | 10.052 | 0.166 | 9.904 | 0.166 | 9.845 |
| 0.25 | 0.181 | 10.788 | 0.176 | 10.496 | 0.173 | 10.327 | 0.172 | 10.253 |
| 0.30 | 0.188 | 11.239 | 0.183 | 10.919 | 0.180 | 10.729 | 0.178 | 10.641 |
| 0.40 | 0.203 | 12.146 | 0.197 | 11.769 | 0.193 | 11.539 | 0.191 | 11.422 |
| 0.50 | 0.219 | 13.145 | 0.212 | 12.707 | 0.207 | 12.432 | 0.205 | 12.284 |
| 0.60 | 0.239 | 14.370 | 0.230 | 13.858 | 0.225 | 13.530 | 0.222 | 13.344 |
| 0.70 | 0.265 | 15.966 | 0.255 | 15.361 | 0.249 | 14.965 | 0.245 | 14.731 |
| 0.80 | 0.306 | 18.412 | 0.293 | 17.670 | 0.285 | 17.173 | 0.280 | 16.868 |
| 0.85 | 0.340 | 20.455 | 0.325 | 19.602 | 0.316 | 19.025 | 0.310 | 18.664 |
| 0.90 | 0.406 | 24.298 | 0.387 | 23.251 | 0.375 | 22.532 | 0.367 | 22.070 |
| 0.92 | 0.457 | 27.241 | 0.436 | 26.056 | 0.421 | 25.234 | 0.412 | 24.699 |
| 0.93 | 0.493 | 29.322 | 0.470 | 28.042 | 0.455 | 27.151 | 0.444 | 26.567 |
| 0.94 | 0.542 | 32.073 | 0.516 | 30.675 | 0.499 | 29.695 | 0.488 | 29.049 |
| 0.95 | 0.573 | 33.834 | 0.548 | 32.443 | 0.530 | 31.479 | 0.519 | 30.854 |
| 0.96 | 0.654 | 38.219 | 0.632 | 37.027 | 0.618 | 36.259 | 0.610 | 35.827 |
| 0.97 | 0.749 | 43.310 | 0.731 | 42.333 | 0.720 | 41.775 | 0.716 | 41.552 |
| 0.98 | 0.903 | 51.276 | 0.890 | 50.634 | 0.886 | 50.405 | 0.888 | 50.504 |
| 0.99 | 1.214 | 66.608 | 1.213 | 66.572 | 1.221 | 66.932 | 1.236 | 67.606 |

810-005
105, Rev. E

Table 21. Cumulative Distributions of Year-Average Zenith Atmospheric Attenuation and Noise Temperature at K-Band for Madrid DSCC

| CD | 25.5 GHz |  | 26.0 GHz |  | 26.5 GHz |  | 27.0 GHz |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $A_{\text {zen, }} \mathrm{dB}$ | $T_{\text {zen }}, \mathrm{K}$ | $A_{\text {zen, }} \mathrm{dB}$ | $T_{\text {zen }}, \mathrm{K}$ | $A_{\text {zen, }} \mathrm{dB}$ | $T_{\text {zen }} \mathrm{K}$ | $A_{\text {zen, }} \mathrm{dB}$ | $T_{\text {zen, }} \mathrm{K}$ |
| 0.00 | 0.079 | 4.605 | 0.082 | 4.742 | 0.084 | 4.886 | 0.087 | 5.037 |
| 0.10 | 0.132 | 7.815 | 0.130 | 7.690 | 0.129 | 7.641 | 0.130 | 7.650 |
| 0.20 | 0.149 | 8.865 | 0.146 | 8.674 | 0.145 | 8.578 | 0.144 | 8.554 |
| 0.25 | 0.156 | 9.294 | 0.153 | 9.076 | 0.151 | 8.959 | 0.150 | 8.922 |
| 0.30 | 0.163 | 9.706 | 0.159 | 9.462 | 0.157 | 9.327 | 0.156 | 9.276 |
| 0.40 | 0.177 | 10.563 | 0.172 | 10.265 | 0.169 | 10.089 | 0.168 | 10.011 |
| 0.50 | 0.191 | 11.472 | 0.186 | 11.117 | 0.182 | 10.901 | 0.181 | 10.793 |
| 0.60 | 0.208 | 12.530 | 0.202 | 12.108 | 0.197 | 11.844 | 0.195 | 11.703 |
| 0.70 | 0.230 | 13.871 | 0.222 | 13.368 | 0.217 | 13.044 | 0.214 | 12.861 |
| 0.80 | 0.268 | 16.138 | 0.257 | 15.501 | 0.250 | 15.081 | 0.246 | 14.830 |
| 0.85 | 0.307 | 18.490 | 0.294 | 17.722 | 0.286 | 17.207 | 0.280 | 16.889 |
| 0.90 | 0.404 | 24.150 | 0.385 | 23.090 | 0.373 | 22.361 | 0.365 | 21.892 |
| 0.92 | 0.484 | 28.753 | 0.461 | 27.477 | 0.445 | 26.589 | 0.435 | 26.007 |
| 0.93 | 0.507 | 30.114 | 0.485 | 28.863 | 0.470 | 28.001 | 0.460 | 27.447 |
| 0.94 | 0.585 | 34.408 | 0.561 | 33.085 | 0.545 | 32.187 | 0.535 | 31.626 |
| 0.95 | 0.639 | 37.366 | 0.616 | 36.140 | 0.602 | 35.341 | 0.594 | 34.881 |
| 0.96 | 0.704 | 40.842 | 0.683 | 39.757 | 0.671 | 39.097 | 0.666 | 38.775 |
| 0.97 | 0.785 | 45.123 | 0.768 | 44.228 | 0.759 | 43.754 | 0.757 | 43.615 |
| 0.98 | 0.906 | 51.374 | 0.893 | 50.733 | 0.889 | 50.508 | 0.892 | 50.613 |
| 0.99 | 1.136 | 62.772 | 1.132 | 62.589 | 1.137 | 62.809 | 1.149 | 63.349 |

Table 22. Monthly and Year-Average Rainfall Amounts at the DSN Antenna Locations

| Month | Goldstone |  | Canberra |  | Madrid |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | inches | mm | inches | mm | inches | mm |
| January | 1.02 | 25.9 | 3.61 | 91.7 | 1.48 | 37.5 |
| February | 1.18 | 30.0 | 2.74 | 69.7 | 1.38 | 35.0 |
| March | 0.90 | 22.9 | 2.90 | 73.6 | 1.10 | 28.0 |
| April | 0.20 | 5.1 | 2.85 | 72.4 | 1.87 | 47.5 |
| May | 0.19 | 4.8 | 2.94 | 74.8 | 1.56 | 39.5 |
| June | 0.04 | 1.0 | 2.70 | 68.7 | 1.26 | 32.0 |
| July | 0.35 | 8.9 | 3.36 | 85.3 | 0.57 | 14.5 |
| August | 0.59 | 15.0 | 3.90 | 99.0 | 0.59 | 15.0 |
| September | 0.39 | 9.9 | 3.73 | 94.7 | 1.16 | 29.5 |
| October | 0.15 | 3.8 | 3.70 | 94.0 | 1.54 | 39.0 |
| November | 0.23 | 5.8 | 3.50 | 88.8 | 2.01 | 51.0 |
| December | 0.57 | 14.5 | 2.42 | 61.4 | 1.75 | 44.5 |
| Year Average | 5.81 | 147.6 | 38.67 | 982.1 | 16.26 | 413.0 |

810-005
105, Rev. E

Table 23. Parameters for X-Band Planetary Noise Calculation, plus X-Band, K-band, and Ka-Band Noise Temperatures at Mean Minimum Distance from Earth

| Planet | Diameter (km) |  | Mean Distance from Earth$\left(10^{6} \mathrm{~km}\right)$ |  | Mean Distance from Sun |  | Blackbody Disk Temp (K) | Tplanet at <br> Mean Minimum Distance (K) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | X-Band | K-Band <br> $34-m$ <br> $(77.2 \mathrm{dBi}$ <br> gain) |  |  | $\begin{gathered} \text { Ka-Band } \\ \begin{array}{c} 34-\mathrm{m} \\ (78.8 \mathrm{dBi} \\ \text { gain }) \end{array} \end{gathered}$ |
|  |  |  | $\begin{aligned} & \quad 70-\mathrm{m} \\ & \text { (74.4 dBi } \\ & \text { gain) } \end{aligned}$ |  |  |  | $\begin{gathered} 34-\mathrm{m} \\ (68.3 \mathrm{dBi} \\ \text { gain }) \end{gathered}$ |
|  | polar | equatorial |  |  | min. | max. |  | $\left(10^{6} \mathrm{~km}\right)$ | AU |  |  |  |  |  |
| Mercury |  | 4880 |  |  | 91.7 | 207.5 | 57.9 | 0.387 | 625 | 3.05 | 0.75 | 5.81 | 8.39 |
| Venus |  | 12104 | 41.4 | 257.8 | 108.2 | 0.723 | 634 (X-band) 497 (K-band) 472 (Ka-band) | $93.29$ <br> - | 22.90 - - | $139.35$ | $191.28$ |
| Earth |  | 12757 | - | - | 149.6 | 1.000 | 250-300 ${ }^{1}$ | - | - | - | - |
| Mars |  | 6794 | 78.3 | 377.5 | 227.9 | 1.523 | 180 | 2.33 | 0.57 | 4.45 | 6.43 |
| Jupiter | 134102 | 142984 | 628.7 | 927.9 | 778.3 | 5.203 | 152 | 13.53 | 3.32 | 25.79 | 37.27 |
| Saturn | 108728 | 120536 | 1279.8 | 1579.0 | 1429.4 | 9.555 | 155 | 2.37 | 0.58 | 4.51 | 6.52 |
| Uranus |  | 51118 | 2721.4 | 3020.6 | 2871.0 | 19.191 | 160 | 0.10 | 0.02 | 0.19 | 0.27 |
| Neptune |  | 49532 | 4354.4 | 4653.6 | 4504.0 | 30.107 | 160 | 0.04 | 0.01 | 0.07 | 0.10 |
| Pluto |  | 2274 | 5763.9 | 6063.1 | 5913.5 | 39.529 | 160 | 0.00 | 0.00 | 0.00 | 0.00 |

Note:

1. Ocean $(250 \mathrm{~K})$ and Land $(300 \mathrm{~K})$

# 106, Rev. B <br> Solar Corona and Solar Wind Effects 

Released September 30, 2010

Document Owner:


Sr. Engineer

Approved by:


DSN Chief System Engineer

Released by:

## Change Log

| Rev | Issue Date | Affected <br> Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: |
| Initial | $8 / 10 / 2005$ | All | Initial Release |
| A | $10 / 21 / 2005$ | $2.1 .1,2.1 .3$ | Corrected units of Equation 4, Added attribution <br> for Figures 2 and 4. |
| B | $9 / 30 / 2010$ | All | Replaced DSMS with DSN. Eliminated the Rev. E <br> designation for the document series. |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Note to Readers

The 810-005 document series has been structured so that each document module can be independently revised without affecting others in the series. Hence, the Revision E previously designated at the 810-005 level has become unnecessary and eliminated. This module is one of the many in the 810-005 series; each may be published or changed, starting as an initial issue that has no revision letter. When a module is updated, a change letter is appended to the module number in the header and a summary of the changes is entered in the module's change log.

## Contents

Paragraph Page
1 Introduction ..... 4
1.1 Purpose ..... 4
1.2 Scope ..... 4
2 General Information ..... 4
2.1 Effects in Homogeneous Region of the Solar Wind ..... 6
2.1.1 Group Delay ..... 6
2.1.2 Dispersion ..... 8
2.1.3 Faraday Rotation ..... 9
2.1.4 Absorption ..... 11
2.2 Solar Effects in Inhomogeneous Plasma ..... 11
2.2.1 Intensity Scintillation ..... 11
2.2.1.1 Measurements ..... 12
2.2.1.2 Data Reduction Technique ..... 12
2.2.1.3 Discussion of the X-band Scintillation Measurements ..... 12
2.2.1.4 Discussion of the Ka-band Scintillation Measurements ..... 13
2.2.1.5 Scintillation Model ..... 14
2.2.2 Spectral Broadening ..... 15
2.3 Communications Strategies ..... 16
Appendix A, References ..... 17
Illustrations
Figure Page

1. Geometric Relationships for Calculating Solar Effects ..... 5
2. Slant Total Electron Content (STEC) as a Function of Sun-Earth-Probe and Earth-Sun-Probe Angles ..... 7
3. Comparison of Model with Representative Data from Several Solar Occultations. ..... 8
4. S-band Coronal Faraday Rotation (Helios-1 Spacecraft, Day 241, 1975) ..... 10
5. X-band Scintillation Index vs. Solar Elongation Angle ..... 13
6. Ka-band Scintillation Index vs. Solar Elongation Angle ..... 14

## 1 Introduction

### 1.1 Purpose

This module describes the effects of the solar corona and solar wind on Deep Space Network (DSN) telecommunications links. This will enable a telecommunications engineer to predict radio metric and radio science data performance of a signal at $\mathrm{S}, \mathrm{X}$ and Ka bands when passing through the solar corona and solar wind.

### 1.2 Scope

This module discusses the effects of the solar corona and solar wind on DSN telecommunications links. The telecommunications performance in the absence of these effects and in the absence of weather effects is described in the telecommunications interfaces module for each antenna type (modules 101, 102, 103, and 104). Weather effects are discussed in module 105, Atmospheric and Environmental Effects. Module 105 also provides information on the effect of solar radiation on the operating system noise temperature of the antennas.

## 2 General Information

The solar corona and solar wind are the result of high density and strongly turbulent ionized gases (plasma) being ejected from the Sun. These ionized particles stream from the Sun at speeds on the order of $400 \mathrm{~km} / \mathrm{s}$ and form the solar wind. The solar wind is not uniform and is accompanied by significant fluctuations in the solar magnetic field. Solar wind plasma density decreases with radial distance and becomes largely homogeneous when the distance from the Sun exceeds 4 solar radii. Within 4 solar radii, turbulence and irregularities are much greater and the plasma must be considered inhomogeneous. When radio frequency (RF) waves pass through these regions, the signals suffer severe degradation of their amplitude, frequency and phase.

Estimation of solar effects is complicated by the solar cycle that places an overlay of solar event frequency on top of the normal solar activity. Such events include coronal mass ejections, and an increase in the number of streamers. During the low periods of the solar cycle, events are less frequent and generally confined to the Sun's equatorial region. During periods of high solar activity, events are much more frequent and may occur at any place on the Sun's surface. Disentangling solar latitude dependence and solar activity dependence in each conjunction data set is difficult. In addition, many times the spacecraft ingress and egress scintillation profile curves are asymmetric and take on a different character depending on solar conditions. A chart predicting solar activity is shown in module 105.

Figure 1 illustrates the regions of the Sun and geometric relationships used in this module. The closest distance between the signal path and the Sun is $a$, the Solar Elongation


Figure 1. Geometric Relationships for Calculating Solar Effects

Angle or Sun-Earth-probe (SEP) angle is $\alpha$ ( 1 solar radius in $a=0.25^{\circ}$ in $\alpha$ ), the spacecraft-SunEarth angle is $\beta$, and the signal path length between spacecraft and the Earth station is $L$. The figure also shows the Earth's ionosphere and magnetosphere that have a relatively low plasma density.

### 2.1 Effects in Homogeneous Region of the Solar Wind

As a plasma medium, the homogeneous region of the solar wind has the following basic effects on radio wave signals.

### 2.1.1 Group Delay

Group delay is the extra time delay due to the presence of an ionized medium in the propagation path. It is a function only of the slant total electron contents (STEC) along the path and the radio-wave frequency. It is defined as

$$
\begin{equation*}
\Delta T=\frac{1.3446 \times 10^{-19}}{f^{2}} \times \int_{L_{S / C}} N_{e} d l \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\Delta T & =\text { the group delay }(\mu \mathrm{s}) \\
f & =\text { the radio-wave frequency }(\mathrm{GHz}) \\
\int_{L_{S / C}} N_{e} d l & \text { the } S T E C \text { along the entire path, } L, \text { from earth station to spacecraft } \\
& \text { (see Figure } 1) .
\end{array}
$$

$N_{e}$ is solar wind electron density, a function only of radial distance. At low heliospheric latitude and equatorial regions, it can be modeled as [1]:

$$
\begin{equation*}
N_{e}(a)=2.21 \times 10^{14}\left(\frac{a}{R_{0}}\right)^{-6}+1.55 \times 10^{12}\left(\frac{a}{R_{0}}\right)^{-2.3} \tag{2}
\end{equation*}
$$

where
$R_{o} \quad=$ solar radius $\left(6.96 \times 10^{8} \mathrm{~m}\right)$
$a \quad=$ radial distance, m .
This model is one of several postulated for $N_{e}(a)$, the primary difference between the models being the exponent of the second term. For example, the MuhlemanAnderson model [2] uses an exponent ranging from -2.04 to -2.08 .

Finally, the integration along the ray path is a function of angles $\alpha$ and $\beta$ that uniquely define the path, $L$ (see Figure 1).

## Approximate Distance from Center of Sun, (Solar Radii)



Figure 2. Slant Total Electron Content (STEC) as a Function of Sun-Earth-Probe and Earth-Sun-Probe Angles.

Figure 2 can be used to determine the approximate value of STEC as a function of Sun-Earth-Probe Angle, $\alpha$, or distance from the center of the sun in solar radii, for values of $\beta$ between $90^{\circ}$ and $178^{\circ}$. For example, if a ray path passes near the Sun such that $\alpha$ and $\beta$ are $1.5^{\circ}$ and $150^{\circ}$, the $S T E C$ will be approximately $3 \times 10^{20}$ electrons $/ \mathrm{m}^{2}$. Substituting this value in equation (1) provides a $\Delta T=7.5 \mu \mathrm{~s}$ for an S band $(2.3 \mathrm{GHz})$ signal and $0.6 \mu \mathrm{~s}$ for an X band ( 8.42 GHz ) signal. Figure 3 illustrates this model as applied to an S-band Uplink and X-band downlink signal along with data from the Viking [2] and Ulysses [3] missions that used these frequencies for their telecommunications links.


Figure 3. Comparison of Model with Representative Data from Several Solar Occultations.

### 2.1.2 Dispersion

Because group velocity is a function of the radio signal frequency, a dispersive phenomenon will occur when a broad band of frequency signals pass through the solar wind.

Differentiating the group delay $\Delta T$ in (1) and scaling to appropriate units yields the following relation

$$
\begin{equation*}
\frac{\Delta T}{\Delta f}=\frac{2.69 \times 10^{-19}}{f^{3}} \int_{L_{S / C}} N_{e} d l=\frac{2.69 \times 10^{-19}}{f^{3}} \times S T E C \tag{3}
\end{equation*}
$$

where

$$
\frac{\Delta T}{\Delta f}=\text { dispersion (ns/MHz) }
$$

Using the STEC value derived above for an SEP angle of $1.5^{\circ}$ and $\beta=150^{\circ}$, we find $\Delta T / \Delta f=0.135 \mathrm{~ns} / \mathrm{MHz}$ for X band frequencies.

### 2.1.3 Faraday Rotation

An RF wave traversing the solar corona at an angle $\theta_{B}$ with respect to the Sun's magnetic field $B$ (quasi-longitudinal) will rotate its polarization plane. The total rotation $\phi$ in radians is proportional to the product of the electron density and the magnetic field component along the path from the probe to the observer and is given to a very good approximation by

$$
\begin{equation*}
\phi=\frac{2.36 \times 10^{-17}}{f^{2}} \int_{L_{S / C}} N_{e} \vec{B} \cos \theta_{B} d l, \mathrm{rad} \tag{4}
\end{equation*}
$$

where
$f \quad=$ signal frequency, MHz
$B \quad=$ magnetic field magnitude, nT
$N_{e} \quad=\quad$ solar wind electron density, $\mathrm{m}^{-3}$.
Thus, a large Faraday rotation could result from either a high electron density or a large net longitudinal field component. On the other hand, high electron densities and strong magnetic fields could produce no net Faraday rotation if the field orientations are such as to cancel out in the integral.

The observed Faraday rotation is due to the effects of both the solar corona and the plasma in the Earth's ionosphere however, the ionospheric contribution is usually negligible when the ray path passes within 10 solar radii of the sun. An example of S-band Faraday rotation as measured from two Earth stations during the second of two solar occultations by the Helios-1 spacecraft is shown in Figure 4 [4].

The change in polarization angle due to Faraday rotation can be measured at stations that are capable of receiving simultaneous RCP and LCP signals provided the spacecraft radiates significant energy in each circular polarization (or employs a linearly polarized signal). The 70-m stations presently have the capability for simultaneous RCP and LCP reception at Sand X-bands, and several of the BWG stations have this capability at X-band.


Figure 4. S-band Coronal Faraday Rotation (Helios-1 Spacecraft, Day 241, 1975).

The polarization angle is related to the phases of the received signals by

$$
\begin{equation*}
\alpha_{S, x}=\frac{\phi_{s, x}^{R C P}-\phi_{s, x}^{L C P}}{2} \tag{5}
\end{equation*}
$$

where

$$
\phi_{s, x} \quad=\text { polarization angle at the received frequency }
$$

$\phi_{s, x}^{R C P}$ and $\phi_{s, x}^{L C P}$ are the phases of the S- or X-band RCP and LCP components.
The factor of one-half is necessary because Faraday rotation has equal but opposite effects on the phase of each circular polarization. That is, if it retards the phase of the RCP signal, it will advance the phase of the LCP signal and vice-versa.

### 2.1.4 Absorption

The absorption effect of solar wind plasma in the microwave bands, $L_{a}$, is very small and is given by

$$
\begin{equation*}
L_{a}=\frac{1.15 \times 10^{-21}}{f^{2}} \int_{L_{S / C}} N_{e} v d l, \mathrm{~dB} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
N_{e} & =\text { solar wind electron density, } \mathrm{m}^{-3} \\
v & =\text { plasma collision frequency, } \mathrm{Hz}, \text { (a function of temperature) } \\
f & =\text { signal frequency, } \mathrm{GHz}
\end{aligned}
$$

For a 2.3 GHz signal and a path length of $3 \times 10^{8} \mathrm{~km}$, the total absorption will be only 0.01 dB and is negligible.

### 2.2 Solar Effects in Inhomogeneous Plasma

The solar corona and near-sun solar wind are an inhomogeneous plasma medium because of strong turbulence and irregularities-especially within 4 solar radii. In addition to the effects mentioned in Section 2.1, radio signals will experience intensity scintillations, spectral broadening, and phase scintillations. The first two of these are discussed below. Phase scintillation will be discussed in a later revision of this module.

### 2.2.1 Intensity Scintillation

RF signals passing through solar corona are scattered by turbulence within the Fresnel Zone of the signal. The Fresnel Zone size can be approximated by $\sqrt{\lambda L_{1}}$, where $L_{1}$ is the distance to the irregularity, usually assumed to be 1 AU . Irregularities within this region are classified as small-scale irregularities. Rapid amplitude changes around the average signal level will occur due to wave ray path changes and phase shifting as different portions of the wave front are affected to differing degrees. This is observed as instantaneous degradations to the received signal to noise ratio (SNR). The intensity scintillations can be described using a scintillation index, $m$, that is defined as the RMS of the signal intensity fluctuations divided by their mean intensity. As the intensity of the scintillations increase, their RMS value approaches the mean and the index becomes saturated at 1 .

The scintillation index can be calculated from a measurement time series of signal strength, as the ratio of the RMS of the received power fluctuations relative to the mean power, over the observation interval. This parameter is only sensitive to characterizing the strength of small-scale charged particle density irregularities. In the regime of weak scintillation, $(0<m<$ 0.5 ), the RMS of the fluctuations is small relative to the mean intensity. In the regime of strong scintillation, the RMS of the fluctuations will be comparable to the mean intensity. As the SEP angle decreases, the scintillation index for a point source will increase until saturation occurs,
and then there will not be any further increase in m as the SEP angle decreases. Saturation is usually reached at an SEP angle $\sim 1.2^{\circ}$ for X-band and $\sim 0.6^{\circ}$ for Ka-band. However, the time scale of the fluctuations may become shorter as the SEP angle decreases further in the regime of saturation.

For spacecraft telemetry, frame errors have been observed to significantly increase when the scintillation index reaches values of 0.3 and above [5]. When the scintillation index is less than 0.3 , few frame errors have been observed provided sufficient margin was available in both the carrier and data channels. This transition point where telemetry frame errors significantly increase occurs near $2.3^{\circ}$ for X-band and is expected to occur near $\sim 1^{\circ}$ for Ka-band [5]. Flight projects and design engineers can use such information in the planning of solar conjunction operational scenarios.

### 2.2.1.1 Measurements

Figures 5 and 6 illustrate the values of the X-band and Ka-band scintillation indices that were measured from solar conjunction experiments of interplanetary spacecraft missions along with solid lines depicting the theoretical model curves described in Reference [6]. The missions included Mars Global Surveyor (MGS) in 1998 [7], Stardust in 2000 (X-band only), Cassini in 2000 [8], Deep Space 1 in 2000 [9], and Cassini in 2001 The Ka-band data for the 2001 Cassini conjunction are broken into two subsets with one representing the egress on day 158 and the second representing the data from all other tracks in 2001.

### 2.2.1.2 Data Reduction Technique

Most of the X-band data points from the MGS 1998 conjunction were from Block V Receiver (BVR) closed-loop data while most of the data points (X-band and Ka-band) from the other conjunctions were estimated using a software phase-locked-loop (PLL) program run on open-loop receiver sampled data recorded during the passes. The PLL algorithm used on the open-loop data samples acquired during strong scintillation or saturation results in lost fluctuation information due to the filtering effects of the PLL when the signal SNR gets too low during the deep fading. This results in depressed estimates of scintillation index. Therefore, the X-band scintillation data points with SEP $<1^{\circ}$ were evaluated using an alternative approach. The histogram of the open-loop amplitude samples were fit to a Rician distribution function, solving for the Rician mean and sigma parameters, as well as a scale factor. These were then converted to scintillation index using appropriate formulation [10]. This approach appears to be very reasonable, as the resulting scintillation index values lie near unity, as expected in this region of small solar impact distance.

### 2.2.1.3 Discussion of the $X$-band Scintillation Measurements

The scintillation index is reduced when the signal traverses regions of less dense and less turbulent plasma, such as coronal holes. Most of the MGS 1998 X-band ingress points lie below the theoretical model in Figure 5 as the spacecraft signal was propagating through a coronal hole. The MGS 1998 egress measurements lie above and below the theoretical model, with the data points lying above the model appearing to be correlated with solar activity [7].

A significant increase in X-band scintillation index was observed during a Cassini solar conjunction pass in May 2000. This event occurred during a pass conducted at an SEP angle of $1.8^{\circ}$ during egress, while in the X-band weak scintillation realm $(m<1)$. Hence, density-induced changes were detectable in which $m$ increased from its background level of $m \sim$ 0.4 up to $m \sim 0.8$. Two data points from this pass are plotted in Figure 5. This change in X-band scintillation index during a single pass is consistent with the overall scatter of all the measurements about the model for SEP $<2^{\circ}$, suggesting that such variability may contribute to the scatter seen in other measurements.


Figure 5. X-band Scintillation Index vs. Solar Elongation Angle.

The solar maximum scintillation observations of the Cassini 2000, Cassini 2001 and DS1 2000 solar conjunctions tend to be elevated with respect to the MGS 1998 data points, except during the solar events or streamer transits during egress.

### 2.2.1.4 Discussion of the Ka-band Scintillation Measurements

The Ka-band scintillation measurements provide a reasonably good match to the theoretical model as seen in Figure 6. In addition to there being less scintillation at Ka-band relative to X -band for the same SEP angle, there is also less variability in the Ka-band scintillation index measurements, although it is cautioned to keep in mind that the Ka-band data set lacks a sufficient number of measurements. The Ka-band curve appears to transition from weak scintillation to saturation near $0.6^{\circ}$.


Figure 6. Ka-band Scintillation Index vs. Solar Elongation Angle.

A very few Ka-band data points were available from the MGS 1998 solar conjunction so the Ka-band data set is not as comprehensive as the X-band set. Changes in Ka band scintillation index during the Cassini May 2000 solar conjunction were difficult to measure as the spacecraft was using thrusters to maintain pointing [8]. This caused signal amplitude excursions of as much as 20 dB with time scales on the order of 40 minutes. To minimize these effects for the Cassini May 2000 solar conjunction passes, the scintillation index for Ka-band was computed only during a short period of relatively constant signal strength - where deadbanding effects were minimal. The Cassini June 2001 solar conjunction used reaction wheel attitude control that provided excellent received signal strength stability.

### 2.2.1.5 Scintillation Model

A complex model based on theoretical considerations has been developed and is presented in Reference [6]. A simplified, exponential/polynomial approximation to this theoretical model is provided as equation (7) and is shown as the solid curve in Figures 5 and 6.

$$
m=\left\{\begin{array}{l}
\exp \left[-a_{1}\left(|\theta|-\theta_{t}\right)\right]+a_{2}+a_{3}\left(|\theta|-\theta_{t}\right)+a_{4}\left(|\theta|-\theta_{t}\right)^{2}, \quad\left(|\theta|-\theta_{t}\right) \geq 0  \tag{7}\\
1, \quad\left(|\theta|-\theta_{t}\right)<0
\end{array}\right.
$$

In this model, $a_{1}, a_{2}, a_{3}$, and $a_{4}$ are solve-for coefficients, $\theta$ is the actual SEP angle, and $\theta_{t}$ is near the SEP angle at which the scintillation index transitions to saturation ( $m=1$ )

For X-band, the best-fit coefficients using the exponential model in (7) fit to the data with $\theta_{t}=1.35^{\circ}$ and $\left|\theta_{t}\right|<5^{\circ}$. were:

$$
\begin{aligned}
& a_{1}=2.0 \\
& a_{2}=0.14 \\
& a_{3}=-0.03 \\
& a_{4}=0.0
\end{aligned}
$$

For Ka-band, the best-fit coefficients using the exponential model of (7) were:

$$
\begin{aligned}
& a_{1}=4.0 \\
& a_{2}=0.07 \\
& a_{3}=-0.25 \\
& a_{4}=0.002
\end{aligned}
$$

where $\theta_{t}=0.68^{\circ}$ and $\left|\theta_{t}\right|<5^{\circ}$.

### 2.2.2 Spectral Broadening

Spectral broadening of the received carrier signal occurs due to Doppler shifting of the charged-particle refractive index (or density) irregularities as they are carried over the signal path by the solar wind. It is dependent on both electron density fluctuations and solar wind velocity, whereas the scintillation index only depends on the electron density fluctuations. Spectral broadening is observed when the signal path passes close enough to the Sun such that the broadening exceeds the line width of the spacecraft oscillator. Oscillator line widths are typically $<0.02 \mathrm{~Hz}$ for ultra-stable oscillators (USOs) and $<3 \mathrm{~Hz}$ for auxiliary oscillators. The broadened bandwidth, $B$, can be observed with the Radio Science Receiver (see module 209) and is defined as the bandwidth in which half of the carrier power resides.

Spectral broadening is not normally of concern in designing a telemetry link because it does not become significant until the SEP angle becomes so small that the telemetry performance has already become degraded due to intensity scintillation effects. However, it is of concern to a telecommunications engineer to determine an adequate value for the ground receiver carrier tracking loop bandwidth. If the broadening is excessive, the tracking loop bandwidth will need to be widened in order to capture all of the frequency fluctuations but not so wide that receiver lock might be lost due to excessive thermal noise.

For Ka-band, $B$ is below 1 Hz for SEP angles greater then 0.7 degrees. Since Kaband ground tracking loop bandwidths are usually set from 5 to 10 Hz , spectral broadening is not an issue considering that PSK telemetry is expected to degrade somewhere between 0.7 and 1.0 degrees SEP angle due to increased intensity scintillation destroying phase knowledge. Below 0.7 degrees, Ka-band $B$ has been known to reach values of approximately 2 Hz at an SEP angle near 0.6 degrees.

For X-band, $B$ usually lies below 2 Hz for SEP angles greater than 1 degree and below 1 Hz for SEP angles greater than 2 degrees. As is the case with Ka-band, telemetry will become degraded before an SEP of 2 degrees is reached and spectral broadening becomes an issue. Below 1 degree, X-band $B$ has been known to reach 14 Hz at an SEP angle near 0.6 degrees.

### 2.3 Communications Strategies

Standard downlink BPSK link design and coding strategies can be used to achieve successful X-band data return at SEP angles down to at least 2.3 degrees and similar success should be achievable at Ka-band down to an SEP angle of 1 degree. Solar effects are significantly reduced at Ka-band. The Ka-band carrier experiences 15 percent less amplitude scintillation and 20 percent less spectral broadening than the X-band carrier at the same SEP angle. The presence of solar events, the sub-solar latitude, and the phase of the solar cycle should also be considered in any strategy.

The use of one-way referenced links instead of two-way or three-way coherent links will result in links free of additional phase effects from the uplink signal. Any phase disturbance received by the spacecraft will be turned around by the spacecraft transponder and appear on the downlink (multiplied by the transponder ratio). The downlink will also incur its own phase scintillation as well as amplitude scintillation. For example, a Ka-band downlink using the spacecraft's Ultra-Stable Oscillator (USO) as the signal source will have significantly fewer solar effects than if the Ka-band downlink signal was referenced to the normal X-band uplink signal.

In regions of strong scintillations where conventional telemetry is likely to fail, it may be possible to provide notification of critical spacecraft events by the use of frequency semaphores with reasonable duration for integration and appropriate spacing in frequency. Noncoherent frequency-shift keying (FSK), although not presently supported by the DSN, may provide improved data return provided adequate link margin is available.

## Appendix A <br> References

1 Berman, A. L. and Wackley, J. A., "Doppler Noise Considered as a Function of the Signal Path Integration of Electron Density," Deep Space Network Progress Report 42-33, March-April 1976," Jet Propulsion Laboratory, Pasadena, California, June 15, 1976

2 Muhleman, D, and Andeson, J., "Solar Wind Electron Densities from Viking Dualfrequency Radio Measurements," Astrophysical Journal, 247, 1093-1101, August 1, 1981

3 Bird, M., Volland, H., Patzold, M., Edenhofer, P., Asmar, S., and Brenkle, J., "The Coronal Electron Density Distribution Determined from Dual-frequency Ranging Measurement During the 1991 Solar Conjunction of the Ulysses Spacecraft," The Astrophysical Journal, 426, 373-381, May 1, 1994

4 Volland, H., Bird, M. K., Levy, G. S., Stelzreid, C. T., and Seidel B. L., "Helios-1 Faraday Rotation Experiment: Results and Interpretations of the Solar Occultations in 1975," Journal of Geophys. Research, 42, 659-672, 1977

5 Morabito, D. D., and Hastrup, R., "Communicating with Mars During Periods of Solar Conjunction" Proceedings of the 2002 IEEE Aerospace Conference, Big Sky, Montana, March 9-16, 2002.

6 Morabito, D.D. "Solar Corona Amplitude Scintillation Modeling and Comparison to Measurements at X-band and Ka-band. Interplanetary Network Directorate Progress Report 42-153, January-March 2003, pp. 1-14, May 15, 2003.

7 Morabito, D. D., Shambayati, S., Butman, S., Fort, D., and Finley, S., "The 1998 Mars Global Surveyor Solar Corona Experiment", The Telecommunications and Mission Operations Progress Report 42-142, April-May 2000, Jet Propulsion Laboratory, Pasadena, California, August 15, 2000.

8 Morabito, D. D., Shambayati, S., Finley, S., Fort, D, "The Cassini May 2000 Solar Conjunction," IEEE Transactions on Antennas and Propagation, Volume 51, No. 2, Februaty 2003, pp. 201-219.

9 Morabito, D. D., Shambayati, S., Finley, S., Fort, D, Taylor, J. and Moyd, K., "Ka-band and X-band Observations of the Solar Corona Acquired During Solar Conjunctions of Interplanetary Spacecraft", Proceedings of the $7^{\text {th }}$ Ka-band Utilization Conference, September 26, 2001, Santa Margherita Ligure, Italy. IIC - Istituto Internazionale delle Communicazioni, Via Perinace - Villa Piaggio, 16125 Genova, Italy.

10 Feria, Y. Belongie, M. McPheeters, T. and Tan, H., "Solar Scintillation Effects on Telecommunication Links at Ka-band and X-band," The Telecommunications and Data Acquisition Progress Report 42-129, vol. January-March 1997. Jet Propulsion Laboratory, Pasadena, California, May 15, 1997.

Deep Space Network

## 107 <br> X-Band Radio Source Catalog

Document Owner:

| Signature provided | $03 / 18 / 2021$ |
| :--- | :--- |
| Christopher S. Jacobs | Date |
| DSN Reference Frame Calibration |  |
| Task Lead |  |

Prepared by:

| Signature provided | $03 / 25 / 2021$ |
| :--- | :--- |
| Peter Kroger | Date |
| Deep Space Tracking Systems |  |
| Group |  |

Approved by:

| Signature provided | $11 / 18 / 2021$ |
| :--- | :--- |
| Timothy Pham | Date |
| DSN Communications Systems Chief |  |
| Engineer |  |

Released by:

| Signature provided | $04 / 02 / 2021$ |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 107, Rev. E
Issue Date: April 02, 2021
JPL D-19379; CL\#21-1500
Jet Propulsion Laboratory
California Institute of Technology

810-005
107, Rev. E

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature provided | $03 / 25 / 2021$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Jeff Berner | Sate |  | Signature not provided |  |  |
| DSN Project Chief Engineer Bedrossian |  |  |  | DSN Science System Engineer | Date |

## Document Change Log

| Rev | Issue Date | Prepared By | Paragraphs Affected | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| - | 5/26/2006 | Robert Sniffin | All | Initial Release |
| A | 4/21/2011 | Peter Kroger Christine Chang | Section 2 <br> Section 2.1 <br> Figure 1 <br> Section 2.2 <br> Sections 2.2.1- <br> 2.2.11 <br> Table 1 <br> Reference | - Updated radio source catalog entries, description, and references <br> - Removed option for radio source file in tab-delimited format (catalogdelimited.txt). |
| B | 04/08/2013 | Andrew Romero-Wolf Peter Kroger | Section 2 <br> Section 2.1 <br> Figure 1 <br> Section 2.2 <br> Sections 2.2.1- <br> 2.2.11 <br> Table 3 | - Updated radio source map to include 21 new sources and updated observations. <br> - Updated radio source catalogue table to include new sources and astrometric positions determined from 1.2 million new observations. <br> - Added tables summarizing the agreement of the DDOR-2012 catalog in rotational alignment and position differences of the source catalog to International Celestial Reference Frame-2. <br> - The analysis now includes weekly nutation estimates. Delay modelling was made more robust by cleaning up anomalies in the surface meteorology data. |
| C | 12/15/2014 | Ojars Sovers <br> A. Romero-Wolf Peter Kroger Chris Jacobs |  | - Update catalog to include another 1.3 years of data and new sources for a total of 3746 . |
| D | 03/10/2015 | Peter Kroger Chris Jacobs | Table 3 | - Restore sign of RA-Dec correlation in Table 3 |
| E | 04/02/2021 | Peter Kroger | Table 3 | Correct source name indices |

## Contents

Paragraph Page
1 Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope. ..... 6
2 General Information ..... 6
2.1 Catalog Development ..... 6
2.2 Catalog Format ..... 9
2.2.1 B1950 Name (characters 2 through 9) ..... 9
2.2.2 Common Name (characters 11 through 22) ..... 10
2.2.3 ID Number (characters 24 through 27) ..... 11
2.2.4 Angular Positions (characters 29 through 65) ..... 11
2.2.4.1 Right Ascension (characters 29 through 47) ..... 11
2.2.4.2 Declination (characters 49 through 65) ..... 11
2.2.5 Right Ascension Error (characters 66 through 76) ..... 12
2.2.6 Declination Error (characters 77 through 86) ..... 12
2.2.7 Correlation of Right Ascension and Declination (characters 87 through 94) ..... 12
2.2.8 Observation Epochs (characters 95 through 110) ..... 12
2.2.8.1 Initial (characters 95 through 102) ..... 12
2.2.8.2 Last (characters 103 through 110) ..... 12
2.2.9 Number of Sessions (characters 111 through 116) ..... 12
2.2.10 Correlated Flux Density (characters 117 through 128). ..... 12
2.2.10.1 Correlated Flux Density Madrid Baseline (characters 117 through 122) ..... 13
2.2.10.2 Correlated Flux Density Canberra Baseline (characters 123 through 128). ..... 13
2.2.11 Structure Index (characters 129 through 133) ..... 13
3 References ..... 89
4 Acknowledgements ..... 90
Figures
FigurePage
Figure 1. DDOR-2014-X Catalog ..... 7
Figure 2. Declination Differences for DDOR-2014-X - ICRF2 Defining sources. ..... 9

## Tables

Table Page

Table 1. Rotational Alignment Between X-band Catalogs: DDOR-2014-X vs. ICRF2 ............... 8
Table 2. Position Scatter Between DDOR-2014-X and ICRF2 Catalogues.................................. 8
Table 3. X-Band Radio Source Catalog: DDOR-2014-X............................................................ 14

## 1 Introduction

### 1.1 Purpose

This module provides an X-band catalog of the angular positions of astronomical radio sources that establish the celestial reference frame used for interplanetary spacecraft navigation using Delta-Differential-One-way Ranging ( $\triangle \mathrm{DOR}$ ). The catalog may also be useful for other applications requiring the precise location of radio sources such as antenna pointing calibration.

### 1.2 Scope

The discussion in this module is limited to describing the contents of the source catalog and providing a listing of the catalog - both within the module and as a link to a computer-readable versions. The equipment used to collect the data from which the catalog is derived is discussed in module 211 of this handbook. The capabilities of the DSN for performing $\triangle$ DOR are contained in module 210.

## 2 General Information

The angular positions of a set of extragalactic radio sources serve as fiducial points for $\triangle \mathrm{DOR}$ observations performed by the DSN. This set of point positions is commonly referred to as a catalog. The catalog described in this module comprises 3746 sources that have been observed in a frequency range--typically $8200-8600 \mathrm{MHz}-$-that includes as a subset the X-band deep space allocation (International Telecommunications Union Category B) of 8,400-8,450 MHz. A distribution of the radio sources in the catalog is illustrated by Figure 1.

### 2.1 Catalog Development

The data used to develop the source catalog included delay and delay rate observables obtained from S-band and X-band Very Long Baseline Interferometry (VLBI) data acquired with the DSN VLBI subsystem. The catalog is essentially an X-band catalog with the S-band data being used only in order to calibrate plasma delays due to the Earth's ionosphere and the Solar plasma. We also included data acquired from other organizations observing at the same frequencies. The angular positions of the radio sources are estimated by a monolithic least-squares fit to these VLBI observables. A total of 7.45 million delay and delay rate observations, collected between October 28, 1978 and April 29, 2014, were used to estimate the final source positions. Details of the physical modeling required by this procedure are given in [1].
We estimated 947111 parameters including radio source positions, station locations, station clocks, wet troposphere delays, and troposphere gradients. A "no net rotation" constraint was placed on the radio source positions relative to International Celestial Reference Frame 2 (ICRF2) [2] using the subset of 295 "defining" sources. Kinematic station positions were estimated daily for each site relative to International Terrestrial Reference Frame 08 (ITRF08) a priori values and rates [3]. Station clocks were estimated using a linear model for the offset and rate parameters. Wet zenith
troposphere delays were estimated at intervals ranging from 20 minutes to one hour based on the Vienna Mapping Function 1 (VMF1) [4]. Troposphere gradients were estimated approximately once per day relative to a priori values with 100 mm uncertainties using the following formula from Steigenberger [5]:

$$
G_{N S}(\mathrm{~mm})=-0.5 \sin (2 \phi)
$$

where $G_{N S}$ is the troposphere gradient in the North-South direction and $\phi$ is the antenna geodetic latitude. The Kalman Earth Orientation Function (KEOF) COMB2010 Universal Time and Polar Motion (UTPM) solution [6] was used to fix Earth orientation and polar motion (EOP) values. Earth precession and nutation models are taken from MHB2000 [7]. Constant offsets for ecliptic longitude and obliquity nutation model parameters [1] were estimated at approximately weekly intervals to account for deficiencies in the MHB2000 a priori model.


Figure 1. DDOR-2014-X Catalog
DDOR-2014-X catalog: distribution of 3746 radio sources in right ascension and declination. Color coding indicates 1- $\sigma$ declination formal uncertainties according to the legend. Note that 1.0 nano-radian equals 206 as. About 2200 of the sources are from surveys using 1-2 sessions per source. These sources typically have $\sim$ mas ( 5 nrad ) precision.

We compare the rotational alignments and position differences to the ICRF2 catalog Limiting comparison to 295 ICRF2 defining sources yields rotational alignments with $4 \mu$ as uncertainty and Weighted Root Mean Square (WRMS) differences of 58 uas in the quantity right ascension (RA) $\cos (\mathrm{dec})$ and $95 \mu \mathrm{as}$ in declination (DEC).

Table 1. Rotational Alignment Between X-band Catalogs: DDOR-2014-X vs. ICRF2

|  | 295 ICRF2 Defining |  | 3382 ICRF2 Overlapping |  |
| :---: | :---: | :---: | :---: | :---: |
| Rotation Axis | Rotation Value <br> $(\mu \mathrm{as})$ | Rotation Error <br> $(\mu \mathrm{as})$ | Rotation Value <br> $(\mu \mathrm{as})$ | Rotation Error <br> $(\mu \mathrm{as})$ |
| X | -1.18 | 4.45 | -0.35 | 3.62 |
| Y | 0.16 | 4.48 | 0.33 | 3.60 |
| Z | 1.49 | 3.92 | 0.65 | 2.99 |

Table 2. Position Scatter Between DDOR-2014-X and ICRF2 Catalogues

|  | 295 ICRF2 Defining |  | 3382 ICRF2 Overlapping |  |
| :---: | :---: | :---: | :---: | :---: |
| Differenced Data | Weighted Mean <br> $(\mu \mathrm{as})$ | Weighted RMS <br> $(\mu \mathrm{as})$ | Weighted Mean <br> $(\mu \mathrm{as})$ | Weighted RMS <br> $(\mu \mathrm{as})$ |
| RA $\cos ($ Dec) | -0.34 | 58.17 | -0.61 | 106.88 |
| Dec | -46.79 | 95.18 | -43.21 | 143.96 |

Broadening the comparison to include all 3382 common sources yields rotational alignment at the $3 \mu$ as level and WRMS differences of $107 \mu$ as in RA $\cos (\mathrm{dec})$ and $143 \mu$ as in declination (DEC). For purposes of solution traceability, we note that the source positions were extracted from a solution internally labelled all78-14VCSxbs_nut.srf file using the "catout" utility to produce the file "all78-14VCSxbs_nut.cat_iers."

Figure 2 shows Declination differences between the DDOR-2104-X catalog and the 295 ICRF2 Defining sources. Note the largest shift is in the region from -5 to -30 degrees declination which covers much of the southern ecliptic. The source of this zonal shift is not completely understood, but is thought to be due in part to the 5 years of data added to DDOR-2014-X since ICRF2 was created. During this time, several southern stations were added to regular observing programs. So it is hoped that the new data is producing a more accurate catalog in the southern ecliptic. We note that reasonable alternate solutions show zonal shifts of similar shape but of about $1 / 2$ the magnitude. Thus the magnitude of these zonal shifts has some uncertainty.


Figure 2. Declination Differences for DDOR-2014-X - ICRF2 Defining sources.
While scatter for sources with small separations is small, there is a zonal shift reaching a maximum of about $-3 / 4$ nrad ( $150 \mu \mathrm{as}$ ) in the declination band from about -5 to -30 deg.

### 2.2 Catalog Format

The catalog uses the J2000 reference frame and is rotationally aligned with ICRF2 [2,8] at the 4 $\mu$ as level in all components. In addition to the presentation in Table 3 the catalog is available for download as a fixed-width file at:
http://deepspace.jpl.nasa.gov/dsndocs/810-005/107/catalog-fixed.txt
Lines of the fixed-width file are terminated with ASCII Character 10 (Unix convention). The fixed-width file may be read with the following FORTRAN format statement,
FORMAT (1X, A8, 1X, A12, 1X, I4, 1X, 2(1X,I2), 2X, F11.8, 1X, A1, I2, 1X, I2, 1X, F10.7, Fll.8, F10.7, F8.4, 2F8.1, I6, 2F6.2, F5.1).

### 2.2.1 B1950 Name (characters 2 through 9)

This is the source name based on its position at the Besselian epoch B1950.0 which is one of the two standard epochs that have been used in the last 30 years for reporting source positions (the other being the Julian epoch J2000.0). The name is related to the position of the source but is most useful for searching historical databases for information about the source. The name is constructed
as follows. The first two digits represent hours of right RA, the next two digits minutes of RA, the fifth place is used to specify the sign of the declination, places 6-7 give degrees of declination, and the last digit gives the first digit of the fractional part of degrees of declination. Thus the first name entry in the catalog, 2357-326, is interpreted as a right ascension of 23 hours and 57 (time) minutes and a declination of negative 32.6 degrees at the B1950.0 epoch. Note that because the catalog positions are given for epoch J2000 and many of the names (e.g. 2357-326) are based on a B1950 position, the catalog names do not start at zero right ascension whereas the actual positions do.

### 2.2.2 Common Name (characters 11 through 22)

This is the name most commonly used in the literature for the source and is also the name used by the DSN for Delta-DOR measurement scheduling. Often, there is a short prefix that indicates the organization or radio observatory that first documented the source in a survey. The remainder of the name may be related to the source position or an arbitrary sequence number. Some of the prefixes and naming conventions include [9]:

- 3C nnn - From the Third Cambridge Catalog. The nnn is the numerical designation assigned by the catalog. This survey, originally conducted at 159 MHz , identified many of the stronger sources used in VLBI. Unfortunately, many of these stronger sources are also less point-like making them less desirable for the highest accuracy astrometric measurements.
- 4C zz.nn - From the Fourth Cambridge Catalog. The zz corresponds to the declination "zone." The $n n$ is a sequential number within the zone. There are no sequential numbers greater than 99.
- B2 RRrrSDDa - Most likely from the Second Bologna Survey. The RRrr is hours and minutes of right ascension, $S$ is the sign of declination and $D D$ is degrees of declination. The meaning of a (an alpha character) is unknown.
- CTA $n n$ and CTD $n n$ - From the California Institute of Technology "A" or "D" surveys where $n n$ is the numerical designation assigned by the catalog.
- DW RRrrSDDd - From the Dwingelo Radio Observatory (Netherlands) catalog. The RRrr is hours and minutes of right ascension, $S$ is the sign of declination, $D D$ is degrees of declination, and $d$ (if present) is the first digit of the fractional part of declination.
- GC RRrrSDDd - Most likely names taken from the "General Catalog of 33342 (optical) Stars." The RRrrSDDd are as described before.
- HR nnnn - Most likely names taken from the "Harvard Revised (optical) Catalog" where $n n n$ is the numerical designation assigned by the catalog.
- M nn - Most likely names taken from the "Messier Catalog of Galaxies" where nn is the numerical designation assigned by the catalog.
- NRAO nnn - From the National Radio Observatory catalog where nnn is the numerical designation assigned by the catalog.
- O_nnn- From the Ohio State Survey where the second letter indicates the hour of right ascension (two letters are skipped from the alphabet) and nnn is a numerical designation assigned by the catalog.
- P RRrrSDDd - From the Parkes Radio Observatory (southern Australia) survey. The $R R r r S D D d$ are as described before.
- VRO DD.RR.rr - From the Vermillion River Observatory (University of Illinois) catalog. The $D D$ is degrees declination and $R R$ is hours right ascension. The $r r$ is unknown but may be either minutes or fractional hours of right ascension.


### 2.2.3 ID Number (characters 24 through 27)

A unique number, presently in the range of 1 to 4044, is assigned to each radio source for use by programs that identify sources by number instead of name. The correspondence between source name and number will not change when the catalog is updated. This catalog can be used to establish a unique correspondence between the B1950 or Common Name and ID number. If a source in this catalog is deleted from future revisions of the catalog delivery, its number will be retired. When new sources are added, they will be assigned unique numbers starting with 4045.

### 2.2.4 Angular Positions (characters 29 through 65)

Angular positions are specified by a pair of angular coordinates: RA and DEC. Note that while right ascension used to be defined as the angular distance along the celestial equator from the intersection of the equator and the ecliptic, this is no longer true once one becomes concerned with accuracy levels < 100 milliarcseconds ( 500 nrad).
Since 1 January 1998, right ascension, and most importantly the origin of RA, have been defined by conventional agreement as to the value of the RA of extragalactic radio sources. In practice this means that the axes implicitly defined by a set of source positions must agree with the ICRF2 [2] to within the formal uncertainty of the ICRF2 axes or approximately $10 \mu$ as ( 1 standard deviation). Thus, the orientation of the celestial frame axes may vary in future realizations by roughly that amount.

### 2.2.4.1 Right Ascension (characters 29 through 47)

Right ascension is presented in the form " $h \mathrm{~mm}$ SS.ssssssss" where the first sub field gives hours of RA followed by (time) minutes of RA and (time) seconds of RA to eight decimal places.

### 2.2.4.2 Declination (characters 49 through 65)

Declination is presented in the form "Sdd mm SS.sssssss" where first sub-field, S or column 49, gives the sign of declination (a blank is allowed and should be interpreted as a positive declination). The remaining subfields give angular declination in degrees, minutes, and seconds to seven decimal places.
Note that a minus sign applies to the whole declination ( $d d \mathrm{~mm}$ SS.sssssss). For example, a declination of $-000000 . s s s s s s s$ should be read as minus $0 . s s s s s s s$ arcseconds of declination. This means that users desiring decimal representations of declination must first convert from degrees, minutes, seconds format to decimal format before applying the relevant sign. To simplify this conversion, the sign is in a fixed position in the fixed-width file.

### 2.2.5 Right Ascension Error (characters 66 through 76)

This field provides the formal one standard deviation right ascension uncertainty in units of seconds of time.

### 2.2.6 Declination Error (characters 77 through 86)

This field provides the formal one standard deviation declination uncertainty in units of arcseconds of angle.

### 2.2.7 Correlation of Right Ascension and Declination (characters 87 through 94)

This field provides the formal correlation of right ascension and declination. The quantity may range from -1.0 to +1.0 and a blank in front of the value should be interpreted as indicating a positive correlation. Values near zero indicate that the principal axes of the error ellipse are close to the RA-Dec axes. The large number of negative correlations is, in part, due to the large influence of the California to Australia baseline (typically between DSS-15 and DSS-45) on determination of declination.

### 2.2.8 Observation Epochs (characters 95 through 110)

Epochs are referred to Modified Julian Day (MJD) and are typically on the order of 50000 days.

### 2.2.8.1 Initial (characters 95 through 102)

The earliest epoch of the first observation.

### 2.2.8.2 Last (characters 103 through 110)

The termination epoch of the most recent observation.

### 2.2.9 Number of Sessions (characters 111 through 116)

The number of sessions, where a session is defined as a continuous data collection period, may be used as a rough indicator of the robustness of the position determination. Any position based on less than 3 sessions should be considered provisional.

### 2.2.10 Correlated Flux Density (characters 117 through 128)

This is an estimate of the average correlated flux density for observations of the radio source using DSN baselines Goldstone-Madrid and Goldstone-Canberra. Average correlated flux density values are reported for each baseline when available. This value, in Janskys (Jy), is computed from the measured signal-to-noise ratio (SNR) using the formula:

$$
S(J y) \approx \frac{S N R}{150}
$$

The SNR is determined during the cross-correlation and fringe-fitting of actual radio source observations. If no recent observations of a radio source on DSN baselines are available, no value
is provided for correlated flux. Independent values for the correlated flux density are reported for the California-Madrid and the California-Canberra DSN baselines.

### 2.2.10.1 Correlated Flux Density Madrid Baseline (characters 117 through 122)

This is the correlated flux density for quasars observed on the Goldstone-Madrid (10-60) baseline. Flux densities on this baseline are available for 643 of the sources in Table 3.

### 2.2.10.2 Correlated Flux Density Canberra Baseline (characters 123 through 128)

This is the correlated flux density for quasars observed using the Goldstone-Canberra (10-40) baseline. Flux densities on this baseline are available for 608 of the sources in Table 3

### 2.2.11 Structure Index (characters 129 through 133)

The structure index is determined through the following relationship between the radio source structure index and the median value of the VLBI structure delay corrections [2]:

$$
\mathrm{SI}=1+2 \log \left(\tau_{\text {median }}\right)
$$

where SI is the structure index, and $\tau_{\text {median }}$ is the median value of the structure delay corrections (ps). A value for $\tau_{\text {median }}$ in the range of 0 to 40 ps is typical for a source that is point-like. A value in the range of 40 to 60 ps is typical for a source that has significant structure. The source structure itself may contribute an error of this magnitude to the delay error budget. Values of the delay scatter greater than 60 ps are typical for sources with large, extended, and possibly variable structure. Estimates of the structure index are available for 693 of the sources in Table 3.

Table 3. X-Band Radio Source Catalog: DDOR-2014-X

| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2357-326 | 2357-326 | 2274 | 00 | 00 | 20.39995646 | -32 | 21 | 1.2341485 | . 00003605 | . 0010074 | -0.1568 | 52305.9 | 52306.0 | 1 |  |  |  |
| 2358+406 | 2358+406 | 2275 | 00 | 00 | 53.08158877 | +40 | 54 | 1.7931619 | . 00015359 | . 0020370 | -0.1702 | 50242.6 | 50242.7 | 1 |  |  |  |
| 2358-161 | 2358-161 | 2276 | 00 | 01 | 5.32873051 | -15 | 51 | 7.0756294 | . 00003475 | . 0009841 | -0.7390 | 50631.3 | 50631.5 | 1 |  |  |  |
| 2358+605 | 2358+605 | 2277 | 00 | 01 | 7.09962657 | +60 | 51 | 22.8028338 | . 00030531 | . 0034085 | -0.0996 | 52306.1 | 52306.1 | 1 |  |  |  |
| 2358+189 | 2358+189 | 984 | 00 | 01 | 8.62156972 | +19 | 14 | 33.8016881 | . 00000403 | . 0000745 | -0.0439 | 50085.0 | 56664.1 | 97 |  |  |  |
| 2359-221 | 2359-221 | 2278 | 00 | 02 | 11.98151630 | -21 | 53 | 9.8647879 | . 00013558 | . 0033386 | 0.7251 | 54818.1 | 55483.3 | 2 |  |  |  |
| 0000-199 | 0000-199 | 2279 | 00 | 03 | 15.94944558 | -19 | 41 | 50.4043557 | . 00017952 | . 0071919 | -0.8263 | 54088.0 | 54088.0 | 1 |  |  |  |
| 0000-197 | 0000-197 | 2280 | 00 | 03 | 18.67501429 | -19 | 27 | 22.3553356 | . 00003463 | . 0009540 | -0.2104 | 50631.3 | 50687.5 | 2 |  |  |  |
| 0000+212 | 0000+212 | 2281 | 00 | 03 | 19.35001932 | +21 | 29 | 44.5078137 | . 00003320 | . 0009546 | -0.4215 | 50085.0 | 50155.9 | 2 |  |  |  |
| 0001+478 | 0001+478 | 2282 | 00 | 03 | 46.03098500 | +48 | 07 | 4.2008098 | . 02167613 | . 1323638 | -0.9936 | 50305.5 | 50305.5 | 1 |  |  |  |
| 0001-120 | 0001-120 | 1309 | 00 | 04 | 4.91500315 | -11 | 48 | 58.3857125 | . 00001196 | . 0004032 | 0.0268 | 50575.6 | 53133.7 | 3 |  |  |  |
| 0001+459 | 0001+459 | 2283 | 00 | 04 | 16.12765771 | +46 | 15 | 17.9701176 | . 00002779 | . 0005847 | 0.1118 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0002-478 | 0002-478 | 706 | 00 | 04 | 35.65549073 | -47 | 36 | 19.6040785 | . 00001147 | . 0002013 | 0.4295 | 49330.5 | 56504.1 | 33 |  |  |  |
| 0002+200 | 0002+200 | 985 | 00 | 04 | 35.75829598 | +20 | 19 | 42.3173063 | . 00001456 | . 0002752 | 0.0946 | 52408.7 | 52983.4 | 3 |  |  |  |
| 0002+541 | 0002+541 | 2284 | 00 | 05 | 4.36339833 | +54 | 28 | 24.9248304 | . 00004002 | . 0003804 | 0.1936 | 49576.3 | 56393.6 | 2 | 0.22 |  |  |
| 0002-170 | 0002-170 | 2285 | 00 | 05 | 17.93378034 | -16 | 48 | 4.6787946 | . 00002823 | . 0009044 | -0.5072 | 50631.3 | 50631.5 | 1 |  |  |  |
| 0002+051 | 0002+051 | 2286 | 00 | 05 | 20.21554656 | +05 | 24 | 10.8005007 | . 00013213 | . 0021387 | -0.1058 | 49914.4 | 49914.5 | 1 |  |  |  |
| 0003+380 | GC 0003+38 | 1 | 00 | 05 | 57.17538923 | +38 | 20 | 15.1490655 | . 00000525 | . 0000755 | -0.1421 | 48719.9 | 56766.4 | 43 | 0.30 | 0.40 | 3.4 |
| 0003-302 | 0003-302 | 2287 | 00 | 06 | 1.12320481 | -29 | 55 | 50.0966280 | . 00020176 | . 0056806 | 0.8648 | 52408.7 | 52409.6 | 1 |  |  |  |
| 0003+340 | 0003+340 | 4121 | 00 | 06 | 7.38258280 | +34 | 22 | 20.4058169 | . 00001848 | . 0004735 | 0.1091 | 55915.9 | 55916.2 | 1 |  |  |  |
| 0003-066 | 0003-066 | 696 | 00 | 06 | 13.89288879 | -06 | 23 | 35.3354137 | . 00000340 | . 0000537 | -0.0569 | 48196.3 | 56776.1 | 1143 | 1.07 | 1.01 | 3.1 |
| 0003+123 | 0003+123 | 2288 | 00 | 06 | 23.05611993 | +12 | 35 | 53.0973123 | . 00005770 | . 0010507 | 0.2592 | 54111.9 | 54112.1 | 1 |  |  |  |
| 0004+240 | 0004+240 | 2289 | 00 | 06 | 48.78939742 | +24 | 22 | 36.3929012 | . 00007456 | . 0013617 | 0.2432 | 50085.0 | 50155.9 | 2 |  |  |  |
| 0005+568 | 0005+568 | 2290 | 00 | 07 | 48.46855993 | +57 | 06 | 10.4391862 | . 00030458 | . 0032354 | 0.4617 | 49576.3 | 49576.5 | 1 |  |  |  |
| 0005-239 | 0005-239 | 2291 | 00 | 08 | 0.36965705 | -23 | 39 | 18.1508447 | . 00002570 | . 0007460 | -0.7253 | 50631.3 | 54643.3 | 3 |  |  |  |
| 0005+114 | 0005+114 | 2292 | 00 | 08 | 0.83833663 | +11 | 44 | 0.7746711 | . 00005794 | . 0010698 | -0.1352 | 52408.8 | 52409.7 | 1 |  |  |  |
| 0005-262 | 0005-262 | 2293 | 00 | 08 | 26.25253369 | -25 | 59 | 11.5391634 | . 00003832 | . 0012580 | 0.4295 | 50631.3 | 50687.5 | 2 |  |  |  |
| 0005+683 | 0005+683 | 2294 | 00 | 08 | 33.47270295 | +68 | 37 | 22.0480250 | . 00039129 | . 0014544 | -0.2464 | 49826.7 | 54112.1 | 2 |  |  |  |
| 0006-363 | 0006-363 | 2295 | 00 | 08 | 33.66108528 | -36 | 01 | 25.0414158 | . 00012222 | . 0056954 | 0.4183 | 53552.5 | 55656.8 | 2 |  |  |  |
| 0006+061 | 0006+061 | 2296 | 00 | 09 | 3.93184876 | +06 | 28 | 21.2400688 | . 00000950 | . 0002627 | 0.0784 | 52408.7 | 56701.0 | 2 | 0.12 | 0.12 |  |
| 0006+397 | 0006+397 | 2297 | 00 | 09 | 4.17357962 | +40 | 01 | 46.7048409 | . 00003069 | . 0006426 | -0.3266 | 50242.6 | 50242.7 | 1 |  |  |  |
| 0007-325 | 0007-325 | 1310 | 00 | 09 | 35.55782459 | -32 | 16 | 36.9309139 | . 00004656 | . 0011018 | -0.7501 | 54965.6 | 54965.6 | 1 |  |  |  |
| 0007+439 | 0007+439 | 2298 | 00 | 10 | 30.04645093 | +44 | 12 | 42.5044093 | . 00002932 | . 0008687 | 0.2691 | 54087.1 | 54088.0 | 1 |  |  |  |
| 0007+106 | III ZW 2 | 986 | 00 | 10 | 31.00591022 | +10 | 58 | 29.5041940 | . 00000382 | . 0000623 | -0.0981 | 51427.3 | 56633.0 | 77 |  |  | 0.9 |
| 0007+171 | GC 0007+17 | 6 | 00 | 10 | 33.99061349 | +17 | 24 | 18.7612505 | . 00000534 | . 0000946 | -0.1808 | 44203.1 | 55244.5 | 48 | 0.17 | 0.11 | 3.7 |
| 0008-311 | 0008-311 | 4046 | 00 | 10 | 34.90967756 | -30 | 54 | 15.3008586 | . 00004795 | . 0017185 | 0.5297 | 55965.9 | 55965.9 | 1 |  |  |  |
| 0008-307 | 0008-307 | 2299 | 00 | 10 | 35.74237629 | -30 | 27 | 47.4164553 | . 00014542 | . 0043050 | 0.7871 | 52305.9 | 52306.0 | 1 |  |  |  |
| 0008-300 | 0008-300 | 2300 | 00 | 10 | 45.17732291 | -29 | 45 | 13.1769533 | . 00005091 | . 0027023 | -0.3993 | 54087.1 | 55783.9 | 2 |  |  |  |
| 0008-421 | P 0008-42 | 707 | 00 | 10 | 52.51757282 | -41 | 53 | 10.7751151 | . 00024803 | . 0084664 | 0.1635 | 49329.5 | 52408.7 | 4 |  |  |  |
| 0008-222 | 0008-222 | 2301 | 00 | 10 | 53.64998229 | -21 | 57 | 4.2198778 | . 00001116 | . 0003758 | -0.2445 | 50631.3 | 50687.5 | 2 |  |  |  |
| 0008-264 | P 0008-264 | 7 | 00 | 11 | 1.24673888 | -26 | 12 | 33.3771100 | . 00000503 | . 0000782 | -0.1116 | 44227.2 | 56772.3 | 101 | 0.27 | 0.43 | 1.6 |
| 0008+704 | 0008+704 | 2302 | 00 | 11 | 31.90286621 | +70 | 45 | 31.6257354 | . 00004723 | . 0003901 | 0.0561 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0009+081 | 0009+081 | 1253 | 00 | 11 | 35.26963568 | +08 | 23 | 55.5859353 | . 00001015 | . 0003003 | -0.5144 | 49914.4 | 53946.3 | 5 | 0.30 | 0.20 |  |
| 0009-148 | 0009-148 | 2303 | 00 | 11 | 40.45587914 | -14 | 34 | 4.6337440 | . 00005171 | . 0014628 | 0.2835 | 54111.9 | 54112.0 | 1 |  |  |  |
| 0009+467 | 0009+467 | 1311 | 00 | 12 | 29.30290370 | +47 | 04 | 34.7396084 | . 00004557 | . 0009570 | -0.3786 | 53572.4 | 53572.5 | 1 |  |  |  |
| 0009+655 | 0009+655 | 1312 | 00 | 12 | 37.67098190 | +65 | 51 | 10.8235107 | . 00060065 | . 0039228 | 0.0430 | 53152.5 | 53152.6 | 1 |  |  |  |
| 0010+336 | 0010+336 | 2304 | 00 | 12 | 47.38219160 | +33 | 53 | 38.4715703 | . 00002447 | . 0005676 | -0.3647 | 53502.7 | 53503.6 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | $\begin{gathered} \hline \begin{array}{c} \text { Observation Epoch } \\ \text { MJD } \end{array} \\ \hline \end{gathered}$ |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0010-401 | 0010-401 | 2305 | 00 | 12 | 59.90983622 | -39 | 54 | 26.0565928 | . 00002346 | . 0006945 | 0.0455 | 52305.9 | 52408.7 | 2 |  | 0.34 |  |
| 0010+463 | 0010+463 | 2306 | 00 | 13 | 16.48890344 | +46 | 36 | 8.6700639 | . 00011205 | . 0012306 | -0.6158 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0010-155 | 0010-155 | 2307 | 00 | 13 | 20.70184953 | -15 | 13 | 47.7851932 | . 00007605 | . 0026889 | -0.3449 | 54088.0 | 54088.0 | 1 |  |  |  |
| 0010+405 | 0010+405 | 708 | 00 | 13 | 31.13020510 | +40 | 51 | 37.1441236 | . 00000449 | . 0000717 | -0.0971 | 49098.7 | 56770.2 | 41 | 0.46 | 0.22 | 2.6 |
| 0011-046 | 0011-046 | 2308 | 00 | 13 | 54.13095961 | -04 | 23 | 52.2942352 | . 00001347 | . 0004608 | -0.3044 | 50575.6 | 50575.7 | 1 |  |  |  |
| 0011+189 | 0011+189 | 2309 | 00 | 13 | 56.37611938 | +19 | 10 | 41.9153347 | . 00002685 | . 0008436 | 0.0989 | 50085.0 | 50155.9 | 2 |  |  |  |
| 0012+610 | 0012+610 | 2310 | 00 | 14 | 48.79217884 | +61 | 17 | 43.5419936 | . 00010381 | . 0007699 | 0.4979 | 52409.5 | 52409.5 | 1 |  |  |  |
| 0012-184 | 0012-184 | 2311 | 00 | 15 | 2.49205282 | -18 | 12 | 50.8830094 | . 00001341 | . 0004489 | 0.2693 | 50631.5 | 50687.5 | 2 |  |  |  |
| 0012+319 | 0012+319 | 1313 | 00 | 15 | 6.14739998 | +32 | 16 | 13.3095745 | . 00001484 | . 0003715 | -0.1111 | 53523.5 | 53523.7 | 1 |  |  |  |
| 0013-184 | 0013-184 | 2312 | 00 | 15 | 34.32453186 | -18 | 07 | 25.5836728 | . 00011751 | . 0034063 | -0.6328 | 54111.9 | 54112.0 | 1 |  | 0.07 |  |
| 0013-005 | P 0013-00 | 666 | 00 | 16 | 11.08855702 | -00 | 15 | 12.4454597 | . 00000426 | . 0000852 | -0.3184 | 47381.3 | 56633.0 | 149 | 0.29 | 0.21 | 2.2 |
| 0014+813 | 0014+813 | 709 | 00 | 17 | 8.47492144 | +81 | 35 | 8.1365453 | . 00000468 | . 0000506 | -0.0193 | 48352.9 | 56749.7 | 1054 | 0.62 |  | 2.5 |
| 0015-054 | 0015-054 | 1314 | 00 | 17 | 35.81721775 | -05 | 12 | 41.7684217 | . 00003078 | . 0009923 | -0.3919 | 53561.5 | 53561.6 | 1 |  |  |  |
| 0015+529 | 0015+529 | 2313 | 00 | 17 | 51.75984025 | +53 | 12 | 19.1221047 | . 00005308 | . 0006253 | -0.3065 | 49576.3 | 49576.5 | 1 |  |  |  |
| 0015-280 | 0015-280 | 1315 | 00 | 17 | 59.00587101 | -27 | 48 | 21.5819511 | . 00015839 | . 0047832 | 0.6664 | 53572.5 | 53572.5 | 1 |  |  |  |
| 0017+200 | 0017+200 | 987 | 00 | 19 | 37.85450358 | +20 | 21 | 45.6445467 | . 00000436 | . 0000627 | 0.0086 | 50085.0 | 56776.6 | 36 | 0.47 | 0.47 | 2.2 |
| 0017+257 | 0017+257 | 988 | 00 | 19 | 39.78060417 | +26 | 02 | 52.2774883 | . 00001250 | . 0002820 | 0.1559 | 50219.6 | 56749.7 | 2 | 0.35 | 0.31 |  |
| 0017-307 | 0017-307 | 2314 | 00 | 19 | 42.67533197 | -30 | 31 | 19.3493403 | . 00002439 | . 0007349 | -0.0500 | 52305.9 | 52306.0 | 1 |  |  |  |
| 0016+731 | 0016+731 | 710 | 00 | 19 | 45.78636585 | +73 | 27 | 30.0175849 | . 00000377 | . 0000506 | -0.0558 | 47282.8 | 56782.2 | 559 | 1.02 |  | 2.1 |
| 0018+715 | 0018+715 | 2315 | 00 | 21 | 2.81375935 | +71 | 50 | 20.7711697 | . 00021511 | . 0016542 | -0.5398 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0018+729 | 0018+729 | 2316 | 00 | 21 | 27.37444360 | +73 | 12 | 41.9305695 | . 00045481 | . 0014902 | 0.2603 | 49826.7 | 54112.1 | 2 |  |  |  |
| 0019+451 | J0022+4525 | 989 | 00 | 22 | 6.61134013 | +45 | 25 | 33.8601149 | . 00001955 | . 0003840 | 0.0239 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0019-000 | P 0019-00 | 2317 | 00 | 22 | 25.42589260 | +00 | 14 | 56.1620523 | . 00010108 | . 0030940 | -0.1344 | 50575.6 | 50575.7 | 1 |  |  |  |
| 0019+058 | P 0019+058 | 11 | 00 | 22 | 32.44121407 | +06 | 08 | 4.2688950 | . 00000381 | . 0000646 | -0.0438 | 45151.6 | 56772.0 | 238 | 0.45 | 0.41 | 1.4 |
| 0020+446 | 0020+446 | 2318 | 00 | 23 | 35.44248144 | +44 | 56 | 35.7576954 | . 00003875 | . 0009348 | 0.4379 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0021-084 | 0021-084 | 1316 | 00 | 24 | 0.67271253 | -08 | 11 | 10.0492032 | . 00006993 | . 0021739 | -0.2797 | 53152.6 | 53523.7 | 2 |  |  |  |
| 0021+464 | 0021+464 | 2319 | 00 | 24 | 21.53761443 | +46 | 44 | 6.2280054 | . 00003744 | . 0011117 | 0.1749 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0021+243 | 0021+243 | 990 | 00 | 24 | 27.33054510 | +24 | 39 | 26.2294581 | . 00001440 | . 0002833 | -0.0762 | 52408.7 | 53307.0 | 11 |  |  |  |
| 0022-423 | 0022-423 | 711 | 00 | 24 | 42.98985797 | -42 | 02 | 3.9486439 | . 00010397 | . 0032768 | -0.6902 | 50324.2 | 53131.7 | 4 |  |  |  |
| 0022-044 | 0022-044 | 2320 | 00 | 24 | 45.98323157 | -04 | 12 | 1.5488411 | . 00001842 | . 0005735 | -0.3261 | 50575.8 | 50575.8 | 1 |  |  |  |
| 0022-227 | 0022-227 | 2321 | 00 | 25 | 24.24741942 | -22 | 27 | 47.5971822 | . 00001633 | . 0006767 | 0.1549 | 54087.1 | 54088.0 | 1 |  |  |  |
| 0022+390 | 0022+390 | 2322 | 00 | 25 | 26.15767491 | +39 | 19 | 35.4392518 | . 00001347 | . 0002880 | -0.3994 | 50242.6 | 50242.7 | 1 |  |  |  |
| 0023-263 | 0023-263 | 2323 | 00 | 25 | 49.15627665 | -26 | 02 | 12.6164082 | . 00009023 | . 0025697 | 0.4363 | 52408.7 | 52409.6 | 1 |  |  |  |
| 0024+348 | OB 338 | 2324 | 00 | 26 | 41.72456862 | +35 | 08 | 42.2761800 | . 00021939 | . 0045028 | -0.6121 | 50219.6 | 50219.7 | 1 |  |  |  |
| 0024-114 | 0024-114 | 1317 | 00 | 26 | 51.44301710 | -11 | 12 | 52.4253777 | . 00006653 | . 0016896 | 0.2792 | 53552.5 | 53552.6 | 1 |  |  |  |
| 0024+597 | J0027+5958 | 991 | 00 | 27 | 3.28652880 | +59 | 58 | 52.9602294 | . 00025975 | . 0016556 | 0.2090 | 49576.3 | 49576.5 | 1 |  |  |  |
| 0024+092 | 0024+092 | 2325 | 00 | 27 | 5.79364909 | +09 | 29 | 57.7633847 | . 00004828 | . 0008770 | 0.3344 | 52305.9 | 52306.1 | 1 |  |  |  |
| 0024+224 | 0024+224 | 1318 | 00 | 27 | 15.37155862 | +22 | 41 | 58.0687185 | . 00003606 | . 0005646 | -0.0522 | 50085.0 | 54664.5 | 3 |  |  |  |
| 0025+197 | 0025+197 | 992 | 00 | 28 | 29.81848453 | +20 | 00 | 26.7441083 | . 00000486 | . 0000943 | -0.0072 | 50085.0 | 56758.7 | 50 |  |  |  |
| 0026-015 | 0026-015 | 1319 | 00 | 29 | 0.98602578 | -01 | 13 | 41.7605093 | . 00004804 | . 0009233 | 0.3542 | 53125.6 | 53125.7 | 1 |  |  |  |
| 0026+048 | 0026+048 | 2326 | 00 | 29 | 3.59228362 | +05 | 09 | 34.8684108 | . 00015757 | . 0023459 | -0.5056 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0026+346 | OB 343 | 2327 | 00 | 29 | 14.24243458 | +34 | 56 | 32.2472716 | . 00022529 | . 0031191 | 0.3464 | 50219.6 | 50219.7 | 1 |  |  |  |
| 0027+056 | 0027+056A | 1320 | 00 | 29 | 45.89630604 | +05 | 54 | 40.7124442 | . 00001569 | . 0002579 | -0.1084 | 49913.7 | 54643.7 | 2 |  |  |  |
| 0027+703 | 0027+703 | 2328 | 00 | 30 | 14.41299067 | +70 | 37 | 40.0606479 | . 00003841 | . 0003410 | 0.0148 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0027-426 | 0027-426 | 1321 | 00 | 30 | 17.49259240 | -42 | 24 | 46.4821966 | . 00004210 | . 0014355 | 0.4363 | 54942.8 | 54943.7 | 1 |  |  |  |
| 0027-024 | 0027-024 | 1322 | 00 | 30 | 31.82375327 | -02 | 11 | 56.1335213 | . 00001482 | . 0004887 | -0.2319 | 53125.6 | 53133.7 | 2 |  |  |  |
| 0028-396 | 0028-396 | 2329 | 00 | 31 | 24.33155258 | -39 | 22 | 49.3689939 | . 00017685 | . 0062847 | -0.7751 | 52306.0 | 56162.4 | 3 |  |  |  |
| 0029-147 | 0029-147 | 1323 | 00 | 31 | 56.41190522 | -14 | 26 | 19.3464083 | . 00006725 | . 0018548 | -0.6663 | 53125.7 | 53133.7 | 2 |  |  |  |
| 0030+196 | 0030+196 | 2330 | 00 | 32 | 38.23770766 | +19 | 53 | 54.9223025 | . 06249659 | . 8077359 | -0.9976 | 50155.9 | 50155.9 | 1 |  |  |  |
| 0032+276 | 0032+276 | 2331 | 00 | 34 | 43.48619949 | +27 | 54 | 25.7208946 | . 00002057 | . 0005451 | -0.2692 | 50219.6 | 50219.7 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation EpochMID |  | No. Obs. | Source Flux <br> (Jy) |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0032+612 | 0032+612 | 1324 | 00 | 35 | 25.31061069 | +61 | 30 | 30.7614847 | . 00005249 | . 0004253 | 0.1774 | 52620.0 | 53552.6 | 2 |  |  |  |
| 0033+143 | 0033+143 | 2332 | 00 | 35 | 44.08793859 | +14 | 38 | 1.9718774 | . 00002343 | . 0007517 | 0.0913 | 54112.0 | 54112.1 | 1 |  |  |  |
| 0033-088 | 0033-088 | 2333 | 00 | 35 | 46.25037599 | -08 | 35 | 54.0426629 | . 00001669 | . 0004978 | -0.1728 | 53523.6 | 55657.7 | 2 |  |  |  |
| 0033+142 | 0033+142 | 2334 | 00 | 36 | 35.10909654 | +14 | 34 | 3.6200625 | . 00003117 | . 0007834 | -0.2013 | 52408.8 | 52409.6 | 1 |  |  |  |
| 0034-220 | 0034-220 | 2335 | 00 | 37 | 14.82589267 | -21 | 45 | 24.7147000 | . 00003828 | . 0011312 | -0.4520 | 54087.1 | 55784.6 | 2 |  |  |  |
| 0034+108 | J0037+1109 | 993 | 00 | 37 | 26.04141189 | +11 | 09 | 50.9214553 | . 00002073 | . 0005989 | -0.3162 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0034+078 | 0034+078 | 1325 | 00 | 37 | 32.19717447 | +08 | 08 | 13.0575465 | . 00001878 | . 0005413 | -0.2955 | 53561.5 | 53561.6 | 1 |  |  |  |
| 0035+367 | 0035+367 | 2336 | 00 | 37 | 46.14325996 | +36 | 59 | 10.8849547 | . 00027334 | . 0026175 | 0.7334 | 50242.6 | 50242.7 | 1 |  |  |  |
| 0035+238 | 0035+238 | 2337 | 00 | 37 | 58.29981978 | +24 | 07 | 11.8712484 | . 00017114 | . 0055871 | -0.6073 | 54292.5 | 54292.6 | 1 |  |  |  |
| 0035-252 | 0035-252 | 1326 | 00 | 38 | 14.73550322 | -24 | 59 | 2.2353323 | . 00000432 | . 0000691 | -0.0321 | 50631.5 | 56638.3 | 113 |  |  |  |
| 0035+121 | 0035+121 | 2338 | 00 | 38 | 18.01631413 | +12 | 27 | 31.2562434 | . 00057961 | . 0172445 | -0.9820 | 50085.0 | 50156.0 | 2 |  |  |  |
| 0035-024 | 0035-024 | 1327 | 00 | 38 | 20.52936563 | -02 | 07 | 40.5469261 | . 00002111 | . 0005895 | -0.3186 | 54124.8 | 54125.1 | 1 |  |  |  |
| 0035-037 | 0035-037 | 1328 | 00 | 38 | 20.79433232 | -03 | 29 | 58.9625776 | . 00001752 | . 0005931 | -0.4008 | 53572.5 | 53572.5 | 1 |  |  |  |
| 0035+413 | 0035+413 | 712 | 00 | 38 | 24.84358722 | +41 | 37 | 6.0002779 | . 00000447 | . 0000660 | -0.0031 | 49421.9 | 56692.3 | 38 | 0.21 | 0.26 | 2.8 |
| 0035+503 | 0035+503 | 2339 | 00 | 38 | 28.41354045 | +50 | 35 | 25.8333230 | . 00009964 | . 0006398 | -0.2283 | 50305.4 | 54112.1 | 2 |  |  |  |
| 0036-216 | 0036-216 | 2340 | 00 | 38 | 29.95471856 | -21 | 20 | 4.0235127 | . 00015643 | . 0033926 | 0.4232 | 50631.5 | 50687.5 | 2 |  |  |  |
| 0036-099 | 0036-099 | 2341 | 00 | 39 | 6.29164933 | -09 | 42 | 46.8875177 | . 00003551 | . 0016422 | -0.1182 | 54088.0 | 54088.0 | 1 |  |  |  |
| 0036-191 | 0036-191 | 2342 | 00 | 39 | 16.92441762 | -18 | 54 | 5.6196185 | . 00033495 | . 0099328 | 0.7507 | 53560.6 | 53560.6 | 1 |  |  |  |
| 0037+139 | 0037+139 | 994 | 00 | 39 | 39.61959225 | +14 | 11 | 57.5569607 | . 00001545 | . 0004483 | -0.2257 | 50085.0 | 53193.7 | 4 |  |  |  |
| 0037+487 | 0037+487 | 2343 | 00 | 39 | 46.99884393 | +49 | 00 | 33.1753616 | . 00002353 | . 0004608 | 0.2470 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0037-593 | 0037-593 | 2344 | 00 | 40 | 7.84828076 | -59 | 03 | 52.7641973 | . 00068983 | . 0027513 | -0.3350 | 52886.7 | 53138.2 | 3 |  |  |  |
| 0037-329 | 0037-329 | 2345 | 00 | 40 | 17.54076240 | -32 | 43 | 27.8253606 | . 00008889 | . 0022003 | -0.2666 | 52305.9 | 52306.0 | 1 |  |  |  |
| 0038-326 | 0038-326 | 2346 | 00 | 40 | 30.65489203 | -32 | 25 | 20.3293074 | . 00012120 | . 0035915 | -0.5894 | 52305.9 | 55776.5 | 2 |  |  |  |
| 0038-020 | 0038-020 | 2347 | 00 | 40 | 57.61160304 | -01 | 46 | 32.0265913 | . 00001343 | . 0004401 | -0.4418 | 50575.8 | 56498.6 | 2 | 0.23 | 0.35 |  |
| 0038+133 | 0038+133 | 2348 | 00 | 41 | 17.21095213 | +13 | 39 | 27.5272543 | . 00011406 | . 0019115 | -0.3078 | 54111.9 | 54112.1 | 1 |  |  |  |
| 0039+230 | 0039+230 | 713 | 00 | 42 | 4.54517431 | +23 | 20 | 1.0619112 | . 00000594 | . 0001312 | -0.0839 | 50085.0 | 56638.6 | 25 | 0.29 | 0.16 | 4.2 |
| 0039+568 | 0039+568 | 1207 | 00 | 42 | 19.45169116 | +57 | 08 | 36.5860843 | . 00001069 | . 0001766 | 0.4571 | 49576.4 | 56691.2 | 36 | 0.60 |  |  |
| 0040+098 | 0040+098 | 2349 | 00 | 42 | 44.37174993 | +10 | 09 | 49.2085276 | . 00004201 | . 0009977 | 0.4703 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0042+186 | 0042+186 | 1329 | 00 | 44 | 42.22789816 | +18 | 55 | 5.0344788 | . 00004791 | . 0018406 | 0.4786 | 53125.6 | 53125.8 | 1 |  |  |  |
| 0041+677 | 0041+677 | 1330 | 00 | 44 | 50.75958378 | +68 | 03 | 2.6860017 | . 00005285 | . 0004432 | -0.1263 | 53560.4 | 53560.6 | 1 |  |  |  |
| 0043-392 | 0043-392 | 1331 | 00 | 45 | 30.50902847 | -39 | 00 | 2.9317386 | . 00020640 | . 0103734 | 0.3666 | 52408.7 | 54853.0 | 2 |  |  |  |
| 0043+246 | 0043+246 | 1208 | 00 | 46 | 7.82573422 | +24 | 56 | 32.5245729 | . 00000944 | . 0002371 | -0.0137 | 53125.6 | 53306.2 | 2 |  |  |  |
| 0043-268 | 0043-268 | 1332 | 00 | 46 | 13.77618977 | -26 | 31 | 54.4534036 | . 00002613 | . 0008578 | -0.2936 | 54852.9 | 54853.0 | 1 |  |  |  |
| 0044+387 | 0044+387 | 2350 | 00 | 46 | 47.57830020 | +39 | 00 | 47.1483277 | . 00003315 | . 0006368 | -0.2813 | 50242.6 | 50242.7 | 1 |  |  |  |
| 0044+566 | J0047+5657 | 995 | 00 | 47 | 0.42880225 | +56 | 57 | 42.3952004 | . 00002808 | . 0004087 | 0.0717 | 49576.4 | 49576.5 | 1 | 0.30 |  |  |
| 0045+243 | 0045+243 | 2351 | 00 | 47 | 43.87134752 | +24 | 35 | 15.9952194 | . 00003911 | . 0011985 | -0.7859 | 50085.0 | 50156.0 | 2 |  |  |  |
| 0046+316 | NGC 0262 | 996 | 00 | 48 | 47.14148274 | +31 | 57 | 25.0847350 | . 00000518 | . 0000992 | -0.1162 | 50219.6 | 55299.1 | 17 | 0.34 | 0.16 | 3.1 |
| 0046+063 | 0046+063 | 1333 | 00 | 48 | 58.72316004 | +06 | 40 | 6.4752924 | . 00004300 | . 0013166 | 0.3871 | 53125.6 | 53133.7 | 2 |  |  |  |
| 0046-315 | 0046-315 | 2352 | 00 | 49 | 22.90080472 | -31 | 16 | 27.3225840 | . 00010966 | . 0031832 | -0.5873 | 52305.9 | 55776.5 | 2 |  |  |  |
| 0046+511 | 0046+511 | 2353 | 00 | 49 | 37.99120266 | +51 | 28 | 13.6920256 | . 00001522 | . 0001910 | -0.0613 | 49576.4 | 56547.5 | 6 |  |  |  |
| 0047+023 | J0049+0237 | 997 | 00 | 49 | 43.23593899 | +02 | 37 | 3.7784795 | . 00000795 | . 0001875 | -0.1755 | 49913.7 | 56700.9 | 21 | 0.16 | 0.19 |  |
| 0047-579 | P 0047-579 | 714 | 00 | 49 | 59.47306617 | -57 | 38 | 27.3399572 | . 00001589 | . 0001697 | 0.2922 | 47626.2 | 55284.9 | 26 |  |  |  |
| 0047-051 | 0047-051 | 2354 | 00 | 50 | 21.53482732 | -04 | 52 | 20.5954869 | . 00004140 | . 0013033 | -0.4750 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0048-097 | P 0048-09 | 19 | 00 | 50 | 41.31738637 | -09 | 29 | 5.2103813 | . 00000339 | . 0000524 | -0.0555 | 46609.4 | 56758.6 | 1420 | 0.75 | 0.67 | 1.1 |
| 0048-071 | P 0048-071 | 2355 | 00 | 51 | 8.20981858 | -06 | 50 | 2.2290620 | . 00001261 | . 0004137 | -0.3628 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0048-427 | 0048-427 | 998 | 00 | 51 | 9.50182479 | -42 | 26 | 33.2933987 | . 00000761 | . 0000984 | -0.0703 | 52306.0 | 56701.0 | 69 |  |  |  |
| 0048+447 | 0048+447 | 2356 | 00 | 51 | 36.47368223 | +44 | 59 | 35.9585863 | . 00008005 | . 0007511 | 0.2997 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0049+437 | 0049+437 | 2357 | 00 | 52 | 27.82588631 | +44 | 02 | 54.5159335 | . 00002477 | . 0004149 | -0.1201 | 50242.6 | 50305.5 | 2 |  |  |  |
| 0046+861 | 0046+861 | 1334 | 00 | 52 | 32.85647817 | +86 | 27 | 44.2520255 | . 00041421 | . 0002388 | -0.6101 | 53572.4 | 55168.3 | 2 |  |  |  |
| 0050-287 | 0050-287B | 2358 | 00 | 52 | 52.55643376 | -28 | 25 | 54.1865484 | . 00010439 | . 0029743 | -0.6493 | 53572.5 | 55776.5 | 2 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error(s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation EpochMID |  | No. Obs. | Source Flux <br> (Jy) |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0051-077 | 0051-077 | 1335 | 00 | 53 | 36.51568717 | -07 | 27 | 29.6185640 | . 00011666 | . 0032614 | -0.2460 | 53560.6 | 53560.6 | 1 |  |  |  |
| 0051+291 | 0051+291 | 4047 | 00 | 53 | 44.32348400 | +29 | 25 | 7.1007130 | . 00002117 | . 0003869 | 0.3587 | 56463.5 | 56463.7 | 1 |  |  |  |
| 0051+679 | J0054+6811 | 999 | 00 | 54 | 17.62158134 | +68 | 11 | 11.1767726 | . 00015059 | . 0011129 | -0.0967 | 49826.7 | 49826.8 | 1 | 0.13 |  |  |
| 0051+706 | 0051+706 | 2359 | 00 | 54 | 17.68493448 | +70 | 53 | 56.6181250 | . 00009107 | . 0008365 | 0.2695 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0052-201 | 0052-201 | 1336 | 00 | 54 | 32.94844348 | -19 | 53 | 1.0041184 | . 00002820 | . 0009294 | -0.2411 | 53523.6 | 53561.6 | 2 |  |  |  |
| 0052-125 | 0052-125 | 1337 | 00 | 55 | 11.78257855 | -12 | 17 | 57.0973081 | . 00001133 | . 0003917 | -0.2194 | 53552.5 | 53552.6 | 1 |  |  |  |
| 0054+161 | 0054+161 | 1254 | 00 | 56 | 55.29432868 | +16 | 25 | 13.3408768 | . 00000503 | . 0000905 | -0.0156 | 50155.9 | 56762.4 | 79 | 0.58 | 0.40 | 1.2 |
| 0054-006 | 0054-006 | 2360 | 00 | 57 | 17.00229640 | -00 | 24 | 33.1751969 | . 00020550 | . 0037713 | 0.3976 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0055+300 | DW 0055+30 | 1000 | 00 | 57 | 48.88334488 | +30 | 21 | 8.8119751 | . 00000663 | . 0001183 | -0.4369 | 50219.6 | 53575.7 | 7 | 0.20 | 0.30 | 3.6 |
| 0055-328 | 0055-328 | 2361 | 00 | 58 | 2.23032532 | -32 | 34 | 20.7476138 | . 00008327 | . 0033203 | -0.4639 | 52305.9 | 52306.0 | 1 |  |  |  |
| 0055-059 | 0055-059 | 1338 | 00 | 58 | 5.06631590 | -05 | 39 | 52.2783282 | . 00000431 | . 0000827 | -0.0769 | 50575.8 | 56763.2 | 73 |  |  |  |
| 0055-340 | 0055-340 | 4048 | 00 | 58 | 15.64182642 | -33 | 47 | 57.4908099 | . 00004972 | . 0019484 | 0.2692 | 56204.2 | 56204.3 | 1 |  |  |  |
| 0055+329 | 0055+329 | 1339 | 00 | 58 | 32.06904341 | +33 | 11 | 17.2143343 | . 00002355 | . 0006842 | -0.2535 | 53560.5 | 53560.6 | 1 |  |  |  |
| 0055+060 | 0055+060 | 1340 | 00 | 58 | 33.80457542 | +06 | 20 | 6.0729003 | . 00001573 | . 0013981 | -0.4321 | 53125.7 | 56577.2 | 7 | 0.16 | 0.14 |  |
| 0056-572 | 0056-572 | 715 | 00 | 58 | 46.58116192 | -56 | 59 | 11.4708004 | . 00006650 | . 0007370 | 0.3823 | 47626.3 | 52941.3 | 6 |  |  |  |
| 0056-001 | P 0056-00 | 24 | 00 | 59 | 5.51495440 | +00 | 06 | 51.6206929 | . 00001392 | . 0003749 | -0.1384 | 48975.9 | 53068.7 | 8 |  |  | 4.3 |
| 0056+579 | 0056+579 | 2362 | 00 | 59 | 52.20902349 | +58 | 12 | 23.6833563 | . 00006628 | . 0004784 | 0.3089 | 52305.8 | 52306.1 | 1 |  |  |  |
| 0057-338 | 0057-338A | 2363 | 01 | 00 | 9.39261704 | -33 | 37 | 31.8997129 | . 00114035 | . 0250688 | 0.9648 | 52306.0 | 54440.2 | 2 |  |  |  |
| 0057+334 | 0057+334 | 1341 | 01 | 00 | 38.29071930 | +33 | 45 | 6.1217874 | . 00002813 | . 0007360 | -0.1740 | 53561.5 | 53561.6 | 1 |  |  |  |
| 0057+678 | 0057+678 | 2364 | 01 | 00 | 51.66359971 | +68 | 08 | 20.5352749 | . 00027795 | . 0015707 | 0.1546 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0058+498 | 0058+498 | 2365 | 01 | 01 | 16.99752520 | +50 | 04 | 44.9895737 | . 00010501 | . 0009468 | -0.6049 | 50305.4 | 54088.0 | 2 |  |  |  |
| 0059-287 | 0059-287 | 2366 | 01 | 01 | 52.38979467 | -28 | 31 | 20.4190619 | . 00032016 | . 0083550 | 0.6119 | 50687.4 | 50687.5 | 1 |  |  |  |
| 0059+163 | 0059+163 | 1342 | 01 | 01 | 57.71954595 | +16 | 39 | 40.9540179 | . 00003841 | . 0024172 | -0.4534 | 50085.0 | 53133.8 | 4 |  |  |  |
| 0059+581 | 0059+581 | 716 | 01 | 02 | 45.76238261 | +58 | 24 | 11.1366386 | . 00000338 | . 0000503 | -0.0094 | 48719.9 | 56782.2 | 1416 | 1.49 |  | 1.6 |
| 0100-270 | 0100-270 | 2367 | 01 | 02 | 56.35401197 | -26 | 46 | 36.5170143 | . 00020100 | . 0073956 | 0.1373 | 54112.0 | 54112.0 | 1 |  |  |  |
| 0102-245 | 0102-245 | 2368 | 01 | 04 | 58.20537867 | -24 | 16 | 28.4455263 | . 00001660 | . 0005671 | -0.3165 | 50631.5 | 50687.5 | 2 |  |  |  |
| 0102+511 | 0102+511 | 1343 | 01 | 05 | 29.55825970 | +51 | 25 | 46.5812039 | . 00029240 | . 0015565 | -0.5074 | 50305.4 | 54314.7 | 2 |  |  |  |
| 0102+480 | 0102+480 | 1209 | 01 | 05 | 49.92816285 | +48 | 19 | 3.1929023 | . 00000700 | . 0001431 | -0.0191 | 50305.4 | 56782.1 | 96 | 0.34 | 0.33 |  |
| 0103+337 | 0103+337 | 2369 | 01 | 06 | 0.29337481 | +34 | 02 | 2.9888611 | . 00004701 | . 0011099 | 0.5306 | 50219.6 | 50219.8 | 1 |  |  |  |
| 0103+253 | 0103+253 | 2370 | 01 | 06 | 10.96904884 | +25 | 39 | 30.4940857 | . 00005958 | . 0017215 | -0.8432 | 50219.6 | 50219.8 | 1 |  |  |  |
| 0103-021 | 0103-021 | 2371 | 01 | 06 | 22.99426146 | -01 | 55 | 38.4149841 | . 00003160 | . 0007880 | 0.1028 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0104-275 | 0104-275 | 2372 | 01 | 06 | 26.08207181 | -27 | 18 | 11.8253677 | . 00001449 | . 0005018 | -0.2274 | 50687.4 | 54664.3 | 2 |  |  |  |
| 0103+127 | 0103+127 | 1344 | 01 | 06 | 33.35650252 | +13 | 00 | 2.6051848 | . 00003083 | . 0009152 | -0.5187 | 50155.9 | 54314.7 | 2 |  |  |  |
| 0104-035 | 0104-035 | 1345 | 01 | 06 | 43.22871228 | -03 | 15 | 36.2956715 | . 00001535 | . 0004996 | -0.0945 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0104-408 | P 0104-408 | 25 | 01 | 06 | 45.10796953 | -40 | 34 | 19.9603990 | . 00000366 | . 0000561 | -0.0339 | 43809.2 | 56748.9 | 1055 |  | 1.09 | 1.3 |
| 0104+195 | 0104+195 | 2373 | 01 | 06 | 52.63125040 | +19 | 51 | 2.5622073 | . 00001766 | . 0005302 | -0.5728 | 53502.8 | 53503.7 | 1 |  |  |  |
| 0105+129 | 0105+129 | 2374 | 01 | 07 | 45.96188267 | +13 | 12 | 5.1912843 | . 00002497 | . 0007608 | -0.4367 | 54087.2 | 54088.0 | 1 |  |  |  |
| 0105+259 | 0105+259 | 2375 | 01 | 07 | 47.88628409 | +26 | 11 | 8.6721789 | . 00006962 | . 0024101 | -0.7064 | 50219.6 | 50219.8 | 1 |  |  |  |
| 0105-008 | 0105-008 | 2376 | 01 | 08 | 26.84265089 | -00 | 37 | 24.1654059 | . 00006180 | . 0011983 | 0.5318 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0106+013 | P 0106+01 | 27 | 01 | 08 | 38.77110632 | +01 | 35 | 0.3171803 | . 00000342 | . 0000530 | -0.0518 | 43809.3 | 56709.7 | 1178 | 1.22 | 1.00 | 3.2 |
| 0107-610 | 0107-610 | 1255 | 01 | 09 | 15.47521319 | -60 | 49 | 48.4600873 | . 00001351 | . 0001509 | 0.1032 | 52780.1 | 56537.9 | 32 |  |  |  |
| 0106+315 | 0106+315 | 4049 | 01 | 09 | 27.88714919 | +31 | 49 | 56.0482771 | . 00003772 | . 0007129 | 0.2971 | 56301.9 | 56302.1 | 1 |  |  |  |
| 0106+612 | 0106+612 | 2377 | 01 | 09 | 46.34439731 | +61 | 33 | 30.4557181 | . 00005704 | . 0001929 | -0.2342 | 52305.8 | 52306.2 | 1 |  |  |  |
| 0106+678 | 0106+678 | 2378 | 01 | 10 | 12.87344037 | +68 | 05 | 41.2186562 | . 00023159 | . 0015269 | 0.0588 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0107-045 | 0107-045 | 2379 | 01 | 10 | 30.90279644 | -04 | 15 | 31.0268130 | . 00002783 | . 0010064 | -0.4883 | 54112.0 | 54112.1 | 1 |  |  |  |
| 0108-170 | 0108-170 | 2380 | 01 | 10 | 35.51122661 | -16 | 48 | 27.7015943 | . 00032486 | . 0078278 | 0.5750 | 53152.6 | 53152.7 | 1 |  |  |  |
| 0108-079 | P 0108-079 | 2381 | 01 | 10 | 50.02098667 | -07 | 41 | 41.1146369 | . 00001423 | . 0004672 | -0.2216 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0107+562 | 0107+562 | 2382 | 01 | 10 | 57.55131612 | +56 | 32 | 16.9748821 | . 00374630 | . 2013390 | 0.7731 | 52409.5 | 52409.5 | 1 |  |  |  |
| 0108+388 | GC 0108+38 | 29 | 01 | 11 | 37.31676292 | +39 | 06 | 28.1036731 | . 00003135 | . 0004452 | 0.0748 | 49098.7 | 53129.7 | 5 |  |  |  |
| 0109-135 | 0109-135 | 1346 | 01 | 11 | 56.85796607 | -13 | 17 | 1.1983067 | . 00002460 | . 0008496 | -0.5123 | 53561.5 | 53561.6 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0109+224 | GC 0109+22 | 30 | 01 | 12 | 5.82471998 | +22 | 44 | 38.7863217 | . 00000375 | . 0000641 | -0.0150 | 49735.9 | 56772.7 | 149 | 0.53 | 0.37 | 2.0 |
| 0109+351 | 0109+351 | 2383 | 01 | 12 | 12.94440007 | +35 | 22 | 19.3362842 | . 00000869 | . 0001520 | 0.0786 | 50242.6 | 56701.1 | 2 | 0.58 | 0.32 |  |
| 0110-668 | 0110-668 | 2384 | 01 | 12 | 18.91294251 | -66 | 34 | 45.1879734 | . 00003371 | . 0003289 | 0.4895 | 53222.9 | 56111.9 | 15 |  |  |  |
| 0110+318 | 0110+318 | 2385 | 01 | 12 | 50.33305763 | +32 | 08 | 17.4330836 | . 00001487 | . 0004005 | -0.0606 | 50219.6 | 50219.8 | 1 |  |  |  |
| 0110-361 | 0110-361 | 2386 | 01 | 13 | 15.85639203 | -35 | 51 | 48.3672773 | . 00002377 | . 0005604 | -0.1754 | 55112.2 | 55112.3 | 1 |  |  |  |
| 0110+495 | 0110+495 | 717 | 01 | 13 | 27.00680913 | +49 | 48 | 24.0431360 | . 00000458 | . 0000704 | -0.0654 | 49421.9 | 56782.1 | 82 | 0.28 |  |  |
| 0111+021 | P 0111+021 | 32 | 01 | 13 | 43.14494994 | +02 | 22 | 17.3162766 | . 00000404 | . 0000721 | -0.3149 | 44227.2 | 56702.6 | 333 | 0.21 | 0.42 | 3.4 |
| 0111+131 | 0111+131 | 1347 | 01 | 13 | 54.51036173 | +13 | 24 | 52.4777578 | . 00004852 | . 0007819 | -0.0689 | 50155.9 | 54314.7 | 2 |  |  |  |
| 0112-245 | 0112-245 | 1348 | 01 | 14 | 57.32743018 | -24 | 19 | 44.7470043 | . 00410525 | . 1540599 | -0.8162 | 54818.1 | 54818.1 | 1 |  |  |  |
| 0112-017 | P 0112-017 | 33 | 01 | 15 | 17.09996126 | -01 | 27 | 4.5774031 | . 00000689 | . 0001553 | -0.6012 | 47254.9 | 53946.4 | 95 | 0.28 | 0.30 | 4.2 |
| 0113-283 | 0113-283 | 1349 | 01 | 15 | 23.88363896 | -28 | 04 | 55.2241188 | . 00002370 | . 0004599 | -0.1907 | 50687.4 | 54643.3 | 2 |  |  |  |
| 0113-310 | 0113-310 | 1350 | 01 | 15 | 46.50555364 | -30 | 49 | 19.4010215 | . 00004174 | . 0011853 | -0.6491 | 53125.7 | 53125.7 | 1 |  |  |  |
| 0113-118 | P 0113-118 | 34 | 01 | 16 | 12.52201532 | -11 | 36 | 15.4344868 | . 00000549 | . 0001206 | -0.5558 | 43809.4 | 56633.0 | 90 | 0.38 | 0.57 | 3.4 |
| 0113+241 | 0113+241 | 2387 | 01 | 16 | 38.06769599 | +24 | 22 | 53.7237303 | . 00008531 | . 0016737 | -0.1708 | 50085.0 | 50156.0 | 2 |  |  |  |
| 0114-211 | 0114-211 | 1351 | 01 | 16 | 51.45376183 | -20 | 52 | 8.0433084 | . 01456193 | . 3533937 | -0.9987 | 52408.8 | 56498.5 | 3 |  |  |  |
| 0114+140 | 0114+140 | 1001 | 01 | 17 | 25.20315838 | +14 | 18 | 12.4190378 | . 00008924 | . 0014208 | -0.8603 | 50085.0 | 53771.1 | 3 |  | 0.32 |  |
| 0115-214 | 0115-214 | 1352 | 01 | 17 | 48.78013489 | -21 | 11 | 6.6331932 | . 00000448 | . 0000645 | 0.0291 | 50631.5 | 56772.3 | 226 | 0.21 | 0.39 | 2.5 |
| 0116-219 | 0116-219 | 1353 | 01 | 18 | 57.26217954 | -21 | 41 | 30.1402188 | . 00000556 | . 0000979 | 0.0051 | 50631.5 | 56699.6 | 32 |  |  |  |
| 0116+082 | 0116+082 | 2388 | 01 | 19 | 1.27436057 | +08 | 29 | 54.6927031 | . 00006587 | . 0017787 | -0.3912 | 52408.7 | 52408.8 | 1 |  |  |  |
| 0116+319 | OC 328 | 718 | 01 | 19 | 35.00335846 | +32 | 10 | 50.0545082 | . 00040285 | . 0045109 | -0.2548 | 48975.9 | 54440.2 | 3 |  |  |  |
| 0117-171 | 0117-171 | 1354 | 01 | 19 | 43.64592236 | -16 | 54 | 8.9727032 | . 00003842 | . 0012905 | 0.6602 | 53552.5 | 53552.6 | 1 |  |  |  |
| 0118-272 | P 0118-272 | 37 | 01 | 20 | 31.66338583 | -27 | 01 | 24.6526601 | . 00001046 | . 0002175 | -0.3202 | 49960.7 | 54362.1 | 18 |  | 0.14 | 5.0 |
| 0118-283 | 0118-283 | 2389 | 01 | 21 | 0.74188575 | -28 | 06 | 22.1773195 | . 00020151 | . 0059920 | 0.6929 | 53502.7 | 53502.8 | 1 |  |  |  |
| 0119+115 | P 0119+11 | 38 | 01 | 21 | 41.59504361 | +11 | 49 | 50.4130296 | . 00000338 | . 0000527 | -0.0507 | 47255.0 | 56744.7 | 1061 | 1.38 | 0.78 | 2.3 |
| 0119+041 | GC 0119+04 | 667 | 01 | 21 | 56.86169816 | +04 | 22 | 24.7343034 | . 00000341 | . 0000536 | -0.1043 | 45476.6 | 56748.7 | 1136 | 0.36 | 0.37 | 2.9 |
| 0119-011 | 0119-011 | 2390 | 01 | 22 | 17.46999048 | -00 | 56 | 15.6980979 | . 00003065 | . 0012722 | -0.7152 | 54112.0 | 54112.1 | 1 |  |  |  |
| 0119+247 | 0119+247 | 1210 | 01 | 22 | 38.81599483 | +25 | 02 | 31.7929190 | . 00001057 | . 0003084 | -0.0011 | 50219.6 | 53658.5 | 3 | 0.32 | 0.20 |  |
| 0119+296 | 0119+296 | 1355 | 01 | 22 | 45.43001765 | +29 | 54 | 12.6429871 | . 00001652 | . 0004204 | -0.1433 | 53125.6 | 53133.8 | 2 |  |  |  |
| 0120+304 | 0120+304 | 1356 | 01 | 23 | 2.28145371 | +30 | 44 | 6.9170346 | . 00002998 | . 0009393 | 0.0021 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0121-040 | 0121-040 | 2391 | 01 | 23 | 35.77965312 | -03 | 48 | 38.9253149 | . 01178595 | . 8923805 | 0.9990 | 54087.2 | 54087.2 | 1 |  |  |  |
| 0120+259 | 0120+259 | 2392 | 01 | 23 | 43.04520508 | +26 | 15 | 22.4263741 | . 00001807 | . 0005710 | -0.2225 | 50219.6 | 50219.8 | 1 |  |  |  |
| 0121-096 | 0121-096 | 1357 | 01 | 23 | 46.38463913 | -09 | 23 | 3.3343264 | . 00009570 | . 0031300 | 0.4764 | 53560.6 | 53560.6 | 1 |  |  |  |
| 0122-345 | 0122-345A | 1358 | 01 | 24 | 21.45934259 | -34 | 16 | 21.4529970 | . 00004417 | . 0013773 | -0.2945 | 52306.0 | 53125.7 | 2 |  |  |  |
| 0121+560 | 0121+560 | 2393 | 01 | 24 | 25.82701810 | +56 | 18 | 51.9172965 | . 00008489 | . 0010453 | 0.3210 | 49576.4 | 54482.5 | 2 |  |  |  |
| 0122+278 | 0122+278 | 2394 | 01 | 24 | 55.87922238 | +28 | 05 | 11.3911601 | . 00002294 | . 0006679 | -0.0315 | 50219.6 | 50219.8 | 1 |  |  |  |
| 0122-514 | 0122-514 | 2395 | 01 | 24 | 57.39148338 | -51 | 13 | 16.1677005 | . 00001760 | . 0002428 | 0.3048 | 53382.5 | 55784.1 | 10 |  |  |  |
| 0122+470 | 0122+470 | 2396 | 01 | 25 | 7.70675439 | +47 | 18 | 3.0848456 | . 00007845 | . 0010618 | 0.1507 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0122-260 | 0122-260 | 1359 | 01 | 25 | 18.83746058 | -25 | 49 | 4.3896921 | . 00002361 | . 0008583 | -0.2278 | 53561.6 | 53561.6 | 1 |  |  |  |
| 0122-003 | 0122-003 | 1256 | 01 | 25 | 28.84384560 | -00 | 05 | 55.9325775 | . 00001023 | . 0003117 | -0.3635 | 50575.8 | 53946.4 | 5 | 0.29 | 0.21 |  |
| 0122+705 | 0122+705 | 2397 | 01 | 26 | 7.84363055 | +70 | 46 | 52.3856813 | . 00026539 | . 0029337 | -0.6580 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0123-226 | 0123-226 | 1360 | 01 | 26 | 15.00160739 | -22 | 22 | 33.6017192 | . 00002956 | . 0008988 | -0.6623 | 53125.7 | 53125.8 | 1 |  |  |  |
| 0124-155 | 0124-155 | 1361 | 01 | 26 | 33.89074299 | -15 | 18 | 34.1165309 | . 00001966 | . 0006396 | -0.0061 | 54657.5 | 54657.6 | 1 |  |  |  |
| 0123+257 | P 0123+25 | 40 | 01 | 26 | 42.79263886 | +25 | 59 | 1.3001543 | . 00000461 | . 0000905 | -0.0940 | 48377.8 | 56638.6 | 27 | 0.62 | 0.27 | 3.0 |
| 0123+731 | 0123+731 | 2398 | 01 | 27 | 4.71632772 | +73 | 23 | 12.6751059 | . 00019432 | . 0008732 | -0.4600 | 53572.4 | 56638.2 | 2 |  |  |  |
| 0125+487 | 0125+487 | 2399 | 01 | 28 | 8.06339082 | +49 | 01 | 5.9859149 | . 00003099 | . 0005543 | 0.4625 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0125+628 | 0125+628 | 1257 | 01 | 28 | 30.56515498 | +63 | 06 | 29.8820963 | . 00006869 | . 0002499 | -0.2296 | 53977.8 | 53978.6 | 1 |  |  |  |
| 0127+145 | 0127+145 | 2400 | 01 | 29 | 55.34717135 | +14 | 46 | 47.8358804 | . 00002149 | . 0005462 | -0.2964 | 50085.0 | 54481.9 | 3 |  |  |  |
| 0127+084 | 0127+084 | 719 | 01 | 30 | 27.63443052 | +08 | 42 | 46.1722429 | . 00000941 | . 0003072 | -0.2482 | 49913.7 | 55483.4 | 3 | 0.11 | 0.11 |  |
| 0128+383 | 0128+383 | 1362 | 01 | 31 | 26.71351517 | +38 | 34 | 39.2208673 | . 00005180 | . 0012752 | -0.0432 | 53560.6 | 53560.8 | 1 |  |  |  |
| 0129+220 | 0129+220 | 2401 | 01 | 32 | 3.07878699 | +22 | 16 | 50.3354525 | . 00002303 | . 0005336 | -0.1263 | 54112.0 | 54112.2 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0129+560 | 0129+560 | 2402 | 01 | 32 | 20.44727773 | +56 | 20 | 40.3705257 | . 00004738 | . 0005898 | 0.3025 | 49576.4 | 49576.5 | 1 |  |  |  |
| 0130-171 | P 0130-17 | 43 | 01 | 32 | 43.48746495 | -16 | 54 | 48.5219824 | . 00000698 | . 0001051 | -0.1067 | 50631.5 | 55728.7 | 31 | 0.65 | 0.43 | 4.0 |
| 0129+431 | 0129+431 | 2403 | 01 | 32 | 44.12679312 | +43 | 25 | 32.6609021 | . 00002659 | . 0005425 | -0.2301 | 50242.6 | 50242.7 | 1 |  |  |  |
| 0130-447 | 0130-447 | 2404 | 01 | 33 | 0.86363826 | -44 | 30 | 43.5803463 | . 00012092 | . 0069060 | -0.2057 | 53133.7 | 55168.2 | 2 |  |  |  |
| 0131-522 | P 0131-522 | 720 | 01 | 33 | 5.76253210 | -52 | 00 | 3.9456372 | . 00000922 | . 0001226 | 0.2188 | 48388.3 | 56770.2 | 49 |  |  |  |
| 0131-001 | 0131-001 | 2405 | 01 | 34 | 12.70420479 | +00 | 03 | 45.1348020 | . 00009687 | . 0019117 | -0.0833 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0132-389 | 0132-389A | 2406 | 01 | 34 | 32.03008834 | -38 | 43 | 33.3828555 | . 00003983 | . 0011471 | -0.2496 | 52306.0 | 52408.7 | 2 |  |  |  |
| 0132-097 | P 0132-097 | 2407 | 01 | 34 | 35.66620075 | -09 | 31 | 2.8827638 | . 00018591 | . 0028734 | 0.8684 | 52408.7 | 54440.2 | 2 |  |  |  |
| 0130+691 | 0130+691 | 2408 | 01 | 34 | 40.75979453 | +69 | 25 | 10.8963770 | . 00087437 | . 0032047 | 0.6389 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0133-204 | P 0133-203 | 2409 | 01 | 35 | 37.50940158 | -20 | 08 | 45.8620388 | . 00000971 | . 0002997 | -0.1572 | 50631.5 | 50687.5 | 2 |  |  |  |
| 0133+476 | DA 55 | 44 | 01 | 36 | 58.59480804 | +47 | 51 | 29.1000959 | . 00000337 | . 0000505 | -0.0253 | 43873.4 | 56782.1 | 1496 | 2.03 | 1.71 | 2.0 |
| 0134+311 | 0134+311 | 1363 | 01 | 37 | 8.73363582 | +31 | 22 | 35.8554689 | . 00000379 | . 0000630 | 0.0974 | 50219.6 | 56776.4 | 233 |  |  |  |
| 0134+215 | 0134+215 | 1364 | 01 | 37 | 15.62497750 | +21 | 45 | 44.2700091 | . 00006907 | . 0009692 | 0.4791 | 53561.5 | 53561.6 | 1 |  |  |  |
| 0135-247 | 0135-247 | 721 | 01 | 37 | 38.34644440 | -24 | 30 | 53.8855174 | . 00000589 | . 0001178 | -0.0568 | 49789.9 | 55168.5 | 25 | 0.28 | 0.43 | 3.2 |
| 0134+329 | 3C 48 | 2410 | 01 | 37 | 41.30015319 | +33 | 09 | 35.1329628 | . 00029024 | . 0077462 | 0.1177 | 50459.8 | 50460.2 | 1 |  |  |  |
| 0135-274 | 0135-274 | 1365 | 01 | 38 | 9.81822679 | -27 | 11 | 27.9353719 | . 00002494 | . 0008744 | 0.1734 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0136-059 | 0136-059 | 2411 | 01 | 38 | 51.85126704 | -05 | 40 | 8.2426549 | . 00001386 | . 0003935 | 0.2159 | 50575.8 | 56393.7 | 4 |  |  |  |
| 0136-231 | 0136-231 | 2412 | 01 | 38 | 57.46564891 | -22 | 54 | 47.3306620 | . 00001452 | . 0005257 | -0.0409 | 50631.5 | 50687.5 | 2 |  |  |  |
| 0136+176 | 0136+176 | 1366 | 01 | 39 | 41.97920007 | +17 | 53 | 7.5494136 | . 00002847 | . 0005755 | -0.1464 | 50085.0 | 54664.5 | 3 |  |  |  |
| 0137+012 | 0137+012 | 1367 | 01 | 39 | 57.30579072 | +01 | 31 | 46.1385505 | . 00001786 | . 0004507 | -0.2409 | 54314.4 | 56568.0 | 5 |  |  |  |
| 0137-158 | 0137-158 | 1368 | 01 | 40 | 4.43518365 | -15 | 32 | 55.6804407 | . 00001516 | . 0005680 | -0.1199 | 53561.6 | 53561.6 | 1 |  |  |  |
| 0137+467 | 0137+467 | 2413 | 01 | 40 | 43.07276386 | +46 | 58 | 28.4880935 | . 00037950 | . 0026816 | -0.2773 | 50305.4 | 54314.7 | 2 |  |  |  |
| 0137+635 | 0137+635 | 2414 | 01 | 40 | 43.07801580 | +63 | 46 | 6.8917506 | . 00021937 | . 0006430 | 0.1624 | 52305.9 | 52305.9 | 1 |  |  |  |
| 0137+434 | 0137+434 | 2415 | 01 | 40 | 54.66442099 | +43 | 42 | 45.2071709 | . 00003886 | . 0005304 | -0.1443 | 54087.2 | 54088.0 | 1 |  |  |  |
| 0138-097 | 0138-097 | 722 | 01 | 41 | 25.83216061 | -09 | 28 | 43.6743291 | . 00000474 | . 0000880 | -0.0425 | 49960.5 | 56772.3 | 42 | 0.25 | 0.29 |  |
| 0139-022 | 0139-022 | 1369 | 01 | 41 | 33.79015244 | -02 | 02 | 21.5536753 | . 00001907 | . 0006620 | -0.3685 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0140+412 | 0140+412 | 2416 | 01 | 43 | 3.18454704 | +41 | 29 | 20.4456239 | . 00001745 | . 0003831 | -0.1834 | 50242.6 | 50242.7 | 1 |  |  |  |
| 0140-322 | 0140-322 | 2417 | 01 | 43 | 10.13155598 | -32 | 00 | 56.6512806 | . 00002829 | . 0009330 | -0.3993 | 52306.0 | 52306.0 | 1 |  |  |  |
| 0140+120 | 0140+120 | 1370 | 01 | 43 | 31.09226609 | +12 | 15 | 42.9341907 | . 00010393 | . 0011676 | 0.1828 | 53125.7 | 53133.8 | 2 |  |  |  |
| 0140+490 | 0140+490 | 2418 | 01 | 43 | 46.87984069 | +49 | 15 | 41.5862289 | . 00056300 | . 0062618 | 0.0538 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0141+268 | 0141+268 | 1371 | 01 | 44 | 33.55390450 | +27 | 05 | 3.1173316 | . 00008293 | . 0011684 | 0.0170 | 53560.6 | 53560.8 | 1 |  |  |  |
| 0142-398 | 0142-398 | 2419 | 01 | 44 | 54.09377156 | -39 | 38 | 10.5284125 | . 00013608 | . 0041190 | -0.7584 | 52408.8 | 56162.5 | 2 |  |  |  |
| 0142-278 | P 0142-278 | 2420 | 01 | 45 | 3.39461816 | -27 | 33 | 34.3292581 | . 00001557 | . 0004856 | -0.1731 | 50687.4 | 50687.5 | 1 |  |  |  |
| 0141+579 | 0141+579 | 2421 | 01 | 45 | 14.36947844 | +58 | 10 | 49.2745267 | . 11114028 | . 6375960 | -0.9920 | 49576.5 | 49576.5 | 1 |  |  |  |
| 0143+230 | 0143+230 | 2422 | 01 | 45 | 52.90628638 | +23 | 19 | 19.2972079 | . 00003105 | . 0007767 | -0.5526 | 50085.0 | 50156.0 | 2 |  |  |  |
| 0144+209 | 0144+209 | 2423 | 01 | 46 | 58.78390435 | +21 | 10 | 24.3813848 | . 00009577 | . 0017706 | -0.9001 | 50085.0 | 54440.2 | 3 |  |  |  |
| 0144+487 | 0144+487 | 2424 | 01 | 47 | 37.77513427 | +48 | 59 | 37.5105251 | . 00034761 | . 0037109 | 0.1591 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0144+584 | J0147+58 | 1003 | 01 | 47 | 46.54084377 | +58 | 40 | 44.9709523 | . 00002398 | . 0001812 | -0.0106 | 49576.4 | 56701.1 | 6 |  |  |  |
| 0145+386 | 0145+386 | 2425 | 01 | 48 | 24.37757449 | +38 | 54 | 5.2198748 | . 00002834 | . 0004832 | -0.3462 | 50242.6 | 50242.7 | 1 |  |  |  |
| 0145+420 | 0145+420 | 4050 | 01 | 48 | 44.57636947 | +42 | 15 | 19.4046346 | . 00001713 | . 0004389 | 0.2015 | 55965.9 | 55966.1 | 1 |  |  |  |
| 0146+056 | 0146+056 | 668 | 01 | 49 | 22.37088101 | +05 | 55 | 53.5685553 | . 00000456 | . 0000953 | -0.3529 | 47254.9 | 56638.6 | 97 | 0.50 | 0.51 | 3.3 |
| 0147+187 | 0147+187 | 2426 | 01 | 49 | 49.71895084 | +18 | 57 | 20.6109653 | . 00002540 | . 0005702 | -0.0057 | 50085.1 | 50156.0 | 2 |  |  |  |
| 0147-076 | 0147-076 | 1004 | 01 | 50 | 2.69554571 | -07 | 25 | 48.4993280 | . 00210459 | . 0266100 | 0.7956 | 53067.8 | 53523.6 | 2 |  |  |  |
| 0147+265 | J0150+26 | 4051 | 01 | 50 | 2.80492264 | +26 | 46 | 28.0842514 | . 00004210 | . 0007080 | 0.3076 | 56748.7 | 56749.0 | 1 |  |  |  |
| 0148-177 | 0148-177 | 2427 | 01 | 51 | 6.08335076 | -17 | 32 | 44.7183940 | . 00000908 | . 0002991 | -0.1888 | 50631.5 | 56547.4 | 2 | 0.24 | 0.26 |  |
| 0148+250 | 0148+250 | 1372 | 01 | 51 | 6.23387457 | +25 | 17 | 28.6623913 | . 00005238 | . 0019812 | -0.6107 | 53561.5 | 53561.6 | 1 |  |  |  |
| 0149-348 | 0149-348 | 2428 | 01 | 51 | 23.48911318 | -34 | 35 | 13.8769332 | . 00003462 | . 0011640 | -0.1201 | 52306.0 | 52306.1 | 1 |  |  |  |
| 0148+274 | GC 0148+27 | 52 | 01 | 51 | 27.14618563 | +27 | 44 | 41.7935885 | . 00000672 | . 0001143 | -0.1933 | 48719.9 | 55306.7 | 21 | 0.28 | 0.30 | 3.8 |
| 0148+546 | 0148+546 | 1005 | 01 | 51 | 36.29573618 | +54 | 54 | 37.5711131 | . 02307624 | . 1274241 | -0.9960 | 49576.4 | 49576.4 | 1 |  |  |  |
| 0149-175 | 0149-175 | 2429 | 01 | 51 | 48.04939623 | -17 | 19 | 55.0540522 | . 00002770 | . 0008973 | 0.5787 | 53572.5 | 55371.7 | 2 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | $\begin{gathered} \hline \hline \begin{array}{c} \text { Observation Epoch } \\ \text { MJD } \end{array} \\ \hline \end{gathered}$ |  | No. Obs. | Source Flux <br> (Jy) |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0149+370 | 0149+370 | 2430 | 01 | 52 | 12.21994451 | +37 | 16 | 5.6666486 | . 00001689 | . 0003724 | -0.2334 | 50242.6 | 50242.8 | 1 |  |  |  |
| 0149+218 | P 0149+21 | 53 | 01 | 52 | 18.05904374 | +22 | 07 | 7.6997580 | . 00000378 | . 0000652 | -0.2157 | 47301.6 | 56741.6 | 163 | 0.80 | 0.48 | 2.9 |
| 0150-144 | 0150-144 | 1373 | 01 | 52 | 32.01246378 | -14 | 12 | 39.3940421 | . 00004165 | . 0011867 | -0.5117 | 50631.5 | 54664.3 | 2 |  |  |  |
| 0150-299 | 0150-299 | 1374 | 01 | 52 | 33.69286516 | -29 | 42 | 47.9289581 | . 00010771 | . 0047554 | 0.0838 | 53560.5 | 53560.6 | 1 |  |  |  |
| 0149+335 | 0149+335 | 2431 | 01 | 52 | 34.57645670 | +33 | 50 | 33.1586385 | . 00002573 | . 0005508 | -0.2531 | 50219.6 | 50219.8 | 1 |  |  |  |
| 0150+000 | 0150+000 | 1375 | 01 | 52 | 43.14999992 | +00 | 20 | 39.7107710 | . 00004996 | . 0016310 | -0.4826 | 53125.8 | 53133.7 | 2 |  |  |  |
| 0150-193 | 0150-193 | 2432 | 01 | 53 | 1.51120011 | -19 | 06 | 56.6881546 | . 00008215 | . 0030108 | -0.7177 | 54087.1 | 54087.2 | 1 |  |  |  |
| 0150-334 | P 0150-334 | 54 | 01 | 53 | 10.12173455 | -33 | 10 | 25.8617867 | . 00001844 | . 0001760 | -0.3726 | 48756.3 | 55728.7 | 25 |  | 0.15 | 4.5 |
| 0149+710 | 0149+710 | 2433 | 01 | 53 | 25.85095868 | +71 | 15 | 6.4627078 | . 00031223 | . 0012974 | -0.2055 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0151+081 | 0151+081 | 1376 | 01 | 54 | 2.77009876 | +08 | 23 | 51.0725373 | . 00011711 | . 0026580 | -0.0532 | 53133.7 | 53133.8 | 1 |  |  |  |
| 0151+474 | 0151+474 | 723 | 01 | 54 | 56.28988921 | +47 | 43 | 26.5395456 | . 00000458 | . 0000690 | 0.0449 | 49749.9 | 56782.1 | 126 | 0.39 | 0.32 | 2.2 |
| 0152+043 | 0152+043 | 1006 | 01 | 55 | 3.72555203 | +04 | 38 | 30.3473478 | . 00007217 | . 0017665 | -0.1364 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0153-410 | P 0153-410 | 2434 | 01 | 55 | 37.05938130 | -40 | 48 | 42.3583873 | . 00021427 | . 0123124 | 0.3399 | 52408.7 | 52408.8 | 1 |  |  |  |
| 0153+222 | 0153+222 | 2435 | 01 | 55 | 58.93536254 | +22 | 30 | 11.8657613 | . 00003984 | . 0008175 | 0.2525 | 50085.1 | 50156.0 | 2 |  |  |  |
| 0153+389 | 0153+389 | 1377 | 01 | 56 | 31.41013174 | +39 | 14 | 30.9238062 | . 00001810 | . 0003786 | 0.1149 | 53125.7 | 53125.8 | 1 |  |  |  |
| 0155-549 | 0155-549 | 2436 | 01 | 56 | 49.71184876 | -54 | 39 | 48.5000366 | . 00145511 | . 0125498 | -0.9414 | 54722.9 | 54723.8 | 1 |  |  |  |
| 0154-000 | 0154-000 | 1378 | 01 | 57 | 10.53490987 | +00 | 11 | 24.4838224 | . 00001891 | . 0006604 | -0.4374 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0153+744 | 0153+744 | 1007 | 01 | 57 | 34.96491386 | +74 | 42 | 43.2298140 | . 00004934 | . 0002099 | -0.0227 | 49826.7 | 55306.7 | 15 | 0.16 |  | 5.0 |
| 0155+211 | 0155+211 | 2437 | 01 | 58 | 0.10795103 | +21 | 24 | 42.7877009 | . 00003801 | . 0006801 | -0.2949 | 54087.2 | 54088.0 | 1 |  |  |  |
| 0156-144 | 0156-144 | 2438 | 01 | 58 | 43.71963497 | -14 | 13 | 7.1187155 | . 00002613 | . 0007385 | 0.2818 | 50631.5 | 50631.7 | 1 |  |  |  |
| 0156+128 | 0156+128 | 2439 | 01 | 58 | 56.27379194 | +13 | 07 | 2.7410356 | . 00003262 | . 0012387 | -0.3328 | 50085.1 | 50156.0 | 2 |  |  |  |
| 0158+031 | 0158+031 | 1379 | 02 | 00 | 40.81650056 | +03 | 22 | 49.5072110 | . 00001501 | . 0005323 | -0.2857 | 53560.5 | 53560.6 | 1 |  |  |  |
| 0158-159 | 0158-159 | 2440 | 02 | 00 | 51.14885429 | -15 | 42 | 36.8647487 | . 00002709 | . 0007834 | -0.3687 | 53572.5 | 55916.2 | 2 |  |  |  |
| 0158-141 | 0158-141 | 1380 | 02 | 00 | 58.31711421 | -13 | 56 | 17.9802209 | . 00014164 | . 0055877 | -0.1152 | 53561.6 | 53561.6 | 1 |  |  |  |
| 0159+034 | 0159+034A | 2441 | 02 | 01 | 51.50874825 | +03 | 43 | 9.2597261 | . 00003393 | . 0011970 | -0.3086 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0159-117 | 0159-117 | 1381 | 02 | 01 | 57.17938984 | -11 | 32 | 33.4366751 | . 00001913 | . 0005951 | -0.6619 | 54186.8 | 54187.0 | 1 |  |  |  |
| 0159-062 | 0159-062 | 1382 | 02 | 02 | 6.86465687 | -05 | 59 | 0.1201690 | . 00005427 | . 0018469 | -0.6341 | 52620.0 | 52620.3 | 1 |  |  |  |
| 0202-765 | 0202-765 | 2442 | 02 | 02 | 13.69538040 | -76 | 20 | 3.0557379 | . 00325833 | . 0065631 | 0.0304 | 48110.1 | 48110.9 | 1 |  |  |  |
| 0159-200 | 0159-200 | 1383 | 02 | 02 | 13.84771562 | -19 | 48 | 19.4900348 | . 00003956 | . 0015346 | 0.2506 | 53560.5 | 53560.6 | 1 |  |  |  |
| 0159+418 | J0202+4205 | 1008 | 02 | 02 | 43.65332422 | +42 | 05 | 16.3323975 | . 00001688 | . 0003436 | -0.1737 | 50242.6 | 50242.8 | 1 |  |  |  |
| 0157+808 | 0157+808 | 2443 | 02 | 03 | 7.87143865 | +81 | 06 | 13.2100360 | . 00027602 | . 0005227 | -0.4928 | 54439.8 | 54439.9 | 1 |  |  |  |
| 0159+723 | 0159+723 | 724 | 02 | 03 | 33.38496082 | +72 | 32 | 53.6673157 | . 00000673 | . 0000569 | 0.1110 | 48352.9 | 56782.2 | 141 | 0.23 |  | 1.9 |
| 0201+113 | P 0201+113 | 57 | 02 | 03 | 46.65706058 | +11 | 34 | 45.4094244 | . 00000346 | . 0000548 | -0.1782 | 45432.7 | 56762.7 | 800 | 0.45 | 0.36 | 3.1 |
| 0200+539 | 0200+539 | 2445 | 02 | 03 | 46.65707578 | +54 | 11 | 57.6250421 | . 00029891 | . 0034330 | -0.6395 | 49576.4 | 49576.5 | 1 |  |  |  |
| 0201+398 | 0201+398 | 4052 | 02 | 04 | 5.19476268 | +40 | 05 | 3.5152438 | . 00003608 | . 0004672 | 0.1180 | 55965.9 | 55966.1 | 1 |  |  |  |
| 0202-337 | 0202-337 | 1384 | 02 | 04 | 28.66416026 | -33 | 28 | 50.4557903 | . 00009646 | . 0033626 | 0.7354 | 53125.8 | 53125.8 | 1 |  |  |  |
| 0201+088 | 0201+088 | 2446 | 02 | 04 | 34.75911519 | +09 | 03 | 49.2593629 | . 00033693 | . 0027677 | 0.1362 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0202+149 | P 0202+14 | 58 | 02 | 04 | 50.41389642 | +15 | 14 | 11.0435673 | . 00000339 | . 0000520 | -0.0985 | 44203.1 | 56728.7 | 943 | 0.57 | 0.56 | 3.1 |
| 0201+438 | 0201+438 | 2447 | 02 | 04 | 54.78909921 | +44 | 03 | 6.9044150 | . 00007492 | . 0007126 | 0.1185 | 50242.6 | 50305.5 | 2 |  |  |  |
| 0201+365 | 0201+365 | 2448 | 02 | 04 | 55.59601953 | +36 | 49 | 17.9967405 | . 00001720 | . 0004212 | -0.1042 | 50242.6 | 50242.8 | 1 |  |  |  |
| 0202-172 | P 0202-17 | 60 | 02 | 04 | 57.67434499 | -17 | 01 | 19.8406171 | . 00000542 | . 0001137 | -0.0549 | 49750.0 | 55042.7 | 25 | 0.82 | 0.55 | 3.2 |
| 0202+319 | DW 0202+31 | 59 | 02 | 05 | 4.92536454 | +32 | 12 | 30.0954773 | . 00000359 | . 0000537 | -0.0305 | 48196.4 | 56772.8 | 195 | 1.55 | 1.28 | 1.8 |
| 0202+145 | 0202+145 | 1385 | 02 | 05 | 13.11723883 | +14 | 44 | 32.3863157 | . 00001388 | . 0004672 | -0.1899 | 53561.6 | 53561.6 | 1 |  |  |  |
| 0202+240 | 0202+240 | 1386 | 02 | 05 | 21.32274742 | +24 | 16 | 32.8511482 | . 00003306 | . 0007042 | -0.0296 | 53125.7 | 53133.8 | 2 |  |  |  |
| 0203-349 | 0203-349 | 2449 | 02 | 05 | 55.50972602 | -34 | 44 | 9.1841959 | . 00032186 | . 0132935 | 0.6631 | 52306.0 | 52306.1 | 1 |  |  |  |
| 0204-224 | 0204-224 | 2450 | 02 | 06 | 20.07355702 | -22 | 12 | 19.6567223 | . 00001700 | . 0005877 | -0.2345 | 50631.5 | 50687.5 | 2 |  |  |  |
| 0203-120 | 0203-120 | 2451 | 02 | 06 | 26.08474794 | -11 | 50 | 39.7249449 | . 00001020 | . 0003593 | 0.0721 | 54112.1 | 56204.4 | 2 | 0.16 | 0.19 |  |
| 0203+625 | 0203+625 | 2452 | 02 | 07 | 3.01672111 | +62 | 46 | 12.0674250 | . 00001993 | . 0001414 | 0.2186 | 52305.9 | 56498.7 | 4 |  |  |  |
| 0205-391 | 0205-391 | 2453 | 02 | 07 | 15.60903900 | -38 | 57 | 3.0849592 | . 00435536 | . 0955394 | 0.9522 | 52408.8 | 52408.8 | 1 |  |  |  |
| 0205-242 | 0205-242 | 2454 | 02 | 07 | 33.39946934 | -24 | 02 | 2.1814868 | . 00096622 | . 0533660 | 0.8118 | 54087.1 | 54087.2 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0204+316 | 0204+316 | 2455 | 02 | 07 | 34.98961901 | +31 | 52 | 6.4633834 | . 00001644 | . 0004675 | -0.0744 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0206-689 | 0206-689 | 2456 | 02 | 07 | 50.93164362 | -68 | 37 | 55.1632496 | . 00006740 | . 0008445 | 0.1276 | 54722.9 | 54723.8 | 1 |  |  |  |
| 0206-270 | 0206-270 | 1387 | 02 | 08 | 22.35590595 | -26 | 50 | 18.8786995 | . 00001655 | . 0006770 | -0.0273 | 53152.7 | 53152.7 | 1 |  |  |  |
| 0205-010 | 0205-010 | 2457 | 02 | 08 | 26.34591441 | -00 | 47 | 44.2939773 | . 00001475 | . 0004210 | -0.2466 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0206-178 | 0206-178 | 1388 | 02 | 08 | 34.94336165 | -17 | 39 | 34.6818199 | . 00002226 | . 0009688 | -0.0309 | 54818.1 | 54818.2 | 1 |  |  |  |
| 0206+293 | 0206+293 | 2458 | 02 | 09 | 8.64446742 | +29 | 32 | 45.7435407 | . 00008709 | . 0016511 | 0.5139 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0206-048 | 0206-048 | 1389 | 02 | 09 | 30.76662300 | -04 | 38 | 26.1407700 | . 00021112 | . 0062517 | -0.9036 | 52480.3 | 52480.7 | 1 |  |  |  |
| 0205+643 | 0205+643 | 2459 | 02 | 09 | 35.98812100 | +64 | 37 | 25.7703007 | . 00007747 | . 0005062 | 0.4923 | 52408.9 | 52409.6 | 1 |  |  |  |
| 0206+136 | 0206+136 | 1390 | 02 | 09 | 35.99832910 | +13 | 52 | 0.7518973 | . 00000582 | . 0001268 | 0.0169 | 50085.1 | 56751.7 | 30 | 0.33 |  |  |
| 0205+722 | 0205+722 | 2460 | 02 | 09 | 51.79040639 | +72 | 29 | 26.6696239 | . 00005168 | . 0002132 | 0.4956 | 52409.0 | 52409.6 | 1 |  |  |  |
| 0207-078 | 0207-078 | 1391 | 02 | 10 | 16.52887721 | -07 | 37 | 20.6938526 | . 00026981 | . 0047353 | 0.2966 | 52480.4 | 53552.6 | 2 |  |  |  |
| 0207-149 | 0207-149 | 2461 | 02 | 10 | 23.18040191 | -14 | 44 | 59.0199444 | . 00004279 | . 0013331 | -0.3795 | 53502.7 | 53502.8 | 1 |  |  |  |
| 0208-512 | P 0208-512 | 725 | 02 | 10 | 46.20042740 | -51 | 01 | 1.8918852 | . 00000464 | . 0000614 | 0.0514 | 47304.8 | 56638.7 | 403 |  |  |  |
| 0208+106 | 0208+106 | 2462 | 02 | 11 | 13.17738092 | +10 | 51 | 34.7992042 | . 00002645 | . 0006658 | -0.1513 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0209+168 | 0209+168 | 1392 | 02 | 11 | 48.77886336 | +17 | 07 | 22.7217332 | . 00004183 | . 0006637 | -0.6765 | 50085.2 | 54314.7 | 3 |  |  |  |
| 0209-162 | 0209-162 | 1393 | 02 | 11 | 49.76131935 | -15 | 58 | 18.8378026 | . 00008263 | . 0027587 | -0.3098 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0210-180 | 0210-180 | 1394 | 02 | 12 | 22.64360790 | -17 | 46 | 14.3408086 | . 00003786 | . 0011634 | -0.4386 | 54657.5 | 54657.6 | 1 |  |  |  |
| 0210+225 | 0210+225 | 2463 | 02 | 12 | 52.83488188 | +22 | 44 | 52.2530583 | . 00005213 | . 0010804 | -0.0010 | 53125.7 | 55776.6 | 2 |  |  |  |
| 0210+119 | 0210+119 | 2464 | 02 | 13 | 5.18307741 | +12 | 13 | 10.9092103 | . 00004319 | . 0015586 | -0.6931 | 54112.1 | 54112.2 | 1 |  |  |  |
| 0210+181 | 0210+181 | 2465 | 02 | 13 | 10.52929741 | +18 | 20 | 25.4476517 | . 00003257 | . 0008828 | -0.2082 | 50085.1 | 50156.0 | 2 |  |  |  |
| 0210-075 | 0210-075 | 1395 | 02 | 13 | 16.67051650 | -07 | 19 | 32.4665879 | . 00027346 | . 0078614 | -0.2227 | 52480.4 | 52480.7 | 1 |  |  |  |
| 0210+366 | 0210+366 | 2466 | 02 | 13 | 48.19191617 | +36 | 52 | 34.0069694 | . 00002709 | . 0005970 | -0.4973 | 54087.2 | 54088.0 | 1 |  |  |  |
| 0159+870 | 0159+870 | 1396 | 02 | 13 | 57.84590317 | +87 | 17 | 28.7262434 | . 00078332 | . 0004376 | -0.0489 | 53125.5 | 53125.8 | 1 |  |  |  |
| 0212-620 | 0212-620 | 4053 | 02 | 14 | 16.20442475 | -61 | 49 | 33.6596550 | . 00015400 | . 0006763 | 0.1282 | 56007.1 | 56313.8 | 3 |  |  |  |
| 0210+515 | 0210+515 | 2467 | 02 | 14 | 17.93408652 | +51 | 44 | 51.9445797 | . 00054901 | . 0032693 | 0.6018 | 54112.0 | 54112.1 | 1 |  |  |  |
| 0211+171 | 0211+171 | 1397 | 02 | 14 | 44.91285696 | +17 | 22 | 49.5121097 | . 00002740 | . 0007116 | -0.2143 | 54277.7 | 56568.1 | 5 |  |  |  |
| 0212-039 | 0212-039 | 1398 | 02 | 15 | 11.50646687 | -03 | 43 | 7.8893275 | . 00024820 | . 0071486 | -0.2488 | 52480.3 | 52480.7 | 1 |  |  |  |
| 0213-026 | 0213-026 | 2468 | 02 | 15 | 42.01730278 | -02 | 22 | 56.7528716 | . 00001076 | . 0003182 | 0.0895 | 50575.8 | 56748.9 | 2 | 0.35 | 0.20 |  |
| 0213+051 | 0213+051 | 2469 | 02 | 15 | 55.01075066 | +05 | 24 | 25.5544166 | . 00001564 | . 0005056 | 0.0260 | 54087.1 | 54087.2 | 1 |  |  |  |
| 0214-522 | 0214-522 | 2470 | 02 | 16 | 3.19795408 | -52 | 00 | 12.4783099 | . 00063799 | . 0026276 | -0.3810 | 52886.7 | 53138.2 | 3 |  |  |  |
| 0213-015 | 0213-015 | 1399 | 02 | 16 | 5.66382982 | -01 | 18 | 3.3985914 | . 00016343 | . 0066698 | -0.3698 | 52542.9 | 52543.5 | 1 |  |  |  |
| 0213-013 | 0213-013 | 1400 | 02 | 16 | 12.21201872 | -01 | 05 | 18.8300352 | . 00015065 | . 0060823 | -0.2433 | 52543.1 | 52543.5 | 1 |  |  |  |
| 0213+443 | 0213+443 | 2471 | 02 | 16 | 17.17158790 | +44 | 37 | 43.3896415 | . 00018889 | . 0056045 | 0.0798 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0214-105 | 0214-105 | 2472 | 02 | 16 | 38.87599515 | -10 | 17 | 3.0034379 | . 00009135 | . 0037937 | -0.6682 | 54112.1 | 54112.2 | 1 |  |  |  |
| 0214-330 | 0214-330 | 2473 | 02 | 16 | 48.18538625 | -32 | 47 | 40.8503870 | . 00002355 | . 0008451 | -0.3116 | 52306.0 | 52306.1 | 1 |  |  |  |
| 0214-085 | 0214-085 | 2474 | 02 | 17 | 2.66231149 | -08 | 20 | 52.3516609 | . 00001873 | . 0006267 | -0.3668 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0214+083 | 0214+083 | 2475 | 02 | 17 | 17.12497058 | +08 | 37 | 3.8980382 | . 00002169 | . 0006236 | -0.0864 | 53125.7 | 53125.8 | 1 |  |  |  |
| 0212+735 | 0212+735 | 669 | 02 | 17 | 30.81339303 | +73 | 49 | 32.6217757 | . 00000428 | . 0000511 | -0.0438 | 44927.9 | 56594.6 | 784 | 1.01 |  | 3.1 |
| 0215+015 | 0215+015 | 726 | 02 | 17 | 48.95475539 | +01 | 44 | 49.6990239 | . 00000348 | . 0000533 | -0.0155 | 49913.7 | 56758.7 | 166 | 0.92 | 0.71 | 1.4 |
| 0215-015 | 0215-015 | 1402 | 02 | 17 | 54.99944183 | -01 | 21 | 50.7267619 | . 00008870 | . 0064652 | -0.4697 | 52543.1 | 52543.5 | 1 |  |  |  |
| 0215-167 | 0215-167 | 2476 | 02 | 17 | 57.24947307 | -16 | 31 | 10.4741460 | . 00001619 | . 0006665 | -0.1322 | 50631.5 | 50631.7 | 1 |  |  |  |
| 0216+011 | P 0216+011 | 2477 | 02 | 19 | 7.02450818 | +01 | 20 | 59.8661908 | . 00001295 | . 0004359 | -0.3378 | 49913.7 | 54482.7 | 2 |  |  |  |
| 0217-189 | 0217-189 | 2478 | 02 | 19 | 21.16175230 | -18 | 42 | 38.7476173 | . 00001208 | . 0004423 | -0.0663 | 50631.5 | 50687.5 | 2 |  |  |  |
| 0216+472 | 0216+472 | 1403 | 02 | 19 | 23.35996095 | +47 | 27 | 40.0081451 | . 00003200 | . 0004884 | -0.0404 | 53561.5 | 53561.7 | 1 |  |  |  |
| 0216+478 | 0216+478 | 2479 | 02 | 19 | 26.67603266 | +48 | 06 | 38.8605188 | . 00002671 | . 0002811 | -0.0450 | 53133.7 | 55657.0 | 2 |  |  |  |
| 0217+166 | 0217+166 | 2480 | 02 | 20 | 0.75882713 | +16 | 52 | 28.5887673 | . 00009280 | . 0019085 | -0.7840 | 50085.2 | 50156.1 | 2 |  |  |  |
| 0218-133 | 0218-133 | 2481 | 02 | 20 | 28.21749760 | -13 | 05 | 19.0693400 | . 00005454 | . 0011733 | 0.4311 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0218-220 | 0218-220 | 2482 | 02 | 20 | 35.15014023 | -21 | 51 | 12.0801675 | . 00001915 | . 0006973 | -0.4161 | 50631.5 | 50687.5 | 2 |  |  |  |
| 0217+324 | 0217+324 | 2483 | 02 | 20 | 48.05306145 | +32 | 41 | 6.4639393 | . 00002163 | . 0004910 | 0.4753 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0218+095 | 0218+095 | 4054 | 02 | 20 | 53.80226915 | +09 | 45 | 35.1751071 | . 00013593 | . 0037506 | -0.4303 | 56392.8 | 56392.9 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \text { Source Flux } \\ & \text { (Jy) } \\ & \hline \end{aligned}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0218+357 | GC 0218+35 | 727 | 02 | 21 | 5.46680529 | +35 | 56 | 13.7371902 | . 00003430 | . 0005610 | 0.2199 | 48931.2 | 52408.8 | 3 | 0.12 |  |  |
| 0219-164 | 0219-164 | 2484 | 02 | 22 | 0.72498748 | -16 | 15 | 16.5478015 | . 00001867 | . 0005384 | -0.2043 | 50631.5 | 50631.7 | 1 |  |  |  |
| 0219+428 | 0219+428 | 728 | 02 | 22 | 39.61149734 | +43 | 02 | 7.7989939 | . 00000490 | . 0000763 | -0.0894 | 48649.9 | 56192.1 | 110 | 0.54 | 0.21 | 3.1 |
| 0220-349 | P 0220-349 | 729 | 02 | 22 | 56.40164598 | -34 | 41 | 28.7300821 | . 00000624 | . 0001301 | -0.0282 | 49790.2 | 56638.7 | 29 |  | 0.29 | 3.2 |
| 0220+427 | 0220+427 | 2485 | 02 | 23 | 11.41128566 | +42 | 59 | 31.3850520 | . 00003597 | . 0003749 | 0.3458 | 53067.8 | 53068.7 | 1 |  |  |  |
| 0220-023 | 0220-023 | 1404 | 02 | 23 | 13.04045957 | -02 | 05 | 7.9320078 | . 00004013 | . 0012024 | -0.4186 | 52620.0 | 52620.3 | 1 |  |  |  |
| 0219+628 | 0219+628 | 4055 | 02 | 23 | 29.60698706 | +63 | 07 | 17.3051264 | . 00015944 | . 0007707 | -0.1531 | 56204.2 | 56204.5 | 1 |  |  |  |
| 0221-171 | 0221-171 | 1405 | 02 | 23 | 43.76370674 | -16 | 56 | 37.7005395 | . 00005581 | . 0017011 | -0.6025 | 53125.7 | 53133.8 | 2 |  |  |  |
| 0221+067 | GC 0221+06 | 67 | 02 | 24 | 28.42819484 | +06 | 59 | 23.3414823 | . 00000390 | . 0000688 | -0.3108 | 47255.0 | 56674.3 | 153 | 0.43 | 0.47 | 2.4 |
| 0222-234 | 0222-234 | 1406 | 02 | 25 | 2.82147521 | -23 | 12 | 48.4856126 | . 00003710 | . 0010576 | -0.1548 | 54657.5 | 54657.6 | 1 |  |  |  |
| 0222+185 | 0222+185 | 1009 | 02 | 25 | 4.66883994 | +18 | 46 | 48.7668608 | . 00002825 | . 0008130 | -0.2804 | 50085.1 | 50156.1 | 2 | 0.19 | 0.40 |  |
| 0222+296 | 0222+296 | 1407 | 02 | 25 | 19.19529469 | +29 | 55 | 12.1292169 | . 00002926 | . 0008129 | -0.2275 | 53560.5 | 53560.6 | 1 |  |  |  |
| 0223+113 | 0223+113 | 1408 | 02 | 25 | 41.90987824 | +11 | 34 | 25.4644951 | . 00001480 | . 0004595 | 0.0566 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0223+341 | 0223+341 | 2486 | 02 | 26 | 10.33319921 | +34 | 21 | 30.2862008 | . 00001689 | . 0004331 | 0.2232 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0224-189 | 0224-189 | 1409 | 02 | 26 | 47.62836402 | -18 | 43 | 39.2346181 | . 00009592 | . 0028017 | -0.8085 | 54657.5 | 54657.7 | 1 |  |  |  |
| 0225-306 | 0225-306 | 2487 | 02 | 27 | 40.53667522 | -30 | 26 | 3.6299303 | . 00002280 | . 0007937 | -0.3886 | 52306.0 | 52306.1 | 1 |  |  |  |
| 0224+498 | 0224+498 | 1410 | 02 | 28 | 0.46573820 | +50 | 05 | 59.0097043 | . 00003892 | . 0004245 | -0.1510 | 53552.5 | 53552.7 | 1 |  |  |  |
| 0225+419 | 0225+419 | 1411 | 02 | 28 | 12.46715896 | +42 | 12 | 3.4449317 | . 00008395 | . 0009225 | 0.0498 | 53561.5 | 53561.7 | 1 |  |  |  |
| 0226-559 | 0226-559 | 2488 | 02 | 28 | 21.59837692 | -55 | 46 | 3.2793991 | . 00004619 | . 0008586 | 0.2962 | 54722.9 | 54723.8 | 1 |  |  |  |
| 0224+540 | 0224+540 | 2489 | 02 | 28 | 25.69171097 | +54 | 19 | 8.1335963 | . 00058529 | . 0046795 | 0.8398 | 53502.8 | 53503.7 | 1 |  |  |  |
| 0226-375 | 0226-375 | 2490 | 02 | 28 | 33.73376087 | -37 | 19 | 56.3531183 | . 00007654 | . 0034379 | 0.2083 | 52306.0 | 55847.4 | 3 |  |  |  |
| 0224+671 | DW 0224+67 | 68 | 02 | 28 | 50.05149177 | +67 | 21 | 3.0293431 | . 00000487 | . 0000573 | -0.0609 | 44089.1 | 56782.2 | 251 | 0.81 |  | 3.3 |
| 0226-038 | 0226-038 | 2491 | 02 | 28 | 53.21124449 | -03 | 37 | 37.1257123 | . 00001377 | . 0004179 | -0.1582 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0227-369 | 0227-369 | 1412 | 02 | 29 | 28.44905819 | -36 | 43 | 56.8222268 | . 00000739 | . 0001080 | -0.1142 | 52306.0 | 56701.0 | 49 |  |  |  |
| 0230-790 | 0230-790 | 730 | 02 | 29 | 34.94665269 | -78 | 47 | 45.6018718 | . 00001697 | . 0000720 | -0.0334 | 47626.3 | 56637.7 | 57 |  |  |  |
| 0227+403 | 0227+403 | 1010 | 02 | 30 | 45.71081256 | +40 | 32 | 53.0680406 | . 00001601 | . 0003745 | -0.0395 | 50242.6 | 54482.7 | 2 |  |  |  |
| 0228-163 | 0228-163 | 1413 | 02 | 31 | 5.03526782 | -16 | 06 | 49.0177858 | . 00008873 | . 0019283 | 0.4380 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0229+131 | P 0229+13 | 69 | 02 | 31 | 45.89405673 | +13 | 22 | 54.7162559 | . 00000338 | . 0000517 | -0.0536 | 45814.0 | 56770.7 | 1866 | 0.73 | 0.59 | 2.4 |
| 0229-398 | 0229-398 | 2492 | 02 | 31 | 51.81631179 | -39 | 35 | 47.2627938 | . 00003050 | . 0008647 | 0.1128 | 52306.0 | 52408.8 | 2 |  | 0.10 |  |
| 0229+230 | 0229+230 | 1414 | 02 | 32 | 20.75648823 | +23 | 17 | 56.8591250 | . 00002061 | . 0005053 | -0.3234 | 50085.1 | 54482.7 | 3 |  |  |  |
| 0229+262 | 0229+262 | 2493 | 02 | 32 | 27.62326445 | +26 | 28 | 38.5903568 | . 00001170 | . 0003548 | -0.0177 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0230-288 | 0230-288 | 2494 | 02 | 32 | 36.74094971 | -28 | 39 | 26.3098796 | . 00002656 | . 0009487 | -0.0248 | 54112.1 | 55616.0 | 2 |  |  |  |
| 0230+344 | 0230+344 | 1415 | 02 | 33 | 20.42003494 | +34 | 42 | 53.9890629 | . 00007506 | . 0010413 | -0.0459 | 53560.5 | 53560.6 | 1 |  |  |  |
| 0231+045 | 0231+045 | 1416 | 02 | 34 | 7.15543449 | +04 | 46 | 43.0920679 | . 00005358 | . 0012171 | -0.2730 | 53561.6 | 53561.6 | 1 |  |  |  |
| 0234-301 | 0234-301 | 1417 | 02 | 36 | 31.16941036 | -29 | 53 | 55.5402936 | . 00000909 | . 0001621 | -0.0333 | 53125.8 | 56748.9 | 23 |  |  |  |
| 0235-618 | 0235-618 | 1011 | 02 | 36 | 53.24575807 | -61 | 36 | 15.1835418 | . 00001714 | . 0001427 | 0.3328 | 52850.7 | 56504.3 | 21 |  |  |  |
| 0234+052 | 0234+052 | 2495 | 02 | 37 | 14.03813621 | +05 | 26 | 49.9698809 | . 00031437 | . 0046083 | 0.0084 | 49914.5 | 49914.6 | 1 |  |  |  |
| 0235-266 | 0235-266 | 2496 | 02 | 37 | 16.76168469 | -26 | 23 | 53.1482948 | . 000009765 | . 0043980 | 0.3145 | 52408.7 | 52408.8 | 1 |  |  |  |
| 0234+285 | CTD 20 | 71 | 02 | 37 | 52.40567840 | +28 | 48 | 8.9900016 | . 00000340 | . 0000517 | -0.0969 | 44203.0 | 56749.7 | 748 | 1.77 | 1.43 | 2.6 |
| 0234+469 | 0234+469 | 1418 | 02 | 38 | 16.50326606 | +47 | 12 | 18.5514428 | . 00006848 | . 0008565 | 0.2114 | 53133.7 | 53133.8 | 1 |  |  |  |
| 0235+164 | GC 0235+16 | 72 | 02 | 38 | 38.93010742 | +16 | 36 | 59.2745097 | . 00000337 | . 0000513 | -0.0180 | 44203.2 | 56701.7 | 897 | 1.24 | 1.00 | 1.8 |
| 0237-027 | P 0237-027 | 73 | 02 | 39 | 45.47227166 | -02 | 34 | 40.9145081 | . 00000364 | . 0000604 | -0.0712 | 49253.4 | 56772.8 | 241 | 0.65 | 0.51 | 2.0 |
| 0237+040 | GC 0237+04 | 74 | 02 | 39 | 51.26304817 | +04 | 16 | 21.4117685 | . 00000476 | . 0001132 | -0.3900 | 47381.4 | 56737.6 | 86 | 0.38 | 0.37 | 2.4 |
| 0236+420 | 0236+420 | 1419 | 02 | 40 | 5.25262503 | +42 | 16 | 22.5197943 | . 00003024 | . 0006505 | -0.0675 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0237-233 | P 0237-23 | 75 | 02 | 40 | 8.17441470 | -23 | 09 | 15.7300070 | . 00003611 | . 0004880 | -0.1867 | 44227.2 | 55728.7 | 49 | 0.13 |  | 5.6 |
| 0236+610 | 0236+610 | 731 | 02 | 40 | 31.66432909 | +61 | 13 | 45.5938440 | . 00013903 | . 0008638 | -0.5482 | 49847.9 | 53313.7 | 15 |  |  |  |
| 0237+185 | 0237+185 | 2497 | 02 | 40 | 42.81626730 | +18 | 48 | 0.0541317 | . 00003862 | . 0006908 | -0.0232 | 50085.1 | 50156.1 | 2 |  |  |  |
| 0238-052 | 0238-052 | 1420 | 02 | 40 | 56.17270575 | -05 | 04 | 42.2024736 | . 00013125 | . 0022883 | 0.2056 | 53560.5 | 53560.6 | 1 |  |  |  |
| 0238-084 | P 0238-084 | 76 | 02 | 41 | 4.79849948 | -08 | 15 | 20.7518644 | . 00000491 | . 0001007 | 0.0507 | 48355.7 | 56763.7 | 333 | 0.15 | 0.12 | 4.4 |
| 0239+175 | 0239+175 | 1421 | 02 | 42 | 24.26827055 | +17 | 42 | 58.8489631 | . 00000582 | . 0001297 | -0.1465 | 50085.1 | 56498.7 | 30 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | Observation EpochMID |  | No. Obs. | Source Flux <br> (Jy) |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0239+108 | OD 166 | 77 | 02 | 42 | 29.17085248 | +11 | 01 | 0.7279416 | . 00000402 | . 0000730 | -0.3270 | 45151.8 | 56600.5 | 180 | 0.49 | 0.55 | 3.0 |
| 0240-217 | P 0240-217 | 2498 | 02 | 42 | 35.90986216 | -21 | 32 | 25.9352631 | . 00001638 | . 0005604 | 0.0706 | 50631.5 | 50687.5 | 2 |  |  |  |
| 0240-060 | 0240-060 | 2499 | 02 | 43 | 12.46947758 | -05 | 50 | 55.2959395 | . 00001238 | . 0003803 | -0.1899 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0238+711 | 0238+711 | 1012 | 02 | 43 | 30.89131270 | +71 | 20 | 17.9038869 | . 00005153 | . 0003877 | -0.0463 | 49826.7 | 54088.1 | 3 | 0.21 |  |  |
| 0242+131 | 0242+131 | 1422 | 02 | 44 | 45.69332857 | +13 | 20 | 7.2212608 | . 00001940 | . 0005571 | -0.2065 | 53561.6 | 53561.7 | 1 |  |  |  |
| 0241+622 | 0241+622 | 732 | 02 | 44 | 57.69665828 | +62 | 28 | 6.5155251 | . 00005530 | . 0003309 | -0.0056 | 49930.6 | 56638.3 | 8 |  |  | 2.9 |
| 0242+238 | 0242+238 | 2500 | 02 | 45 | 16.85598139 | +24 | 05 | 35.1701021 | . 00019432 | . 0029395 | 0.7131 | 50085.1 | 50156.1 | 2 |  |  |  |
| 0242-113 | 0242-113 | 2501 | 02 | 45 | 24.95218762 | -11 | 07 | 16.8126435 | . 00006240 | . 0016977 | -0.5833 | 54112.1 | 54112.2 | 1 |  |  |  |
| 0244-452 | 0244-452 | 2502 | 02 | 45 | 54.11076042 | -44 | 59 | 39.6096324 | . 00006896 | . 0019184 | -0.7963 | 54489.1 | 54489.1 | 1 |  |  |  |
| 0243+354 | J0246+35 | 2503 | 02 | 46 | 21.07627804 | +35 | 36 | 37.9982245 | . 00001750 | . 0004099 | -0.3972 | 54087.1 | 54087.2 | 1 |  |  |  |
| 0244-297 | 0244-297 | 2504 | 02 | 46 | 21.46129215 | -29 | 35 | 5.9216721 | . 00015256 | . 0046647 | 0.1151 | 50687.4 | 50687.5 | 1 |  |  |  |
| 0244-128 | 0244-128 | 2505 | 02 | 46 | 58.46980998 | -12 | 36 | 30.7976793 | . 00002180 | . 0007303 | -0.4807 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0244+327 | 0244+327 | 1423 | 02 | 47 | 41.23226207 | +32 | 54 | 31.8362165 | . 00001594 | . 0003797 | -0.0544 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0245-167 | 0245-167 | 2506 | 02 | 48 | 7.73222009 | -16 | 31 | 46.3860636 | . 00000953 | . 0003072 | 0.0866 | 50631.5 | 56701.1 | 2 | 0.18 | 0.21 |  |
| 0245+043 | 0245+043 | 1424 | 02 | 48 | 14.82816234 | +04 | 34 | 40.8581738 | . 00006908 | . 0033338 | -0.3137 | 53560.5 | 53560.6 | 1 |  |  |  |
| 0246+061 | 0246+061 | 1425 | 02 | 49 | 18.01610628 | +06 | 19 | 51.9479075 | . 00001130 | . 0002197 | -0.0538 | 49913.7 | 54643.5 | 2 |  |  |  |
| 0248-266 | 0248-266 | 1426 | 02 | 50 | 35.56931854 | -26 | 27 | 42.5188442 | . 00008404 | . 0031448 | -0.5297 | 53133.8 | 53133.8 | 1 | 0.19 | 0.15 |  |
| 0248+430 | 0248+430A | 1211 | 02 | 51 | 34.53673338 | +43 | 15 | 15.8294376 | . 00000772 | . 0001208 | -0.1205 | 48719.9 | 55264.7 | 22 | 0.26 | 0.18 | 4.3 |
| 0248+560 | 0248+560 | 1212 | 02 | 51 | 54.62812753 | +56 | 16 | 19.5233919 | . 00002422 | . 0002969 | -0.1930 | 52408.8 | 53306.5 | 2 |  |  |  |
| 0250-225 | 0250-225 | 2507 | 02 | 52 | 47.95365983 | -22 | 19 | 25.4658421 | . 00001542 | . 0005216 | 0.0413 | 50631.5 | 50687.5 | 2 |  |  |  |
| 0249+383 | 0249+383 | 2508 | 02 | 53 | 8.88808808 | +38 | 35 | 24.9985318 | . 00001270 | . 0003095 | -0.1426 | 50242.6 | 50242.8 | 1 |  |  |  |
| 0252-549 | P 0252-549 | 734 | 02 | 53 | 29.18041445 | -54 | 41 | 51.4359465 | . 00001453 | . 0001721 | 0.4042 | 47626.3 | 54706.3 | 23 |  |  |  |
| 0250+320 | 0250+320 | 1427 | 02 | 53 | 33.65014359 | +32 | 17 | 20.8917481 | . 00001736 | . 0003433 | 0.1899 | 53523.6 | 55916.3 | 2 | 0.20 | 0.17 |  |
| 0250+178 | GC 0250+17 | 79 | 02 | 53 | 34.88224195 | +18 | 05 | 42.5248161 | . 00001427 | . 0004605 | -0.0371 | 48977.4 | 54142.9 | 17 | 0.18 | 0.10 |  |
| 0250+508 | 0250+508 | 2509 | 02 | 53 | 57.60787866 | +51 | 02 | 56.4555558 | . 00003278 | . 0004441 | 0.3737 | 49576.4 | 50305.5 | 2 |  |  |  |
| 0251+235 | 0251+235 | 1428 | 02 | 54 | 24.71813805 | +23 | 43 | 26.4744897 | . 00001257 | . 0003709 | -0.1041 | 53560.6 | 53560.6 | 1 |  |  |  |
| 0251+393 | 0251+393 | 1013 | 02 | 54 | 42.63207274 | +39 | 31 | 34.7106879 | . 00001625 | . 0003517 | 0.0019 | 50242.6 | 50242.8 | 1 |  | 0.09 |  |
| 0253-218 | 0253-218 | 2510 | 02 | 56 | 12.83892778 | -21 | 37 | 29.1451229 | . 00001811 | . 0007720 | -0.2199 | 50631.6 | 50687.5 | 2 |  |  |  |
| 0253+133 | 0253+133 | 2511 | 02 | 56 | 34.98465893 | +13 | 34 | 35.3456064 | . 00002789 | . 0010716 | -0.5730 | 50085.1 | 50156.1 | 2 |  |  |  |
| 0254-334 | 0254-334A | 2512 | 02 | 56 | 42.60273735 | -33 | 15 | 21.2772116 | . 00001525 | . 0003752 | 0.0091 | 52306.0 | 54362.2 | 8 |  |  |  |
| 0252+657 | 0252+657 | 2513 | 02 | 57 | 1.34299406 | +65 | 56 | 35.4268808 | . 00009648 | . 0008734 | 0.1149 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0255-124 | 0255-124 | 2514 | 02 | 57 | 41.00461779 | -12 | 12 | 1.3794627 | . 00004494 | . 0013230 | 0.4780 | 53502.8 | 53502.8 | 1 |  |  |  |
| 0254+185 | 0254+185 | 2515 | 02 | 57 | 45.62871081 | +18 | 47 | 5.3569885 | . 00011487 | . 0034468 | -0.7193 | 50085.2 | 50156.1 | 2 |  |  |  |
| 0251+785 | 0251+785 | 2516 | 02 | 57 | 52.57018206 | +78 | 43 | 47.0584760 | . 00017427 | . 0003305 | -0.4037 | 49826.7 | 50688.3 | 2 |  |  |  |
| 0254+434 | 0254+434 | 1429 | 02 | 57 | 59.07776129 | +43 | 38 | 37.6745410 | . 00003142 | . 0004963 | -0.1096 | 53552.6 | 53552.7 | 1 |  |  |  |
| 0256-393 | 0256-393 | 2517 | 02 | 58 | 14.04486468 | -39 | 09 | 40.6836401 | . 00003427 | . 0009276 | 0.3352 | 52306.1 | 52408.8 | 2 |  |  |  |
| 0256-256 | 0256-256 | 1430 | 02 | 58 | 16.79547006 | -25 | 29 | 58.7916883 | . 00005759 | . 0019710 | -0.8555 | 53561.6 | 53561.6 | 1 |  |  |  |
| 0256+054 | 0256+054 | 2518 | 02 | 58 | 50.52633472 | +05 | 41 | 8.0390082 | . 00006319 | . 0017016 | -0.3092 | 49914.5 | 49914.6 | 1 |  |  |  |
| 0255+288 | 0255+288 | 2519 | 02 | 58 | 55.18115147 | +29 | 00 | 1.6070093 | . 00005702 | . 0010885 | -0.5375 | 53125.8 | 56498.7 | 3 |  |  |  |
| 0256+075 | OD 094.7 | 81 | 02 | 59 | 27.07662986 | +07 | 47 | 39.6430006 | . 00000428 | . 0000890 | -0.2185 | 45151.9 | 56707.0 | 107 | 0.33 | 0.23 | 3.1 |
| 0256-005 | 0256-005 | 2520 | 02 | 59 | 28.51616003 | -00 | 19 | 59.9753809 | . 00000370 | . 0000581 | 0.0178 | 50575.8 | 56776.0 | 124 | 0.58 | 0.70 | 2.5 |
| 0256+192 | 0256+192 | 1432 | 02 | 59 | 29.65593799 | +19 | 25 | 44.3271591 | . 00001303 | . 0003431 | 0.1010 | 53523.6 | 56749.0 | 2 | 0.15 | 0.18 |  |
| 0256+423 | 0256+424 | 2521 | 02 | 59 | 37.69444119 | +42 | 35 | 49.8115654 | . 00006662 | . 0006680 | 0.1941 | 50242.6 | 54112.2 | 2 |  |  |  |
| 0257-057 | 0257-057 | 1433 | 03 | 00 | 1.30002792 | -05 | 31 | 20.3608378 | . 00002762 | . 0006317 | -0.4661 | 53152.7 | 53152.8 | 1 |  |  |  |
| 0258-184 | 0258-184 | 2522 | 03 | 01 | 6.71658976 | -18 | 12 | 17.7763946 | . 00151517 | . 0266003 | 0.8808 | 53561.6 | 53561.7 | 1 |  |  |  |
| 0259-316 | 0259-316 | 1434 | 03 | 01 | 16.24428964 | -31 | 26 | 15.7880920 | . 00003672 | . 0011883 | 0.0436 | 53125.8 | 53125.8 | 1 |  |  |  |
| 0258-170 | 0258-170 | 1435 | 03 | 01 | 16.62300394 | -16 | 52 | 45.0885233 | . 00036548 | . 0091933 | 0.6193 | 53560.6 | 53560.6 | 1 |  |  |  |
| 0258+011 | 0258+011 | 1436 | 03 | 01 | 23.60693432 | +01 | 18 | 35.9969618 | . 00002898 | . 0010041 | -0.2576 | 49913.7 | 54664.4 | 2 |  |  |  |
| 0258+058 | 0258+058 | 2523 | 03 | 01 | 33.71391182 | +06 | 02 | 27.2824029 | . 00002034 | . 0006027 | -0.1400 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0258+533 | 0258+533 | 1014 | 03 | 02 | 22.73529644 | +53 | 31 | 46.4832244 | . 00016031 | . 0014287 | 0.2901 | 49576.4 | 49576.6 | 1 | 0.25 |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | Observation Epoch <br> MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \begin{array}{l} \text { Source Flux } \\ (\mathrm{Jvy}) \end{array} \end{aligned}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0259+121 | 0259+121 | 670 | 03 | 02 | 30.54674463 | +12 | 18 | 56.7511106 | . 00001695 | . 0004811 | -0.3252 | 46709.6 | 53666.2 | 18 |  |  | 3.9 |
| 0301-243 | 0301-243 | 1437 | 03 | 03 | 26.50294190 | -24 | 07 | 11.4249020 | . 00006635 | . 0017640 | -0.5364 | 54657.6 | 54657.7 | 1 |  |  |  |
| 0300+470 | OE 400 | 82 | 03 | 03 | 35.24222555 | +47 | 16 | 16.2755164 | . 00000359 | . 0000527 | -0.0877 | 43808.6 | 56782.2 | 654 | 0.77 | 0.70 | 2.5 |
| 0302-623 | P 0302-623 | 735 | 03 | 03 | 50.63140282 | -62 | 11 | 25.5500099 | . 00001393 | . 0001035 | 0.1595 | 48387.5 | 56638.5 | 39 |  |  |  |
| 0259+681 | 0259+681 | 2524 | 03 | 04 | 22.00383111 | +68 | 21 | 37.4746159 | . 00004496 | . 0003311 | 0.3405 | 49826.7 | 49826.8 | 1 |  |  |  |
| 0302-437 | 0302-437 | 1438 | 03 | 04 | 29.20213928 | -43 | 33 | 16.0329536 | . 00008820 | . 0035686 | 0.7774 | 55042.5 | 55042.6 | 1 |  |  |  |
| 0301+336 | 0301+336 | 2525 | 03 | 04 | 41.36245426 | +33 | 48 | 43.5306159 | . 00001575 | . 0003722 | 0.0636 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0302+173 | 0302+173 | 2526 | 03 | 05 | 10.22422162 | +17 | 34 | 59.0923206 | . 00003147 | . 0011333 | -0.2872 | 50085.1 | 50156.1 | 2 |  |  |  |
| 0303+051 | 0303+051 | 2527 | 03 | 05 | 48.19159990 | +05 | 23 | 31.5280517 | . 00006282 | . 0014770 | 0.4156 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0302+625 | 0302+625 | 736 | 03 | 06 | 42.65955818 | +62 | 43 | 2.0242408 | . 00000547 | . 0000632 | 0.0610 | 48613.2 | 56782.2 | 168 | 0.20 |  | 2.7 |
| 0305+237 | 0305+237 | 2528 | 03 | 08 | 11.78774654 | +23 | 55 | 13.5478243 | . 02261688 | . 0093451 | 0.0627 | 53133.7 | 53133.7 | 1 |  |  |  |
| 0305+039 | 0305+039 | 1015 | 03 | 08 | 26.22380333 | +04 | 06 | 39.3008156 | . 00000495 | . 0000942 | 0.0108 | 50919.0 | 55334.1 | 17 |  |  |  |
| 0307-362 | 0307-362 | 2529 | 03 | 09 | 2.51078738 | -36 | 04 | 3.7529386 | . 00005073 | . 0017608 | -0.0018 | 53502.8 | 55656.9 | 2 |  |  |  |
| 0306+102 | 0306+102 | 671 | 03 | 09 | 3.62349733 | +10 | 29 | 16.3409851 | . 00000448 | . 0000800 | -0.2231 | 47255.0 | 56713.6 | 109 | 0.68 | 0.59 | 2.8 |
| 0306+274 | 0306+274 | 4056 | 03 | 09 | 22.09675793 | +27 | 38 | 54.3609860 | . 00002104 | . 0006372 | 0.0025 | 56638.1 | 56638.3 | 1 |  |  |  |
| 0306-061 | 0306-061 | 4057 | 03 | 09 | 23.28886630 | -05 | 59 | 20.4512011 | . 00002841 | . 0012557 | 0.2776 | 55966.0 | 55966.1 | 1 |  |  |  |
| 0308-611 | 0308-611 | 737 | 03 | 09 | 56.09916027 | -60 | 58 | 39.0562672 | . 00000514 | . 0000614 | 0.1369 | 47625.6 | 56772.7 | 231 |  |  |  |
| 0307-085 | 0307-085 | 1439 | 03 | 10 | 2.04908338 | -08 | 23 | 39.2983162 | . 00018035 | . 0036165 | 0.8169 | 53152.7 | 53152.8 | 1 |  |  |  |
| 0307+380 | 0307+380 | 1258 | 03 | 10 | 49.87992767 | +38 | 14 | 53.8378373 | . 00000357 | . 0000546 | 0.0111 | 50242.6 | 56776.1 | 162 | 0.76 | 0.28 | 0.0 |
| 0312-770 | 0312-770 | 738 | 03 | 11 | 55.25020326 | -76 | 51 | 50.8482657 | . 00016742 | . 0004810 | 0.6144 | 48110.1 | 53129.5 | 6 |  |  |  |
| 0310+013 | 0310+013 | 2530 | 03 | 12 | 43.60323790 | +01 | 33 | 17.5647025 | . 00001347 | . 0004659 | -0.3242 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0309+411 | 0309+411 | 672 | 03 | 13 | 1.96212023 | +41 | 20 | 1.1835037 | . 00000426 | . 0000643 | -0.1271 | 46611.0 | 56701.3 | 136 | 0.36 | 0.39 | 2.1 |
| 0310+022 | 0310+022 | 1440 | 03 | 13 | 13.40546458 | +02 | 28 | 35.3063456 | . 00001290 | . 0004416 | -0.1414 | 53572.5 | 53572.6 | 1 |  |  |  |
| 0312+100 | 0312+100 | 2531 | 03 | 15 | 21.13981738 | +10 | 12 | 43.0837738 | . 00002026 | . 0003899 | -0.2695 | 54278.5 | 56568.1 | 5 |  |  |  |
| 0313-171 | 0313-171 | 2532 | 03 | 15 | 27.67839972 | -16 | 56 | 29.7108172 | . 00009790 | . 0020319 | 0.2551 | 50631.6 | 50631.7 | 1 |  |  |  |
| 0315-282 | 0315-282 | 2533 | 03 | 17 | 33.69720231 | -28 | 03 | 18.5782213 | . 05297435 | . 3196406 | -0.9969 | 54818.1 | 54818.1 | 1 |  |  |  |
| 0314+565 | 0314+565 | 2534 | 03 | 17 | 54.94283137 | +56 | 43 | 57.7913377 | . 00008138 | . 0008099 | -0.0880 | 52408.8 | 52408.9 | 1 |  |  |  |
| 0316-444 | 0316-444 | 4058 | 03 | 17 | 57.67944922 | -44 | 14 | 17.1624692 | . 00006277 | . 0023044 | -0.0737 | 56035.8 | 56638.2 | 4 |  |  |  |
| 0315-006 | 0315-006 | 1441 | 03 | 18 | 14.42728566 | -00 | 29 | 48.9330800 | . 00020436 | . 0026027 | 0.0103 | 53560.6 | 53560.6 | 1 |  |  |  |
| 0316+162 | 0316+162 | 2535 | 03 | 18 | 57.80258716 | +16 | 28 | 32.6987650 | . 00004408 | . 0008497 | -0.0846 | 50085.1 | 50156.1 | 2 |  |  |  |
| 0316-164 | 0316-164 | 1442 | 03 | 19 | 5.52804816 | -16 | 13 | 47.0445617 | . 00005057 | . 0017274 | -0.6411 | 54657.6 | 54657.7 | 1 |  |  |  |
| 0314+696 | 0314+696 | 2536 | 03 | 19 | 22.07100766 | +69 | 49 | 25.6184952 | . 00012201 | . 0006235 | -0.5909 | 49826.7 | 54088.1 | 2 |  |  |  |
| 0316+413 | 3C 84 | 87 | 03 | 19 | 48.16011958 | +41 | 30 | 42.1044096 | . 00000722 | . 0001285 | -0.0147 | 44088.7 | 56492.1 | 110 | 1.05 | 0.53 | 4.4 |
| 0317+188 | P 0317+188 | 88 | 03 | 19 | 51.25672309 | +19 | 01 | 31.2909170 | . 00000463 | . 0000859 | -0.2904 | 48942.4 | 54886.6 | 97 | 0.30 | 0.23 | 3.0 |
| 0318-172 | 0318-172 | 1443 | 03 | 20 | 19.10752213 | -17 | 02 | 39.1300723 | . 00008068 | . 0023200 | -0.3584 | 54657.6 | 54657.7 | 1 |  |  |  |
| 0318-388 | 0318-388 | 2537 | 03 | 20 | 46.40484004 | -38 | 37 | 28.5134741 | . 00039736 | . 0195233 | 0.5708 | 52306.1 | 52408.8 | 2 |  |  |  |
| 0319-315 | 0319-315 | 2538 | 03 | 21 | 28.74026172 | -31 | 22 | 56.3360291 | . 00007374 | . 0029869 | 0.4334 | 52306.0 | 52306.1 | 1 |  |  |  |
| 0318+438 | 0318+438 | 2539 | 03 | 21 | 36.86837940 | +43 | 59 | 22.4816381 | . 00013065 | . 0014385 | 0.1798 | 50242.7 | 50242.8 | 1 |  |  |  |
| 0319+121 | P 0319+12 | 89 | 03 | 21 | 53.10350796 | +12 | 21 | 13.9536951 | . 00000575 | . 0001299 | -0.2455 | 49790.1 | 54713.6 | 24 |  |  |  |
| 0319-056 | 0319-056 | 2540 | 03 | 21 | 59.87035825 | -05 | 26 | 12.4290208 | . 00002335 | . 0006879 | -0.0796 | 53152.7 | 53502.8 | 2 |  |  |  |
| 0319-133 | 0319-133 | 4059 | 03 | 22 | 15.14714630 | -13 | 12 | 58.1060590 | . 00003938 | . 0015239 | -0.5186 | 56162.5 | 56162.6 | 1 |  |  |  |
| 0317+659 | 0317+659 | 2541 | 03 | 22 | 27.22879160 | +66 | 10 | 28.3003469 | . 00004452 | . 0003594 | -0.2984 | 49826.7 | 54112.2 | 2 |  |  |  |
| 0319+396 | 0319+396 | 1444 | 03 | 22 | 51.83003787 | +39 | 48 | 2.2593269 | . 00001700 | . 0002696 | 0.1859 | 53561.6 | 56638.3 | 5 |  |  |  |
| 0320+015 | 0320+015 | 2542 | 03 | 23 | 9.87231791 | +01 | 45 | 50.5074642 | . 00002329 | . 0007306 | -0.0692 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0320+045 | 0320+045 | 2543 | 03 | 23 | 14.72281544 | +04 | 46 | 12.5755637 | . 00005506 | . 0021522 | -0.3197 | 54087.1 | 54087.2 | 1 |  |  |  |
| 0322-230 | 0322-230 | 2544 | 03 | 24 | 17.55321710 | -22 | 54 | 17.9251607 | . 00002066 | . 0007458 | -0.2224 | 53552.6 | 55538.3 | 2 |  |  |  |
| 0321+340 | 0321+340 | 2545 | 03 | 24 | 41.16133410 | +34 | 10 | 45.8573346 | . 000001689 | . 0004118 | 0.1500 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0322-294 | 0322-294 | 2546 | 03 | 24 | 44.29547456 | -29 | 18 | 21.2211002 | . 00009170 | . 0038378 | -0.5612 | 53502.8 | 53502.8 | 1 |  |  |  |
| 0323-244 | 0323-244 | 2547 | 03 | 25 | 13.34466111 | -24 | 15 | 48.0524275 | . 00001446 | . 0005057 | -0.0155 | 50631.6 | 50687.5 | 2 |  |  |  |
| 0321+467 | 0321+467 | 2548 | 03 | 25 | 20.30385980 | +46 | 55 | 6.6351649 | . 00007809 | 0011606 | 0.4355 | 50305.4 | 50305.5 |  |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0322+222 | 0322+222 | 1017 | 03 | 25 | 36.81435515 | +22 | 24 | 0.3655590 | . 00000348 | . 0000535 | -0.0151 | 50085.1 | 56776.6 | 306 | 0.54 | 0.49 | 1.8 |
| 0324-379 | 0324-379 | 4060 | 03 | 26 | 3.00038304 | -37 | 46 | 9.1880423 | . 00013005 | . 0055360 | 0.6479 | 56392.8 | 56392.9 | 1 |  |  |  |
| 0325-182 | 0325-182 | 1445 | 03 | 27 | 43.34159996 | -18 | 03 | 42.0229525 | . 00005946 | . 0024163 | -0.4980 | 54657.6 | 54657.7 | 1 |  |  |  |
|  | UGC02748 | 1018 | 03 | 27 | 54.19499096 | +02 | 33 | 41.9827000 | . 00003388 | . 0009543 | 0.1338 | 53067.9 | 53067.9 | 1 |  |  |  |
| 0325+005 | 0325+005 | 2549 | 03 | 27 | 59.21553001 | +00 | 44 | 22.7271299 | . 00006405 | . 0011780 | 0.1294 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0325-222 | 0325-222 | 2550 | 03 | 27 | 59.92402811 | -22 | 02 | 6.3958763 | . 00002146 | . 0007301 | 0.0146 | 50631.6 | 50687.5 | 2 |  |  |  |
| 0325+256 | 0325+256 | 2551 | 03 | 28 | 44.34856387 | +25 | 52 | 8.3982019 | . 00011532 | . 0018004 | 0.2490 | 54112.1 | 54112.2 | 1 |  |  |  |
| 0325+395 | 0325+395 | 2552 | 03 | 28 | 50.31208172 | +39 | 40 | 44.5665792 | . 00005386 | . 0009333 | -0.7439 | 50242.7 | 56568.5 | 6 |  |  |  |
| 0326+349 | 0326+349 | 2553 | 03 | 29 | 15.35489072 | +35 | 10 | 5.9912685 | . 00001286 | . 0003216 | 0.1618 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0327-241 | P 0327-241 | 2554 | 03 | 29 | 54.07556303 | -23 | 57 | 8.7732593 | . 00001084 | . 0003663 | -0.0569 | 50631.6 | 50687.5 | 2 |  |  |  |
| 0326+277 | 0326+277 | 673 | 03 | 29 | 57.66942908 | +27 | 56 | 15.4991405 | . 00000861 | . 0001311 | -0.3937 | 46610.9 | 54643.6 | 35 | 0.19 | 0.11 | 4.3 |
| 0327+467 | 0327+467 | 2555 | 03 | 30 | 32.62733590 | +46 | 56 | 23.2927705 | . 00001356 | . 0001812 | 0.0456 | 50305.4 | 56547.6 | 5 |  |  |  |
| 0327+364 | 0327+364 | 2556 | 03 | 30 | 34.76570696 | +36 | 39 | 41.0336294 | . 00026992 | . 0036054 | 0.0057 | 50242.7 | 50242.8 | 1 |  |  |  |
| 0329-404 | 0329-404 | 1446 | 03 | 30 | 51.10394680 | -40 | 14 | 16.6001996 | . 00005612 | . 0023387 | 0.3482 | 55042.5 | 55042.6 | 1 |  |  |  |
| 0329-255 | 0329-255 | 1447 | 03 | 31 | 8.92058615 | -25 | 24 | 43.2655003 | . 00003287 | . 0012953 | -0.4170 | 53572.6 | 53572.6 | 1 |  |  |  |
| 0329-110 | 0329-110 | 2557 | 03 | 31 | 50.75660110 | -10 | 51 | 55.5034531 | . 00002604 | . 0009632 | -0.4046 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0329+654 | 0329+654 | 2558 | 03 | 33 | 56.73723144 | +65 | 36 | 56.1829988 | . 00034559 | . 0014415 | 0.6803 | 49826.9 | 55776.4 | 2 |  |  |  |
| 0331+022 | 0331+022 | 739 | 03 | 34 | 9.94762037 | +02 | 26 | 9.6486303 | . 00017531 | . 0027942 | 0.2102 | 50553.9 | 50800.1 | 3 |  |  |  |
| 0332-403 | P 0332-403 | 93 | 03 | 34 | 13.65449278 | -40 | 08 | 25.3980206 | . 000000374 | . 0000565 | -0.0506 | 43809.4 | 56776.5 | 287 |  | 1.18 | 2.3 |
| 0332-375 | 0332-375 | 1448 | 03 | 34 | 15.42497180 | -37 | 25 | 43.0672335 | . 00005159 | . 0026165 | -0.5921 | 54942.8 | 54942.9 | 1 |  |  |  |
| 0332+078 | 0332+078 | 1449 | 03 | 34 | 53.31667923 | +08 | 00 | 14.4190722 | . 00000534 | . 0001084 | 0.1037 | 49913.7 | 56748.5 | 82 |  | 0.18 |  |
| 0334-546 | 0334-546 | 740 | 03 | 35 | 53.92484537 | -54 | 30 | 25.1147986 | . 00001380 | . 0001713 | 0.3818 | 48388.3 | 56504.2 | 34 |  |  |  |
| 0333-073 | 0333-073 | 1450 | 03 | 35 | 57.05518663 | -07 | 09 | 55.8556328 | . 00014540 | . 0039872 | -0.2655 | 53560.6 | 53560.7 | 1 |  |  |  |
| 0333+321 | NRAO 140 | 94 | 03 | 36 | 30.10760973 | +32 | 18 | 29.3422230 | . 00000422 | . 0000688 | -0.1135 | 43808.7 | 55236.7 | 134 | 0.67 | 0.85 | 3.7 |
| 0334-131 | 0334-131 | 2559 | 03 | 36 | 35.03581787 | -13 | 02 | 4.6605887 | . 00001201 | . 0004152 | -0.0438 | 50575.8 | 56749.0 | 2 | 0.30 | 0.30 |  |
| 0334-207 | 0334-207 | 2560 | 03 | 36 | 45.61145431 | -20 | 36 | 37.1726049 | . 00009469 | . 0027636 | -0.5963 | 54087.2 | 54087.2 | 1 |  |  |  |
| 0334+004 | HR 1099 | 741 | 03 | 36 | 47.30305235 | +00 | 35 | 16.6214083 | . 01280045 | . 0605703 | 0.9188 | 49987.3 | 50002.4 | 2 |  |  |  |
| 0335-364 | 0335-364 | 742 | 03 | 36 | 54.02353169 | -36 | 16 | 6.2241199 | . 00002131 | . 0004575 | 0.0677 | 50918.9 | 53079.9 | 9 |  |  |  |
| 0334+014 | 0334+014 | 743 | 03 | 37 | 17.10811434 | +01 | 37 | 22.7507433 | . 00035135 | . 0058516 | 0.7920 | 49177.6 | 53502.9 | 3 |  |  |  |
| 0335-122 | 0335-122 | 2561 | 03 | 37 | 55.45157340 | -12 | 04 | 4.5432527 | . 00018459 | . 0045393 | 0.2726 | 50575.8 | 54482.7 | 2 |  |  |  |
| 0336-017 | 0336-017 | 1451 | 03 | 39 | 0.98625034 | -01 | 33 | 17.6066900 | . 00007343 | . 0014097 | 0.3209 | 54187.0 | 54187.0 | 1 |  |  |  |
| 0335+599 | 0335+599 | 2562 | 03 | 39 | 9.39287375 | +60 | 08 | 56.9745352 | . 00028649 | . 0028233 | 0.4979 | 49576.5 | 49576.6 | 1 |  |  |  |
| 0336-019 | CTA 26 | 95 | 03 | 39 | 30.93778705 | -01 | 46 | 35.8041788 | . 00000337 | . 0000516 | -0.0125 | 44203.1 | 56762.6 | 1562 | 0.95 | 0.97 | 3.0 |
| 0336+539 | 0336+539 | 4061 | 03 | 40 | 6.49058358 | +54 | 05 | 38.7759081 | . 00063712 | . 0043686 | 0.4486 | 56302.0 | 56302.2 | 1 |  |  |  |
| 0336+473 | 0336+473 | 2563 | 03 | 40 | 10.78884178 | +47 | 32 | 27.3150425 | . 00002405 | . 0005069 | 0.2063 | 50305.4 | 50305.5 | 1 |  |  |  |
| 0338-030 | 0338-030 | 2564 | 03 | 40 | 32.59570678 | -02 | 54 | 54.2304713 | . 00002416 | . 0008713 | -0.3363 | 54112.1 | 54112.2 | 1 |  |  |  |
| 0338-214 | P 0338-214 | 744 | 03 | 40 | 35.60786341 | -21 | 19 | 31.1721401 | . 00000456 | . 0000861 | -0.0553 | 49973.1 | 56751.6 | 126 | 0.28 |  | 3.4 |
| 0337+337 | 0337+337 | 2565 | 03 | 41 | 9.97368961 | +33 | 52 | 21.6456549 | . 00003714 | . 0006576 | 0.7051 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0338+480 | 0338+480 | 2566 | 03 | 42 | 10.35266957 | +48 | 09 | 46.9410231 | . 00008580 | . 0015560 | -0.5263 | 50305.4 | 50305.6 | 1 |  |  |  |
| 0340-140 | 0340-140 | 2567 | 03 | 42 | 44.98789272 | -13 | 54 | 51.6603092 | . 00002877 | . 0009671 | 0.1312 | 53561.6 | 55847.5 | 2 |  |  |  |
| 0341-256 | 0341-256 | 2568 | 03 | 43 | 19.52400525 | -25 | 30 | 17.4034007 | . 00007519 | . 0027554 | -0.2036 | 50631.6 | 50687.5 | 2 |  |  |  |
| 0340+362 | J0343+3622 | 1019 | 03 | 43 | 28.95241183 | +36 | 22 | 12.4296412 | . 00000508 | . 0000841 | 0.0314 | 50242.7 | 56720.0 | 67 | 0.29 | 0.23 | 2.5 |
| 0341+158 | 0341+158 | 745 | 03 | 44 | 23.17215955 | +15 | 59 | 43.3691507 | . 00000611 | . 0001578 | -0.1655 | 47381.4 | 56707.0 | 70 | 0.24 | 0.13 | 2.5 |
| 0339+683 | 0339+683 | 1452 | 03 | 44 | 41.44124978 | +68 | 27 | 47.8111002 | . 00004433 | . 0003880 | -0.3202 | 53572.5 | 53572.7 | 1 | 0.12 |  |  |
| 0342+147 | 0342+147 | 674 | 03 | 45 | 6.41654204 | +14 | 53 | 49.5581893 | . 00000452 | . 0000867 | -0.1935 | 46337.6 | 56707.0 | 91 | 0.35 | 0.25 | 2.9 |
| 0342+538 | 0342+538 | 2569 | 03 | 46 | 34.50413351 | +54 | 00 | 59.1092114 | . 00001135 | . 0001179 | 0.1113 | 52408.8 | 56701.2 | 5 |  |  |  |
| 0344+199 | 0344+199 | 2570 | 03 | 47 | 29.55916261 | +20 | 04 | 53.0438741 | . 00002962 | . 0009740 | 0.0567 | 50085.2 | 55856.2 | 4 | 0.09 | 0.08 |  |
| 0344+558 | 0344+558 | 1453 | 03 | 47 | 56.81208462 | +55 | 57 | 31.5785131 | . 00003074 | . 0002848 | 0.0756 | 53523.6 | 53523.9 | 1 |  |  |  |
| 0344+235 | 0344+235 | 2571 | 03 | 47 | 57.11177215 | +23 | 39 | 55.3222714 | . 00010316 | . 0025553 | -0.8227 | 50085.1 | 50156.1 | 2 |  |  |  |
| 0346-279 | 0346-279 | 1259 | 03 | 48 | 38.14457393 | -27 | 49 | 13.5657126 | . 00000504 | . 0000687 | -0.1816 | 50687.4 | 56758.6 | 112 |  | 0.58 | 2.3 |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | Observation Epoch MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \begin{array}{l} \text { Source Flux } \\ (\mathrm{Jvy}) \end{array} \end{aligned}$ |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0346-163 | 0346-163 | 2572 | 03 | 48 | 39.27073074 | -16 | 10 | 17.7524591 | . 00001412 | . 0005033 | -0.0890 | 50631.6 | 50631.7 | 1 |  |  |  |
| 0345+416 | 0345+416 | 1454 | 03 | 48 | 45.12239240 | +41 | 49 | 14.6759931 | . 00005641 | . 0007838 | -0.3165 | 53152.7 | 53152.8 | 1 |  |  |  |
| 0345+460 | 0345+460 | 1213 | 03 | 49 | 18.74157489 | +46 | 09 | 59.6579301 | . 00000387 | . 0000575 | -0.0319 | 50305.4 | 56762.6 | 173 | 0.28 | 0.30 | 3.1 |
| 0346+209 | 0346+209 | 2573 | 03 | 49 | 45.23011308 | +21 | 04 | 45.9661945 | . 00014509 | . 0033728 | -0.4281 | 50085.1 | 50156.1 | 2 |  |  |  |
| 0347-211 | 0347-211 | 1455 | 03 | 49 | 57.82667566 | -21 | 02 | 47.7415932 | . 00000526 | . 0000835 | -0.0452 | 50631.6 | 56763.6 | 69 |  |  |  |
| 0346+514 | 0346+514 | 2574 | 03 | 50 | 25.05153305 | +51 | 38 | 38.7346364 | . 00010477 | . 0011613 | -0.3998 | 52408.8 | 52408.9 | 1 |  |  |  |
| 0348-326 | 0348-326 | 2575 | 03 | 50 | 43.31623719 | -32 | 32 | 59.4284994 | . 00013570 | . 0046149 | 0.8917 | 52306.1 | 52306.1 | 1 |  |  |  |
| 0348+049 | 0348+049 | 2576 | 03 | 50 | 54.20315939 | +05 | 06 | 21.1875587 | . 00050286 | . 0036923 | -0.3416 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0348-120 | 0348-120 | 2577 | 03 | 51 | 10.97693022 | -11 | 53 | 22.6647503 | . 00003262 | . 0012070 | -0.4653 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0348-031 | 0348-031 | 4122 | 03 | 51 | 15.36690664 | -03 | 01 | 17.8021025 | . 00004327 | . 0012339 | 0.1672 | 55916.1 | 55916.3 | 1 |  |  |  |
| 0350-253 | 0350-253 | 1456 | 03 | 52 | 11.05238818 | -25 | 14 | 50.2686599 | . 00001741 | . 0006173 | -0.3779 | 53560.6 | 53560.7 | 1 |  |  |  |
| 0349+662 | 0349+662 | 2578 | 03 | 54 | 3.69926325 | +66 | 21 | 26.1253512 | . 00011309 | . 0005767 | 0.4346 | 54087.3 | 54088.1 | 1 |  |  |  |
| 0351+045 | 0351+045 | 2579 | 03 | 54 | 24.12890425 | +04 | 41 | 7.2637576 | . 00004792 | . 0015792 | -0.6268 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0352-164 | 0352-164 | 2580 | 03 | 54 | 25.02808144 | -16 | 16 | 22.4470777 | . 00008651 | . 0025518 | -0.5530 | 53502.8 | 53502.9 | 1 |  |  |  |
| 0350+465 | 0350+465 | 1260 | 03 | 54 | 30.01164895 | +46 | 43 | 18.7504654 | . 00001375 | . 0002342 | 0.0099 | 50305.6 | 53946.5 | 5 | 0.46 | 0.36 |  |
| 0346+800 | $0346+800 \mathrm{~A}$ | 1214 | 03 | 54 | 46.12598426 | +80 | 09 | 28.8477214 | . 00006232 | . 0003025 | 0.0248 | 50688.1 | 56701.5 | 2 | 0.18 |  |  |
| 0355-669 | 0355-669 | 1261 | 03 | 55 | 47.88346221 | -66 | 45 | 33.8172266 | . 00003175 | . 0001602 | 0.5432 | 52860.2 | 55784.6 | 24 |  |  |  |
| 0353+289 | 0353+289 | 2581 | 03 | 56 | 8.46195237 | +29 | 03 | 42.3212221 | . 00004141 | . 0013391 | 0.1930 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0352+605 | 0352+605 | 1021 | 03 | 56 | 25.19874794 | +60 | 43 | 57.9797498 | . 00002414 | . 0001819 | -0.0555 | 49576.5 | 56498.4 | 4 | 0.11 |  |  |
| 0354+231 | 0354+231 | 1022 | 03 | 57 | 21.60988648 | +23 | 19 | 53.8256483 | . 00001205 | . 0003123 | -0.1400 | 50085.1 | 56659.2 | 13 | 0.39 | 0.37 |  |
| 0355-483 | 0355-483 | 746 | 03 | 57 | 21.91794267 | -48 | 12 | 15.1590232 | . 00014402 | . 0044991 | 0.8460 | 49330.7 | 52884.0 | 3 |  |  |  |
| 0355-079 | 0355-079 | 2582 | 03 | 57 | 43.29326473 | -07 | 51 | 14.5677453 | . 00002002 | . 0006798 | -0.4528 | 50575.8 | 50575.9 | 1 |  |  |  |
| 0355+055 | 0355+055 | 1023 | 03 | 57 | 46.12569597 | +05 | 42 | 31.2579774 | . 00005966 | . 0009955 | 0.0811 | 49913.7 | 54664.4 | 2 |  |  |  |
| 0354+559 | 0354+559 | 1215 | 03 | 58 | 30.18818851 | +56 | 06 | 44.4604908 | . 00002401 | . 0002309 | -0.0360 | 52408.8 | 53306.6 | 2 |  |  |  |
| 0354+599 | 0354+599 | 2583 | 03 | 59 | 2.63993762 | +60 | 05 | 22.0689402 | . 00004539 | . 0005126 | 0.0863 | 49576.5 | 49576.6 | 1 |  |  |  |
| 0356-033 | 0356-033 | 2584 | 03 | 59 | 23.21125082 | -03 | 10 | 34.0669190 | . 00238469 | . 0499686 | -0.9793 | 53552.6 | 56393.0 | 2 |  |  |  |
| 0356+278 | 0356+278 | 1457 | 03 | 59 | 27.93557451 | +27 | 58 | 24.0474059 | . 00001496 | . 0004705 | 0.0649 | 53561.6 | 53561.7 | 1 |  |  |  |
| 0355+508 | NRAO 150 | 99 | 03 | 59 | 29.74728134 | +50 | 57 | 50.1615976 | . 00000549 | . 0000749 | -0.0794 | 44088.8 | 56772.2 | 130 | 2.34 |  | 2.0 |
| 0357-263 | 0357-263 | 2585 | 03 | 59 | 33.68178015 | -26 | 15 | 31.3273347 | . 00012903 | . 0042213 | -0.2977 | 50631.6 | 54643.4 | 3 |  |  |  |
| 0356+322 | 0356+322 | 2586 | 03 | 59 | 44.91292151 | +32 | 20 | 47.1558847 | . 00001280 | . 0002975 | 0.2544 | 50219.7 | 50219.8 | 1 |  |  |  |
| 0357+057 | 0357+057 | 2587 | 04 | 00 | 11.73536335 | +05 | 50 | 43.1229684 | . 00002752 | . 0007256 | 0.1152 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0358-162 | 0358-162 | 1458 | 04 | 01 | 6.63674466 | -16 | 06 | 39.0122113 | . 00001977 | . 0007871 | -0.1431 | 53572.6 | 53572.7 | 1 |  |  |  |
| 0358+040 | 0358+040 | 1262 | 04 | 01 | 19.91294898 | +04 | 13 | 34.4073946 | . 00001726 | . 0003409 | -0.2286 | 53607.3 | 53608.5 | 1 | 0.37 | 0.34 | 1.4 |
| 0359-294 | 0359-294 | 2588 | 04 | 01 | 21.48366225 | -29 | 21 | 26.8308353 | . 00018634 | . 0042813 | 0.6744 | 50687.4 | 50687.5 | 1 |  |  |  |
| 0358+210 | J0401+2110 | 1024 | 04 | 01 | 45.16607438 | +21 | 10 | 28.5868266 | . 00000422 | . 0000811 | -0.0640 | 50085.1 | 56636.8 | 77 | 0.23 | 0.21 | 0.8 |
| 0359-151 | 0359-151 | 1459 | 04 | 02 | 16.78727761 | -14 | 58 | 20.9952966 | . 00004830 | . 0014377 | -0.4482 | 53560.6 | 53560.7 | 1 |  |  |  |
| 0400-319 | P 0400-319 | 101 | 04 | 02 | 21.26599708 | -31 | 47 | 25.9454497 | . 00000631 | . 0001057 | -0.1866 | 49329.7 | 56728.5 | 58 |  | 0.49 | 3.0 |
| 0400+258 | CTD 26 | 100 | 04 | 03 | 5.58607252 | +26 | 00 | 1.5026456 | . 00000429 | . 0000727 | -0.1766 | 44947.5 | 56684.1 | 106 | 0.70 | 0.50 | 3.0 |
| 0402-362 | P 0402-362 | 102 | 04 | 03 | 53.74990238 | -36 | 05 | 1.9131820 | . 00000372 | . 0000619 | 0.0845 | 43873.2 | 56749.1 | 680 |  | 0.90 | 2.4 |
| 0403-132 | P 0403-13 | 103 | 04 | 05 | 34.00339140 | -13 | 08 | 13.6908704 | . 00000400 | . 0000836 | -0.1780 | 50459.3 | 56707.0 | 109 | 0.79 | 0.69 | 0.6 |
| 0402+379 | 0402+379 | 2589 | 04 | 05 | 49.26234579 | +38 | 03 | 32.2352718 | . 00009215 | . 0009384 | 0.2594 | 50242.7 | 50242.8 | 1 |  |  |  |
| 0403-179 | 0403-179 | 1460 | 04 | 06 | 12.24453126 | -17 | 49 | 57.9275708 | . 00002157 | . 0007325 | -0.1037 | 50631.6 | 54664.4 | 3 |  |  |  |
| 0403+064 | 0403+064 | 2590 | 04 | 06 | 34.30728524 | +06 | 37 | 14.9914527 | . 00018948 | . 0028951 | -0.2039 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0404-240 | 0404-240 | 1461 | 04 | 06 | 39.34013041 | -23 | 55 | 3.7856838 | . 00002904 | . 0011062 | 0.0034 | 54657.6 | 54657.7 | 1 |  |  |  |
| 0405-385 | P 0405-385 | 104 | 04 | 06 | 59.03533942 | -38 | 26 | 28.0424095 | . 00000434 | . 0000705 | -0.0861 | 49330.7 | 56755.6 | 310 |  | 0.54 | 2.3 |
| 0404+075 | 0404+075 | 2591 | 04 | 07 | 29.08671975 | +07 | 42 | 7.4719698 | . 00002117 | . 0005711 | 0.4725 | 52408.8 | 52408.9 | 1 |  |  |  |
| 0405-331 | 0405-331 | 2592 | 04 | 07 | 33.91372867 | -33 | 03 | 46.3579422 | . 00001619 | . 0005774 | 0.0222 | 52306.1 | 56267.2 | 2 |  | 0.25 |  |
| 0405-123 | P 0405-12 | 105 | 04 | 07 | 48.43098651 | -12 | 11 | 36.6595278 | . 00000436 | . 0001041 | -0.0460 | 50209.6 | 56699.0 | 84 | 0.49 | 0.21 | 3.1 |
| 0402+682 | 0402+682 | 2593 | 04 | 07 | 49.16549802 | +68 | 21 | 31.6351849 | . 00095924 | . 0037629 | -0.5907 | 49826.8 | 49827.0 | 1 |  |  |  |
| 0405-015 | 0405-015 | 4062 | 04 | 08 | 18.53414866 | -01 | 22 | 34.8947670 | . 00002825 | . 0008476 | 0.2122 | 55966.0 | 55966.2 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch <br> MJD |  | No. Obs. | Source Flux (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0405+304 | 0405+305 | 748 | 04 | 08 | 20.37758807 | +30 | 32 | 30.4904741 | . 00001907 | . 0004677 | 0.4034 | 49032.8 | 54142.9 | 22 | 0.08 |  | 1.8 |
| 0407-658 | 0407-658 | 747 | 04 | 08 | 20.37468767 | -65 | 45 | 9.0753074 | . 00514857 | . 0217268 | -0.1325 | 50258.9 | 50259.5 | 1 |  |  |  |
| 0406-056 | 0406-056 | 2594 | 04 | 08 | 59.64995910 | -05 | 29 | 40.5388572 | . 00001694 | . 0005961 | -0.1929 | 50575.8 | 53502.9 | 2 |  |  |  |
| 0406-127 | 0406-127 | 749 | 04 | 09 | 5.76972855 | -12 | 38 | 48.1438251 | . 00000466 | . 0001047 | -0.2595 | 46797.3 | 56770.2 | 117 | 0.32 | 0.26 | 3.1 |
| 0406+121 | GC 0406+12 | 107 | 04 | 09 | 22.00870653 | +12 | 17 | 39.8477139 | . 00000451 | . 0000845 | -0.3277 | 44203.1 | 56707.0 | 108 | 0.27 | 0.19 | 2.9 |
| 0406+065 | 0406+065 | 1462 | 04 | 09 | 25.84774317 | +06 | 40 | 35.1026504 | . 00003075 | . 0007800 | -0.3037 | 53561.6 | 53561.7 | 1 |  |  |  |
| 0407-170 | 0407-170 | 2595 | 04 | 09 | 37.33404923 | -16 | 55 | 35.5314215 | . 00024745 | . 0064919 | -0.5770 | 50631.6 | 50631.7 | 1 |  |  |  |
| 0407-199 | 0407-199 | 2596 | 04 | 09 | 40.54919813 | -19 | 48 | 1.7824748 | . 00005541 | . 0020352 | 0.6354 | 54112.1 | 55371.7 | 2 |  |  |  |
| 0403+768 | 4C 76.03 | 2597 | 04 | 10 | 45.61079236 | +76 | 56 | 45.3109470 | . 00014680 | . 0008526 | -0.1965 | 52408.8 | 52408.9 | 1 |  |  |  |
| 0409-280 | 0409-280 | 2598 | 04 | 11 | 25.23210165 | -27 | 58 | 20.8114910 | . 00002202 | . 0007732 | -0.3444 | 55413.6 | 55413.6 | 1 |  |  |  |
| 0408+085 | 0408+085 | 4063 | 04 | 11 | 33.85754322 | +08 | 43 | 11.4166311 | . 00002911 | . 0006145 | 0.6479 | 56748.9 | 56749.0 | 1 |  |  |  |
| 0409+000 | 0409+000 | 2599 | 04 | 12 | 33.45637795 | +00 | 10 | 48.4917040 | . 00013104 | . 0050695 | 0.1041 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0409+045 | 0409+045 | 2600 | 04 | 12 | 38.18707673 | +04 | 38 | 6.0359238 | . 00008957 | . 0020517 | 0.5721 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0409+229 | P 0409+22 | 109 | 04 | 12 | 43.66686945 | +23 | 05 | 5.4527237 | . 000000576 | . 0001124 | -0.1300 | 50085.1 | 54664.6 | 26 | 0.17 | 0.22 | 3.4 |
| 0409+188 | 0409+188 | 2601 | 04 | 12 | 45.94418633 | +18 | 56 | 37.0766328 | . 00003175 | . 0006689 | 0.4981 | 50085.1 | 50156.1 | 2 |  |  |  |
| 0411-063 | 0411-063 | 2602 | 04 | 13 | 28.23950673 | -06 | 15 | 1.4867542 | . 00019917 | . 0061034 | -0.6047 | 53152.7 | 53152.8 | 1 |  |  |  |
| 0409+527 | 0409+527 | 1463 | 04 | 13 | 37.08641459 | +52 | 50 | 52.9446496 | . 00003869 | . 0006260 | 0.2823 | 53572.6 | 53572.7 | 1 |  |  |  |
| 0410+110 | 0410+110 | 1464 | 04 | 13 | 40.34099543 | +11 | 12 | 14.7860271 | . 00001053 | . 0002603 | -0.2172 | 54314.5 | 56568.7 | 5 |  |  |  |
| 0411+341 | 0411+341 | 2603 | 04 | 14 | 37.25575185 | +34 | 18 | 51.2065058 | . 00002457 | . 0006311 | -0.0016 | 50218.8 | 50218.9 | 1 |  |  |  |
| 0411+054 | 0411+054 | 2604 | 04 | 14 | 37.76784206 | +05 | 34 | 42.3421559 | . 00023314 | . 0067073 | -0.3218 | 49913.7 | 54314.6 | 2 |  |  |  |
| 0412+447 | J0415+4452 | 1025 | 04 | 15 | 56.52652629 | +44 | 52 | 49.6835417 | . 00002291 | . 0003716 | -0.1739 | 50305.6 | 53613.4 | 2 | 0.34 |  |  |
| 0413-210 | 0413-210 | 2605 | 04 | 16 | 4.35973486 | -20 | 56 | 27.5183080 | . 00001099 | . 0003667 | -0.1972 | 50631.6 | 50687.5 | 2 |  |  |  |
| 0414-341 | 0414-341 | 2606 | 04 | 16 | 10.05432511 | -34 | 03 | 3.9591259 | . 00044991 | . 0091146 | 0.5594 | 52306.1 | 52306.2 | 1 |  |  |  |
| 0414-337 | 0414-337 | 2607 | 04 | 16 | 20.51036578 | -33 | 39 | 32.3668328 | . 00031110 | . 0120699 | 0.8429 | 52306.1 | 52306.2 | 1 |  |  |  |
| 0414-189 | P 0414-189 | 112 | 04 | 16 | 36.54444980 | -18 | 51 | 8.3402569 | . 00000422 | . 0000676 | -0.0205 | 49790.0 | 56644.7 | 99 | 0.39 | 0.31 | 1.8 |
| 0414+548 | 0414+548 | 2608 | 04 | 18 | 19.52227150 | +54 | 57 | 15.2741231 | . 01148297 | . 0069834 | -0.7776 | 49576.5 | 49576.5 | 1 |  |  |  |
| 0415+379 | 3C 111 | 1026 | 04 | 18 | 21.27721043 | +38 | 01 | 35.8001615 | . 00001075 | . 0001510 | 0.2512 | 51464.1 | 52408.9 | 5 | 0.53 | 0.51 |  |
| 0416-216 | 0416-216 | 2609 | 04 | 19 | 0.41814383 | -21 | 32 | 35.6756142 | . 00031778 | . 0078612 | 0.8633 | 54112.2 | 54112.2 | 1 |  |  |  |
| 0415+572 | 0415+572 | 2610 | 04 | 19 | 19.41299126 | +57 | 22 | 59.9857462 | . 00014372 | . 0013383 | 0.5171 | 49576.5 | 49576.6 | 1 |  |  |  |
| 0415+398 | 0415+398 | 1465 | 04 | 19 | 22.54951707 | +39 | 55 | 28.9775466 | . 00000472 | . 0000694 | 0.0363 | 50242.7 | 56755.0 | 73 | 0.23 | 0.21 | 1.6 |
| 0417-302 | 0417-302 | 2611 | 04 | 19 | 47.20496206 | -30 | 10 | 23.8506305 | . 00014213 | . 0039401 | -0.1492 | 52306.1 | 55483.4 | 3 |  |  |  |
| 0418-151 | 0418-151 | 2612 | 04 | 20 | 18.39334711 | -15 | 01 | 26.5766854 | . 00001638 | . 0005974 | -0.1607 | 50631.6 | 50631.7 | 1 |  |  |  |
| 0418+437 | 0418+437 | 1466 | 04 | 21 | 51.77491309 | +43 | 52 | 10.4294830 | . 00004852 | . 0007373 | -0.1650 | 53560.6 | 53560.7 | 1 |  |  |  |
| 0419+308 | 0419+308 | 2614 | 04 | 22 | 21.22391378 | +30 | 58 | 9.7146053 | . 00018468 | . 0020219 | 0.7251 | 54087.2 | 54087.3 | 1 |  |  |  |
| 0418+532 | 0418+532 | 1467 | 04 | 22 | 44.39890220 | +53 | 24 | 26.2632260 | . 00003460 | . 0004927 | 0.2864 | 49576.5 | 54482.6 | 2 |  |  |  |
| 0420-206 | 0420-206 | 2615 | 04 | 22 | 48.46166436 | -20 | 34 | 56.0092429 | . 00114899 | . 0285579 | 0.2592 | 53561.6 | 53561.7 | 1 |  |  |  |
| 0420+022 | 0420+022 | 1263 | 04 | 22 | 52.21465152 | +02 | 19 | 26.9307652 | . 00000370 | . 0000582 | 0.0216 | 49913.7 | 56750.7 | 89 | 0.86 | 0.41 |  |
| 0420+210 | 0420+210 | 1468 | 04 | 23 | 1.98840921 | +21 | 08 | 2.1270584 | . 00002103 | . 0003863 | 0.1369 | 52479.8 | 52480.7 | 1 |  |  |  |
| 0420-014 | P 0420-01 | 116 | 04 | 23 | 15.80072492 | -01 | 20 | 33.0655342 | . 00000342 | . 0000530 | -0.0710 | 43873.3 | 56776.7 | 928 | 2.23 | 2.22 | 2.5 |
| 0420+417 | VRO 41.04.01 | 115 | 04 | 23 | 56.00979228 | +41 | 50 | 2.7129330 | . 00000501 | . 0000772 | -0.0222 | 44203.1 | 56707.0 | 76 | 0.82 | 0.81 | 3.3 |
| 0421+019 | 0421+019 | 2616 | 04 | 24 | 8.56202688 | +02 | 04 | 24.9647758 | . 00001431 | . 0004875 | -0.1957 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0421+145 | 0421+145 | 2617 | 04 | 24 | 23.49066781 | +14 | 42 | 16.6827936 | . 00005493 | . 0008395 | -0.1044 | 50085.2 | 54440.4 | 3 |  |  |  |
| 0422-389 | 0422-389 | 1469 | 04 | 24 | 33.71640908 | -38 | 48 | 41.6218571 | . 00023159 | . 0108673 | -0.0564 | 54964.8 | 54964.9 | 1 |  |  |  |
| 0422-380 | 0422-380 | 750 | 04 | 24 | 42.24370891 | -37 | 56 | 20.7843315 | . 00000589 | . 0001040 | 0.0221 | 48387.4 | 56701.2 | 59 |  | 0.62 | 4.1 |
| 0422+004 | P 0422+00 | 118 | 04 | 24 | 46.84206444 | +00 | 36 | 6.3293189 | . 00000397 | . 0000751 | -0.0570 | 50254.8 | 56758.8 | 72 | 0.76 | 0.41 | 2.0 |
| 0422+079 | 0422+079 | 1470 | 04 | 24 | 57.60285919 | +08 | 05 | 17.3267555 | . 00001040 | . 0003482 | -0.0903 | 53572.6 | 53572.7 | 1 |  |  |  |
| 0423-163 | 0423-163 | 2618 | 04 | 25 | 53.57252775 | -16 | 12 | 40.2504406 | . 00028406 | . 0067911 | 0.6168 | 50631.6 | 50631.7 | 1 |  |  |  |
| 0423+297 | 0423+297 | 2619 | 04 | 26 | 30.22612880 | +29 | 52 | 22.9332851 | . 00004113 | . 0008557 | -0.1225 | 54112.1 | 54112.2 | 1 |  |  |  |
| 0423+051 | P 0423+051 | 120 | 04 | 26 | 36.60409902 | +05 | 18 | 19.8723021 | . 00000774 | . 0002108 | 0.0144 | 49254.4 | 54937.4 | 14 |  |  |  |
| 0421+683 | 0421+683 | 1027 | 04 | 26 | 50.07012227 | +68 | 25 | 52.9292816 | . 00004116 | . 0002203 | -0.3871 | 49827.0 | 55916.4 | 2 | 0.10 |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | $\begin{gathered} \hline \begin{array}{c} \text { Observation Epoch } \\ \text { MJD } \end{array} \\ \hline \end{gathered}$ |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0423+233 | GC 0423+23 | 119 | 04 | 26 | 55.73479179 | +23 | 27 | 39.6337635 | . 00001754 | . 0005174 | -0.4240 | 50085.2 | 53087.6 | 9 |  |  |  |
| 0423+237 | 0423+237 | 1471 | 04 | 26 | 55.96944071 | +23 | 50 | 26.5926338 | . 00039484 | . 0091132 | -0.4133 | 50155.9 | 54313.8 | 2 |  |  |  |
| 0425-071 | 0425-071 | 1472 | 04 | 27 | 26.15924207 | -07 | 00 | 31.2634281 | . 00001019 | . 0003229 | -0.1790 | 53502.8 | 53560.7 | 2 |  |  |  |
| 0424+414 | 0424+414 | 2620 | 04 | 27 | 46.04553422 | +41 | 33 | 1.0992798 | . 00001296 | . 0002468 | 0.2500 | 50242.7 | 50242.8 | 1 |  |  |  |
| 0425+048 | P 0425+048 | 121 | 04 | 27 | 47.57052260 | +04 | 57 | 8.3257515 | . 00001008 | . 0002055 | -0.7158 | 46609.5 | 53854.1 | 39 | 0.18 | 0.15 | 3.2 |
| 0424+328 | 0424+328 | 2621 | 04 | 28 | 5.80873176 | +32 | 59 | 52.0437351 | . 00002419 | . 0005520 | -0.4198 | 50218.8 | 50218.9 | 1 |  |  |  |
| 0425+174 | 0425+174 | 1473 | 04 | 28 | 35.63367856 | +17 | 32 | 23.5877868 | . 00002073 | . 0003880 | -0.1966 | 50085.2 | 54643.5 | 3 |  |  |  |
| 0426-380 | P 0426-380 | 122 | 04 | 28 | 40.42427344 | -37 | 56 | 19.5805451 | . 00000919 | . 0001304 | -0.2111 | 50258.8 | 55168.6 | 16 |  | 1.02 | 4.1 |
| 0424+670 | 0424+670 | 2622 | 04 | 29 | 5.97572102 | +67 | 10 | 16.8672778 | . 10013334 | . 9605288 | -0.9904 | 49826.9 | 49826.9 | 1 |  |  |  |
| 0426+332 | 0426+332 | 1474 | 04 | 29 | 52.72113417 | +33 | 19 | 1.8582863 | . 00002335 | . 0004124 | -0.2726 | 53523.7 | 53523.9 | 1 |  |  |  |
| 0426+273 | 0426+273 | 751 | 04 | 29 | 52.96076608 | +27 | 24 | 37.8762076 | . 00000404 | . 0000750 | -0.0254 | 50218.8 | 56751.5 | 91 | 0.57 | 0.44 | 2.6 |
| 0428+205 | 0428+205 | 2623 | 04 | 31 | 3.76136011 | +20 | 37 | 34.2644152 | . 00007831 | . 0014676 | -0.1257 | 52306.1 | 52306.2 | 1 |  |  |  |
| 0428-042 | 0428-042 | 1475 | 04 | 31 | 28.08855636 | -04 | 06 | 27.3192307 | . 00005000 | . 0013111 | -0.1305 | 53552.6 | 53552.8 | 1 |  |  |  |
| 0429+174 | 0429+174 | 1028 | 04 | 31 | 57.37925670 | +17 | 31 | 35.7753552 | . 00004180 | . 0011589 | -0.6379 | 50085.2 | 50156.1 | 2 |  | 0.20 |  |
| 0431-512 | P 0431-512 | 2624 | 04 | 32 | 21.17819551 | -51 | 09 | 25.1878590 | . 00023882 | . 0033113 | 0.8842 | 48749.4 | 52941.0 | 3 |  |  |  |
| 0430-163 | 0430-163 | 2625 | 04 | 32 | 29.08228760 | -16 | 14 | 5.6689493 | . 00001909 | . 0006493 | -0.5011 | 53502.8 | 53502.9 | 1 |  |  |  |
| 0429+415 | 3C 119 | 2626 | 04 | 32 | 36.50261902 | +41 | 38 | 28.4489703 | . 00001928 | . 0004191 | 0.0648 | 50242.7 | 50242.8 | 1 |  |  |  |
| 0430-332 | 0430-332 | 2627 | 04 | 32 | 44.56426536 | -33 | 09 | 11.9326352 | . 00005524 | . 0021976 | 0.5082 | 52306.1 | 55847.5 | 2 |  | 0.10 |  |
| 0430+052 | 3C 120 | 125 | 04 | 33 | 11.09552986 | +05 | 21 | 15.6192092 | . 00000441 | . 0000915 | -0.0181 | 43808.6 | 56679.6 | 118 | 0.38 | 0.25 | 4.3 |
| 0432-606 | 0432-606 | 2628 | 04 | 33 | 34.10843149 | -60 | 30 | 13.7694546 | . 00004438 | . 0008073 | 0.3836 | 54722.9 | 54723.1 | 1 |  |  |  |
| 0430+289 | 0430+289 | 752 | 04 | 33 | 37.82986132 | +29 | 05 | 55.4769895 | . 00000381 | . 0000628 | 0.0031 | 50042.9 | 56758.3 | 141 | 0.25 | 0.23 |  |
| 0432-148 | 0432-148 | 2629 | 04 | 34 | 19.02509341 | -14 | 42 | 55.3577660 | . 00001775 | . 0006130 | -0.2425 | 50631.6 | 50631.7 | 1 |  |  |  |
| 0432+254 | 0432+254 | 2630 | 04 | 35 | 34.58296939 | +25 | 32 | 59.6977129 | . 00008700 | . 0024649 | 0.4509 | 50218.8 | 50218.9 | 1 |  |  |  |
| 0434-188 | P 0434-188 | 126 | 04 | 37 | 1.48273484 | -18 | 44 | 48.6136092 | . 00000413 | . 0000802 | -0.4885 | 44227.3 | 56751.6 | 381 | 0.26 | 0.40 | 3.3 |
| 0433+295 | 0433+295 | 2631 | 04 | 37 | 4.37533451 | +29 | 40 | 13.8184903 | . 00003084 | . 0004444 | -0.0198 | 52408.9 | 55657.1 | 2 |  |  |  |
| 0435-300 | 0435-300 | 1476 | 04 | 37 | 36.56868726 | -29 | 54 | 4.1182416 | . 00002149 | . 0007015 | -0.2044 | 53523.8 | 53523.8 | 1 |  |  |  |
| 0434+299 | 0434+299 | 2632 | 04 | 38 | 4.94831117 | +30 | 04 | 45.5177114 | . 00001595 | . 0004543 | -0.3161 | 50218.8 | 50218.9 | 1 |  |  |  |
| 0436-129 | 0436-129 | 1477 | 04 | 38 | 35.02100664 | -12 | 51 | 3.3590386 | . 00000487 | . 0000965 | 0.0481 | 50575.8 | 56749.1 | 71 | 0.24 | 0.17 |  |
| 0436-089 | 0436-089 | 2633 | 04 | 38 | 37.87657963 | -08 | 48 | 21.5084397 | . 00021012 | . 0029611 | 0.3272 | 50575.8 | 50576.0 | 1 |  |  |  |
| 0436-203 | 0436-203 | 2634 | 04 | 38 | 50.48944007 | -20 | 12 | 26.3929091 | . 00015918 | . 0044583 | -0.6833 | 50631.6 | 50687.6 | 2 |  |  |  |
| 0435+217 | 0435+217 | 1478 | 04 | 38 | 55.88495305 | +21 | 53 | 10.3070094 | . 00002129 | . 0005572 | -0.0565 | 53560.6 | 53560.7 | 1 |  |  |  |
| 0437-454 | P 0437-454 | 753 | 04 | 39 | 0.85467623 | -45 | 22 | 22.5630958 | . 00000777 | . 0001109 | 0.1433 | 49329.7 | 56772.1 | 42 |  | 0.09 | 2.2 |
| 0436+052 | 0436+052 | 1479 | 04 | 39 | 2.26218459 | +05 | 20 | 43.6739846 | . 00003529 | . 0007539 | 0.1110 | 53133.8 | 53133.9 | 1 |  |  |  |
| 0436+306 | 0436+306 | 2635 | 04 | 39 | 17.77455956 | +30 | 45 | 7.5520412 | . 00002129 | . 0006196 | -0.2636 | 50218.8 | 50218.9 | 1 |  |  |  |
| 0437-303 | 0437-303 | 2636 | 04 | 39 | 53.20156975 | -30 | 17 | 45.6227427 | . 00021783 | . 0063216 | 0.9043 | 52408.8 | 52408.9 | 1 |  |  |  |
| 0436+426 | J0440+4244 | 1029 | 04 | 40 | 7.87161354 | +42 | 44 | 40.2579183 | . 00001598 | . 0003197 | 0.2015 | 50242.7 | 50242.8 | 1 |  |  |  |
| 0438-436 | P 0438-43 | 127 | 04 | 40 | 17.17996766 | -43 | 33 | 8.6039527 | . 00000851 | . 0001265 | 0.0172 | 43809.4 | 56741.7 | 74 |  | 0.21 |  |
| 0437+145 | 0437+145 | 1480 | 04 | 40 | 21.13936012 | +14 | 37 | 56.9517779 | . 00005873 | . 0012277 | 0.0156 | 53125.8 | 53125.9 | 1 |  |  |  |
| 0437+273 | 0437+273 | 2637 | 04 | 40 | 27.73946460 | +27 | 28 | 40.6813731 | . 00008654 | . 0019584 | -0.3115 | 50218.8 | 50218.9 | 1 |  |  |  |
| 0439-337 | P 0439-337 | 2638 | 04 | 41 | 33.76803532 | -33 | 40 | 3.9171474 | . 00007106 | . 0016218 | -0.2769 | 52306.1 | 52306.2 | 1 |  |  |  |
| 0440-285 | 0440-285 | 2639 | 04 | 42 | 37.65719518 | -28 | 25 | 30.8364586 | . 00002140 | . 0007779 | -0.0347 | 50687.6 | 50687.7 | 1 |  |  |  |
| 0440-003 | NRAO 190 | 129 | 04 | 42 | 38.66073489 | -00 | 17 | 43.4206413 | . 00000429 | . 0001044 | -0.2454 | 43873.3 | 56695.7 | 77 | 0.58 | 0.41 | 2.9 |
| 0440+345 | 0440+345 | 675 | 04 | 43 | 31.63519856 | +34 | 41 | 6.6641022 | . 00000461 | . 0000744 | -0.0902 | 46757.5 | 56737.8 | 65 | 0.17 | 0.16 | 2.8 |
| 0441+106 | P 0441+106 | 2640 | 04 | 44 | 12.46602679 | +10 | 42 | 47.2655622 | . 00013192 | . 0046666 | -0.7891 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0442+071 | 0442+071 | 2641 | 04 | 45 | 1.42875735 | +07 | 15 | 53.9128261 | . 00005431 | . 0017592 | -0.6611 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0438+785 | 0438+785 | 4064 | 04 | 45 | 46.30643552 | +78 | 38 | 58.1322649 | . 00740624 | . 0248135 | 0.8335 | 56392.9 | 56392.9 | 1 |  |  |  |
| 0442+389 | 0442+389 | 1481 | 04 | 46 | 11.49404243 | +39 | 00 | 17.1000244 | . 00000664 | . 0001185 | 0.3326 | 50242.7 | 56751.3 | 42 | 0.19 | 0.09 | 2.4 |
| 0445-221 | 0445-221 | 2642 | 04 | 47 | 37.28141582 | -22 | 03 | 36.8216888 | . 00010071 | . 0023651 | 0.1613 | 52408.8 | 55616.1 | 2 |  |  |  |
| 0446-212 | 0446-212 | 1482 | 04 | 48 | 17.38173137 | -21 | 09 | 44.8304728 | . 00009120 | . 0020905 | 0.5875 | 53560.6 | 53560.7 | 1 |  |  |  |
| 0443+592 | 0443+592 | 2643 | 04 | 48 | 20.48032765 | +59 | 21 | 49.7107960 | . 01917113 | . 6943364 | 0.9833 | 53125.7 | 53125.7 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | $\begin{gathered} \hline \begin{array}{c} \text { Observation Epoch } \\ \text { MJD } \end{array} \\ \hline \end{gathered}$ |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0445+097 | 0445+097 | 1483 | 04 | 48 | 21.73841135 | +09 | 50 | 51.4607859 | . 00002194 | . 0005245 | 0.0628 | 53523.7 | 53523.9 | 1 |  |  |  |
| 0446-265 | 0446-265 | 2644 | 04 | 48 | 23.96384892 | -26 | 26 | 14.8389773 | . 00005503 | . 0024181 | -0.1723 | 54112.2 | 55518.4 | 2 |  |  |  |
| 0445+364 | 0445+364 | 2645 | 04 | 48 | 35.16160030 | +36 | 29 | 31.4160169 | . 00002828 | . 0005761 | 0.5165 | 50242.7 | 50242.8 | 1 |  |  |  |
| 0450-743 | 0450-743 | 754 | 04 | 48 | 48.55782458 | -74 | 17 | 31.2478895 | . 00112112 | . 0031736 | 0.8305 | 48589.5 | 52884.1 | 3 |  |  |  |
| 0446-096 | 0446-096 | 2646 | 04 | 48 | 49.46978718 | -09 | 35 | 31.5066775 | . 00013543 | . 0090610 | -0.5120 | 53572.6 | 53572.7 | 1 |  |  |  |
| 0446+113 | 0446+113 | 2647 | 04 | 48 | 50.41216592 | +11 | 27 | 54.3681024 | . 00007746 | . 0019361 | -0.7295 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0446+112 | P 0446+11 | 131 | 04 | 49 | 7.67110226 | +11 | 21 | 28.5963214 | . 00000351 | . 0000539 | -0.0373 | 47255.1 | 56758.7 | 275 | 0.89 | 0.93 | 2.4 |
| 0446+178 | 0446+178 | 1484 | 04 | 49 | 12.51167651 | +17 | 54 | 31.5968352 | . 00009298 | . 0016986 | -0.2644 | 53133.8 | 53133.9 | 1 |  |  |  |
| 0444+634 | 0444+634 | 755 | 04 | 49 | 23.31057069 | +63 | 32 | 9.4340136 | . 00000796 | . 0000729 | -0.0903 | 49422.0 | 53946.9 | 11 | 0.40 |  | 2.0 |
| 0448-392 | P 0448-392 | 2648 | 04 | 49 | 42.25472669 | -39 | 11 | 9.4716376 | . 00003012 | . 0009006 | -0.1228 | 52306.1 | 52408.9 | 2 |  |  |  |
| 0447-010 | 0447-010 | 1485 | 04 | 49 | 42.90597232 | -00 | 57 | 22.3526755 | . 00003233 | . 0009558 | -0.5911 | 53561.6 | 53561.7 | 1 |  |  |  |
| 0454-810 | P 0454-81 | 756 | 04 | 50 | 5.44023880 | -81 | 01 | 2.2313491 | . 00002008 | . 0000691 | 0.0110 | 47625.6 | 56637.7 | 48 |  |  |  |
| 0446+462 | 0446+462 | 2649 | 04 | 50 | 30.80177665 | +46 | 20 | 59.7966689 | . 00016035 | . 0016044 | 0.1299 | 55412.8 | 55413.5 | 1 |  |  |  |
| 0448-187 | 0448-187 | 2650 | 04 | 50 | 35.90964015 | -18 | 37 | 0.4079885 | . 00001436 | . 0004957 | -0.1474 | 50631.6 | 50687.7 | 2 |  |  |  |
| 0447+408 | 0447+408 | 2651 | 04 | 50 | 43.67960399 | +40 | 56 | 13.9676823 | . 00003226 | . 0004998 | 0.4529 | 52408.7 | 52408.8 | 1 |  |  |  |
| 0447+227 | 0447+227 | 1486 | 04 | 50 | 51.94471202 | +22 | 49 | 5.8989084 | . 00001676 | . 0004228 | -0.2058 | 53551.8 | 53552.6 | 1 | 0.09 | 0.11 |  |
| 0446+595 | 0446+595 | 1264 | 04 | 51 | 18.72177466 | +59 | 35 | 32.1835494 | . 00001540 | . 0001300 | 0.1130 | 53767.8 | 56701.3 | 2 | 0.13 |  |  |
| 0449+125 | 0449+125 | 4123 | 04 | 52 | 42.60116390 | +12 | 36 | 24.5901505 | . 00003681 | . 0006264 | -0.2224 | 55775.7 | 55776.5 | 1 |  |  |  |
| 0450+013 | 0450+013 | 1487 | 04 | 53 | 2.23862790 | +01 | 28 | 35.6284799 | . 00001424 | . 0003606 | 0.2553 | 53125.8 | 56204.6 | 2 | 0.25 | 0.20 |  |
| 0451-282 | P 0451-28 | 132 | 04 | 53 | 14.64679783 | -28 | 07 | 37.3267001 | . 00000507 | . 0000872 | -0.2761 | 44227.3 | 56671.6 | 60 |  | 0.41 | 3.3 |
| 0452+068 | 0452+068 | 2652 | 04 | 55 | 20.71265448 | +06 | 55 | 38.8749820 | . 00004847 | . 0011941 | -0.2944 | 53560.6 | 56162.7 | 2 |  |  |  |
| 0454-463 | P 0454-46 | 757 | 04 | 55 | 50.77253057 | -46 | 15 | 58.6797965 | . 00001311 | . 0001894 | 0.1682 | 49015.2 | 56776.2 | 18 |  |  |  |
| 0454-220 | 0454-220 | 1488 | 04 | 56 | 8.92352881 | -21 | 59 | 9.3940377 | . 00010201 | . 0020940 | -0.2113 | 54657.6 | 54657.7 | 1 |  |  |  |
| 0454+039 | 0454+039 | 2653 | 04 | 56 | 47.17473658 | +04 | 00 | 52.9466117 | . 00003090 | . 0011553 | 0.4898 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0454-234 | 0454-234 | 758 | 04 | 57 | 3.17922779 | -23 | 24 | 52.0202731 | . 00000340 | . 0000527 | -0.0537 | 46844.9 | 56776.7 | 1843 | 1.01 | 1.39 | 1.9 |
| 0454+066 | 0454+066 | 2654 | 04 | 57 | 7.70995252 | +06 | 45 | 7.2603263 | . 00002285 | . 0006447 | 0.1784 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0454-088 | 0454-088 | 2655 | 04 | 57 | 20.21285375 | -08 | 49 | 5.4857233 | . 00006635 | . 0014392 | 0.2426 | 50575.8 | 50576.0 | 1 |  |  |  |
| 0455-183 | 0455-183 | 1489 | 04 | 57 | 54.32520658 | -18 | 19 | 16.0732714 | . 00004479 | . 0017541 | 0.2337 | 53561.7 | 53561.7 | 1 |  |  |  |
| 0456+060 | 0456+060 | 1490 | 04 | 58 | 48.77157433 | +06 | 08 | 3.8604009 | . 00002178 | . 0008879 | -0.2669 | 54124.9 | 54125.7 | 1 |  |  |  |
| 0454+550 | 0454+550 | 1030 | 04 | 58 | 54.83994065 | +55 | 08 | 42.0576037 | . 00012012 | . 0011628 | 0.5538 | 49576.5 | 49576.6 | 1 | 0.20 |  |  |
| 0456+310 | 0456+310 | 2656 | 04 | 59 | 33.03371370 | +31 | 06 | 34.2874493 | . 00002557 | . 0006831 | -0.0493 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0457+024 | P 0457+024 | 136 | 04 | 59 | 52.05066363 | +02 | 29 | 31.1766729 | . 00000884 | . 0001444 | 0.0756 | 49098.8 | 55118.6 | 51 | 0.30 |  | 4.2 |
| 0456+428 | 0456+428 | 2657 | 05 | 00 | 27.47287051 | +42 | 53 | 30.8551369 | . 00018128 | . 0015181 | -0.6520 | 52408.8 | 52409.0 | 1 |  |  |  |
| 0458-020 | P 0458-02 | 137 | 05 | 01 | 12.80988186 | -01 | 59 | 14.2563327 | . 00000337 | . 0000520 | -0.1098 | 47415.5 | 56772.7 | 1683 | 0.88 | 0.85 | 2.6 |
| 0458+138 | P 0458+138 | 138 | 05 | 01 | 45.27082982 | +13 | 56 | 7.2203415 | . 00000578 | . 0001351 | 0.0338 | 46757.4 | 56627.2 | 55 | 0.17 | 0.08 | 2.9 |
| 0456+714 | 0456+714 | 1491 | 05 | 01 | 45.77991645 | +71 | 28 | 33.9634517 | . 00006351 | . 0003914 | -0.0821 | 53133.7 | 53133.9 | 1 |  |  |  |
| 0459-139 | 0459-139 | 1492 | 05 | 01 | 59.94482792 | -13 | 55 | 4.8246345 | . 00009429 | . 0023914 | 0.2520 | 53552.7 | 53552.8 | 1 |  |  |  |
| 0459+060 | GC 0459+06 | 139 | 05 | 02 | 15.44594158 | +06 | 09 | 7.4943955 | . 00001292 | . 0002684 | -0.6389 | 47379.5 | 53771.3 | 29 | 0.18 | 0.24 | 3.5 |
| 0459+387 | 0459+387 | 2658 | 05 | 02 | 32.49293059 | +38 | 49 | 54.9414548 | . 00011175 | . 0010086 | -0.3663 | 52408.9 | 52409.0 | 1 |  |  |  |
| 0459+135 | P 0459+135 | 1031 | 05 | 02 | 33.21951435 | +13 | 38 | 10.9588403 | . 00000798 | . 0002361 | 0.0495 | 50085.2 | 53542.8 | 6 | 0.19 | 0.19 |  |
| 0459+415 | 0459+415 | 2659 | 05 | 02 | 37.98819598 | +41 | 39 | 19.3480614 | . 00001913 | . 0002990 | -0.4285 | 52408.9 | 52409.0 | 1 |  |  |  |
| 0500-357 | 0500-357 | 2660 | 05 | 02 | 44.36653064 | -35 | 41 | 14.7908986 | . 00041394 | . 0215699 | 0.7732 | 52306.2 | 53125.9 | 3 |  |  |  |
| 0459+252 | 0459+252 | 1493 | 05 | 02 | 58.47475585 | +25 | 16 | 25.2756415 | . 00001620 | . 0003770 | 0.0279 | 54124.9 | 56498.6 | 2 | 0.18 | 0.21 | 3.0 |
| 0500+019 | 0500+019 | 141 | 05 | 03 | 21.19718285 | +02 | 03 | 4.6764606 | . 00001244 | . 0002793 | -0.4070 | 47255.1 | 52403.1 | 17 | 0.10 | 0.11 | 4.3 |
| 0501-215 | 0501-215 | 2661 | 05 | 03 | 48.08956231 | -21 | 28 | 31.3344804 | . 00017865 | . 0091410 | -0.2175 | 52408.8 | 52408.9 | 1 |  |  |  |
| 0500+443 | 0500+443 | 2662 | 05 | 03 | 50.22393803 | +44 | 24 | 39.3815198 | . 00002859 | . 0003914 | -0.3707 | 52408.9 | 52409.0 | 1 |  |  |  |
| 0501-067 | 0501-067 | 2663 | 05 | 03 | 56.05016167 | -06 | 38 | 3.5193617 | . 00108955 | . 0277467 | -0.9635 | 53572.6 | 53572.7 | 1 |  |  |  |
| 0500+339 | 0500+339 | 2664 | 05 | 03 | 56.78503902 | +34 | 03 | 28.1153113 | . 00031415 | . 0023728 | 0.2971 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0503-608 | P 0503-608 | 759 | 05 | 04 | 1.70112925 | -60 | 49 | 52.5394518 | . 00003330 | . 0002284 | 0.4328 | 48110.0 | 54706.3 | 17 |  |  |  |
| 0502-152 | 0502-152 | 1494 | 05 | 04 | 28.79717186 | -15 | 12 | 26.8505783 | . 00005663 | . 0016106 | -0.3756 | 54853.1 | 54853.2 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation EpochMJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0502+049 | P 0502+049 | 142 | 05 | 05 | 23.18472404 | +04 | 59 | 42.7243653 | . 00000427 | . 0000787 | -0.1803 | 47379.5 | 56684.1 | 95 | 0.40 | 0.32 | 3.4 |
| 0503-043 | 0503-043 | 2665 | 05 | 05 | 51.23832999 | -04 | 19 | 26.6178644 | . 00009348 | . 0034039 | 0.0787 | 54112.2 | 54112.2 | 1 |  |  |  |
| 0503-163 | 0503-163 | 1495 | 05 | 05 | 57.16065621 | -16 | 15 | 58.0075849 | . 00007492 | . 0023845 | -0.8017 | 53560.6 | 53560.7 | 1 |  |  |  |
| 0503+216 | 0503+216 | 1496 | 05 | 06 | 34.03335663 | +21 | 41 | 0.1597781 | . 00002082 | . 0005740 | -0.1507 | 53561.6 | 53561.8 | 1 |  |  |  |
| 0506-612 | P 0506-61 | 760 | 05 | 06 | 43.98875006 | -61 | 09 | 40.9939396 | . 00001178 | . 0000972 | 0.0462 | 48110.1 | 56741.7 | 84 |  |  |  |
| 0504-099 | 0504-099 | 2666 | 05 | 06 | 53.04674798 | -09 | 50 | 42.1717205 | . 05470580 | . 9941439 | -0.9980 | 54087.3 | 54087.3 | 1 |  |  |  |
| 0503+466 | 0503+466 | 2667 | 05 | 07 | 23.65882976 | +46 | 45 | 42.3386614 | . 00002639 | . 0005160 | -0.2157 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0503+608 | 0503+608 | 2668 | 05 | 08 | 27.25942335 | +60 | 56 | 27.3366813 | . 00007193 | . 0004833 | 0.0279 | 53503.0 | 56749.2 | 2 |  |  |  |
| 0454+844 | 0454+844 | 676 | 05 | 08 | 42.36350322 | +84 | 32 | 4.5440565 | . 00001499 | . 0000550 | -0.0577 | 45301.0 | 56463.7 | 335 | 0.19 |  | 2.9 |
| 0505+354 | 0505+354 | 2669 | 05 | 09 | 5.84612778 | +35 | 28 | 17.2863872 | . 00002710 | . 0006221 | 0.0270 | 50242.7 | 50242.8 | 1 |  |  |  |
| 0506+056 | 0506+056 | 1265 | 05 | 09 | 25.96448317 | +05 | 41 | 35.3333472 | . 00000900 | . 0002509 | 0.0837 | 49913.7 | 56701.2 | 3 | 0.49 | 0.29 |  |
| 0506+101 | P 0506+101 | 677 | 05 | 09 | 27.45706560 | +10 | 11 | 44.6000879 | . 00000380 | . 0000711 | -0.1585 | 46757.4 | 56770.4 | 153 | 0.33 | 0.37 | 1.3 |
| 0507+179 | P 0507+17 | 678 | 05 | 10 | 2.36913125 | +18 | 00 | 41.5815931 | . 00000440 | . 0000723 | -0.2392 | 46336.5 | 56701.4 | 109 | 0.60 | 0.57 | 2.9 |
| 0508-317 | 0508-317 | 1497 | 05 | 10 | 46.34090195 | -31 | 42 | 53.9294443 | . 00002091 | . 0007641 | -0.2594 | 53523.8 | 53523.8 | 1 |  |  |  |
| 0508+138 | 0508+138 | 1033 | 05 | 11 | 38.31968904 | +13 | 57 | 19.1936733 | . 00000684 | . 0002058 | -0.0907 | 50085.2 | 56707.0 | 34 | 0.26 | 0.17 |  |
| 0508+264 | 0508+264 | 2670 | 05 | 11 | 50.37151126 | +26 | 31 | 54.8662045 | . 00003393 | . 0011756 | 0.1986 | 54112.2 | 54112.3 | 1 |  |  |  |
| 0509+011 | 0509+011 | 2671 | 05 | 11 | 57.61254497 | +01 | 10 | 49.4338298 | . 00012020 | . 0032326 | -0.4119 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0509+205 | J0512+20 | 2672 | 05 | 12 | 39.07523422 | +20 | 37 | 42.8040305 | . 00002144 | . 0006042 | 0.0441 | 53560.7 | 56162.7 | 2 |  |  |  |
| 0509+152 | P 0509+152 | 2673 | 05 | 12 | 41.01286852 | +15 | 17 | 23.4795456 | . 00004319 | . 0006590 | 0.4468 | 50085.2 | 50156.1 | 2 |  |  |  |
| 0509+293 | 0509+293 | 1498 | 05 | 12 | 42.20586730 | +29 | 27 | 3.6107872 | . 00004651 | . 0008145 | 0.4337 | 53561.6 | 53561.8 | 1 |  |  |  |
| 0509+406 | 0509+406 | 2674 | 05 | 12 | 52.54281217 | +40 | 41 | 43.6205213 | . 00001519 | . 0001964 | -0.4379 | 52408.9 | 52409.0 | 1 |  |  |  |
| 0511+009 | 0511+009 | 2675 | 05 | 13 | 40.03254092 | +01 | 00 | 21.6537040 | . 00002328 | . 0007373 | -0.0946 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0511-203 | 0511-203 | 2676 | 05 | 13 | 42.85847553 | -20 | 16 | 11.4911160 | . 00007338 | . 0033116 | -0.3410 | 54087.3 | 54087.3 | 1 |  |  |  |
| 0511-220 | P 0511-220 | 143 | 05 | 13 | 49.11432362 | -21 | 59 | 16.0921246 | . 00000995 | . 0001987 | -0.6796 | 46797.4 | 53854.1 | 39 | 0.28 | 0.65 | 2.8 |
| 0512-205 | 0512-205 | 1499 | 05 | 14 | 17.34744969 | -20 | 29 | 20.5111238 | . 00003093 | . 0008325 | -0.7204 | 53552.7 | 53552.8 | 1 |  |  |  |
| 0510+559 | 0510+559 | 2677 | 05 | 14 | 18.69965182 | +56 | 02 | 11.0539736 | . 00017517 | . 0010825 | 0.1447 | 49576.5 | 54664.2 | 2 | 0.21 |  |  |
| 0515-674 | 0515-674 | 2678 | 05 | 15 | 37.53673440 | -67 | 21 | 27.8400586 | . 00461711 | . 0161873 | 0.6055 | 48589.5 | 48589.8 | 1 |  |  |  |
| 0514-459 | 0514-459 | 1500 | 05 | 15 | 45.25021134 | -45 | 56 | 43.1958984 | . 00006144 | . 0024899 | 0.4863 | 54942.9 | 54943.0 | 1 |  |  |  |
| 0514-161 | 0514-161 | 2679 | 05 | 16 | 15.92934601 | -16 | 03 | 7.6346403 | . 00002798 | . 0008008 | -0.0800 | 50631.6 | 54482.0 | 2 |  |  |  |
| 0517-726 | 0517-726 | 761 | 05 | 16 | 37.71901557 | -72 | 37 | 7.4661263 | . 00024800 | . 0008520 | 0.8235 | 48589.5 | 53143.5 | 5 |  |  |  |
| 0513+276 | 0513+276 | 1501 | 05 | 16 | 40.47721370 | +27 | 43 | 10.2774384 | . 00005888 | . 0009531 | 0.3932 | 53125.8 | 53126.0 | 1 |  |  |  |
| 0516-621 | 0516-621 | 762 | 05 | 16 | 44.92618524 | -62 | 07 | 5.3892892 | . 00001075 | . 0000994 | 0.0804 | 48589.5 | 56709.6 | 36 |  |  |  |
| 0514+109 | 0514+109 | 2680 | 05 | 16 | 46.64627681 | +10 | 57 | 54.7867489 | . 00002045 | . 0007050 | 0.1609 | 49913.7 | 54482.6 | 2 |  |  |  |
| 0514+074 | 0514+074 | 2681 | 05 | 16 | 56.36469255 | +07 | 32 | 53.2507329 | . 00002460 | . 0006453 | -0.1497 | 53561.7 | 55616.2 | 2 |  |  |  |
| 0514-156 | 0514-156 | 2682 | 05 | 16 | 57.18539059 | -15 | 37 | 10.3678280 | . 00003362 | . 0012207 | 0.3931 | 53572.6 | 55966.2 | 2 |  |  |  |
| 0515-179 | 0515-179 | 1502 | 05 | 17 | 24.04696564 | -17 | 56 | 24.1479328 | . 00008814 | . 0025890 | -0.4500 | 53561.7 | 53561.7 | 1 |  |  |  |
| 0515-053 | 0515-053 | 1503 | 05 | 17 | 28.11016203 | -05 | 20 | 40.8414335 | . 00002061 | . 0007526 | 0.1124 | 53523.8 | 53560.7 | 2 |  |  |  |
| 0513+455 | 0513+455 | 2683 | 05 | 17 | 28.89947835 | +45 | 37 | 4.8649900 | . 00003021 | . 0004079 | 0.0003 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0515+067 | P 0515+067 | 2684 | 05 | 17 | 51.34416267 | +06 | 48 | 3.2102841 | . 00002209 | . 0006203 | -0.2040 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0515+208 | 0515+208 | 1034 | 05 | 18 | 3.82451592 | +20 | 54 | 52.4974207 | . 00000436 | . 0000867 | -0.0662 | 50085.2 | 56734.7 | 62 | 0.24 | 0.26 |  |
| 0514+330 | 0514+330 | 1035 | 05 | 18 | 5.14244455 | +33 | 06 | 13.3649265 | . 00002584 | . 0005647 | -0.5292 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0516-249 | 0516-249 | 2685 | 05 | 18 | 6.05152968 | -24 | 55 | 1.9108250 | . 00042615 | . 0080324 | 0.3459 | 54112.2 | 54112.2 | 1 |  |  |  |
| 0514+474 | 0514+474 | 2686 | 05 | 18 | 12.08982827 | +47 | 30 | 55.5283215 | . 00004819 | . 0006145 | -0.3033 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0516+087 | 0516+087 | 1504 | 05 | 19 | 10.81112964 | +08 | 48 | 56.7349145 | . 00000998 | . 0003449 | -0.0216 | 53133.8 | 53133.9 | 1 |  |  |  |
| 0518+165 | 3C 138 | 145 | 05 | 21 | 9.88595015 | +16 | 38 | 22.0515047 | . 00001206 | . 0001929 | -0.0896 | 49254.4 | 55306.7 | 15 |  | 0.15 | 4.1 |
| 0519-176 | 0519-176 | 1505 | 05 | 21 | 23.55741458 | -17 | 37 | 30.1850362 | . 00005788 | . 0021202 | -0.4954 | 53560.6 | 53560.7 | 1 |  |  |  |
| 0518+211 | 0518+211 | 2687 | 05 | 21 | 45.96584722 | +21 | 12 | 51.4516746 | . 00003293 | . 0007183 | -0.3274 | 50085.3 | 50156.2 | 2 |  |  |  |
| 0519+011 | 0519+011 | 2688 | 05 | 22 | 17.46745290 | +01 | 13 | 31.1857634 | . 00002251 | . 0006631 | 0.0471 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0522-611 | P 0522-611 | 763 | 05 | 22 | 34.42549569 | -61 | 07 | 57.1335942 | . 00001766 | . 0001527 | 0.3039 | 47625.5 | 56538.3 | 24 |  |  |  |
| 0520-165 | 0520-165 | 1506 | 05 | 22 | 44.65497238 | -16 | 27 | 52.4049704 | . 00001980 | . 0007437 | 0.0591 | 53561.7 | 53561.8 | 1 | 0.09 | 0.10 |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0519+142 | 0519+142 | 1507 | 05 | 22 | 45.14658845 | +14 | 15 | 29.2838993 | . 00016025 | . 0015992 | 0.0096 | 50156.0 | 54314.7 | 2 |  |  |  |
| 0521-403 | 0521-403 | 2689 | 05 | 22 | 54.11513966 | -40 | 20 | 30.9402947 | . 00002892 | . 0005764 | 0.1182 | 55112.4 | 55112.5 | 1 |  |  |  |
| 0521-365 | P 0521-36 | 146 | 05 | 22 | 57.98464010 | -36 | 27 | 30.8513189 | . 00000549 | . 0000979 | 0.0592 | 48110.0 | 56638.7 | 151 |  | 0.99 | 3.6 |
| 0518+600 | 0518+600 | 2690 | 05 | 23 | 11.00797200 | +60 | 07 | 45.7158741 | . 00004328 | . 0004811 | -0.1273 | 53126.1 | 56638.5 | 3 |  |  |  |
| 0521-262 | 0521-262 | 2691 | 05 | 23 | 18.46955779 | -26 | 14 | 9.5543199 | . 00002469 | . 0007345 | -0.0578 | 50631.6 | 56439.4 | 5 |  |  |  |
| 0520+411 | 0520+411 | 2692 | 05 | 23 | 55.78024693 | +41 | 13 | 50.8101468 | . 00003026 | . 0004847 | 0.1461 | 50242.7 | 50242.8 | 1 |  |  |  |
| 0518+705 | 0518+705 | 1036 | 05 | 24 | 13.43337003 | +70 | 34 | 52.9057661 | . 00008012 | . 0004757 | 0.0118 | 54087.1 | 54087.3 | 1 |  |  |  |
| 0522-283 | 0522-283 | 2693 | 05 | 24 | 54.63029879 | -28 | 18 | 41.6188569 | . 00002747 | . 0011227 | -0.1140 | 54112.2 | 54112.3 | 1 |  |  |  |
| 0523-236 | 0523-236 | 1508 | 05 | 25 | 6.50588663 | -23 | 38 | 10.8063348 | . 00002925 | . 0006804 | -0.5298 | 53552.7 | 53552.8 | 1 |  |  |  |
| 0524-460 | P 0524-460 | 764 | 05 | 25 | 31.40016085 | -45 | 57 | 54.6850627 | . 00001452 | . 0001897 | 0.1129 | 49749.9 | 56504.2 | 27 |  |  |  |
| 0524-485 | 0524-485 | 2694 | 05 | 26 | 16.67132098 | -48 | 30 | 36.7917117 | . 00001217 | . 0001838 | 0.3002 | 53223.1 | 56538.1 | 23 |  |  |  |
| 0524-237 | 0524-237 | 1509 | 05 | 26 | 48.38542697 | -23 | 42 | 55.8591365 | . 00007142 | . 0022015 | 0.5529 | 54656.8 | 54657.7 | 1 |  |  |  |
| 0525-231 | 0525-231 | 1510 | 05 | 27 | 18.60819712 | -23 | 07 | 36.9985626 | . 00003132 | . 0010238 | 0.3536 | 54656.8 | 54657.7 | 1 |  |  |  |
| 0525-100 | 0525-100 | 4065 | 05 | 27 | 24.06071718 | -10 | 02 | 57.2700265 | . 00006602 | . 0015699 | 0.0433 | 56204.4 | 56204.6 | 1 |  |  |  |
| 0524+034 | J0527+0331 | 1037 | 05 | 27 | 32.70544287 | +03 | 31 | 31.5166109 | . 00000419 | . 0000826 | -0.0963 | 49913.7 | 56758.7 | 79 | 0.38 | 0.38 | 1.1 |
| 0528-654 | HD36705 | 2695 | 05 | 28 | 44.78766773 | -65 | 26 | 56.1367568 | . 00236291 | . 0092610 | 0.6359 | 48589.4 | 48589.8 | 1 |  |  |  |
| 0530-727 | P 0530-728 | 765 | 05 | 29 | 30.04219919 | -72 | 45 | 28.5074210 | . 00002042 | . 0001125 | 0.0230 | 47625.5 | 56555.2 | 53 |  |  |  |
| 0527-053 | 0527-053 | 1511 | 05 | 29 | 53.53347546 | -05 | 19 | 41.6175520 | . 00003488 | . 0009270 | 0.1332 | 53561.7 | 55847.6 | 2 | 0.12 | 0.13 |  |
| 0527-253 | 0527-253 | 1512 | 05 | 29 | 57.06739627 | -25 | 15 | 58.9325776 | . 00001683 | . 0003661 | -0.3888 | 54818.2 | 54818.3 | 1 |  |  |  |
| 0521+793 | 0521+793 | 4066 | 05 | 30 | 7.08262831 | +79 | 20 | 53.6667951 | . 11350325 | . 0650201 | 0.9486 | 56392.9 | 56392.9 | 1 |  |  |  |
| 0528-250 | 0528-250 | 147 | 05 | 30 | 7.96278869 | -25 | 03 | 29.8993546 | . 00000671 | . 0001705 | -0.2302 | 48643.8 | 56734.4 | 22 |  |  |  |
| 0526+373 | 0526+373 | 2696 | 05 | 30 | 12.54928312 | +37 | 23 | 32.6194889 | . 00004260 | . 0006689 | -0.0773 | 52409.0 | 52409.0 | 1 |  |  |  |
| 0528+134 | P 0528+134 | 148 | 05 | 30 | 56.41674752 | +13 | 31 | 55.1495017 | . 00000336 | . 0000512 | -0.0149 | 44203.1 | 56749.7 | 2000 | 1.29 | 0.84 | 2.6 |
| 0530-388 | 0530-388 | 2697 | 05 | 32 | 2.06164987 | -38 | 48 | 54.3285865 | . 00018679 | . 0084300 | -0.9147 | 53523.8 | 53523.9 | 1 |  |  |  |
| 0529-031 | 0529-031 | 1513 | 05 | 32 | 7.51924953 | -03 | 07 | 7.0382917 | . 00002165 | . 0005965 | 0.4385 | 53502.8 | 53572.7 | 2 |  |  |  |
| 0529+075 | OG 050 | 766 | 05 | 32 | 38.99845049 | +07 | 32 | 43.3451634 | . 00014447 | . 0026213 | 0.1349 | 48976.1 | 54643.4 | 4 |  |  |  |
| 0531-397 | 0531-397 | 2698 | 05 | 32 | 57.18561113 | -39 | 41 | 9.0281578 | . 00010592 | . 0040413 | -0.8003 | 52306.2 | 55483.5 | 3 |  |  |  |
| 0529+483 | J0533+4822 | 1038 | 05 | 33 | 15.86578777 | +48 | 22 | 52.8078043 | . 00000349 | . 0000518 | 0.0055 | 50305.6 | 56776.7 | 213 | 0.81 | 0.53 |  |
| 0530+421 | 0530+421 | 1039 | 05 | 33 | 56.48496761 | +42 | 10 | 54.4213410 | . 00003415 | . 0006955 | 0.2158 | 50242.7 | 50242.8 | 1 |  |  |  |
| 0532-378 | 0532-378 | 1514 | 05 | 34 | 17.48657664 | -37 | 47 | 25.5925304 | . 00002624 | . 0006927 | -0.2105 | 54853.2 | 54853.2 | 1 |  |  |  |
| 0534-611 | 0534-611 | 767 | 05 | 34 | 35.77247317 | -61 | 06 | 7.0730454 | . 00001708 | . 0001493 | 0.1111 | 48589.5 | 56504.5 | 24 |  |  |  |
| 0531+194 | 0531+194 | 2699 | 05 | 34 | 44.51702701 | +19 | 27 | 21.4692096 | . 00424082 | . 0327591 | -0.8696 | 52409.0 | 56036.1 | 2 |  |  |  |
| 0532+506 | 0532+506 | 1216 | 05 | 36 | 20.23191871 | +50 | 38 | 26.2516006 | . 00001370 | . 0001938 | 0.1018 | 49576.5 | 53306.6 | 3 |  |  |  |
| 0534-201 | 0534-201 | 2700 | 05 | 36 | 22.30101097 | -20 | 05 | 31.3924675 | . 00012984 | . 0045189 | 0.6585 | 52408.9 | 53125.9 | 2 |  |  |  |
| 0534-340 | 0534-340 | 1040 | 05 | 36 | 28.43237145 | -34 | 01 | 11.4683794 | . 00000706 | . 0001153 | 0.1521 | 52306.1 | 56639.6 | 57 |  | 0.30 |  |
| 0533+097 | 0533+097 | 2701 | 05 | 36 | 31.97789148 | +09 | 44 | 20.6290432 | . 00532074 | . 0925086 | -0.9795 | 53561.7 | 53561.8 | 1 |  |  |  |
| 0533+446 | 0533+446 | 2702 | 05 | 37 | 30.06063148 | +44 | 41 | 3.5397090 | . 00004631 | . 0006245 | 0.0260 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0537-441 | P 0537-441 | 149 | 05 | 38 | 50.36155487 | -44 | 05 | 8.9390246 | . 00000358 | . 0000545 | -0.0251 | 43809.4 | 56762.7 | 929 |  | 1.68 | 2.7 |
| 0534+510 | 0534+510 | 1515 | 05 | 38 | 54.79522776 | +51 | 07 | 23.4069086 | . 00001922 | . 0003911 | 0.2484 | 53572.6 | 53572.7 | 1 |  |  |  |
| 0537-158 | P 0537-158 | 768 | 05 | 39 | 32.01012965 | -15 | 50 | 30.3208604 | . 00000783 | . 0002452 | -0.2093 | 46806.4 | 56707.0 | 43 | 0.28 | 0.08 | 3.4 |
| 0536+145 | 0536+145 | 679 | 05 | 39 | 42.36598717 | +14 | 33 | 45.5616859 | . 00000373 | . 0000612 | -0.1058 | 46609.6 | 56717.1 | 212 | 0.34 | 0.29 | 1.4 |
| 0537-286 | 0537-286 | 769 | 05 | 39 | 54.28147323 | -28 | 39 | 55.9479932 | . 00000414 | . 0000657 | -0.0415 | 48573.4 | 56744.8 | 154 |  | 0.64 | 0.8 |
| 0537+251 | 0537+251 | 2703 | 05 | 40 | 14.34274895 | +25 | 07 | 55.3488615 | . 00003889 | . 0009923 | -0.3259 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0535+677 | 0535+677 | 2704 | 05 | 41 | 13.39703075 | +67 | 45 | 23.2725233 | . 00035246 | . 0025955 | 0.2394 | 49826.8 | 49827.0 | 1 |  |  |  |
| 0537+558 | 0537+558 | 2705 | 05 | 41 | 14.75774815 | +55 | 50 | 43.5707089 | . 00005147 | . 0008151 | -0.6415 | 54112.1 | 54112.3 | 1 |  |  |  |
| 0537+531 | 0537+531 | 1217 | 05 | 41 | 16.17405727 | +53 | 12 | 24.8348938 | . 00002098 | . 0003418 | 0.2946 | 49576.5 | 53645.8 | 8 | 0.10 |  |  |
| 0539-057 | P 0539-057 | 770 | 05 | 41 | 38.08337346 | -05 | 41 | 49.4285097 | . 00000613 | . 0001368 | -0.1196 | 49176.9 | 55545.7 | 24 | 0.68 | 0.43 | 2.8 |
| 0538+474 | 0538+474 | 2706 | 05 | 41 | 49.24549236 | +47 | 29 | 7.6108337 | . 00002329 | . 0003718 | 0.1102 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0543-735 | 0542-735 | 2707 | 05 | 41 | 50.77536058 | -73 | 32 | 15.3478935 | . 00104792 | . 0026210 | 0.0501 | 52886.7 | 53138.3 | 3 |  |  |  |
| 0540-270 | 0540-270 | 2708 | 05 | 42 | 12.71442329 | -26 | 58 | 42.6093424 | . 00072160 | . 0645365 | -0.9607 | 54818.2 | 54818.3 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation EpochMJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0538+498 | 3C 147 | 151 | 05 | 42 | 36.13789714 | +49 | 51 | 7.2338534 | . 00001063 | . 0001358 | 0.0235 | 50459.4 | 55042.4 | 16 | 0.23 |  | 4.4 |
| 0540-092 | 0540-092 | 2709 | 05 | 42 | 55.87744283 | -09 | 13 | 31.0069449 | . 00004258 | . 0009953 | 0.1580 | 53502.8 | 53502.9 | 1 |  |  |  |
| 0532+826 | 0532+826 | 1516 | 05 | 43 | 38.84718474 | +82 | 38 | 28.7643367 | . 00028235 | . 0010653 | 0.0799 | 53560.9 | 53561.7 | 1 |  |  |  |
| 0540+456 | 0540+456 | 2710 | 05 | 44 | 1.16614859 | +45 | 41 | 2.7926999 | . 00014129 | . 0015695 | -0.2664 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0542-227 | 0542-227 | 1517 | 05 | 44 | 7.56709678 | -22 | 41 | 9.9827576 | . 00001214 | . 0004207 | -0.3425 | 53523.8 | 53560.7 | 2 |  |  |  |
| 0540+529 | 0540+529 | 1518 | 05 | 44 | 14.07590055 | +52 | 58 | 6.5089664 | . 00032540 | . 0037695 | 0.0950 | 54087.2 | 55041.8 | 2 |  |  |  |
| 0542+112 | 0542+112 | 2711 | 05 | 44 | 52.19968094 | +11 | 18 | 49.9251065 | . 00013084 | . 0020096 | -0.1326 | 49913.8 | 56547.6 | 2 |  |  |  |
| 0544+123 | 0544+123 | 2712 | 05 | 47 | 6.27628911 | +12 | 23 | 46.2448331 | . 00002971 | . 0005825 | -0.0482 | 54112.2 | 54112.3 | 1 |  |  |  |
| 0544+273 | 0544+273 | 680 | 05 | 47 | 34.14892452 | +27 | 21 | 56.8425591 | . 00000373 | . 0000622 | -0.0453 | 46609.6 | 56776.1 | 167 | 0.37 | 0.30 | 2.1 |
| 0547-278 | 0547-278 | 1519 | 05 | 49 | 32.34717636 | -27 | 52 | 38.8578689 | . 00009228 | . 0030555 | -0.8104 | 53561.7 | 53561.8 | 1 |  |  |  |
| 0546+308 | 0546+308 | 1520 | 05 | 49 | 54.18067886 | +30 | 54 | 47.6009034 | . 00020919 | . 0022038 | 0.1173 | 53551.8 | 53552.7 | 1 |  |  |  |
| 0549-575 | 0549-575 | 2713 | 05 | 50 | 9.58018131 | -57 | 32 | 24.3964767 | . 00001366 | . 0001703 | 0.2534 | 53223.1 | 56702.6 | 24 |  |  |  |
| 0547+234 | 0547+234 | 1041 | 05 | 50 | 47.39089118 | +23 | 26 | 48.1769235 | . 00000958 | . 0002023 | -0.0922 | 52306.1 | 56152.4 | 32 | 0.23 | 0.14 | 2.0 |
| 0548+084 | 0548+084 | 1521 | 05 | 51 | 11.22933398 | +08 | 29 | 11.2221633 | . 00005446 | . 0011057 | 0.3744 | 53523.8 | 53572.7 | 2 | 0.16 | 0.12 |  |
| 0549-191 | 0549-191 | 1522 | 05 | 51 | 55.26031926 | -19 | 09 | 20.9704141 | . 00006138 | . 0017157 | 0.0607 | 53560.7 | 53560.7 | 1 |  |  |  |
| 0548+378 | J0552+3754 | 1042 | 05 | 52 | 17.93692077 | +37 | 54 | 25.2823895 | . 00000579 | . 0000898 | 0.0831 | 50242.7 | 56701.0 | 52 | 0.42 | 0.33 | 1.8 |
| 0549+192 | 0549+192 | 1043 | 05 | 52 | 25.88501006 | +19 | 13 | 40.2680600 | . 00002499 | . 0005688 | -0.5482 | 52306.1 | 53946.6 | 8 | 0.10 | 0.09 |  |
| 0550+032 | P 0550+032 | 1044 | 05 | 52 | 50.10150005 | +03 | 13 | 27.2427008 | . 00004002 | . 0008542 | -0.1718 | 49913.7 | 49914.6 | 1 | 0.80 | 0.30 |  |
| 0546+726 | 0546+726 | 2714 | 05 | 52 | 52.99981155 | +72 | 40 | 45.1130708 | . 00065384 | . 0022787 | -0.7037 | 52408.9 | 52409.1 | 1 |  |  |  |
| 0551-086 | 0551-086 | 1523 | 05 | 53 | 41.89161834 | -08 | 40 | 1.9043085 | . 00023495 | . 0050711 | -0.6607 | 53561.7 | 53561.8 | 1 |  |  |  |
| 0548+689 | 0548+689 | 2715 | 05 | 54 | 0.80743169 | +68 | 57 | 54.4454922 | . 00052341 | . 0041850 | 0.5022 | 49826.8 | 54087.4 | 2 |  |  |  |
| 0550+356 | 0550+356 | 2716 | 05 | 54 | 9.52926668 | +35 | 41 | 31.4009948 | . 00007540 | . 0014969 | -0.7284 | 54112.2 | 54112.3 | 1 |  |  |  |
| 0552+398 | DA 193 | 152 | 05 | 55 | 30.80561195 | +39 | 48 | 49.1649980 | . 00000336 | . 0000504 | 0.0340 | 43808.6 | 56770.7 | 2233 | 1.71 | 0.95 | 2.5 |
| 0552+393 | 0552+393 | 4124 | 05 | 55 | 56.61769565 | +39 | 22 | 7.7984491 | . 00001270 | . 0001961 | 0.0723 | 55538.2 | 55538.5 | 1 |  |  |  |
| 0554+242 | 0554+242 | 771 | 05 | 57 | 4.71358252 | +24 | 13 | 55.2988096 | . 00000494 | . 0001070 | 0.1037 | 50065.1 | 56317.2 | 56 | 0.32 | 0.13 | 2.9 |
| 0554+343 | 0554+343 | 2717 | 05 | 58 | 0.08860351 | +34 | 18 | 48.3873699 | . 00001896 | . 0003789 | 0.2561 | 53502.8 | 53503.0 | 1 |  |  |  |
| 0555-132 | 0555-132 | 2718 | 05 | 58 | 2.54671598 | -13 | 17 | 41.1960829 | . 00001143 | . 0003722 | -0.3096 | 50575.8 | 50576.0 | 1 |  |  |  |
| 0556-009 | 0556-009 | 1524 | 05 | 58 | 44.39167071 | -00 | 55 | 6.9160012 | . 00025015 | . 0091753 | 0.6214 | 53523.8 | 53523.9 | 1 |  |  |  |
| 0555+378 | 0555+378 | 2719 | 05 | 59 | 0.45212382 | +37 | 49 | 55.5198300 | . 00003105 | . 0006700 | -0.6337 | 50241.8 | 50241.9 | 1 |  |  |  |
| 0557-454 | 0557-454 | 2720 | 05 | 59 | 11.54441240 | -45 | 29 | 40.3062602 | . 00003783 | . 0012339 | 0.2104 | 55413.6 | 55413.7 | 1 |  |  |  |
| 0554+580 | 0554+580 | 2721 | 05 | 59 | 13.39422099 | +58 | 04 | 3.4467679 | . 00012270 | . 0009613 | 0.4841 | 49576.5 | 49576.6 | 1 |  |  |  |
| 0556+238 | 0556+238 | 681 | 05 | 59 | 32.03313272 | +23 | 53 | 53.9267721 | . 00000344 | . 0000543 | -0.0208 | 46610.9 | 56772.4 | 643 | 0.43 | 0.29 | 1.3 |
| 0557-182 | 0557-182 | 2722 | 05 | 59 | 46.40352391 | -18 | 17 | 47.5701009 | . 00002938 | . 0011478 | -0.3934 | 53560.7 | 55916.4 | 2 |  |  |  |
| 0557-001 | 0557-001 | 2723 | 06 | 00 | 3.50693446 | -00 | 05 | 59.1234794 | . 00969387 | . 1813424 | -0.9883 | 53551.8 | 53561.8 | 2 |  |  |  |
| 0558-396 | 0558-396 | 2724 | 06 | 00 | 31.41748769 | -39 | 37 | 2.1970104 | . 00002694 | . 0010308 | 0.3184 | 54489.2 | 54489.2 | 1 |  |  |  |
| 0559+422 | 0559+422 | 2725 | 06 | 02 | 58.94406660 | +42 | 12 | 10.0092078 | . 00001529 | . 0003281 | -0.4195 | 50241.8 | 50241.9 | 1 |  |  |  |
| 0600+177 | 0600+177 | 682 | 06 | 03 | 9.13026049 | +17 | 42 | 16.8105266 | . 00000464 | . 0000828 | -0.3607 | 46336.4 | 56713.7 | 96 | 0.20 | 0.24 | 2.8 |
| 0600+063 | 0600+063 | 2726 | 06 | 03 | 14.35547708 | +06 | 22 | 27.9496548 | . 00021696 | . 0037509 | 0.8236 | 53502.8 | 53503.0 | 1 |  |  |  |
| 0600+219 | 0600+219 | 1266 | 06 | 03 | 51.55700268 | +21 | 59 | 37.6990057 | . 00001351 | . 0003745 | -0.2267 | 52408.9 | 54076.7 | 3 |  |  |  |
| 0600+299 | 0600+299 | 2727 | 06 | 03 | 55.85193645 | +29 | 57 | 5.3586820 | . 00006802 | . 0013344 | 0.0301 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0601-172 | 0601-172 | 2728 | 06 | 03 | 57.73244922 | -17 | 16 | 28.2185108 | . 00001234 | . 0003648 | -0.0911 | 50631.8 | 54643.5 | 2 |  |  |  |
| 0602-424 | 0602-424 | 2729 | 06 | 04 | 25.17469046 | -42 | 25 | 30.0959384 | . 00005425 | . 0017176 | -0.5660 | 52306.2 | 52408.9 | 2 |  | 0.34 |  |
| 0600+442 | 0600+442 | 2730 | 06 | 04 | 35.62874068 | +44 | 13 | 58.5493733 | . 00011499 | . 0011135 | -0.6242 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0602+109 | 0602+109 | 2731 | 06 | 04 | 49.36966354 | +10 | 55 | 40.3732338 | . 00020394 | . 0019051 | 0.0166 | 49913.7 | 49914.6 | 1 |  |  |  |
| 0601+245 | 0601+245 | 1045 | 06 | 04 | 55.12137853 | +24 | 29 | 55.0364654 | . 00000565 | . 0001253 | -0.1322 | 52409.0 | 56717.1 | 63 | 0.30 | 0.16 | 3.1 |
| 0603-353 | 0603-353 | 2732 | 06 | 05 | 6.46514399 | -35 | 22 | 17.4660612 | . 00004324 | . 0014948 | -0.3673 | 52306.2 | 52408.9 | 2 |  |  |  |
| 0602+096 | 0602+096 | 2733 | 06 | 05 | 10.11311126 | +09 | 39 | 13.6129195 | . 00004824 | . 0014095 | -0.0490 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0601+578 | 0601+578 | 2734 | 06 | 05 | 42.22782422 | +57 | 53 | 16.3552406 | . 00049200 | . 0027781 | 0.3937 | 49576.6 | 49576.6 | 1 |  |  |  |
| 0602+405 | 0602+405 | 772 | 06 | 05 | 50.85537939 | +40 | 30 | 8.1034928 | . 00000880 | . 0001444 | -0.0590 | 50241.8 | 53613.4 | 7 | 0.69 | 0.38 |  |
| 0604-074 | 0604-074 | 1525 | 06 | 06 | 43.54633408 | -07 | 24 | 30.2316078 | . 00000726 | . 0002099 | 0.1110 | 53560.7 | 56701.3 | 5 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0604-004 | 0604-004 | 2735 | 06 | 06 | 57.44358992 | -00 | 24 | 57.4645163 | . 00001912 | . 0005525 | 0.0567 | 53551.8 | 56204.6 | 2 |  |  |  |
| 0605-247 | 0605-247 | 4067 | 06 | 07 | 16.33661641 | -24 | 47 | 40.9675418 | . 00145187 | . 0372197 | -0.9963 | 56162.6 | 56162.6 | 1 |  |  |  |
| 0603+476 | 0603+476 | 2736 | 06 | 07 | 23.25498545 | +47 | 39 | 46.9420610 | . 00001691 | . 0002683 | 0.0509 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0602+673 | 0602+673 | 773 | 06 | 07 | 52.67160716 | +67 | 20 | 55.4100455 | . 00000354 | . 0000507 | -0.0828 | 49750.0 | 56770.7 | 629 | 0.29 |  | 3.5 |
| 0605-085 | P 0605-08 | 158 | 06 | 07 | 59.69923424 | -08 | 34 | 49.9782063 | . 00000430 | . 0000815 | -0.2765 | 43808.7 | 56638.7 | 111 | 0.61 | 1.12 | 3.4 |
| 0605-153 | 0605-153 | 2737 | 06 | 08 | 1.53193057 | -15 | 20 | 36.9783486 | . 00004584 | . 0015626 | 0.3173 | 54112.3 | 54112.3 | 1 |  |  |  |
| 0606-387 | 0606-387 | 2738 | 06 | 08 | 11.46162193 | -38 | 47 | 26.5823347 | . 00057275 | . 0303846 | 0.7560 | 53523.9 | 53523.9 | 1 |  |  |  |
| 0606-272 | 0606-272 | 2739 | 06 | 08 | 45.23687810 | -27 | 17 | 10.8324627 | . 00005225 | . 0015130 | -0.5038 | 53502.9 | 53503.0 | 1 |  |  |  |
| 0606-223 | P 0606-223 | 1526 | 06 | 08 | 59.68684694 | -22 | 20 | 20.9566723 | . 00000411 | . 0000606 | 0.0136 | 50631.8 | 56770.6 | 160 | 0.49 | 0.53 | 2.9 |
| 0607-157 | P 0607-15 | 160 | 06 | 09 | 40.94953605 | -15 | 42 | 40.6727052 | . 00000341 | . 0000524 | -0.0162 | 43873.3 | 56637.8 | 649 | 1.56 | 2.01 | 2.2 |
| 0608-187 | 0608-187 | 2740 | 06 | 10 | 17.88609466 | -18 | 47 | 40.0922453 | . 00002826 | . 0010803 | -0.0077 | 53551.8 | 55966.2 | 2 |  |  |  |
| 0602+780 | 0602+780 | 2741 | 06 | 10 | 24.27931523 | +78 | 01 | 36.1934017 | . 00034677 | . 0019039 | 0.1224 | 54087.2 | 54087.4 | 1 |  |  |  |
| 0608-230 | 0608-230 | 1527 | 06 | 10 | 38.78737229 | -23 | 01 | 45.8381632 | . 00016403 | . 0048636 | -0.5849 | 53560.7 | 53560.7 | 1 |  |  |  |
| 0604+728 | 0604+728 | 1528 | 06 | 10 | 48.87199264 | +72 | 48 | 53.1859303 | . 00022556 | . 0007752 | 0.0360 | 49826.8 | 54664.7 | 2 |  |  |  |
| 0609-119 | 0609-119 | 1529 | 06 | 11 | 35.06516368 | -11 | 55 | 45.8294984 | . 00013960 | . 0032054 | -0.2094 | 53561.7 | 53561.8 | 1 |  |  |  |
| 0609-284 | 0609-284 | 1530 | 06 | 11 | 51.36535285 | -28 | 27 | 59.8528379 | . 00003224 | . 0011682 | 0.4524 | 54818.3 | 54818.3 | 1 |  |  |  |
| 0607+624 | 0607+624 | 2742 | 06 | 12 | 10.32506775 | +62 | 25 | 34.0123716 | . 00025151 | . 0016792 | 0.5198 | 54112.1 | 54112.3 | 1 |  |  |  |
| 0610-436 | 0610-436 | 2743 | 06 | 12 | 28.60523001 | -43 | 37 | 48.4130952 | . 00035067 | . 0297309 | -0.2429 | 52306.2 | 52408.9 | 2 |  |  |  |
| 0610-316 | 0610-316 | 2744 | 06 | 12 | 29.66423508 | -31 | 38 | 58.1836431 | . 00017387 | . 0108234 | -0.2418 | 53133.9 | 53133.9 | 1 |  |  |  |
| 0609+413 | 0609+413 | 2745 | 06 | 12 | 51.18523276 | +41 | 22 | 37.4083141 | . 00001195 | . 0002647 | -0.3876 | 50241.8 | 50241.9 | 1 |  |  |  |
| 0610+171 | 0610+171 | 1046 | 06 | 13 | 36.36005188 | +17 | 08 | 24.9456548 | . 00002515 | . 0007545 | 0.2367 | 52409.0 | 52758.6 | 2 |  |  |  |
| 0610+260 | 3C 154 | 774 | 06 | 13 | 50.13917851 | +26 | 04 | 36.7199061 | . 00000876 | . 0001502 | -0.1809 | 50065.1 | 54142.9 | 22 | 0.15 | 0.17 |  |
| 0611+131 | 0611+131 | 683 | 06 | 13 | 57.69275171 | +13 | 06 | 45.4009020 | . 00000442 | . 0001055 | -0.1498 | 47379.6 | 56717.1 | 68 | 0.30 | 0.13 | 2.2 |
| 0612-255 | 0612-255 | 1531 | 06 | 14 | 17.21085623 | -25 | 36 | 53.5254320 | . 00001912 | . 0006964 | -0.3287 | 53560.7 | 53560.7 | 1 |  |  |  |
| 0609+607 | 0609+607 | 775 | 06 | 14 | 23.86617684 | +60 | 46 | 21.7559844 | . 00000769 | . 0000804 | -0.1452 | 49576.5 | 55138.6 | 20 | 0.21 |  | 3.3 |
| 0610+510 | 0610+510 | 1047 | 06 | 14 | 49.15928133 | +51 | 02 | 13.1192645 | . 00004539 | . 0009529 | -0.1422 | 50305.6 | 50305.7 | 1 | 0.12 |  |  |
| 0611+483 | 0611+483 | 2746 | 06 | 15 | 4.05333046 | +48 | 19 | 4.7296676 | . 00002343 | . 0003904 | 0.3078 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0613-030 | 0613-030 | 1532 | 06 | 16 | 7.94136102 | -03 | 06 | 48.8532735 | . 00003905 | . 0013659 | 0.2409 | 53522.9 | 53523.8 | 1 |  |  |  |
| 0614-349 | P 0614-349 | 1048 | 06 | 16 | 35.98065055 | -34 | 56 | 16.5484711 | . 00061247 | . 0167660 | -0.0946 | 53068.0 | 53503.0 | 2 |  |  |  |
| 0614-106 | 0614-106 | 1533 | 06 | 16 | 41.80760104 | -10 | 41 | 8.4532091 | . 00005376 | . 0012310 | -0.2049 | 53551.8 | 53552.7 | 1 |  |  |  |
| 0614-219 | 0614-219 | 1534 | 06 | 17 | 2.04271881 | -22 | 00 | 28.1717391 | . 00001996 | . 0006733 | -0.5303 | 53551.8 | 53552.8 | 1 |  |  |  |
| 0613+570 | J0617+5701 | 1049 | 06 | 17 | 16.92256381 | +57 | 01 | 16.4232881 | . 00000640 | . 0000693 | -0.0365 | 49576.5 | 56751.7 | 57 | 0.19 |  |  |
| 0615-365 | P 0615-365 | 1535 | 06 | 17 | 32.32868056 | -36 | 34 | 14.8571081 | . 00115506 | . 0235357 | -0.8199 | 52306.2 | 54943.1 | 3 |  |  |  |
| 0615-172 | 0615-172 | 1536 | 06 | 17 | 33.41831615 | -17 | 15 | 25.0888066 | . 00026285 | . 0044017 | 0.6867 | 53572.7 | 53572.7 | 1 |  |  |  |
| 0610+782 | 0610+782 | 1537 | 06 | 17 | 56.93292804 | +78 | 16 | 7.3942902 | . 00018509 | . 0003517 | 0.3741 | 53523.0 | 53523.7 | 1 |  |  |  |
| 0614+463 | 0614+463 | 1538 | 06 | 18 | 8.20367668 | +46 | 20 | 16.2124382 | . 00002381 | . 0004789 | 0.2337 | 53560.6 | 53560.8 | 1 |  |  |  |
| 0614+421 | 0614+421 | 2747 | 06 | 18 | 8.61994660 | +42 | 07 | 59.8461130 | . 00003545 | . 0007602 | -0.7004 | 54087.2 | 54087.4 | 1 |  |  |  |
| 0616-244 | 0616-244 | 2748 | 06 | 18 | 22.65525150 | -24 | 26 | 37.9465114 | . 00005475 | . 0014842 | -0.5625 | 55370.8 | 55371.7 | 1 |  |  |  |
| 0621-787 | 0621-787 | 2749 | 06 | 18 | 30.15865742 | -78 | 43 | 2.1417852 | . 00011561 | . 0006253 | 0.3307 | 54723.0 | 54723.4 | 1 |  |  |  |
| 0616-116 | 0616-116 | 1539 | 06 | 19 | 4.10256706 | -11 | 40 | 54.8893128 | . 00002444 | . 0007608 | 0.3096 | 53152.8 | 53152.9 | 1 |  |  |  |
| 0616+076 | 0616+076 | 1540 | 06 | 19 | 9.97102200 | +07 | 36 | 41.2204242 | . 00019174 | . 0015726 | 0.4205 | 53125.9 | 53125.9 | 1 |  |  |  |
| 0617+210 | 0617+210 | 2750 | 06 | 20 | 19.52839319 | +21 | 02 | 29.5470840 | . 00001752 | . 0004735 | -0.3686 | 50085.2 | 56638.5 | 5 |  |  |  |
| 0618-284 | 0618-284 | 2751 | 06 | 20 | 29.35874871 | -28 | 27 | 36.0847890 | . 00002543 | . 0009080 | 0.4010 | 53502.9 | 53503.0 | 1 |  |  |  |
| 0618-252 | 0618-252 | 2752 | 06 | 20 | 32.11697448 | -25 | 15 | 17.4852765 | . 00001214 | . 0004322 | -0.1421 | 50631.8 | 50687.7 | 2 |  |  |  |
| 0618-061 | 0618-061 | 2753 | 06 | 21 | 10.35787925 | -06 | 09 | 54.2867486 | . 01606545 | . 2350221 | 0.9955 | 53523.8 | 53523.8 | 1 |  |  |  |
| 0614+761 | 0614+761 | 2754 | 06 | 21 | 18.79290099 | +76 | 05 | 4.5581420 | . 00229232 | . 0039837 | -0.3332 | 49826.8 | 49827.0 | 1 |  |  |  |
| 0620-194 | 0620-194 | 2755 | 06 | 22 | 28.53704603 | -19 | 27 | 18.1763161 | . 00009382 | . 0044931 | -0.7326 | 54112.2 | 54112.3 | 1 |  |  |  |
| 0619+334 | 0619+334 | 1541 | 06 | 22 | 52.22195455 | +33 | 26 | 10.4101022 | . 00002868 | . 0007099 | -0.3012 | 53572.7 | 53572.8 | 1 |  |  |  |
| 0620-011 | 0620-011 | 1542 | 06 | 22 | 57.94230038 | -01 | 09 | 27.1205329 | . 00011970 | . 0050876 | 0.2624 | 53152.8 | 53552.7 | 2 |  |  |  |
| 0620+227 | 0620+227 | 2756 | 06 | 23 | 17.81358561 | +22 | 41 | 35.7746801 | . 00009789 | . 0019166 | 0.3322 | 50085.4 | 56547.7 | 3 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | Observation EpochMJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0618+588 | 0618+588 | 2757 | 06 | 23 | 21.77921894 | +58 | 49 | 1.8777070 | . 00017202 | . 0011637 | 0.2729 | 49576.5 | 49576.6 | 1 |  |  |  |
| 0620+385 | 0620+385 | 1543 | 06 | 23 | 28.93955821 | +38 | 30 | 49.8085919 | . 00001769 | . 0004334 | 0.0747 | 53560.6 | 53560.8 | 1 |  |  |  |
| 0622-441 | P 0622-441 | 2758 | 06 | 23 | 31.78563433 | -44 | 13 | 2.5469089 | . 00062291 | . 0315743 | 0.5553 | 52306.2 | 52408.9 | 2 |  |  |  |
| 0620+459 | 0620+459 | 2759 | 06 | 23 | 56.51179279 | +45 | 54 | 39.5097245 | . 00012817 | . 0012060 | 0.4962 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0621-010 | 0621-010 | 2760 | 06 | 24 | 1.68516585 | -01 | 03 | 28.1209317 | . 00030422 | . 0150838 | 0.7879 | 53502.9 | 53503.0 | 1 |  |  |  |
| 0620+389 | 0620+389 | 776 | 06 | 24 | 19.02128077 | +38 | 56 | 48.7361413 | . 00000534 | . 0000824 | -0.1467 | 49391.0 | 55334.5 | 21 | 0.31 | 0.28 | 2.5 |
| 0621+446 | 0621+446 | 2761 | 06 | 25 | 18.26538736 | +44 | 40 | 1.6261945 | . 00001769 | . 0003293 | 0.1170 | 50305.6 | 56498.6 | 2 | 0.22 | 0.22 |  |
| 0622+147 | 0622+147 | 2762 | 06 | 25 | 45.92223355 | +14 | 40 | 19.7522461 | . 00006818 | . 0014520 | -0.2445 | 52409.0 | 52409.0 | 1 |  |  |  |
| 0615+820 | 0615+820 | 777 | 06 | 26 | 3.00620005 | +82 | 02 | 25.5677796 | . 00002304 | . 0000683 | -0.0458 | 48352.9 | 55118.6 | 64 | 0.26 |  | 3.5 |
| 0625-354 | 0625-354 | 2763 | 06 | 27 | 6.72937821 | -35 | 29 | 15.3398772 | . 00001906 | . 0007291 | -0.2325 | 54489.2 | 54489.3 | 1 |  |  |  |
| 0625+034 | 0625+034 | 1050 | 06 | 27 | 38.50434988 | +03 | 24 | 54.6623530 | . 15631142 | . 3963320 | -0.9999 | 53133.9 | 53133.9 | 1 |  |  |  |
| 0628-671 | 0628-671 | 2764 | 06 | 28 | 39.60782703 | -67 | 12 | 47.4062942 | . 00008083 | . 0008740 | 0.4836 | 54723.0 | 54723.4 | 1 |  |  |  |
| 0626-280 | 0626-280 | 1544 | 06 | 28 | 43.27902616 | -28 | 05 | 19.3831908 | . 00002294 | . 0007692 | -0.4227 | 53551.8 | 53561.8 | 2 |  |  |  |
| 0625+286 | 0625+286 | 1545 | 06 | 28 | 50.31893404 | +28 | 35 | 50.4293642 | . 00012520 | . 0015686 | 0.4868 | 53522.9 | 53523.8 | 1 |  |  |  |
| 0628-627 | 0628-627 | 2765 | 06 | 28 | 57.48728704 | -62 | 48 | 44.7464347 | . 00078997 | . 0023207 | 0.1664 | 52886.7 | 53138.2 | 3 |  |  |  |
| 0627-199 | P 0627-199 | 1546 | 06 | 29 | 23.76186339 | -19 | 59 | 19.7235559 | . 00000400 | . 0000674 | 0.0416 | 50631.8 | 56749.7 | 92 |  |  |  |
| 0627-050 | 0627-050 | 2766 | 06 | 29 | 55.03095377 | -05 | 05 | 0.0720465 | . 00012679 | . 0027480 | 0.1209 | 53502.9 | 53503.0 | 1 |  |  |  |
| 0627+176 | 0627+176 | 2767 | 06 | 30 | 7.25850761 | +17 | 38 | 12.9313971 | . 00001657 | . 0004975 | -0.1353 | 50085.2 | 50156.2 | 2 |  |  |  |
| 0628-133 | 0628-133 | 1547 | 06 | 30 | 53.90309222 | -13 | 23 | 34.4933799 | . 00002986 | . 0008355 | -0.1574 | 53152.8 | 53152.9 | 1 |  |  |  |
| 0628+203 | 0628+203 | 2768 | 06 | 31 | 1.06254816 | +20 | 20 | 59.2105451 | . 00002055 | . 0006719 | -0.1737 | 50085.2 | 50156.2 | 2 | 0.17 | 0.17 |  |
| 0629-418 | 0629-418 | 778 | 06 | 31 | 11.99802031 | -41 | 54 | 26.9464894 | . 00001260 | . 0002975 | 0.1777 | 47625.6 | 54706.2 | 32 |  | 0.19 |  |
| 0629-141 | 0629-141 | 1548 | 06 | 31 | 20.22617801 | -14 | 10 | 31.7429343 | . 00001282 | . 0004435 | -0.2905 | 53522.9 | 53523.8 | 1 |  |  |  |
| 0627+532 | 0627+532 | 2769 | 06 | 31 | 34.68595148 | +53 | 11 | 27.7566469 | . 00036993 | . 0018062 | 0.7772 | 49576.5 | 49576.6 | 1 |  |  |  |
| 0629-128 | 0629-128 | 2770 | 06 | 32 | 1.64488987 | -12 | 50 | 32.7821372 | . 00008260 | . 0033421 | -0.2675 | 54087.3 | 54087.3 | 1 |  |  |  |
| 0630-261 | 0630-261 | 2771 | 06 | 32 | 6.50175620 | -26 | 14 | 14.0323818 | . 00003429 | . 0011391 | -0.1051 | 53551.9 | 54440.5 | 2 |  |  |  |
| 0629+320 | 0629+320 | 1051 | 06 | 32 | 30.78278679 | +32 | 00 | 53.6331150 | . 00016466 | . 0017022 | 0.0144 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0629+160 | 0629+160 | 779 | 06 | 32 | 43.13554096 | +15 | 59 | 57.6201417 | . 00001439 | . 0004240 | -0.0040 | 50085.2 | 54125.2 | 5 |  |  |  |
| 0631-223 | 0631-223 | 1549 | 06 | 33 | 26.75334785 | -22 | 23 | 22.3537686 | . 00001311 | . 0004490 | -0.1327 | 53133.9 | 53134.0 | 1 |  |  |  |
| 0630+367 | 0630+367 | 2772 | 06 | 33 | 34.41183159 | +36 | 42 | 49.7434975 | . 00003001 | . 0004259 | 0.1506 | 53572.7 | 55616.3 | 2 |  |  |  |
| 0630+497 | 0630+497 | 2773 | 06 | 33 | 52.20666201 | +49 | 43 | 45.9242907 | . 00006096 | . 0008210 | 0.2646 | 50305.6 | 50305.7 | 1 |  |  |  |
| 0632-235 | 0632-235 | 1550 | 06 | 34 | 59.00099968 | -23 | 35 | 11.9573088 | . 00000465 | . 0000759 | -0.0032 | 53502.9 | 56763.7 | 64 |  |  |  |
| 0632-183 | 0632-183 | 1551 | 06 | 35 | 11.01296819 | -18 | 21 | 26.2450308 | . 00025612 | . 0074973 | -0.8820 | 54600.9 | 54601.0 | 1 |  |  |  |
| 0633-26B | 0633-26B | 1552 | 06 | 35 | 19.41632736 | -26 | 20 | 55.7148499 | . 00005445 | . 0023069 | -0.0173 | 54559.0 | 54559.1 | 1 |  |  |  |
| 0633-263 | 0633-263 | 1553 | 06 | 35 | 20.90914603 | -26 | 20 | 39.8663082 | . 00003842 | . 0014738 | 0.0439 | 53560.7 | 54559.1 | 3 |  |  |  |
| 0634-584 | 0634-584 | 2774 | 06 | 35 | 40.82992128 | -58 | 27 | 10.2766600 | . 00005636 | . 0009937 | 0.4951 | 54723.0 | 54723.2 | 1 |  |  |  |
| 0637-752 | P 0637-75 | 780 | 06 | 35 | 46.50790041 | -75 | 16 | 16.8153809 | . 00000887 | . 0000589 | -0.0015 | 47625.5 | 56667.7 | 271 |  |  |  |
| 0633-211 | 0633-211 | 1554 | 06 | 36 | 0.60166321 | -21 | 13 | 12.2004146 | . 00001679 | . 0006306 | -0.2346 | 53561.7 | 53561.8 | 1 |  |  |  |
| 0632+502 | 0632+502 | 2775 | 06 | 36 | 11.01656191 | +50 | 09 | 59.6276088 | . 00007755 | . 0006866 | -0.5100 | 49576.6 | 54112.3 | 3 |  |  |  |
| 0634-057 | 0634-057 | 1555 | 06 | 36 | 48.32950010 | -05 | 47 | 7.5456899 | . 00001215 | . 0004115 | -0.2825 | 53522.9 | 53523.8 | 1 |  |  |  |
| 0634-108 | 0634-108 | 2776 | 06 | 37 | 7.79697227 | -10 | 52 | 48.8798957 | . 01515906 | . 2479884 | 0.9984 | 53152.8 | 53152.8 | 1 |  |  |  |
| 0635-296 | 0635-296 | 2777 | 06 | 37 | 8.86019202 | -29 | 42 | 38.7616090 | . 00051771 | . 0287736 | 0.6078 | 54112.2 | 54112.3 | 1 |  |  |  |
| 0627+814 | 0627+814 | 2778 | 06 | 37 | 43.37762953 | +81 | 25 | 27.6946472 | . 00099749 | . 0010897 | 0.5993 | 53560.9 | 55112.2 | 2 |  |  |  |
| 0635-355 | 0635-355 | 2779 | 06 | 37 | 46.40854426 | -35 | 36 | 48.3777365 | . 00023107 | . 0083434 | 0.7016 | 52306.2 | 56393.1 | 3 |  |  |  |
| 0634+150 | 0634+150 | 1052 | 06 | 37 | 51.05228775 | +14 | 58 | 57.2852138 | . 00004737 | . 0013760 | -0.6236 | 50085.2 | 50156.1 | 2 |  |  |  |
| 0634+334 | 0634+334 | 4125 | 06 | 37 | 55.94044857 | +33 | 22 | 6.2511619 | . 00004605 | . 0006499 | 0.1505 | 55775.8 | 55776.6 | 1 |  |  |  |
| 0633+595 | 0633+596 | 2780 | 06 | 38 | 2.87194763 | +59 | 33 | 22.2138618 | . 00002194 | . 0001396 | 0.1100 | 49576.5 | 56701.3 | 2 | 0.32 |  |  |
| 0637-337 | P 0637-337 | 167 | 06 | 39 | 20.90462475 | -33 | 46 | 0.1132874 | . 00001669 | . 0002941 | -0.0345 | 51115.5 | 54362.3 | 9 |  |  |  |
| 0633+734 | 0633+734 | 2781 | 06 | 39 | 21.96120127 | +73 | 24 | 58.0406792 | . 00005618 | . 0003283 | 0.4649 | 49826.8 | 49827.0 | 1 |  |  |  |
| 0637-216 | 0637-216 | 2782 | 06 | 39 | 28.72565687 | -21 | 41 | 57.8050769 | . 00004517 | . 0016792 | 0.2766 | 53560.7 | 55847.6 | 2 |  |  |  |
| 0639+098 | 0639+098 | 2783 | 06 | 41 | 45.19704298 | +09 | 47 | 4.3411809 | . 00060635 | . 0088066 | -0.8930 | 53502.9 | 55518.5 | 2 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0639-032 | 0639-032 | 1267 | 06 | 41 | 51.13293520 | -03 | 20 | 48.5824699 | . 00000815 | . 0002634 | -0.1742 | 52409.0 | 53946.6 | 4 | 0.34 | 0.27 |  |
| 0636+680 | 0636+680 | 781 | 06 | 42 | 4.25740369 | +67 | 58 | 35.6207838 | . 00000946 | . 0000727 | -0.1431 | 48572.9 | 56776.6 | 45 | 0.14 |  | 1.7 |
| 0603+882 | 0603+882 | 1556 | 06 | 42 | 6.13718547 | +88 | 11 | 55.0165334 | . 00306059 | . 0017808 | 0.1031 | 53560.9 | 53561.7 | 1 | 0.18 |  |  |
| 0639+115 | 0639+115 | 2784 | 06 | 42 | 25.01603895 | +11 | 28 | 32.9075453 | . 00010651 | . 0018412 | 0.4408 | 53523.0 | 56267.5 | 2 |  |  |  |
| 0638+528 | 0638+528 | 1557 | 06 | 42 | 27.82186173 | +52 | 47 | 59.2735506 | . 00003462 | . 0005726 | 0.0373 | 53572.6 | 53572.8 | 1 |  |  |  |
| 0639+352 | 0639+352 | 1558 | 06 | 42 | 58.13961892 | +35 | 09 | 18.3789777 | . 00001497 | . 0003129 | 0.0354 | 53561.7 | 55916.4 | 2 | 0.12 | 0.09 |  |
| 0641-248 | 0641-248 | 2785 | 06 | 43 | 7.46891322 | -24 | 51 | 21.3121085 | . 00003288 | . 0011102 | -0.1038 | 54087.3 | 54087.3 | 1 |  |  |  |
| 0640+074 | 0640+074 | 2786 | 06 | 43 | 22.07328333 | +07 | 24 | 52.4460462 | . 00011065 | . 0021106 | 0.5922 | 53502.9 | 53503.0 | 1 |  |  |  |
| 0640+090 | 0640+090 | 1559 | 06 | 43 | 26.44502834 | +08 | 57 | 38.0131088 | . 00020631 | . 0025115 | -0.1766 | 53133.9 | 53523.8 | 2 |  |  |  |
| 0641-135 | 0641-135 | 2787 | 06 | 43 | 32.36174279 | -13 | 35 | 49.8789211 | . 00001499 | . 0005241 | -0.0039 | 53502.9 | 53503.0 | 1 |  |  |  |
| 0641+126 | 0641+126 | 4068 | 06 | 43 | 59.85551824 | +12 | 38 | 18.1068183 | . 00002777 | . 0006689 | -0.0487 | 56749.0 | 56749.2 | 1 |  |  |  |
| 0642-349 | P 0642-349 | 2788 | 06 | 44 | 25.28100455 | -34 | 59 | 41.9497357 | . 00003642 | . 0014821 | -0.1888 | 52306.2 | 52306.3 | 1 |  |  |  |
| 0641+292 | 0641+292 | 2789 | 06 | 44 | 44.81576275 | +29 | 11 | 4.0172204 | . 00015472 | . 0017623 | -0.4354 | 54112.2 | 54112.3 | 1 |  |  |  |
| 0641+392 | 0641+393 | 1560 | 06 | 44 | 53.70960143 | +39 | 14 | 47.5338966 | . 00000392 | . 0000606 | 0.1352 | 50241.8 | 56776.7 | 137 | 0.22 | 0.11 | 2.6 |
| 0642+214 | 3C 166 | 169 | 06 | 45 | 24.09951520 | +21 | 21 | 51.2015050 | . 00000949 | . 0001726 | -0.5159 | 46659.0 | 56699.0 | 42 | 0.33 | 0.18 | 3.8 |
| 0643+057 | 0643+057 | 1561 | 06 | 45 | 47.27647820 | +05 | 41 | 22.3886119 | . 00009768 | . 0026492 | 0.4140 | 53551.9 | 53552.7 | 1 |  |  |  |
| 0643+307 | 0643+307 | 2790 | 06 | 46 | 15.23806271 | +30 | 41 | 23.6315065 | . 00007242 | . 0011561 | 0.1044 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0644-390 | 0644-390 | 2791 | 06 | 46 | 30.92044183 | -39 | 03 | 39.1307742 | . 00020328 | . 0103233 | 0.4706 | 53133.9 | 53503.0 | 2 |  |  |  |
| 0642+449 | OH 471 | 171 | 06 | 46 | 32.02599518 | +44 | 51 | 16.5901610 | . 00000337 | . 0000505 | 0.0197 | 48572.8 | 56772.8 | 1129 | 1.59 | 1.15 | 1.5 |
| 0645-160 | 0645-160 | 1562 | 06 | 47 | 29.96690578 | -16 | 05 | 27.3596362 | . 00002208 | . 0007806 | -0.5527 | 53522.9 | 53523.8 | 1 |  |  |  |
| 0646-306 | P 0646-306 | 173 | 06 | 48 | 14.09646314 | -30 | 44 | 19.6598655 | . 00000553 | . 0000932 | -0.2040 | 49030.2 | 56701.3 | 62 |  | 0.50 | 2.7 |
| 0646-176 | 0646-176 | 1563 | 06 | 48 | 28.49853031 | -17 | 44 | 5.4398109 | . 00001705 | . 0005280 | -0.3591 | 53551.9 | 53552.8 | 1 |  |  |  |
| 0645+209 | 0645+209 | 1564 | 06 | 48 | 32.71379904 | +20 | 53 | 8.9206101 | . 00005305 | . 0007698 | 0.2004 | 54313.8 | 54314.6 | 1 |  |  |  |
| 0644+491 | 0644+491 | 2792 | 06 | 48 | 47.11858105 | +49 | 07 | 20.7296339 | . 00043789 | . 0040194 | 0.4503 | 50305.6 | 50305.8 | 1 |  |  |  |
| 0647-475 | P 0647-475 | 1565 | 06 | 48 | 48.44998147 | -47 | 34 | 27.1541241 | . 00129803 | . 0965247 | -0.5979 | 54943.0 | 56462.9 | 2 |  |  |  |
| 0647-410 | 0647-410 | 2793 | 06 | 49 | 14.11090080 | -41 | 08 | 53.0173173 | . 00036876 | . 0175535 | -0.6966 | 55413.7 | 55413.7 | 1 |  |  |  |
| 0648-165 | 0648-165 | 782 | 06 | 50 | 24.58185956 | -16 | 37 | 39.7254430 | . 00000354 | . 0000543 | -0.0138 | 50048.6 | 56776.7 | 246 | 1.19 | 0.94 | 1.8 |
| 0647-018 | 0647-018 | 1566 | 06 | 50 | 25.69824297 | -01 | 52 | 22.1643865 | . 00008621 | . 0024097 | -0.1508 | 53125.9 | 53126.0 | 1 |  |  |  |
| 0646+600 | 0646+600 | 1218 | 06 | 50 | 31.25431572 | +60 | 01 | 44.5558047 | . 00003197 | . 0003829 | 0.5926 | 49576.5 | 53211.1 | 6 | 0.37 |  |  |
| 0648-287 | 0648-287 | 2794 | 06 | 50 | 32.92729326 | -28 | 49 | 17.8501166 | . 00023147 | . 0056956 | -0.2394 | 54600.9 | 54600.9 | 1 |  |  |  |
| 0647+040 | 0647+040 | 1567 | 06 | 50 | 38.13416027 | +03 | 58 | 8.4406385 | . 00004441 | . 0010245 | 0.1081 | 53551.9 | 53552.8 | 1 |  |  |  |
| 0648-086 | 0648-086 | 2795 | 06 | 50 | 45.17526208 | -08 | 40 | 0.1816810 | . 00005047 | . 0014202 | 0.0354 | 53502.9 | 53503.0 | 1 |  |  |  |
| 0646+563 | 0646+563 | 1568 | 06 | 50 | 48.19063340 | +56 | 16 | 34.4910085 | . 00004692 | . 0007259 | 0.0660 | 53561.7 | 53561.8 | 1 |  |  |  |
| 0649-209 | 0649-209 | 1268 | 06 | 51 | 58.12006012 | -21 | 01 | 11.9152935 | . 00003371 | . 0009391 | -0.8851 | 53719.1 | 53719.5 | 1 |  |  |  |
| 0650-063 | 0650-063 | 1569 | 06 | 53 | 0.59757564 | -06 | 25 | 32.7016214 | . 00002146 | . 0007388 | -0.6952 | 53551.9 | 53552.8 | 1 |  |  |  |
| 0650+052 | 0650+052 | 1570 | 06 | 53 | 27.48391935 | +05 | 08 | 51.0634328 | . 00024953 | . 0033409 | 0.7940 | 53523.0 | 53523.9 | 1 |  |  |  |
| 0651-194 | 0651-194 | 2796 | 06 | 53 | 57.80562812 | -19 | 29 | 39.6775292 | . 00001415 | . 0005023 | -0.2165 | 53502.9 | 53503.0 | 1 |  |  |  |
| 0650+371 | 0650+371 | 783 | 06 | 53 | 58.28281310 | +37 | 05 | 40.6066750 | . 00000577 | . 00000970 | -0.2560 | 48348.3 | 56674.3 | 124 | 0.44 | 0.24 | 3.2 |
| 0650+507 | 0650+507 | 1571 | 06 | 54 | 22.09318036 | +50 | 42 | 23.8731873 | . 00002178 | . 0003439 | 0.0973 | 53572.6 | 53572.8 | 1 |  |  |  |
| 0650+453 | 0650+453 | 2797 | 06 | 54 | 23.71367926 | +45 | 14 | 23.5458904 | . 00002061 | . 0003987 | 0.2566 | 50305.6 | 50305.8 | 1 |  |  |  |
| 0651+410 | 0651+410 | 784 | 06 | 55 | 10.02472393 | +41 | 00 | 10.1601586 | . 00000895 | . 0001773 | -0.2034 | 50241.9 | 53575.0 | 8 |  | 0.11 |  |
| 0653-242 | 0653-242 | 1572 | 06 | 55 | 48.76816354 | -24 | 16 | 20.7965055 | . 00013171 | . 0052370 | -0.1269 | 53152.9 | 53153.0 | 1 |  |  |  |
| 0653-033 | OH-090 | 1573 | 06 | 56 | 11.12059230 | -03 | 23 | 6.7821974 | . 00000893 | . 0002765 | -0.0412 | 53133.9 | 53134.0 | 1 |  |  |  |
| 0653+322 | 0653+322 | 2798 | 06 | 56 | 40.88919233 | +32 | 09 | 32.5479442 | . 00003109 | . 0006810 | -0.1976 | 54112.2 | 54112.3 | 1 |  |  |  |
| 0654+033 | 0654+033 | 2799 | 06 | 56 | 59.18018268 | +03 | 15 | 53.4570824 | . 00094496 | . 0308927 | 0.9010 | 53153.0 | 53153.0 | 1 |  |  |  |
| 0654+244 | 0654+244 | 1053 | 06 | 57 | 5.67553857 | +24 | 23 | 55.3939621 | . 00001442 | . 0003456 | -0.2338 | 50085.2 | 54482.2 | 10 | 0.11 | 0.13 | 3.5 |
| 0652+577 | 0652+577 | 2800 | 06 | 57 | 12.50917312 | +57 | 41 | 56.7834633 | . 01339331 | . 0518309 | 0.9940 | 49576.7 | 49576.7 | 1 |  |  |  |
| 0656-062 | 0656-062 | 2801 | 06 | 59 | 3.25213387 | -06 | 21 | 10.5952116 | . 00008912 | . 0018766 | -0.0530 | 53125.9 | 55616.3 | 2 |  |  |  |
| 0656+082 | 0656+082 | 785 | 06 | 59 | 17.99603270 | +08 | 13 | 30.9532812 | . 00000353 | . 0000631 | -0.2640 | 49913.8 | 56770.6 | 606 | 0.36 | 0.37 | 2.9 |
| 0657-276 | 0657-276 | 1574 | 06 | 59 | 49.91699710 | -27 | 45 | 18.5134141 | . 00002947 | . 0010146 | 0.0756 | 53560.7 | 53560.8 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch <br> MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0657+172 | 0657+172 | 684 | 07 | 00 | 1.52553850 | +17 | 09 | 21.7013093 | . 00000344 | . 0000530 | -0.0739 | 46336.4 | 56772.7 | 390 | 0.77 | 0.75 | 2.2 |
| 0655+696 | 0655+696 | 2802 | 07 | 01 | 6.61644110 | +69 | 36 | 29.4156311 | . 00050230 | . 0020508 | -0.1534 | 49826.8 | 49827.0 | 1 |  |  |  |
| 0700-465 | 0700-465 | 4069 | 07 | 01 | 34.54641160 | -46 | 34 | 36.5791717 | . 00110920 | . 0431643 | 0.5356 | 56162.6 | 56162.7 | 1 |  |  |  |
| 0659+268 | 0659+268 | 2803 | 07 | 02 | 31.79088489 | +26 | 44 | 11.0273023 | . 00000865 | . 0002296 | -0.0018 | 50218.9 | 54087.4 | 2 |  |  |  |
| 0645+858 | 0645+858 | 2804 | 07 | 02 | 32.81906794 | +85 | 49 | 52.4769508 | . 00290844 | . 0028744 | -0.8454 | 50688.1 | 50688.3 | 1 |  |  |  |
| 0700-101 | 0700-101 | 1575 | 07 | 02 | 35.75682444 | -10 | 15 | 6.4172094 | . 00001927 | . 0005729 | 0.0626 | 53125.9 | 53126.0 | 1 |  |  |  |
| 0700-286 | 0700-286 | 2805 | 07 | 02 | 40.40269089 | -28 | 41 | 50.0497452 | . 00003710 | . 0016406 | -0.6284 | 53503.0 | 53503.0 | 1 |  |  |  |
| 0700-197 | 0700-197 | 1576 | 07 | 02 | 42.90066576 | -19 | 51 | 22.0356135 | . 00000521 | . 0000832 | -0.0481 | 53551.9 | 56751.2 | 76 | 0.32 | 0.62 |  |
| 0658+548 | 0658+548 | 1577 | 07 | 02 | 46.26271196 | +54 | 44 | 35.7337831 | . 00015044 | . 0018275 | 0.4058 | 53125.8 | 53126.1 | 1 |  |  |  |
| 0700-007 | 0700-007 | 1578 | 07 | 03 | 19.08661416 | -00 | 51 | 3.1575336 | . 00000887 | . 0002826 | -0.0235 | 53133.9 | 53134.0 | 1 |  |  |  |
| 0701-130 | 0701-130 | 1579 | 07 | 04 | 6.23630703 | -13 | 07 | 22.3162865 | . 00014998 | . 0036495 | 0.2016 | 53561.7 | 53561.8 | 1 |  |  |  |
| 0700+470 | 0700+470 | 2806 | 07 | 04 | 9.55828594 | +47 | 00 | 56.0397481 | . 00006066 | . 0009946 | -0.5454 | 50305.6 | 50305.8 | 1 |  |  |  |
| 0702+400 | 0702+400 | 2807 | 07 | 05 | 44.52231746 | +39 | 58 | 32.0229040 | . 00003374 | . 0004571 | -0.3393 | 54112.3 | 55657.2 | 2 |  |  |  |
| 0704-231 | 0704-231 | 1580 | 07 | 06 | 33.51816066 | -23 | 11 | 37.8412044 | . 00016589 | . 0054074 | -0.2397 | 54942.9 | 56498.7 | 2 |  |  |  |
| 0705-412 | 0705-412 | 2808 | 07 | 06 | 43.05954630 | -41 | 22 | 23.7947186 | . 00019528 | . 0145442 | -0.2745 | 55112.5 | 55112.5 | 1 |  |  |  |
| 0702+612 | 0702+612 | 2809 | 07 | 07 | 0.61578239 | +61 | 10 | 11.6080983 | . 00022672 | . 0013443 | 0.7784 | 49576.6 | 49576.7 | 1 |  |  |  |
| 0705+025 | 0705+025 | 2810 | 07 | 07 | 45.88985127 | +02 | 27 | 5.1991621 | . 03019877 | . 0406882 | 0.9998 | 53552.8 | 53552.8 | 1 |  |  |  |
| 0705-142 | 0705-142 | 2811 | 07 | 08 | 3.37548619 | -14 | 21 | 15.8169133 | . 00006442 | . 0016160 | 0.0091 | 52408.9 | 52409.0 | 1 |  |  |  |
| 0705+350 | 0705+350 | 2812 | 07 | 08 | 24.44773311 | +34 | 55 | 42.1172366 | . 00016482 | . 0048838 | -0.8208 | 54087.3 | 54087.4 | 1 |  |  |  |
| 0705+377 | 0705+377 | 1581 | 07 | 09 | 9.22253271 | +37 | 37 | 53.1813726 | . 00002503 | . 0004385 | 0.3809 | 53572.7 | 53572.8 | 1 |  |  |  |
| 0707-028 | 0707-028 | 1582 | 07 | 09 | 45.05461232 | -02 | 55 | 17.4965912 | . 00001650 | . 0005525 | 0.0330 | 53560.7 | 53560.8 | 1 |  |  |  |
| 0709-387 | 0709-387 | 2813 | 07 | 10 | 43.63633325 | -38 | 50 | 37.0352899 | . 00015722 | . 0050408 | 0.8608 | 52306.2 | 52409.0 | 2 |  |  |  |
| 0707+424 | 0707+424 | 2814 | 07 | 10 | 44.32633031 | +42 | 20 | 55.0425799 | . 00021505 | . 0018454 | -0.5634 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0707+476 | 0707+476 | 786 | 07 | 10 | 46.10487693 | +47 | 32 | 11.1427368 | . 00000466 | . 0000707 | 0.0274 | 50254.8 | 56770.4 | 131 | 0.35 | 0.24 | 2.5 |
| 0708-204 | 0708-204 | 2815 | 07 | 10 | 46.62251217 | -20 | 33 | 23.9439446 | . 00034070 | . 0078242 | 0.1484 | 53561.8 | 53561.8 | 1 |  |  |  |
| 0709-015 | 0709-015 | 4126 | 07 | 11 | 51.39887426 | -01 | 37 | 57.3980699 | . 00002378 | . 0006969 | 0.0763 | 55916.3 | 55916.4 | 1 |  |  |  |
| 0708+506 | 0708+506 | 1583 | 07 | 12 | 43.68356590 | +50 | 33 | 22.7073176 | . 00001472 | . 0002013 | 0.2701 | 53560.7 | 56749.2 | 2 | 0.30 |  |  |
| 0709+509 | 0709+509 | 1055 | 07 | 13 | 12.89633319 | +50 | 53 | 43.8913184 | . 00007485 | . 0011411 | -0.2090 | 50305.6 | 50305.8 | 1 | 0.08 |  |  |
| 0710+439 | OI 417 | 177 | 07 | 13 | 38.16408312 | +43 | 49 | 17.2052190 | . 00003215 | . 0005139 | -0.1300 | 48352.9 | 55271.4 | 39 | 0.23 | 0.09 | 5.7 |
| 0710+196 | 0710+196 | 1219 | 07 | 13 | 55.67916263 | +19 | 35 | 0.4091189 | . 00001266 | . 0003502 | -0.2473 | 53125.9 | 53306.4 | 2 |  |  |  |
| 0711+356 | 0711+356 | 787 | 07 | 14 | 24.81746596 | +35 | 34 | 39.7961404 | . 00001465 | . 0002914 | -0.2376 | 49254.5 | 56664.4 | 14 |  |  | 4.6 |
| 0708+742 | 0708+742 | 2816 | 07 | 14 | 36.12498498 | +74 | 08 | 10.1440304 | . 00005629 | . 0002400 | 0.2677 | 54087.2 | 54087.4 | 1 |  |  |  |
| 0713-092 | 0713-092 | 2817 | 07 | 15 | 33.39349875 | -09 | 21 | 54.2697399 | . 00020767 | . 0064362 | 0.3540 | 53133.9 | 53134.0 | 1 |  |  |  |
| 0714+457 | 0714+457 | 1584 | 07 | 17 | 51.85241238 | +45 | 38 | 3.2609418 | . 00000381 | . 0000565 | -0.0315 | 50305.6 | 56748.1 | 111 |  |  |  |
| 0713+669 | 0713+669 | 1585 | 07 | 18 | 5.63192569 | +66 | 51 | 53.3290567 | . 00003348 | . 0002703 | 0.0018 | 54942.8 | 54943.1 | 1 |  |  |  |
| 0716-181 | 0716-181 | 1586 | 07 | 18 | 14.15806019 | -18 | 13 | 4.0542095 | . 00003054 | . 0009192 | 0.4488 | 53551.9 | 53552.8 | 1 |  |  |  |
| 0716+332 | 0716+332 | 1587 | 07 | 19 | 19.41965812 | +33 | 07 | 9.7086144 | . 00001188 | . 0002839 | 0.1173 | 53125.9 | 55966.3 | 2 | 0.30 | 0.29 |  |
| 0717-198 | 0717-198 | 2818 | 07 | 19 | 24.37357431 | -19 | 55 | 20.5086813 | . 01237854 | . 5838336 | -0.9997 | 52408.9 | 52408.9 | 1 |  |  |  |
| 0717-393 | 0717-393 | 2819 | 07 | 19 | 39.27860306 | -39 | 28 | 48.6927492 | . 00015346 | . 0096945 | -0.0508 | 55112.5 | 55112.6 | 1 |  |  |  |
| 0716+477 | 0716+477 | 1269 | 07 | 20 | 21.49777030 | +47 | 37 | 44.1249084 | . 00001367 | . 0001645 | -0.0799 | 50305.6 | 56701.3 | 3 | 0.31 | 0.21 |  |
| 0718+157 | 0718+157 | 1588 | 07 | 21 | 2.41362147 | +15 | 40 | 42.9712047 | . 00004283 | . 0013184 | -0.3618 | 53561.7 | 53561.8 | 1 |  |  |  |
| 0718-154 | 0718-154 | 1589 | 07 | 21 | 13.49135770 | -15 | 30 | 41.0060684 | . 00006202 | . 0019844 | -0.3433 | 54656.8 | 54656.9 | 1 |  |  |  |
| 0718+042 | 0718+042 | 2820 | 07 | 21 | 23.91000871 | +04 | 06 | 44.2136538 | . 00002713 | . 0008189 | 0.0968 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0719-353 | 0719-353 | 2821 | 07 | 21 | 46.70874605 | -35 | 28 | 16.7951526 | . 05690376 | . 8465725 | 0.9997 | 52408.9 | 52408.9 | 1 |  |  |  |
| 0716+714 | 0716+714 | 788 | 07 | 21 | 53.44846254 | +71 | 20 | 36.3634139 | . 00000370 | . 0000507 | 0.0087 | 47415.5 | 56770.4 | 483 | 1.12 |  | 1.9 |
| 0718+374 | 0718+374 | 2822 | 07 | 22 | 1.25968355 | +37 | 22 | 28.6330238 | . 00003291 | . 0005716 | -0.2925 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0720-305 | 0720-305 | 2823 | 07 | 22 | 27.69724733 | -30 | 38 | 4.5797184 | . 00125343 | . 0280485 | 0.8789 | 52306.2 | 52306.3 | 1 |  |  |  |
| 0721-071 | 0721-071 | 1270 | 07 | 24 | 17.29264141 | -07 | 15 | 20.3529205 | . 00001069 | . 0003672 | -0.3070 | 52306.2 | 53946.6 | 4 | 0.41 | 0.26 |  |
| 0722+032 | 0722+032 | 2824 | 07 | 24 | 48.40893627 | +03 | 08 | 25.0887507 | . 00005851 | . 0019754 | -0.1462 | 49913.8 | 49913.8 | 1 |  |  |  |
| 0722+145 | P 0722+145 | 685 | 07 | 25 | 16.80776350 | +14 | 25 | 13.7466365 | . 00000396 | . 0000678 | -0.1330 | 47253.2 | 56701.7 | 86 | 0.48 | 0.61 | 2.7 |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation EpochMJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0723-265 | 0723-265 | 1590 | 07 | 25 | 24.41312689 | -26 | 40 | 32.6801737 | . 00002082 | . 0007632 | -0.4522 | 53503.0 | 53572.8 | 2 |  |  |  |
| 0723-189 | 0723-189 | 1591 | 07 | 25 | 50.16557146 | -19 | 04 | 19.0741145 | . 00000810 | . 0002814 | 0.0096 | 53125.9 | 56547.7 | 5 |  |  |  |
| 0723-008 | DW 0723-00 | 180 | 07 | 25 | 50.63995645 | -00 | 54 | 56.5442838 | . 00000561 | . 0001039 | -0.4560 | 44203.2 | 55728.1 | 69 | 0.66 | 1.29 | 3.3 |
| 0718+792 | 0718+793 | 789 | 07 | 26 | 11.73523189 | +79 | 11 | 31.0161688 | . 00000484 | . 0000506 | 0.0387 | 49421.9 | 56770.4 | 1062 | 0.34 |  | 2.5 |
| 0723+219 | 0723+219 | 1592 | 07 | 26 | 14.26073557 | +21 | 53 | 20.1140038 | . 00000476 | . 0000793 | -0.0128 | 53133.9 | 56751.7 | 55 |  |  |  |
| 0723+067 | 0723+067 | 1593 | 07 | 26 | 36.36411664 | +06 | 36 | 42.8520179 | . 00004191 | . 0011992 | -0.0201 | 53560.7 | 53560.8 | 1 |  |  |  |
| 0725-381 | 0725-381 | 2825 | 07 | 27 | 0.13024103 | -38 | 13 | 11.4004644 | . 00029546 | . 0142819 | -0.1121 | 55412.8 | 55413.7 | 1 |  |  |  |
| 0723+488 | 0723+488 | 2826 | 07 | 27 | 3.10059129 | +48 | 44 | 10.1269241 | . 00001922 | . 0003632 | 0.1186 | 50305.6 | 50305.8 | 1 |  |  |  |
| 0723+679 | 3C 179 | 1594 | 07 | 28 | 10.89560545 | +67 | 48 | 47.0330186 | . 00004776 | . 0002033 | -0.1899 | 53523.0 | 53523.7 | 1 |  |  |  |
| 0725+219 | 0725+219 | 1056 | 07 | 28 | 20.60829838 | +21 | 53 | 6.3902818 | . 00000572 | . 0001381 | -0.1867 | 50085.2 | 56691.2 | 46 | 0.24 | 0.16 | 2.1 |
| 0726-224 | 0726-224 | 2827 | 07 | 28 | 29.79849124 | -22 | 31 | 36.7085704 | . 00011081 | . 0034364 | 0.1418 | 53133.9 | 56302.3 | 2 |  |  |  |
| 0724+571 | 0724+571 | 1220 | 07 | 28 | 49.63164275 | +57 | 01 | 24.3746776 | . 00002482 | . 0003948 | 0.0657 | 49576.6 | 53525.8 | 7 | 0.14 |  |  |
| 0727-365 | 0727-365 | 2828 | 07 | 29 | 5.41199172 | -36 | 39 | 45.2578343 | . 00066268 | . 0146999 | -0.6656 | 54291.7 | 54291.8 | 1 |  |  |  |
| 0726-132 | 0726-132 | 1595 | 07 | 29 | 17.81766389 | -13 | 20 | 2.2717679 | . 00003315 | . 0009144 | -0.0173 | 53126.0 | 53126.0 | 1 |  |  |  |
| 0728-345 | 0728-345 | 2829 | 07 | 29 | 57.36526126 | -34 | 39 | 19.5958926 | . 00020668 | . 0089490 | 0.6425 | 52306.2 | 52306.3 | 1 |  |  |  |
| 0727-115 | P 0727-11 | 182 | 07 | 30 | 19.11247295 | -11 | 41 | 12.6006023 | . 00000336 | . 0000516 | -0.0465 | 43808.7 | 56770.7 | 2316 | 2.16 | 2.33 | 2.0 |
| 0727-025 | 0727-025 | 2830 | 07 | 30 | 25.87759994 | -02 | 41 | 24.9043432 | . 00001468 | . 0004701 | 0.0291 | 50575.8 | 50576.0 | 1 |  |  |  |
| 0728-054 | 0728-054 | 2831 | 07 | 30 | 28.43653300 | -05 | 35 | 46.9011549 | . 00012335 | . 0036042 | -0.0100 | 54112.3 | 54112.4 | 1 |  |  |  |
| 0728-320 | 0728-320 | 2832 | 07 | 30 | 38.29832272 | -32 | 08 | 20.1778824 | . 00006522 | . 0023897 | 0.1930 | 52306.2 | 52306.3 | 1 |  |  |  |
| 0727+409 | 0727+409 | 1596 | 07 | 30 | 51.34658438 | +40 | 49 | 50.8266498 | . 00003357 | . 0004784 | -0.4411 | 50241.9 | 54664.7 | 2 |  |  |  |
| 0728-235 | 0728-235 | 1597 | 07 | 31 | 6.66798745 | -23 | 41 | 47.8694735 | . 00002218 | . 0006655 | -0.3214 | 53133.9 | 53134.0 | 1 |  |  |  |
| 0729-222 | 0729-222 | 1598 | 07 | 31 | 31.50839013 | -22 | 24 | 20.8668519 | . 00004155 | . 0012064 | 0.2651 | 53126.0 | 53126.0 | 1 |  |  |  |
| 0728+249 | J0731+2451 | 1057 | 07 | 31 | 33.74546793 | +24 | 51 | 58.5987518 | . 00001033 | . 0002960 | 0.0501 | 50085.2 | 56706.9 | 18 | 0.14 | 0.08 | 2.3 |
| 0729+146 | 0729+146 | 1599 | 07 | 31 | 58.99697056 | +14 | 33 | 36.4928825 | . 00004261 | . 0009354 | -0.2722 | 53561.8 | 53561.8 | 1 |  |  |  |
| 0729+019 | 0729+019 | 1600 | 07 | 32 | 22.78867952 | +01 | 50 | 35.3842196 | . 00001293 | . 0004109 | 0.2370 | 53133.9 | 53134.0 | 1 |  |  |  |
| 0729+259 | 0729+259 | 1601 | 07 | 32 | 56.27526112 | +25 | 48 | 38.7954600 | . 00000485 | . 0000924 | 0.1257 | 50218.9 | 56762.6 | 40 |  |  |  |
| 0730+504 | 0730+504 | 1221 | 07 | 33 | 52.52057927 | +50 | 22 | 9.0622316 | . 00000637 | . 0001178 | 0.3657 | 49576.6 | 56770.4 | 89 | 0.37 |  |  |
| 0731+050 | J0733+0456 | 1058 | 07 | 33 | 57.45989050 | +04 | 56 | 14.4966818 | . 00001338 | . 0003605 | 0.0249 | 49913.8 | 56749.2 | 2 | 0.25 | 0.34 |  |
| 0731+479 | 0731+479 | 2833 | 07 | 35 | 2.31168461 | +47 | 50 | 8.4274685 | . 00002132 | . 0003474 | 0.2063 | 50305.6 | 50305.8 | 1 |  |  |  |
| 0733-174 | P 0733-17 | 188 | 07 | 35 | 45.81248148 | -17 | 35 | 48.5027862 | . 00002063 | . 0003473 | 0.1421 | 49267.4 | 55545.7 | 26 |  |  | 4.9 |
| 0733+016 | 0733+016 | 2834 | 07 | 35 | 58.63464818 | +01 | 30 | 3.6380220 | . 00015856 | . 0020379 | 0.5007 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0732+237 | 0732+237 | 2835 | 07 | 35 | 59.92635212 | +23 | 41 | 2.8294289 | . 00815408 | . 0931284 | -0.9455 | 50156.1 | 50156.2 | 1 |  |  |  |
| 0733+300 | GC 0733+30 | 2836 | 07 | 36 | 13.66109480 | +29 | 54 | 22.1848983 | . 00001996 | . 0306776 | -0.1970 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0734-044 | 0734-044 | 2837 | 07 | 36 | 33.62709206 | -04 | 33 | 11.8611662 | . 00034400 | . 0088689 | -0.0261 | 53560.7 | 53560.8 | 1 |  |  |  |
| 0733+261 | 0733+261 | 2838 | 07 | 36 | 58.07373714 | +26 | 04 | 49.9453847 | . 00002402 | . 0006232 | 0.1100 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0734-072 | 0734-072 | 1602 | 07 | 37 | 7.13306867 | -07 | 20 | 38.0395191 | . 00011210 | . 0019647 | 0.2576 | 53561.8 | 53561.8 | 1 |  |  |  |
| 0733+597 | 0733+597 | 2839 | 07 | 37 | 30.08699837 | +59 | 41 | 3.1939846 | . 00003623 | . 0008071 | -0.3418 | 49576.6 | 54087.4 | 2 |  |  |  |
| 0736-397 | 0736-397 | 2840 | 07 | 37 | 55.84052213 | -39 | 54 | 34.0469473 | . 00079654 | . 0265647 | -0.6775 | 53134.0 | 53134.0 | 1 |  |  |  |
| 0733+646 | 0733+646 | 2841 | 07 | 37 | 58.98054805 | +64 | 30 | 43.3441810 | . 00041863 | . 0018242 | -0.2450 | 49826.8 | 49827.0 | 1 |  |  |  |
| 0735+178 | P 0735+17 | 190 | 07 | 38 | 7.39374622 | +17 | 42 | 18.9982015 | . 00000360 | . 0000565 | 0.0063 | 43808.7 | 55138.6 | 432 | 0.38 | 0.39 | 3.4 |
| 0736-332 | P 0736-332 | 790 | 07 | 38 | 16.94872717 | -33 | 22 | 12.7853692 | . 00015602 | . 0063362 | 0.4230 | 50258.9 | 53126.0 | 2 |  |  |  |
| 0738-674 | 0738-674 | 791 | 07 | 38 | 56.49623470 | -67 | 35 | 50.8261245 | . 00002381 | . 0001561 | 0.3288 | 47625.6 | 55784.2 | 22 |  |  |  |
| 0736-063 | 0736-063 | 2842 | 07 | 38 | 57.17553264 | -06 | 26 | 58.0560679 | . 00001921 | . 0005596 | 0.0442 | 50576.0 | 50576.1 | 1 |  |  |  |
| 0732+755 | 0732+755 | 2843 | 07 | 39 | 13.19536646 | +75 | 27 | 47.7103915 | . 00097732 | . 0038574 | 0.1124 | 49826.8 | 49827.0 | 1 |  |  |  |
| 0736+017 | P 0736+01 | 192 | 07 | 39 | 18.03389896 | +01 | 37 | 4.6177218 | . 00000388 | . 0000643 | -0.1963 | 47253.2 | 56762.7 | 132 | 0.70 | 0.88 | 2.3 |
| 0738-246 | 0738-246 | 1603 | 07 | 40 | 14.71665916 | -24 | 44 | 36.6838279 | . 00003732 | . 0012652 | 0.4987 | 53126.0 | 53126.0 | 1 |  |  |  |
| 0737+289 | 0737+289 | 1604 | 07 | 40 | 33.54387535 | +28 | 52 | 47.2468513 | . 00004607 | . 0010722 | -0.1515 | 53572.7 | 53572.8 | 1 |  |  |  |
| 0735+674 | 0735+674 | 2844 | 07 | 40 | 53.39828713 | +67 | 19 | 8.2292581 | . 00081706 | . 0087762 | 0.8599 | 49827.0 | 49827.1 | 1 |  |  |  |
| 0738+313 | OI 363 | 193 | 07 | 41 | 10.70330407 | +31 | 12 | 0.2294536 | . 00000609 | . 0001133 | -0.1132 | 43808.7 | 56716.7 | 65 | 1.02 | 0.36 | 4.1 |
| 0738+272 | 0738+272 | 2845 | 07 | 41 | 25.73283165 | +27 | 06 | 45.3910842 | . 00002917 | . 0006969 | 0.0322 | 50218.9 | 50219.0 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation EpochMJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0739-266 | 0739-266 | 1605 | 07 | 41 | 55.68132066 | -26 | 47 | 30.4909670 | . 00008135 | . 0036401 | -0.0750 | 53134.0 | 53134.0 | 1 |  |  |  |
| 0738+491 | 0738+491 | 792 | 07 | 42 | 2.74894725 | +49 | 00 | 15.6089324 | . 00000404 | . 0000582 | 0.0053 | 49750.1 | 56770.6 | 80 | 0.54 |  | 1.4 |
| 0738+548 | 0738+548 | 2846 | 07 | 42 | 39.79069511 | +54 | 44 | 24.6668622 | . 00003943 | . 0005413 | 0.4005 | 49576.6 | 49576.8 | 1 |  |  |  |
| 0740-383 | 0740-383 | 2847 | 07 | 42 | 42.00512201 | -38 | 29 | 3.9065793 | . 00048318 | . 0181360 | 0.8185 | 52306.3 | 53551.9 | 3 |  |  |  |
| 0740+173 | 0740+173 | 2848 | 07 | 43 | 5.10679376 | +17 | 14 | 24.4129818 | . 00002387 | . 0008662 | -0.5005 | 50085.2 | 50156.2 | 2 |  |  |  |
| 0739+398 | 0739+398A | 2849 | 07 | 43 | 9.88654821 | +39 | 41 | 30.7804240 | . 00001847 | . 0004653 | -0.3311 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0743-673 | 0743-673 | 2850 | 07 | 43 | 31.61160307 | -67 | 26 | 25.5464114 | . 00002530 | . 0001238 | 0.0265 | 48110.1 | 54670.5 | 26 |  |  |  |
| 0741-444 | 0741-444 | 1606 | 07 | 43 | 32.75811072 | -44 | 34 | 5.1394920 | . 00017477 | . 0130909 | 0.4118 | 54853.3 | 54853.3 | 1 |  |  |  |
| 0741-379 | 0741-379 | 1607 | 07 | 43 | 44.82057601 | -38 | 03 | 56.4116299 | . 00018054 | . 0089158 | 0.7573 | 52306.3 | 53523.0 | 3 |  |  |  |
| 0740+235 | 0740+235 | 2851 | 07 | 43 | 44.97231518 | +23 | 28 | 39.0035385 | . 00034812 | . 0033307 | 0.5643 | 50156.0 | 50156.2 | 1 |  |  |  |
| 0741-045 | 0741-045 | 2852 | 07 | 43 | 52.40666644 | -04 | 40 | 20.5304178 | . 00002070 | . 0006864 | -0.2052 | 53503.0 | 53503.0 | 1 |  |  |  |
| 0744-691 | 0744-691 | 2853 | 07 | 44 | 20.39350160 | -69 | 19 | 7.1561503 | . 00116118 | . 0029613 | 0.4070 | 52886.8 | 53138.3 | 3 |  |  |  |
| 0741-063 | 0741-063 | 1608 | 07 | 44 | 21.65635966 | -06 | 29 | 35.9135052 | . 00002713 | . 0009090 | -0.1939 | 54187.0 | 54187.2 | 1 |  |  |  |
| 0741+214 | 0741+214 | 1222 | 07 | 44 | 47.27714910 | +21 | 20 | 0.4361093 | . 00038778 | . 0085120 | 0.9740 | 53550.8 | 53600.7 | 2 |  |  |  |
| 0742+103 | DW 0742+10 | 196 | 07 | 45 | 33.05952150 | +10 | 11 | 12.6923888 | . 00000408 | . 0000805 | -0.1139 | 43808.7 | 56637.8 | 228 | 0.34 | 0.35 | 3.9 |
| 0742+318 | 0742+318 | 2854 | 07 | 45 | 41.67150355 | +31 | 42 | 56.6168038 | . 00002478 | . 0006393 | -0.4329 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0743-006 | P 0743-006 | 197 | 07 | 45 | 54.08232043 | -00 | 44 | 17.5400117 | . 00000381 | . 0000730 | -0.2423 | 48352.9 | 56749.7 | 159 | 0.71 | 0.65 | 1.9 |
| 0742+333 | 0742+333 | 1609 | 07 | 45 | 59.32402555 | +33 | 13 | 34.1357661 | . 00004913 | . 0011718 | 0.1925 | 53560.7 | 53560.8 | 1 |  |  |  |
| 0744-158 | 0744-158 | 2855 | 07 | 46 | 18.23602828 | -15 | 55 | 34.7462366 | . 00004369 | . 0011858 | -0.5901 | 52306.2 | 52306.3 | 1 |  |  |  |
| 0743+259 | GC 0743+25 | 198 | 07 | 46 | 25.87417933 | +25 | 49 | 2.1347075 | . 00000340 | . 0000516 | -0.0325 | 47253.2 | 56699.0 | 681 | 0.42 | 0.29 | 2.1 |
| 0743+277 | 0743+277 | 1059 | 07 | 46 | 40.43231068 | +27 | 34 | 59.0470968 | . 00000384 | . 0000621 | -0.0844 | 50218.9 | 56758.1 | 114 | 0.36 | 0.37 | 1.5 |
| 0740+767 | 0740+767 | 2856 | 07 | 47 | 14.60754714 | +76 | 39 | 17.2714890 | . 00008591 | . 0003977 | 0.4522 | 49826.9 | 49827.1 | 1 |  |  |  |
| 0745-330 | P 0745-330 | 2857 | 07 | 47 | 19.68319818 | -33 | 10 | 46.9727538 | . 00003968 | . 0012808 | 0.6456 | 52306.2 | 52306.3 | 1 |  |  |  |
| 0745-291 | 0745-291 | 2858 | 07 | 47 | 41.88959351 | -29 | 19 | 2.0752709 | . 00007750 | . 0031424 | 0.6458 | 53126.0 | 55616.2 | 2 |  |  |  |
| 0745-165 | 0745-165 | 1610 | 07 | 48 | 3.08385430 | -16 | 39 | 50.2552767 | . 00001411 | . 0004808 | -0.3870 | 53551.8 | 53551.9 | 1 |  |  |  |
| 0745+241 | B2 0745+24 | 200 | 07 | 48 | 36.10928041 | +24 | 00 | 24.1099525 | . 00000381 | . 0000619 | -0.1263 | 45432.0 | 56709.6 | 235 | 0.61 | 0.56 | 2.5 |
| 0746-167 | 0746-167 | 2859 | 07 | 48 | 48.67854811 | -16 | 50 | 27.4009090 | . 00003841 | . 0011926 | 0.6640 | 52409.0 | 52409.0 | 1 |  |  |  |
| 0743+744 | 0743+744 | 2860 | 07 | 49 | 22.45666920 | +74 | 20 | 41.5925702 | . 00009206 | . 0006555 | 0.4919 | 49826.9 | 49827.1 | 1 |  |  |  |
| 0746+110 | 0746+110 | 2861 | 07 | 49 | 27.38550504 | +10 | 57 | 33.1281650 | . 00019210 | . 0040460 | 0.5211 | 54087.3 | 54087.4 | 1 |  |  |  |
| 0747+185 | 0747+185 | 1611 | 07 | 50 | 0.32994829 | +18 | 23 | 11.4071867 | . 00000533 | . 0000984 | -0.0770 | 50085.2 | 56734.7 | 43 |  |  |  |
| 0746+503 | 0746+503 | 2862 | 07 | 50 | 8.34284104 | +50 | 15 | 6.8111404 | . 00010675 | . 0009351 | 0.1916 | 49576.7 | 54112.4 | 3 |  |  |  |
| 0746+483 | 0746+483 | 1223 | 07 | 50 | 20.43631893 | +48 | 14 | 53.5564184 | . 00001594 | . 0002621 | -0.0319 | 50305.6 | 53946.8 | 10 | 0.32 | 0.21 | 2.7 |
| 0747+104 | 0747+104 | 4127 | 07 | 50 | 32.87800958 | +10 | 21 | 26.7684608 | . 00002557 | . 0005696 | -0.3727 | 55775.9 | 55776.7 | 1 |  |  |  |
| 0742+792 | 0742+792 | 2863 | 07 | 50 | 43.26540717 | +79 | 09 | 17.0025184 | . 00024509 | . 0009484 | 0.4933 | 49826.9 | 54087.4 | 3 |  |  |  |
| 0748-069 | 0748-069 | 2864 | 07 | 50 | 47.14840508 | -07 | 06 | 4.0270013 | . 00006520 | . 0015755 | 0.0308 | 53503.0 | 53503.1 | 1 |  |  |  |
| 0748+126 | P 0748+126 | 202 | 07 | 50 | 52.04572908 | +12 | 31 | 4.8281807 | . 00000341 | . 0000516 | 0.0035 | 44203.3 | 56776.7 | 366 | 1.21 | 1.08 | 2.1 |
| 0740+828 | 0740+828 | 2865 | 07 | 50 | 57.75551196 | +82 | 41 | 58.0318739 | . 00009925 | . 0003606 | 0.2376 | 50688.2 | 50688.3 | 1 |  |  |  |
| 0748+019 | 0748+019 | 1612 | 07 | 51 | 2.28154635 | +01 | 52 | 15.7605984 | . 00006841 | . 0017283 | -0.1788 | 53572.7 | 53572.8 | 1 |  |  |  |
| 0749-333 | 0749-333 | 2866 | 07 | 51 | 5.47043462 | -33 | 31 | 35.9993760 | . 00020113 | . 0069132 | 0.6792 | 52306.2 | 52306.3 | 1 |  |  |  |
| 0748-006 | 0748-006 | 2867 | 07 | 51 | 10.20519148 | -00 | 46 | 51.0510027 | . 00005916 | . 0019344 | -0.4588 | 54112.3 | 56393.2 | 2 |  |  |  |
| 0746+688 | 0746+688 | 1613 | 07 | 51 | 45.98469073 | +68 | 40 | 26.8330678 | . 00030765 | . 0011771 | 0.5681 | 53559.8 | 53560.7 | 1 |  |  |  |
| 0748+333 | 0748+333 | 2868 | 07 | 51 | 53.67322457 | +33 | 13 | 19.8184559 | . 00001727 | . 0004722 | -0.0694 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0749+376 | 0749+376 | 2869 | 07 | 52 | 40.90788779 | +37 | 30 | 24.3116866 | . 00002959 | . 0006326 | -0.4621 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0749+540 | 0749+540 | 793 | 07 | 53 | 1.38456684 | +53 | 52 | 59.6371155 | . 00000342 | . 0000507 | 0.0804 | 48353.1 | 56770.4 | 830 | 0.57 |  | 2.7 |
| 0749+426 | 0749+426 | 2870 | 07 | 53 | 3.33749688 | +42 | 31 | 30.7651320 | . 00002295 | . 0004555 | -0.1741 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0752-116 | 0752-116 | 1614 | 07 | 54 | 26.45641654 | -11 | 47 | 16.9484178 | . 00001016 | . 0003314 | -0.0743 | 53133.9 | 53134.0 | 1 |  |  |  |
| 0751+485 | 0751+485 | 2871 | 07 | 54 | 45.67045947 | +48 | 23 | 50.7481897 | . 00003393 | . 0005265 | 0.2792 | 50305.7 | 50305.8 | 1 |  |  |  |
| 0750+633 | 0750+633 | 1615 | 07 | 55 | 21.64085862 | +63 | 12 | 35.7149681 | . 00003284 | . 0003382 | 0.0601 | 54942.9 | 54943.2 | 1 |  |  |  |
| 0753-425 | 0753-425 | 2872 | 07 | 55 | 23.17238655 | -42 | 39 | 58.2905191 | . 00045447 | . 0100288 | -0.8517 | 55370.8 | 56462.9 | 2 |  |  |  |
| 0754-155 | 0754-155 | 2873 | 07 | 56 | 50.69894954 | -15 | 42 | 5.4368921 | . 00001186 | . 0004227 | -0.4027 | 53503.0 | 53503.1 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | Observation EpochMJD |  | No. Obs. | Source Flux <br> (Jy) |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0752+639 | 0752+639 | 2874 | 07 | 56 | 54.61043707 | +63 | 47 | 59.0369154 | . 00006279 | . 0008554 | 0.1226 | 49826.9 | 49827.1 | 1 |  |  |  |
| 0753+519 | 0753+519 | 2875 | 07 | 56 | 59.54318887 | +51 | 51 | 0.2376077 | . 00002645 | . 0003495 | 0.3033 | 49576.6 | 54087.4 | 2 |  |  |  |
| 0754+100 | P 0754+100 | 206 | 07 | 57 | 6.64294853 | +09 | 56 | 34.8522078 | . 00000373 | . 0000747 | -0.2219 | 47253.2 | 56717.1 | 165 | 0.78 | 0.58 | 3.1 |
| 0755+117 | 0755+117 | 2876 | 07 | 58 | 7.65791054 | +11 | 36 | 46.0479169 | . 00001778 | . 0004195 | -0.0070 | 49913.8 | 55657.2 | 2 |  |  |  |
| 0755+379 | 3C 189 | 1616 | 07 | 58 | 28.10815536 | +37 | 47 | 11.8075514 | . 00003141 | . 0004623 | -0.4073 | 51245.9 | 52409.1 | 2 |  |  |  |
| 0758-229 | 0758-229 | 1617 | 08 | 00 | 12.79091273 | -23 | 02 | 50.5346454 | . 00006448 | . 0022852 | 0.1483 | 53523.0 | 53523.9 | 1 |  |  |  |
| 0758-398 | 0758-398 | 1618 | 08 | 00 | 24.26964899 | -39 | 59 | 17.5947535 | . 00016566 | . 0086973 | 0.6817 | 52306.3 | 53551.9 | 4 |  |  |  |
| 0757+441 | 0757+441 | 1619 | 08 | 01 | 8.27616623 | +44 | 01 | 10.1561414 | . 00002055 | . 0004119 | 0.0836 | 53572.7 | 53572.8 | 1 |  |  |  |
| 0759-334 | 0759-334 | 2877 | 08 | 01 | 25.95241695 | -33 | 36 | 19.8948925 | . 00012816 | . 0045513 | 0.7044 | 52306.2 | 53126.0 | 2 |  |  |  |
| 0759-283 | 0759-283 | 1620 | 08 | 01 | 46.49394460 | -28 | 31 | 6.8749135 | . 00008398 | . 0035473 | 0.0393 | 53126.0 | 53126.0 | 1 |  |  |  |
| 0758+594 | 0758+594 | 2878 | 08 | 02 | 24.59272187 | +59 | 21 | 34.7952467 | . 00011540 | . 0013153 | 0.6986 | 49576.6 | 54112.4 | 2 |  |  |  |
| 0800-380 | 0800-380 | 4070 | 08 | 02 | 27.60467472 | -38 | 10 | 53.0634249 | . 00027280 | . 0099589 | 0.4060 | 56161.8 | 56162.6 | 1 |  |  |  |
| 0759+252 | 0759+252 | 2879 | 08 | 02 | 41.58740928 | +25 | 09 | 10.8977695 | . 00005690 | . 0012673 | 0.7094 | 50218.9 | 50218.9 | 1 |  |  |  |
| 0759+183 | J0802+1809 | 1060 | 08 | 02 | 48.03196507 | +18 | 09 | 49.2492230 | . 00000398 | . 0000729 | -0.0795 | 50085.2 | 56770.6 | 113 | 0.34 | 0.33 | 2.4 |
| 0801-079 | 0801-079 | 1621 | 08 | 03 | 39.30692591 | -08 | 05 | 21.3901863 | . 00006560 | . 0014903 | 0.1419 | 53559.9 | 53560.7 | 1 |  |  |  |
| 0759+641 | 0759+641 | 2880 | 08 | 03 | 52.15956231 | +64 | 03 | 14.3697134 | . 00061141 | . 0054922 | -0.8205 | 49826.9 | 49827.1 | 1 |  |  |  |
| 0801+044 | 0801+044 | 2881 | 08 | 03 | 56.44437500 | +04 | 21 | 2.7410644 | . 00007314 | . 0027282 | -0.5878 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0802-170 | 0802-170 | 2882 | 08 | 04 | 33.71906930 | -17 | 12 | 3.7833790 | . 00699474 | . 1633337 | 0.9982 | 53560.9 | 53560.9 | 1 |  |  |  |
| 0802-276 | P 0802-276 | 2883 | 08 | 04 | 51.45117798 | -27 | 49 | 11.3209363 | . 00003430 | . 0010149 | 0.0713 | 50687.6 | 53382.7 | 2 |  |  |  |
| 0802+115 | 0802+115 | 1622 | 08 | 05 | 8.50566175 | +11 | 21 | 57.1907554 | . 00004892 | . 0013114 | -0.6276 | 53572.7 | 53572.8 | 1 |  |  |  |
| 0802-010 | 0802-010 | 2884 | 08 | 05 | 12.88847606 | -01 | 11 | 13.7954614 | . 00001104 | . 0003725 | -0.2358 | 50576.0 | 50576.1 | 1 |  |  |  |
| 0800+618 | 0800+618 | 1623 | 08 | 05 | 18.17955117 | +61 | 44 | 23.7006357 | . 00000371 | . 0000519 | -0.0265 | 52409.1 | 56772.8 | 178 |  |  |  |
| 0802+212 | 0802+212 | 2885 | 08 | 05 | 38.53424007 | +21 | 06 | 51.5926321 | . 00002649 | . 0006492 | -0.2785 | 50084.5 | 50156.2 | 2 |  |  |  |
| 0803-047 | 0803-047 | 4071 | 08 | 06 | 8.78558204 | -04 | 54 | 11.3386348 | . 00015361 | . 0043591 | -0.0954 | 56105.8 | 56106.0 | 1 |  |  |  |
| 0804-267 | P 0804-267 | 2886 | 08 | 06 | 12.72258035 | -26 | 52 | 33.3084980 | . 00001800 | . 0006175 | 0.0541 | 50631.8 | 50687.7 | 2 |  |  |  |
| 0804-172 | 0804-172 | 1624 | 08 | 06 | 24.96565037 | -17 | 24 | 44.3353242 | . 00011231 | . 0029248 | -0.1498 | 53560.9 | 53561.8 | 1 |  |  |  |
| 0804-290 | 0804-290 | 1625 | 08 | 06 | 33.44522084 | -29 | 11 | 34.8923429 | . 00008955 | . 0034550 | 0.2645 | 53134.0 | 53134.0 | 1 |  |  |  |
| 0803+452 | 0803+452 | 2887 | 08 | 06 | 33.47250480 | +45 | 04 | 32.2719065 | . 00003819 | . 0004977 | 0.5689 | 50305.7 | 50305.8 | 1 |  |  |  |
| 0806-710 | 0806-710 | 2888 | 08 | 06 | 34.06230497 | -71 | 12 | 15.9664061 | . 03742907 | . 2168232 | 0.9892 | 52886.8 | 52886.8 | 1 |  |  |  |
| 0804-351 | 0804-351 | 2889 | 08 | 06 | 44.76634978 | -35 | 19 | 41.4558426 | . 00009273 | . 0042303 | 0.7013 | 52306.3 | 56749.1 | 3 |  |  |  |
| 0803+514 | 0803+514 | 2890 | 08 | 07 | 1.01355171 | +51 | 17 | 38.6763545 | . 00003502 | . 0004686 | 0.5075 | 49576.6 | 50305.8 | 2 |  |  |  |
| 0804-153 | 0804-153 | 1626 | 08 | 07 | 5.30897346 | -15 | 31 | 25.3809461 | . 00001459 | . 0004771 | -0.4049 | 54559.0 | 54559.2 | 1 |  |  |  |
| 0804-055 | 0804-055 | 2891 | 08 | 07 | 9.61759371 | -05 | 41 | 13.9149222 | . 00001856 | . 0006692 | -0.2408 | 50576.0 | 50576.1 | 1 |  |  |  |
| 0805-119 | 0805-119 | 2892 | 08 | 07 | 35.99891244 | -12 | 07 | 43.7145792 | . 00004538 | . 0015139 | -0.1011 | 50576.0 | 50576.1 | 1 |  |  |  |
| 0804+140 | 0804+140 | 1627 | 08 | 07 | 38.50486631 | +13 | 52 | 17.3619844 | . 00001472 | . 0005247 | -0.2631 | 53125.9 | 53126.0 | 1 |  |  |  |
| 0805+046 | 0805+046 | 794 | 08 | 07 | 57.53856600 | +04 | 32 | 34.5307965 | . 00000682 | . 0001632 | -0.1132 | 49913.8 | 56596.0 | 25 | 0.17 |  |  |
| 0805-077 | P 0805-07 | 210 | 08 | 08 | 15.53603376 | -07 | 51 | 9.8863682 | . 00000471 | . 0001009 | -0.4493 | 46797.4 | 56674.2 | 88 | 0.68 | 0.76 | 3.3 |
| 0802+733 | 0802+733 | 2893 | 08 | 08 | 16.49154361 | +73 | 15 | 11.9905790 | . 00011471 | . 0007690 | -0.0498 | 49826.9 | 49827.1 | 1 |  |  |  |
| 0805+269 | 0805+269 | 2894 | 08 | 08 | 36.76494501 | +26 | 46 | 36.7387977 | . 00010310 | . 0021115 | 0.0057 | 50218.9 | 50218.9 | 1 |  |  |  |
| 0804+499 | OJ 508 | 795 | 08 | 08 | 39.66628510 | +49 | 50 | 36.5304381 | . 00000340 | . 0000506 | -0.0456 | 48377.9 | 56770.4 | 1028 | 0.54 |  | 1.8 |
| 0805+410 | 0805+410 | 796 | 08 | 08 | 56.65204035 | +40 | 52 | 44.8889220 | . 00000344 | . 0000521 | 0.0478 | 48720.0 | 56772.4 | 651 | 0.56 | 0.44 | 2.1 |
| 0806-153 | 0806-153 | 1628 | 08 | 09 | 7.39182231 | -15 | 32 | 46.8742637 | . 00005789 | . 0014885 | 0.0383 | 54559.0 | 54559.2 | 1 |  |  |  |
| 0806+524 | 0806+524 | 1629 | 08 | 09 | 49.18706357 | +52 | 18 | 58.2528719 | . 00018834 | . 0015942 | 0.5376 | 53559.8 | 53560.7 | 1 |  |  |  |
| 0807+103 | 0807+103 | 2895 | 08 | 10 | 26.42388982 | +10 | 10 | 40.9995099 | . 00003557 | . 0008246 | 0.0235 | 53560.9 | 55966.3 | 2 |  |  |  |
| 0807+417 | 0807+417 | 2896 | 08 | 10 | 58.99426608 | +41 | 34 | 2.8060509 | . 00004345 | . 0008093 | -0.5581 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0806+573 | 0806+573 | 2897 | 08 | 11 | 0.60920841 | +57 | 14 | 12.4957243 | . 00019714 | . 0010629 | 0.4022 | 49576.6 | 49576.8 | 1 |  |  |  |
| 0809-493 | P 0809-492 | 2898 | 08 | 11 | 8.80242096 | -49 | 29 | 43.5109581 | . 00113229 | . 0055712 | 0.5572 | 52877.8 | 56462.9 | 2 |  |  |  |
| 0808+019 | P 0808+019 | 211 | 08 | 11 | 26.70731334 | +01 | 46 | 52.2202112 | . 00000346 | . 0000539 | -0.0291 | 48352.9 | 56717.1 | 477 | 0.61 | 0.57 | 1.6 |
| 0810-180 | 0810-180 | 2899 | 08 | 12 | 28.51593233 | -18 | 10 | 42.8128508 | . 00002209 | . 0007301 | 0.2807 | 50631.8 | 50631.9 | 1 |  |  |  |
| 0810+258 | 0810+258 | 2900 | 08 | 13 | 3.83406998 | +25 | 42 | 11.0318647 | . 00002898 | . 0006695 | 0.5448 | 50218.9 | 50218.9 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \text { Source Flux } \\ & \text { (Jy) } \\ & \hline \end{aligned}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0810+247 | 0810+247 | 2901 | 08 | 13 | 47.13768139 | +24 | 35 | 59.1497203 | . 00007295 | . 0011612 | -0.5334 | 50084.5 | 50156.2 | 2 |  |  |  |
| 0811-179 | 0811-179 | 2902 | 08 | 14 | 7.90079931 | -18 | 06 | 26.0545182 | . 00003574 | . 0012539 | 0.1900 | 53572.7 | 55616.3 | 2 |  |  |  |
| 0812-252 | 0812-252 | 2903 | 08 | 14 | 55.12993237 | -25 | 21 | 43.9249682 | . 00016074 | . 0031143 | 0.3277 | 50631.8 | 50687.7 | 2 |  |  |  |
| 0812+020 | 0812+020 | 1630 | 08 | 15 | 22.96080770 | +01 | 54 | 59.4813770 | . 00001414 | . 0003117 | -0.2949 | 54124.9 | 56568.7 | 5 |  |  |  |
| 0812+367 | 0812+367 | 797 | 08 | 15 | 25.94485931 | +36 | 35 | 15.1488164 | . 00000444 | . 0000745 | 0.0420 | 50241.9 | 56755.6 | 40 | 0.45 | 0.24 | 2.8 |
| 0812+100 | 0812+100 | 2904 | 08 | 15 | 29.47302827 | +09 | 54 | 40.7000654 | . 00003917 | . 0010761 | 0.1708 | 53134.0 | 56302.4 | 2 |  |  |  |
| 0814-241 | 0814-241 | 1631 | 08 | 16 | 40.41235539 | -24 | 21 | 6.5701527 | . 00001919 | . 0006477 | -0.4518 | 53126.0 | 53126.1 | 1 |  |  |  |
| 0814+240 | 0814+240 | 1632 | 08 | 17 | 10.54780148 | +23 | 52 | 23.9523989 | . 00007394 | . 0010578 | -0.2646 | 53559.9 | 53560.8 | 1 |  |  |  |
| 0814-029 | 0814-029 | 2905 | 08 | 17 | 27.48601795 | -03 | 07 | 37.3129743 | . 00014857 | . 0028783 | 0.6145 | 50576.0 | 50576.1 | 1 |  |  |  |
| 0814+326 | 0814+326 | 2906 | 08 | 17 | 28.54227788 | +32 | 27 | 2.9259391 | . 00006107 | . 0011510 | 0.5391 | 50218.9 | 50218.9 | 1 |  |  |  |
| 0813+557 | 0813+557 | 1633 | 08 | 17 | 41.01991568 | +55 | 37 | 33.2828540 | . 00002540 | . 0002488 | -0.1174 | 53133.9 | 53134.1 | 1 |  |  |  |
| 0815-094 | 0815-094 | 1634 | 08 | 17 | 49.74953882 | -09 | 33 | 30.5284862 | . 00003468 | . 0012673 | -0.6258 | 53560.9 | 53561.8 | 1 |  |  |  |
| 0815-294 | 0815-294 | 2907 | 08 | 17 | 58.85024258 | -29 | 36 | 31.4214009 | . 00003382 | . 0011075 | 0.1363 | 53503.0 | 53503.1 | 1 |  |  |  |
| 0814+425 | OJ 425 | 214 | 08 | 18 | 15.99960686 | +42 | 22 | 45.4148929 | . 00000400 | . 0000592 | -0.0950 | 43808.8 | 56776.7 | 305 | 0.88 | 0.68 | 2.3 |
| 0816+054 | 0816+054 | 1635 | 08 | 18 | 56.23684456 | +05 | 17 | 37.2655247 | . 00000904 | . 0002976 | -0.2308 | 53126.0 | 53916.0 | 2 |  |  |  |
| 0815+326 | 0815+326 | 2908 | 08 | 19 | 2.32858495 | +32 | 26 | 37.2158344 | . 00003975 | . 0008792 | 0.5480 | 50218.9 | 50218.9 | 1 |  |  |  |
| 0816+279 | 0816+279 | 1636 | 08 | 19 | 18.85572439 | +27 | 47 | 30.6886508 | . 00002863 | . 0007494 | -0.2378 | 53572.7 | 53572.8 | 1 |  |  |  |
| 0817-063 | 0817-063 | 1637 | 08 | 19 | 36.64761417 | -06 | 30 | 48.1707165 | . 00010071 | . 0037986 | 0.2222 | 53522.9 | 54112.3 | 2 |  |  |  |
| 0818-128 | P 0818-128 | 216 | 08 | 20 | 57.44761005 | -12 | 58 | 59.1691855 | . 00000644 | . 0001080 | -0.0850 | 49482.1 | 55257.6 | 47 | 0.11 | 0.08 | 3.5 |
| 0820-578 | 0820-578 | 2909 | 08 | 21 | 20.52747744 | -58 | 00 | 18.7514147 | . 00005680 | . 0010401 | 0.4922 | 54723.1 | 54723.2 | 1 |  |  |  |
| 0819-032 | 0819-032 | 2910 | 08 | 21 | 40.03746647 | -03 | 23 | 12.5343364 | . 00006641 | . 0022011 | -0.3101 | 50576.0 | 50576.1 | 1 |  |  |  |
| 0819+408 | 0819+408 | 2911 | 08 | 22 | 57.55595164 | +40 | 41 | 49.7667422 | . 00001625 | . 0003748 | 0.1009 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0820+225 | 0820+225 | 2912 | 08 | 23 | 24.75917110 | +22 | 23 | 3.2885191 | . 00002740 | . 0008075 | 0.3541 | 50084.5 | 50156.2 | 2 |  |  |  |
| 0820+296 | 0820+296 | 2913 | 08 | 23 | 41.13195775 | +29 | 28 | 28.1992665 | . 00005085 | . 0011278 | 0.1312 | 50218.9 | 50218.9 | 1 |  |  |  |
| 0821-094 | 0821-094 | 1638 | 08 | 23 | 52.02320837 | -09 | 39 | 25.9066109 | . 00016655 | . 0047298 | -0.0636 | 53551.9 | 53552.0 | 1 |  |  |  |
| 0821-182 | 0821-182 | 1639 | 08 | 24 | 4.06603805 | -18 | 27 | 40.8397927 | . 00002878 | . 0010281 | -0.0374 | 53559.9 | 53560.8 | 1 |  |  |  |
| 0821+248 | 0821+248 | 1061 | 08 | 24 | 33.00929048 | +24 | 38 | 43.1160690 | . 00000912 | . 0002987 | -0.3539 | 50084.5 | 56754.1 | 30 | 0.20 | 0.13 | 1.7 |
| 0820+560 | 0820+560 | 702 | 08 | 24 | 47.23635067 | +55 | 52 | 42.6694029 | . 00000484 | . 0000580 | -0.0161 | 47282.9 | 55773.2 | 62 | 0.24 |  | 3.2 |
| 0822-243 | 0822-243 | 1640 | 08 | 24 | 49.26024888 | -24 | 28 | 52.5570201 | . 00013803 | . 0054220 | 0.0960 | 53560.9 | 53561.8 | 1 |  |  |  |
| 0822-152 | 0822-152 | 2914 | 08 | 24 | 51.62146998 | -15 | 27 | 45.9157402 | . 00002637 | . 0007138 | 0.0247 | 54087.3 | 55168.5 | 2 |  |  |  |
| 0821+394 | 0821+394 | 798 | 08 | 24 | 55.48385386 | +39 | 16 | 41.9040695 | . 00000422 | . 0000642 | -0.0707 | 49268.4 | 56758.5 | 50 | 0.82 | 0.66 | 2.4 |
| 0822+086 | 0822+086 | 1641 | 08 | 25 | 4.77639881 | +08 | 31 | 11.0919008 | . 00007615 | . 0013611 | -0.2141 | 53572.7 | 53572.8 | 1 |  |  |  |
| 0822+137 | J0825+1332 | 799 | 08 | 25 | 11.89094319 | +13 | 32 | 32.5386233 | . 00000564 | . 0002337 | -0.1878 | 50084.5 | 56717.1 | 40 | 0.24 | 0.13 |  |
| 0823-500 | 0823-500 | 800 | 08 | 25 | 26.86949165 | -50 | 10 | 38.4926279 | . 00099532 | . 0107100 | -0.8725 | 50259.2 | 53568.5 | 2 |  |  |  |
| 0821+621 | 0821+621 | 801 | 08 | 25 | 38.61217665 | +61 | 57 | 28.5794287 | . 00001028 | . 0000803 | 0.0802 | 49422.0 | 53613.0 | 14 | 0.13 |  |  |
| 0823+033 | P 0823+033 | 221 | 08 | 25 | 50.33835465 | +03 | 09 | 24.5200010 | . 00000338 | . 0000530 | -0.0412 | 44200.7 | 56758.4 | 1161 | 0.71 | 0.70 | 2.7 |
| 0823-321 | 0823-321 | 1642 | 08 | 25 | 51.37262896 | -32 | 18 | 23.2334730 | . 00005082 | . 0018523 | -0.3139 | 53153.0 | 53153.0 | 1 |  |  |  |
| 0823-223 | P 0823-223 | 2915 | 08 | 26 | 1.57293827 | -22 | 30 | 27.2032950 | . 00000895 | . 0002715 | -0.3358 | 50631.8 | 56561.0 | 7 |  | 0.30 |  |
| 0824+355 | 0824+355 | 1062 | 08 | 27 | 38.58822961 | +35 | 25 | 5.0773422 | . 00001485 | . 0003252 | -0.0763 | 50241.9 | 50242.0 | 1 |  | 0.11 |  |
| 0824+524 | 0824+524 | 2916 | 08 | 27 | 53.69811261 | +52 | 17 | 58.2962103 | . 00021510 | . 0014088 | 0.0496 | 49576.6 | 49576.8 | 1 |  |  |  |
| 0826-373 | 0826-373 | 802 | 08 | 28 | 4.78023193 | -37 | 31 | 6.2812200 | . 00000621 | . 0001181 | 0.0976 | 48110.0 | 56601.1 | 44 |  | 0.32 | 4.2 |
| 0826+180 | 0826+180 | 1643 | 08 | 29 | 4.82877185 | +17 | 54 | 15.8625873 | . 00030855 | . 0035473 | -0.7217 | 54087.3 | 54965.1 | 2 |  |  |  |
| 0827+243 | B2 0827+24 | 224 | 08 | 30 | 52.08619027 | +24 | 10 | 59.8203600 | . 000000373 | . 0000589 | -0.1347 | 44200.7 | 56772.6 | 171 | 0.74 | 0.84 | 2.4 |
| 0828-222 | 0828-222 | 1644 | 08 | 31 | 9.14861916 | -22 | 28 | 26.7857829 | . 00059209 | . 0326703 | -0.9060 | 53572.8 | 54278.0 | 2 |  |  |  |
| 0829+046 | MA 0829+04 | 226 | 08 | 31 | 48.87695398 | +04 | 29 | 39.0858320 | . 00000467 | . 0000888 | -0.0268 | 49913.8 | 55327.7 | 34 | 0.21 | 0.23 | 3.0 |
| 0829+089 | 0829+089 | 4128 | 08 | 31 | 55.09150940 | +08 | 47 | 43.6516288 | . 00002224 | . 0006387 | 0.3184 | 55847.5 | 55916.5 | 2 |  |  |  |
| 0829+187 | 0829+187 | 2917 | 08 | 32 | 16.04025731 | +18 | 32 | 12.1338950 | . 00003166 | . 0007557 | -0.0387 | 50084.5 | 50156.2 | 2 |  |  |  |
| 0828+493 | OJ 448 | 225 | 08 | 32 | 23.21670790 | +49 | 13 | 21.0381589 | . 00000635 | . 0000834 | 0.0668 | 48352.9 | 56766.5 | 60 | 0.16 |  | 2.3 |
| 0829+108 | 0829+108 | 2918 | 08 | 32 | 38.47715805 | +10 | 40 | 19.6544257 | . 00006508 | . 0019090 | -0.4048 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0830+160 | 0830+160 | 1645 | 08 | 32 | 49.39710110 | +15 | 54 | 8.6233432 | . 00002512 | . 0007169 | -0.2300 | 53559.9 | 53560.8 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0830+115 | 0830+115 | 2919 | 08 | 33 | 14.36667861 | +11 | 23 | 36.2351241 | . 00003023 | . 0008231 | 0.3732 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0830+040 | 0830+040 | 2920 | 08 | 33 | 18.91302561 | +03 | 50 | 32.3504114 | . 00003669 | . 0012264 | -0.1441 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0831-445 | 0831-445 | 803 | 08 | 33 | 22.33356940 | -44 | 41 | 38.9098889 | . 01728449 | . 2054513 | -0.9855 | 49330.9 | 49330.9 | 1 |  |  |  |
| 0830+425 | 0830+425 | 2921 | 08 | 33 | 53.88536706 | +42 | 24 | 1.8503703 | . 00002749 | . 0004981 | 0.0883 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0830+605 | 0830+605 | 2922 | 08 | 34 | 17.54591577 | +60 | 19 | 47.0669499 | . 00008975 | . 0011224 | 0.3892 | 49576.6 | 49576.8 | 1 |  |  |  |
| 0832-225 | 0832-225 | 4072 | 08 | 34 | 44.19793878 | -22 | 41 | 12.8133833 | . 00013743 | . 0053662 | -0.2618 | 56497.9 | 56498.7 | 1 |  |  |  |
| 0831+557 | 4C 55.16 | 228 | 08 | 34 | 54.90400746 | +55 | 34 | 21.0703511 | . 00009108 | . 0007497 | -0.0136 | 48975.7 | 55180.7 | 17 |  |  | 5.1 |
| 0830+687 | 0830+687 | 4129 | 08 | 35 | 47.60876465 | +68 | 35 | 11.4900701 | . 00017181 | . 0006094 | -0.0677 | 55776.0 | 55776.6 | 1 |  |  |  |
| 0833+218 | 0833+218 | 2923 | 08 | 36 | 16.21692805 | +21 | 39 | 3.5780215 | . 00009582 | . 0016046 | -0.6911 | 54087.3 | 54087.5 | 1 |  |  |  |
| 0833+276 | 0833+276 | 2924 | 08 | 36 | 22.88866266 | +27 | 28 | 52.5336107 | . 00001745 | . 0004480 | 0.0852 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0833+416 | 0833+416 | 2925 | 08 | 36 | 36.89265658 | +41 | 25 | 54.7121870 | . 00002301 | . 0006232 | -0.0639 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0834-201 | P 0834-20 | 804 | 08 | 36 | 39.21524474 | -20 | 16 | 59.5042557 | . 00000440 | . 0000780 | 0.0574 | 49425.7 | 56776.6 | 70 | 0.83 | 0.75 | 2.3 |
| 0834-223 | 0834-223 | 2926 | 08 | 36 | 50.76881064 | -22 | 33 | 10.0878952 | . 00010751 | . 0026927 | -0.0047 | 50631.8 | 50687.7 | 2 |  |  |  |
| 0835-339 | 0835-339 | 1271 | 08 | 37 | 0.31666510 | -34 | 09 | 14.8587777 | . 00002829 | . 0006342 | 0.2598 | 53977.8 | 53978.7 | 1 |  |  |  |
| 0833+585 | 0833+585 | 805 | 08 | 37 | 22.40966774 | +58 | 25 | 1.8449421 | . 00000734 | . 0000747 | 0.0212 | 48353.2 | 55327.5 | 58 | 0.54 |  | 3.3 |
| 0834+250 | OJ 259 | 1063 | 08 | 37 | 40.24568712 | +24 | 54 | 23.1215490 | . 00000533 | . 0001097 | -0.2652 | 50218.9 | 56749.2 | 30 | 0.36 | 0.35 | 2.8 |
| 0836-384 | 0836-384 | 4073 | 08 | 38 | 11.01515265 | -38 | 36 | 49.6582757 | . 00010156 | . 0037770 | 0.0671 | 56204.6 | 56204.7 | 1 |  |  |  |
| 0836+290 | 0836+290 | 1064 | 08 | 39 | 15.82767733 | +28 | 50 | 38.8028833 | . 00001332 | . 0004547 | -0.2108 | 53067.9 | 54142.1 | 6 | 0.14 | 0.07 |  |
| 0836+182 | 0836+182 | 1646 | 08 | 39 | 30.72138362 | +18 | 02 | 47.1423425 | . 00001961 | . 0004368 | -0.5976 | 50084.5 | 52543.5 | 5 |  |  |  |
| 0837+035 | P 0837+035 | 2927 | 08 | 39 | 49.19582308 | +03 | 19 | 53.8586306 | . 00002236 | . 0006015 | -0.3168 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0837+012 | 0837+012 | 2928 | 08 | 39 | 49.61100693 | +01 | 04 | 26.7361816 | . 00001807 | . 0005611 | 0.0194 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0836+426 | 0836+426 | 2929 | 08 | 39 | 56.56134495 | +42 | 27 | 55.8154259 | . 00002387 | . 0004851 | 0.0927 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0838+133 | 0838+133A | 1272 | 08 | 40 | 47.58842211 | +13 | 12 | 23.5636368 | . 00000731 | . 0002012 | -0.3282 | 52409.1 | 53820.1 | 4 | 0.39 | 0.41 |  |
| 0837+448 | 0837+448 | 4074 | 08 | 40 | 51.28893549 | +44 | 39 | 59.2924457 | . 00007029 | . 0008581 | 0.3482 | 56267.3 | 56267.6 | 1 |  |  |  |
| 0836+710 | 4C 71.07 | 231 | 08 | 41 | 24.36527146 | +70 | 53 | 42.1730381 | . 00000602 | . 0000568 | 0.0485 | 44202.9 | 55166.6 | 94 | 1.17 |  | 3.6 |
| 0842-754 | 0842-754 | 2930 | 08 | 41 | 27.03379988 | -75 | 40 | 27.8749586 | . 00315071 | . 0114846 | -0.1484 | 48110.1 | 48110.9 | 1 |  |  |  |
| 0839-314 | 0839-314 | 1647 | 08 | 41 | 32.60257209 | -31 | 36 | 35.6873940 | . 00013399 | . 0043654 | 0.7604 | 53153.0 | 53153.0 | 1 |  |  |  |
| 0839+187 | GC 0839+18 | 234 | 08 | 42 | 5.09417143 | +18 | 35 | 40.9904863 | . 00000627 | . 0001497 | 0.0495 | 48976.2 | 56637.9 | 34 | 0.16 | 0.19 | 4.3 |
| 0839+458 | 0839+458 | 2931 | 08 | 43 | 7.09423847 | +45 | 37 | 42.8979373 | . 00050098 | . 0102961 | 0.3218 | 50305.7 | 50305.8 | 1 |  |  |  |
| 0840+424 | 0840+424 | 2932 | 08 | 43 | 31.63738248 | +42 | 15 | 29.5258606 | . 00016947 | . 0029898 | 0.2088 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0839+687 | 0839+687 | 2933 | 08 | 43 | 49.10151177 | +68 | 33 | 17.1547603 | . 00005437 | . 0004152 | 0.1477 | 49826.9 | 54087.4 | 2 |  |  |  |
| 0841+386 | 0841+386 | 2934 | 08 | 44 | 29.09781461 | +38 | 30 | 55.7102567 | . 00001729 | . 0004382 | -0.1542 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0842-375 | 0842-375 | 2935 | 08 | 44 | 52.32117668 | -37 | 42 | 9.3829181 | . 00027667 | . 0135947 | 0.7804 | 52306.3 | 52409.1 | 2 |  |  |  |
| 0843-336 | 0843-336 | 1648 | 08 | 45 | 8.14434044 | -33 | 47 | 41.0610832 | . 00007743 | . 0028965 | -0.7746 | 54964.9 | 54965.1 | 1 |  |  |  |
| 0842+048 | 0842+048 | 2936 | 08 | 45 | 17.14377078 | +04 | 39 | 47.3545153 | . 00021889 | . 0026004 | 0.5476 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0843-371 | 0843-371 | 2937 | 08 | 45 | 42.49653920 | -37 | 18 | 55.0022824 | . 00046057 | . 0178609 | 0.4084 | 52409.1 | 55483.6 | 2 |  |  |  |
| 0843-259 | 0843-259 | 2938 | 08 | 46 | 0.73385854 | -26 | 10 | 54.1553754 | . 00025033 | . 0055792 | -0.0477 | 50631.8 | 50687.7 | 2 |  |  |  |
| 0844-342 | 0844-342 | 2939 | 08 | 46 | 10.89370213 | -34 | 24 | 33.5821422 | . 00021024 | . 0073721 | 0.7866 | 52306.3 | 52306.4 | 1 |  |  |  |
| 0844-259 | 0844-259 | 2940 | 08 | 46 | 56.61656294 | -26 | 07 | 50.6594031 | . 00012550 | . 0037374 | 0.7462 | 53503.0 | 53503.1 | 1 |  |  |  |
| 0844-177 | 0844-177 | 1649 | 08 | 47 | 11.17021243 | -17 | 54 | 50.1387172 | . 00013390 | . 0036801 | 0.4861 | 53523.0 | 53560.8 | 2 |  |  |  |
| 0844+387 | 0844+387 | 1650 | 08 | 47 | 15.16919709 | +38 | 31 | 9.9842594 | . 00009352 | . 0011251 | -0.0466 | 53551.8 | 53552.0 | 1 |  |  |  |
| 0843+575 | 0843+575 | 2941 | 08 | 47 | 28.05982091 | +57 | 23 | 38.3325091 | . 00098486 | . 0081740 | 0.8467 | 49576.6 | 49576.8 | 1 |  |  |  |
| 0844+463 | 0844+463 | 2942 | 08 | 47 | 34.29850700 | +46 | 09 | 28.0053024 | . 00002160 | . 0003646 | 0.2463 | 50305.7 | 50305.8 | 1 |  |  |  |
| 0845-068 | 0845-068 | 2943 | 08 | 47 | 56.73723797 | -07 | 03 | 16.9025171 | . 00001359 | . 0004723 | -0.2165 | 53503.0 | 53503.1 | 1 |  |  |  |
| 0845-051 | 0845-051 | 1651 | 08 | 47 | 58.72492904 | -05 | 20 | 33.9001976 | . 00000781 | . 0002396 | -0.1053 | 53133.9 | 56701.4 | 2 | 0.17 | 0.21 |  |
| 0847-354 | 0847-354 | 2944 | 08 | 49 | 45.62349315 | -35 | 41 | 1.2786883 | . 00002362 | . 0007538 | -0.1200 | 52306.3 | 52409.1 | 2 |  | 0.27 |  |
| 0846+513 | 0846+513 | 1652 | 08 | 49 | 57.97686274 | +51 | 08 | 29.0239984 | . 00002189 | . 0003586 | 0.2436 | 53560.9 | 53561.8 | 1 |  |  |  |
| 0847-120 | 0847-120 | 1653 | 08 | 50 | 9.63563060 | -12 | 13 | 35.3760884 | . 00000394 | . 0000664 | 0.0298 | 53134.0 | 56637.6 | 130 | 0.34 | 0.43 |  |
| 0847+379 | 0847+379 | 1065 | 08 | 50 | 24.72978393 | +37 | 47 | 9.4778663 | . 00001828 | . 0004277 | -0.1463 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0848-304 | 0848-304 | 2945 | 08 | 50 | 33.68170247 | -30 | 39 | 34.3470603 | . 00037566 | . 0090454 | -0.0918 | 52306.3 | 56638.4 | 2 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0848+089 | 0848+089 | 2946 | 08 | 51 | 28.42529412 | +08 | 45 | 15.3109018 | . 00002852 | . 0005877 | 0.1985 | 49913.8 | 55657.2 | 2 |  |  |  |
| 0849+287 | 0849+287 | 1654 | 08 | 52 | 5.16955008 | +28 | 33 | 59.7311739 | . 00001713 | . 0004783 | -0.3300 | 53125.1 | 53126.0 | 1 |  |  |  |
| 0850-152 | 0850-152 | 2947 | 08 | 52 | 30.84719052 | -15 | 28 | 8.4766131 | . 00004654 | . 0013887 | -0.2865 | 53572.8 | 53572.8 | 1 |  |  |  |
| 0851-382 | 0851-382 | 2948 | 08 | 52 | 59.93280503 | -38 | 24 | 20.4023427 | . 75622826 | 1.5593300 | 1.0000 | 52409. | 52409. | 1 |  |  |  |
| 0850-016 | 0850-016 | 2949 | 08 | 53 | 1.33035021 | -01 | 50 | 48.1385874 | . 01341497 | . 2188028 | -0.9963 | 53552.0 | 53552.0 | 1 |  |  |  |
| 0851+071 | 0851+071 | 1224 | 08 | 53 | 48.19003004 | +06 | 54 | 47.2362633 | . 00005600 | . 0014247 | 0.5357 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0852-254 | 0852-254 | 1655 | 08 | 54 | 32.17990710 | -25 | 40 | 20.8435370 | . 00006999 | . 0025443 | 0.1061 | 53523.0 | 53523.0 | 1 |  |  |  |
| 0851+075 | 0851+075 | 1656 | 08 | 54 | 35.03643501 | +07 | 20 | 24.1250107 | . 00002393 | . 0006447 | 0.0176 | 53559.9 | 53560.8 | 1 |  |  |  |
| 0850+581 | 0850+581 | 808 | 08 | 54 | 41.99639609 | +57 | 57 | 29.9391499 | . 00000655 | . 0000794 | -0.0646 | 48720.0 | 56770.3 | 89 | 0.18 |  | 3.2 |
| 0847+807 | 0847+807 | 2950 | 08 | 54 | 48.59874083 | +80 | 34 | 22.3819854 | . 00009026 | . 0004566 | 0.1606 | 54087.4 | 54087.5 | 1 |  |  |  |
| 0851+202 | OJ 287 | 236 | 08 | 54 | 48.87492726 | +20 | 06 | 30.6408446 | . 00000335 | . 0000507 | 0.0103 | 43808.7 | 56776.7 | 2281 | 1.78 | 1.67 | 2.6 |
| 0850+625 | 0850+625 | 2951 | 08 | 54 | 50.57625135 | +62 | 18 | 50.1908081 | . 00016200 | . 0013656 | -0.0790 | 49826.9 | 49827.1 | 1 |  |  |  |
| 0855-716 | 0855-716 | 2952 | 08 | 55 | 11.76993935 | -71 | 49 | 6.4574311 | . 00007471 | . 0004575 | 0.1152 | 54723.1 | 54723.5 | 1 |  |  |  |
| 0854-108 | 0854-108 | 1657 | 08 | 56 | 41.80415119 | -11 | 05 | 14.4303210 | . 00000406 | . 0000650 | -0.0722 | 53551.9 | 56763.7 | 126 | 0.24 | 0.31 |  |
| 0851+719 | 0851+719 | 1658 | 08 | 56 | 54.86911606 | +71 | 46 | 23.9015977 | . 00096400 | . 0023371 | -0.3628 | 53560.9 | 53561.7 | 1 |  |  |  |
| 0854+213 | 0854+213 | 1659 | 08 | 56 | 57.24476683 | +21 | 11 | 43.6582430 | . 00000635 | . 0001324 | -0.0143 | 50084.5 | 52009.4 | 4 |  |  |  |
| 0855-196 | 0855-196 | 2953 | 08 | 58 | 5.36321476 | -19 | 50 | 36.9356647 | . 00001149 | . 0004044 | 0.1654 | 50631.8 | 50687.7 | 2 |  |  |  |
| 0855+143 | 3C 212 | 2954 | 08 | 58 | 41.44703008 | +14 | 09 | 44.7618026 | . 00001237 | . 0002930 | -0.1799 | 55111.8 | 55112.5 | 1 |  |  |  |
| 0855+142 | 0855+142 | 1660 | 08 | 58 | 41.60032783 | +14 | 05 | 40.3716089 | . 00007376 | . 0029586 | -0.4699 | 53523.1 | 53523.1 | 1 |  |  |  |
| 0857-329 | 0857-329 | 2955 | 08 | 59 | 20.81292447 | -33 | 09 | 24.7209821 | . 00012906 | . 0059356 | 0.0878 | 52306.3 | 55112.6 | 2 |  |  |  |
| 0857+413 | 0857+413 | 1661 | 09 | 00 | 21.43383961 | +41 | 08 | 22.9897368 | . 00002223 | . 0004730 | -0.2785 | 53572.7 | 53572.9 | 1 |  |  |  |
| 0858-125 | 0858-125 | 1662 | 09 | 00 | 39.76563615 | -12 | 42 | 32.6220248 | . 00021157 | . 0059056 | -0.1793 | 53559.9 | 53560.8 | 1 |  |  |  |
| 0858-279 | 0858-279 | 2956 | 09 | 00 | 40.03874066 | -28 | 08 | 20.3521988 | . 00006059 | . 0016929 | 0.0201 | 50687.6 | 54643.7 | 2 |  |  |  |
| 0858-313 | 0858-313 | 2957 | 09 | 00 | 44.29435971 | -31 | 31 | 28.5780662 | . 00003868 | . 0013016 | 0.3334 | 52306.3 | 55657.1 | 2 |  |  |  |
| 0858+050 | 0858+050 | 1663 | 09 | 01 | 11.86429055 | +04 | 48 | 58.8331252 | . 00002178 | . 0006172 | -0.4020 | 53560.9 | 53561.8 | 1 |  |  |  |
| 0859-068 | 0859-068 | 2958 | 09 | 01 | 44.24375060 | -07 | 02 | 16.1026638 | . 01278500 | . 2344880 | -0.9910 | 53552.0 | 53552.0 | 1 |  |  |  |
| 0859-140 | P 0859-14 | 240 | 09 | 02 | 16.83091832 | -14 | 15 | 30.8754309 | . 00000485 | . 0000879 | -0.3616 | 43808.7 | 56637.9 | 124 | 0.26 | 0.50 | 3.8 |
| 0858+542 | 0858+542 | 1664 | 09 | 02 | 19.28741328 | +54 | 02 | 57.2554676 | . 00006673 | . 0008376 | 0.0685 | 53572.8 | 53572.9 | 1 |  |  |  |
| 0859+433 | 0859+433 | 2959 | 09 | 02 | 30.91996002 | +43 | 10 | 14.1656440 | . 00001541 | . 0003403 | -0.0746 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0900-171 | 0900-171 | 1665 | 09 | 03 | 0.01978431 | -17 | 21 | 5.2324990 | . 00002691 | . 0008174 | -0.3823 | 53559.8 | 53559.9 | 1 |  |  |  |
| 0859+470 | OJ 499 | 239 | 09 | 03 | 3.99010171 | +46 | 51 | 4.1374232 | . 00000441 | . 0000675 | -0.0416 | 43808.9 | 56782.1 | 238 | 0.51 | 0.29 | 3.1 |
| 0901-310 | 0901-310 | 1666 | 09 | 03 | 37.93483062 | -31 | 17 | 39.1298552 | . 00014749 | . 0066138 | 0.5079 | 52409.0 | 53523.0 | 2 |  |  |  |
| 0859+681 | 0859+681 | 1667 | 09 | 03 | 53.15504749 | +67 | 57 | 22.6859039 | . 00002990 | . 0002535 | 0.3103 | 49826.9 | 54664.7 | 2 |  |  |  |
| 0900+520 | 0900+520 | 2960 | 09 | 03 | 58.57441410 | +51 | 51 | 0.6618866 | . 00022753 | . 0022066 | 0.5743 | 49576.8 | 49576.9 | 1 |  |  |  |
| 0900+428 | 0900+428 | 2961 | 09 | 04 | 15.62848783 | +42 | 38 | 4.7644625 | . 00002438 | . 0004686 | -0.2644 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0902-309 | 0902-309 | 2962 | 09 | 04 | 20.51593609 | -31 | 11 | 25.6649266 | . 00004248 | . 0016527 | -0.1904 | 52409.0 | 56204.6 | 2 |  |  |  |
| 0902-350 | 0902-350 | 2963 | 09 | 04 | 42.37878669 | -35 | 14 | 24.3499955 | . 00002410 | . 0009279 | 0.0873 | 55370.8 | 55370.9 | 1 |  |  |  |
| 0902-256 | 0902-256 | 2964 | 09 | 04 | 52.18599993 | -25 | 52 | 51.7585855 | . 00004838 | . 0012216 | 0.1462 | 50631.8 | 50687.8 | 2 |  |  |  |
| 0903-573 | 0903-573 | 2965 | 09 | 04 | 53.17915879 | -57 | 35 | 5.7847133 | . 00054210 | . 0021940 | 0.3171 | 52886.8 | 53138.5 | 3 |  |  |  |
| 0902+490 | 0902+490A | 2966 | 09 | 05 | 27.46386851 | +48 | 50 | 49.9649671 | . 00001738 | . 0002954 | 0.1180 | 50305.7 | 50305.8 | 1 |  |  |  |
| 0902+290 | 0902+290 | 1067 | 09 | 05 | 41.76989068 | +28 | 49 | 28.3015498 | . 00005638 | . 0008801 | 0.5215 | 50218.9 | 50219.0 | 1 |  | 0.07 |  |
| 0902+468 | 0902+468 | 2967 | 09 | 06 | 15.53965190 | +46 | 36 | 19.0254769 | . 00010664 | . 0019808 | -0.3951 | 50305.7 | 50305.8 | 1 |  |  |  |
| 0904-201 | 0904-201 | 1668 | 09 | 06 | 51.30535105 | -20 | 19 | 54.8051481 | . 00001290 | . 0004405 | -0.1811 | 53551.9 | 53552.0 | 1 |  |  |  |
| 0903+684 | 0903+684 | 2968 | 09 | 07 | 52.94636688 | +68 | 15 | 44.9206092 | . 00018982 | . 0011388 | 0.3360 | 49826.9 | 49827.1 | 1 |  |  |  |
| 0905-202 | 0905-202 | 2969 | 09 | 07 | 54.04047667 | -20 | 26 | 49.4750621 | . 00001983 | . 0008026 | -0.4254 | 53503.1 | 53503.1 | 1 |  |  |  |
| 0905+420 | 0905+420 | 2970 | 09 | 08 | 35.86340003 | +41 | 50 | 46.2044323 | . 00004925 | . 0007806 | 0.1445 | 54112.3 | 56106.1 | 2 |  |  |  |
| 0906+163 | 0906+163 | 1068 | 09 | 08 | 55.92535236 | +16 | 09 | 54.7636264 | . 00003456 | . 0007689 | -0.7746 | 50084.5 | 53820.1 | 5 | 0.17 | 0.13 |  |
| 0906+015 | P 0906+01 | 244 | 09 | 09 | 10.09160002 | +01 | 21 | 35.6178046 | . 00000543 | . 0001349 | -0.4821 | 48352.9 | 56691.2 | 69 | 0.82 | 0.65 | 3.1 |
| 0906+087 | 0906+087 | 1669 | 09 | 09 | 12.15751061 | +08 | 35 | 41.0982529 | . 00003092 | . 0007547 | -0.4205 | 53523.0 | 53561.8 | 2 |  |  |  |
| 0906-048 | 0906-048 | 1670 | 09 | 09 | 17.00384047 | -05 | 00 | 52.8971598 | . 00010948 | . 0031661 | -0.2635 | 54313.8 | 54313.9 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0906+430 | 0906+430 | 1671 | 09 | 09 | 33.49711708 | +42 | 53 | 46.4817599 | . 00001270 | . 0001875 | 0.2507 | 53133.9 | 53134.1 | 1 |  |  |  |
| 0907+022 | 0907+022 | 1672 | 09 | 09 | 39.84790449 | +02 | 00 | 5.2668838 | . 00004156 | . 0004186 | 0.0460 | 49913.8 | 54643.7 | 2 |  |  |  |
| 0907-023 | 0907-023 | 1673 | 09 | 09 | 44.92413808 | -02 | 31 | 30.3550906 | . 00013825 | . 0036140 | 0.5103 | 53559.8 | 53559.9 | 1 |  |  |  |
| 0907-179 | 0907-179 | 1674 | 09 | 09 | 45.25918025 | -18 | 08 | 33.9443550 | . 00012441 | . 0048357 | -0.7157 | 53560.9 | 53561.8 | 1 |  |  |  |
| 0908-052 | 0908-052 | 2971 | 09 | 10 | 51.00187636 | -05 | 26 | 29.1931726 | . 00005919 | . 0017173 | 0.0434 | 53152.9 | 56393.2 | 2 |  |  |  |
| 0908+201 | 0908+201 | 2972 | 09 | 11 | 33.45959562 | +19 | 58 | 14.0905646 | . 00020991 | . 0023348 | -0.1902 | 50084.5 | 50156.3 | 2 |  |  |  |
| 0908+340 | 0908+340 | 2973 | 09 | 11 | 47.76148567 | +33 | 49 | 16.7941518 | . 00004827 | . 0017365 | 0.4025 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0910-414 | 0910-414 | 1675 | 09 | 12 | 12.75084668 | -41 | 37 | 16.1444823 | . 00011373 | . 0048957 | 0.8372 | 54943.1 | 54943.1 | 1 |  |  |  |
| 0909+222 | 0909+222 | 1676 | 09 | 12 | 24.78461216 | +22 | 05 | 6.2479151 | . 00002707 | . 0005711 | -0.2768 | 53125.1 | 53126.0 | 1 |  |  |  |
| 0910-276 | 0910-276 | 2974 | 09 | 12 | 31.58688460 | -27 | 52 | 17.2267934 | . 00063082 | . 0125053 | 0.3760 | 53559.8 | 53559.9 | 1 |  |  |  |
| 0909+445 | 0909+445 | 2975 | 09 | 12 | 51.12936924 | +44 | 22 | 4.6446699 | . 00069629 | . 0042531 | -0.6234 | 53572.8 | 53572.9 | 1 |  |  |  |
| 0910+442 | 0910+442 | 2976 | 09 | 13 | 53.36560741 | +44 | 02 | 57.2010629 | . 00010030 | . 0016100 | -0.5484 | 54087.3 | 54087.5 | 1 |  |  |  |
| 0912-273 | 0912-273 | 2977 | 09 | 14 | 16.58609086 | -27 | 33 | 16.6699394 | . 00052992 | . 0187930 | -0.7724 | 53560.9 | 56638.5 | 2 |  |  |  |
| 0912-330 | 0912-330 | 2978 | 09 | 14 | 36.72104279 | -33 | 14 | 52.4157750 | . 00006277 | . 0024707 | 0.2328 | 55168.4 | 55168.5 | 1 |  |  |  |
| 0912+029 | P 0912+029 | 245 | 09 | 14 | 37.91343512 | +02 | 45 | 59.2465141 | . 00000347 | . 0000550 | 0.0230 | 47253.3 | 56770.6 | 380 | 0.60 | 0.44 | 2.3 |
| 0911+354 | 0911+354 | 2979 | 09 | 14 | 39.42353380 | +35 | 12 | 4.5914732 | . 00003368 | . 0006979 | 0.2479 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0912-204 | 0912-204 | 4075 | 09 | 14 | 59.69591955 | -20 | 38 | 57.6262378 | . 00018249 | . 0085048 | -0.8756 | 56638.4 | 56638.5 | 1 |  |  |  |
| 0913-042 | 0913-042 | 1677 | 09 | 15 | 37.67766398 | -04 | 29 | 16.2972048 | . 00017003 | . 0023770 | 0.2974 | 53551.9 | 53572.9 | 2 |  |  |  |
| 0913-302 | 0913-302 | 4076 | 09 | 15 | 40.89579712 | -30 | 29 | 49.4229565 | . 00055504 | . 0145822 | -0.2482 | 56638.4 | 56638.5 | 1 |  |  |  |
| 0913+003 | 0913+003 | 2980 | 09 | 15 | 51.69517650 | +00 | 07 | 13.3090447 | . 00006264 | . 0016523 | -0.3385 | 54112.4 | 54112.4 | 1 |  |  |  |
| 0912+297 | B2 0912+29 | 246 | 09 | 15 | 52.40163576 | +29 | 33 | 24.0427495 | . 00001158 | . 0002431 | -0.1039 | 49176.9 | 56568.5 | 20 | 0.09 |  | 2.5 |
| 0913+079 | 0913+079 | 2981 | 09 | 15 | 52.96821844 | +07 | 45 | 39.6955355 | . 00005791 | . 0013933 | -0.3790 | 53134.1 | 55518.6 | 2 |  |  |  |
| 0913+391 | 0913+391 | 2982 | 09 | 16 | 48.90456414 | +38 | 54 | 28.1463443 | . 00001519 | . 0003210 | 0.0683 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0915-213 | 0915-213 | 2983 | 09 | 17 | 27.01630783 | -21 | 31 | 34.4634510 | . 00001518 | . 0005422 | -0.2169 | 50631.8 | 50687.8 | 2 |  |  |  |
| 0915-135 | 0915-135 | 1678 | 09 | 17 | 39.00067913 | -13 | 45 | 42.2377214 | . 00001604 | . 0005471 | -0.4338 | 53503.1 | 53559.9 | 2 |  |  |  |
| 0913+657 | 0913+657 | 2984 | 09 | 17 | 55.56823530 | +65 | 30 | 15.1254236 | . 00030084 | . 0018919 | 0.3673 | 54440.3 | 55916.6 | 2 |  |  |  |
| 0915-118 | 0915-118 | 1679 | 09 | 18 | 5.66850958 | -12 | 05 | 43.8050868 | . 00004188 | . 0012749 | 0.8095 | 54853.3 | 54853.4 | 1 |  |  |  |
| 0916-074 | 0916-074 | 1680 | 09 | 19 | 1.96265198 | -07 | 39 | 5.1096598 | . 00006853 | . 0018370 | -0.0582 | 53152.9 | 53153.1 | 1 |  |  |  |
| 0916+336 | 0916+336 | 2985 | 09 | 19 | 8.78712333 | +33 | 24 | 41.9433893 | . 00001277 | . 0003404 | 0.2833 | 50218.9 | 55966.4 | 2 | 0.16 | 0.14 |  |
| 0913+786 | 0913+786 | 2986 | 09 | 19 | 52.55956522 | +78 | 25 | 26.5578658 | . 00023426 | . 0009065 | 0.7473 | 49826.9 | 50688.3 | 2 |  |  |  |
| 0918-363 | 0918-363 | 2987 | 09 | 20 | 26.20110992 | -36 | 31 | 47.5151005 | . 00006138 | . 0020421 | -0.6411 | 52306.3 | 52409.1 | 2 |  |  |  |
| 0918-297 | 0918-297 | 2988 | 09 | 20 | 43.19377609 | -29 | 56 | 30.2935682 | . 00001865 | . 0007731 | -0.2307 | 54489.3 | 54489.4 | 1 |  |  |  |
| 0917+449 | 0917+449 | 810 | 09 | 20 | 58.45848435 | +44 | 41 | 53.9851292 | . 00000472 | . 0000734 | -0.0718 | 47940.5 | 56766.5 | 120 | 0.76 | 0.65 | 3.1 |
| 0916+718 | 0916+718 | 1681 | 09 | 21 | 23.94511344 | +71 | 36 | 12.4016615 | . 00007386 | . 0004093 | -0.3265 | 53125.1 | 53125.9 | 1 |  |  |  |
| 0919-260 | 0919-260 | 811 | 09 | 21 | 29.35385015 | -26 | 18 | 43.3863109 | . 00000371 | . 0000700 | -0.1089 | 47736.7 | 56758.7 | 317 |  | 0.51 | 2.7 |
| 0918+140 | 0918+140 | 2989 | 09 | 21 | 31.37387984 | +13 | 50 | 48.4043734 | . 00110930 | . 1967678 | 0.8354 | 50156.3 | 56302.5 | 2 |  |  |  |
| 0917+624 | 0917+624 | 698 | 09 | 21 | 36.23106329 | +62 | 15 | 52.1803430 | . 00000430 | . 0000540 | -0.1528 | 48720.0 | 55823.3 | 132 | 0.65 |  | 3.1 |
| 0919-052 | 0919-052 | 1682 | 09 | 22 | 23.67288647 | -05 | 29 | 7.1843181 | . 00001789 | . 0006321 | -0.4275 | 53523.0 | 53523.1 | 1 |  |  |  |
| 0920-397 | P 0920-39 | 249 | 09 | 22 | 46.41826873 | -39 | 59 | 35.0684273 | . 00000413 | . 0000775 | -0.1393 | 46797.4 | 56751.7 | 395 |  | 0.26 | 2.5 |
| 0920+390 | 0920+390 | 812 | 09 | 23 | 14.45293368 | +38 | 49 | 39.9101294 | . 00000384 | . 0000580 | 0.0437 | 49736.1 | 56734.6 | 154 |  |  |  |
| 0920+416 | 0920+416 | 2990 | 09 | 23 | 31.30495296 | +41 | 25 | 27.4392574 | . 00001534 | . 0003298 | -0.0269 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0921-213 | 0921-213 | 2991 | 09 | 23 | 38.88517883 | -21 | 35 | 47.1274444 | . 00003296 | . 0009800 | 0.2913 | 50631.8 | 50687.8 | 2 |  |  |  |
| 0920+313 | 0920+313 | 1683 | 09 | 23 | 47.94862395 | +31 | 07 | 54.1417988 | . 00011132 | . 0016674 | -0.5637 | 53560.9 | 53561.8 | 1 |  |  |  |
| 0920+284 | 0920+284 | 2992 | 09 | 23 | 51.52343344 | +28 | 15 | 25.0220018 | . 00003050 | . 0007009 | 0.1686 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0921+454 | 0921+454 | 1684 | 09 | 24 | 44.99434809 | +45 | 11 | 57.9172987 | . 00012498 | . 0009436 | 0.1041 | 53572.8 | 53572.9 | 1 |  |  |  |
| 0922+005 | P 0922+005 | 2993 | 09 | 25 | 7.81503343 | +00 | 19 | 13.9343600 | . 00002194 | . 0007512 | 0.2634 | 49913.8 | 49913.9 | 1 |  |  |  |
| 0922-202 | 0922-202 | 2994 | 09 | 25 | 11.94736549 | -20 | 27 | 35.6083961 | . 00012511 | . 0038450 | 0.2692 | 52409.1 | 52409.1 | 1 |  |  |  |
| 0922+316 | 0922+316 | 2995 | 09 | 25 | 43.65024855 | +31 | 27 | 10.8046367 | . 00009245 | . 0024512 | 0.2773 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0923+171 | 0923+171 | 2996 | 09 | 25 | 49.96439045 | +16 | 58 | 12.2040192 | . 00002450 | . 0005242 | -0.3691 | 53559.8 | 56463.1 | 2 |  |  |  |
| 0922+364 | 0922+364 | 1685 | 09 | 25 | 51.85137823 | +36 | 12 | 35.6741272 | . 00002190 | . 0004405 | -0.0393 | 53560.9 | 53561.8 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0922+407 | 0922+407 | 2997 | 09 | 26 | 0.42684969 | +40 | 29 | 49.6724504 | . 00001176 | . 0002792 | -0.0061 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0923+392 | 4C 39.25 | 251 | 09 | 27 | 3.01393353 | +39 | 02 | 20.8518493 | . 00000336 | . 0000505 | -0.0206 | 43808.8 | 56717.1 | 2079 | 1.79 | 1.06 | 2.8 |
| 0923+575 | 0923+575 | 1686 | 09 | 27 | 6.05353938 | +57 | 17 | 45.3439794 | . 00011475 | . 0012121 | 0.0978 | 53134.0 | 53134.1 | 1 |  |  |  |
| 0925-203 | P 0925-203 | 686 | 09 | 27 | 51.82431992 | -20 | 34 | 51.2325443 | . 00000375 | . 0000576 | -0.1150 | 46797.5 | 56770.5 | 354 | 0.56 | 0.77 | 2.2 |
| 0925+449 | 0925+449 | 2998 | 09 | 28 | 24.13710995 | +44 | 46 | 4.7996540 | . 00003557 | . 0005578 | 0.2641 | 50305.7 | 50305.8 | 1 |  |  |  |
| 0926-039 | 0926-039 | 1687 | 09 | 28 | 33.46943503 | -04 | 09 | 8.8488854 | . 00005056 | . 0020406 | -0.7152 | 53125.1 | 53126.0 | 1 |  |  |  |
| 0926-306 | 0926-306 | 2999 | 09 | 28 | 33.98818533 | -30 | 49 | 44.0035682 | . 00013413 | . 0041261 | 0.6906 | 52306.3 | 52306.4 | 1 |  |  |  |
| 0926-181 | 0926-181 | 3000 | 09 | 29 | 2.26150680 | -18 | 20 | 45.7609735 | . 00005397 | . 0024446 | -0.2423 | 54087.4 | 54087.5 | 1 |  |  |  |
| 0925+504 | 0925+504 | 1225 | 09 | 29 | 15.44019199 | +50 | 13 | 35.9898883 | . 00001224 | . 0001734 | 0.0505 | 49576.7 | 53306.7 | 3 |  |  |  |
| 0916+864 | 0916+864 | 1069 | 09 | 29 | 43.05601255 | +86 | 12 | 21.2770003 | . 00246579 | . 0052070 | -0.0555 | 50688.2 | 50688.3 | 1 | 0.16 |  |  |
| 0927-378 | 0927-378 | 3001 | 09 | 29 | 57.50800147 | -38 | 01 | 48.1701786 | . 00003845 | . 0009982 | 0.5007 | 52306.3 | 52409.1 | 2 |  |  |  |
| 0936-853 | 0936-853 | 813 | 09 | 30 | 32.57051441 | -85 | 33 | 59.6834693 | . 00933203 | . 0119529 | -0.0152 | 49329.1 | 49331.0 | 1 |  |  |  |
| 0927+469 | 0927+469 | 1688 | 09 | 30 | 35.08071983 | +46 | 44 | 8.6555173 | . 00014375 | . 0015909 | 0.3654 | 50305.7 | 54314.7 | 2 |  |  |  |
| 0928+008 | 0928+008 | 3002 | 09 | 30 | 52.25354114 | +00 | 34 | 58.9416260 | . 00002215 | . 0009378 | -0.5427 | 49913.8 | 54482.5 | 2 |  |  |  |
| 0925+745 | 0925+745 | 3003 | 09 | 30 | 53.78264586 | +74 | 20 | 5.9106145 | . 00036806 | . 0015993 | -0.3387 | 49826.9 | 49827.1 | 1 |  |  |  |
| 0927+352 | 0927+352 | 3004 | 09 | 30 | 55.27909978 | +35 | 03 | 37.6082673 | . 00001231 | . 0003018 | -0.0251 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0928-100 | 0928-100 | 3005 | 09 | 31 | 2.71243226 | -10 | 13 | 25.0238185 | . 00003229 | . 0010945 | 0.1997 | 53560.9 | 56106.0 | 2 |  |  |  |
| 0928+144 | 0928+144 | 3006 | 09 | 31 | 5.34243907 | +14 | 14 | 16.5189973 | . 00002233 | . 0006619 | -0.4851 | 50084.5 | 53916.0 | 3 | 0.18 | 0.17 |  |
| 0928+280 | 0928+280 | 3007 | 09 | 31 | 51.78402443 | +27 | 50 | 50.5993659 | . 00004210 | . 0007605 | -0.3751 | 54112.3 | 56106.1 | 2 |  |  |  |
| 0930-200 | 0930-200 | 1689 | 09 | 32 | 19.58651189 | -20 | 16 | 37.2062736 | . 00010468 | . 0034516 | -0.0953 | 53560.9 | 53561.9 | 1 |  |  |  |
| 0930-338 | 0930-338 | 1690 | 09 | 32 | 36.49499147 | -34 | 05 | 58.4859896 | . 00019320 | . 0112371 | -0.5494 | 53126.1 | 53126.1 | 1 |  |  |  |
| 0929+533 | 0929+533 | 3008 | 09 | 32 | 41.15081307 | +53 | 06 | 33.8008967 | . 00003863 | . 0005489 | -0.0339 | 49576.7 | 49576.9 | 1 |  |  |  |
| 0928+653 | 0928+653 | 1691 | 09 | 32 | 54.57750751 | +65 | 07 | 41.2959207 | . 00009068 | . 0011180 | -0.4587 | 53560.0 | 53560.7 | 1 |  |  |  |
| 0930-080 | 0930-080 | 1692 | 09 | 33 | 17.09540199 | -08 | 19 | 10.8513325 | . 00002027 | . 0008199 | -0.2396 | 53559.8 | 53559.9 | 1 |  |  |  |
| 0931-114 | 0931-114 | 3009 | 09 | 33 | 34.45351405 | -11 | 39 | 25.4756516 | . 00002417 | . 0007448 | -0.4432 | 50576.0 | 50576.1 | 1 |  |  |  |
| 0930+396 | 0930+396 | 1693 | 09 | 34 | 6.67006297 | +39 | 26 | 32.1344738 | . 00009354 | . 0020307 | 0.3841 | 53561.0 | 53561.8 | 1 |  |  |  |
| 0930+493 | 0930+493 | 3010 | 09 | 34 | 15.76227209 | +49 | 08 | 21.7307519 | . 00003932 | . 0005332 | 0.4988 | 50305.7 | 50305.8 | 1 |  |  |  |
| 0932+075 | 0932+075 | 3011 | 09 | 35 | 1.07591864 | +07 | 19 | 18.6101558 | . 00003456 | . 0007846 | 0.2066 | 49913.8 | 55847.7 | 2 |  |  |  |
| 0933-333 | 0933-333 | 3012 | 09 | 35 | 9.22984986 | -33 | 32 | 37.7085333 | . 00010301 | . 0050179 | 0.3775 | 52409.1 | 52409.1 | 1 |  |  |  |
| 0932-281 | 0932-281 | 3013 | 09 | 35 | 11.50188210 | -28 | 20 | 31.4713823 | . 00288209 | . 0623420 | 0.1415 | 50687.6 | 50687.8 | 1 |  |  |  |
| 0932+094 | J0935+0915 | 1070 | 09 | 35 | 13.64139983 | +09 | 15 | 7.8327767 | . 00004242 | . 0011714 | -0.2285 | 49913.8 | 49913.9 | 1 |  | 0.20 |  |
| 0932-194 | 0932-194 | 3014 | 09 | 35 | 15.61532943 | -19 | 39 | 8.7706963 | . 00057607 | . 0125095 | -0.8045 | 53559.8 | 53559.9 | 1 |  |  |  |
| 0932+243 | 0932+243 | 4077 | 09 | 35 | 23.27351908 | +24 | 05 | 12.3227789 | . 00003063 | . 0012935 | 0.2324 | 56161.9 | 56162.7 | 1 |  |  |  |
| 0932+197 | 0932+197 | 1694 | 09 | 35 | 29.21942557 | +19 | 29 | 35.0662137 | . 00006963 | . 0022585 | -0.7223 | 53572.8 | 53572.9 | 1 |  |  |  |
| 0932+367 | 0932+367 | 1695 | 09 | 35 | 31.83993097 | +36 | 33 | 17.5666876 | . 00003551 | . 0006752 | 0.1326 | 53134.0 | 53134.1 | 1 |  |  |  |
| 0933+503 | J0937+5008 | 1072 | 09 | 37 | 12.32734758 | +50 | 08 | 52.0972249 | . 00002183 | . 0003508 | -0.3466 | 49576.7 | 50305.9 | 2 | 0.26 |  |  |
| 0936-069 | 0936-069 | 1696 | 09 | 38 | 56.10426215 | -07 | 08 | 0.6185839 | . 00001380 | . 0004382 | -0.1424 | 53572.8 | 56497.9 | 2 | 0.19 | 0.20 |  |
| 0936-172 | 0936-172 | 1697 | 09 | 39 | 19.19505063 | -17 | 31 | 35.7782349 | . 00011958 | . 0038091 | -0.4224 | 53153.0 | 53153.1 | 1 |  |  |  |
| 0936+419 | 0936+419 | 3015 | 09 | 39 | 49.61584639 | +41 | 41 | 54.1910505 | . 00002146 | . 0004672 | -0.1797 | 50241.9 | 50242.0 | 1 |  |  |  |
| 0937+262 | 0937+262A | 1226 | 09 | 40 | 14.72279807 | +26 | 03 | 29.9457343 | . 00001319 | . 0003489 | 0.0597 | 50218.9 | 53306.5 | 2 |  |  |  |
| 0938-133 | 0938-133 | 1698 | 09 | 41 | 2.54947885 | -13 | 35 | 50.9848346 | . 00000891 | . 0002880 | -0.3285 | 53559.9 | 56701.4 | 2 | 0.17 | 0.22 |  |
| 0938+119 | 0938+119 | 3016 | 09 | 41 | 13.55890335 | +11 | 45 | 32.3389858 | . 00027888 | . 0025824 | 0.6970 | 54291.8 | 54292.0 | 1 |  |  |  |
| 0938+277 | 0938+277 | 1699 | 09 | 41 | 48.11604513 | +27 | 28 | 38.8157955 | . 00002802 | . 0006108 | -0.1847 | 53125.1 | 53126.0 | 1 |  |  |  |
| 0939-077 | 0939-077 | 3017 | 09 | 42 | 21.46142031 | -07 | 59 | 53.2047771 | . 00001986 | . 0007324 | -0.5561 | 53503.1 | 53503.1 | 1 |  |  |  |
| 0939+620 | 0939+620 | 3018 | 09 | 43 | 14.50279916 | +61 | 50 | 33.3486261 | . 00017495 | . 0012066 | -0.0305 | 54440.4 | 54440.6 | 1 |  |  |  |
| 0940+172 | 0940+172 | 3019 | 09 | 43 | 17.22396502 | +17 | 02 | 18.9627074 | . 00003494 | . 0011514 | -0.5313 | 50084.5 | 50156.3 | 2 |  |  |  |
| 0940+364 | 0940+364 | 1700 | 09 | 43 | 19.15348740 | +36 | 14 | 52.0726972 | . 00002572 | . 0005958 | -0.0833 | 53561.0 | 53561.8 | 1 |  |  |  |
| 0941-080 | P 0941-080 | 3020 | 09 | 43 | 36.94432144 | -08 | 19 | 30.8122967 | . 00024238 | . 0051368 | -0.2184 | 50576.0 | 50576.2 | 1 |  |  |  |
| 0941+206 | 0941+206 | 3021 | 09 | 43 | 48.09841386 | +20 | 28 | 9.9612121 | . 00010250 | . 0030325 | -0.5919 | 54087.4 | 54087.5 | 1 |  |  |  |
| 0941+522 | 0941+522 | 3022 | 09 | 44 | 52.15525923 | +52 | 02 | 34.2173306 | . 00001965 | . 0002134 | -0.0441 | 49576.7 | 56749.3 | 2 | 0.25 |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0942+358 | 0942+358 | 3023 | 09 | 45 | 38.12071540 | +35 | 34 | 55.0885737 | . 00000834 | . 0001372 | -0.0150 | 50241.9 | 50854.4 | 2 |  |  |  |
| 0942+468 | 0942+468 | 3024 | 09 | 45 | 42.09267330 | +46 | 36 | 50.5961141 | . 00005002 | . 0006957 | 0.1219 | 50305.8 | 50305.9 | 1 |  |  |  |
| 0943-016 | 0943-016 | 1701 | 09 | 45 | 44.03723482 | -01 | 53 | 3.9548021 | . 00002677 | . 0010070 | 0.0482 | 53551.9 | 53552.0 | 1 |  |  |  |
| 0942+505 | 0942+505 | 1702 | 09 | 46 | 16.04500873 | +50 | 20 | 9.3480033 | . 00005355 | . 0010812 | -0.0396 | 53559.9 | 53560.8 | 1 |  |  |  |
| 0943+105 | 0943+105 | 1703 | 09 | 46 | 35.06995789 | +10 | 17 | 6.1343783 | . 00000537 | . 0001312 | -0.0430 | 49913.8 | 56701.5 | 29 |  |  |  |
| 0944-201 | 0944-201 | 3025 | 09 | 46 | 50.21157782 | -20 | 20 | 44.4505994 | . 00037302 | . 0077487 | 0.1227 | 53153.0 | 53153.1 | 1 |  |  |  |
| 0943+593 | 0943+593 | 1704 | 09 | 47 | 4.86494716 | +59 | 07 | 41.4759204 | . 00005699 | . 0008848 | -0.5502 | 53561.0 | 53561.8 | 1 |  |  |  |
| 0945-321 | 0945-321 | 3026 | 09 | 48 | 9.51254191 | -32 | 23 | 47.4406206 | . 00007356 | . 0020856 | 0.1929 | 52306.3 | 52306.4 | 1 |  |  |  |
| 0945-287 | 0945-287 | 3027 | 09 | 48 | 11.54328479 | -29 | 01 | 44.1516463 | . 00011319 | . 0038471 | 0.6162 | 53503.1 | 56106.0 | 2 |  |  |  |
| 0945+408 | 0945+408 | 814 | 09 | 48 | 55.33814713 | +40 | 39 | 44.5870076 | . 00000455 | . 0000698 | -0.0968 | 50003.5 | 56600.9 | 34 | 0.59 | 0.55 | 3.6 |
| 0947+064 | 0947+064 | 1705 | 09 | 50 | 3.46748633 | +06 | 15 | 3.8165503 | . 00004830 | . 0015514 | -0.1934 | 53134.0 | 53134.1 | 1 |  |  |  |
| 0949+510 | 0949+510 | 3028 | 09 | 52 | 27.30826260 | +50 | 48 | 50.6504530 | . 00003847 | . 0006279 | -0.0837 | 53573.0 | 55847.5 | 2 |  |  |  |
| 0950-246 | 0950-246 | 3029 | 09 | 52 | 31.67918903 | -24 | 53 | 51.6646174 | . 05264319 | . 5522402 | -0.9996 | 53153.0 | 53153.0 | 1 |  |  |  |
| 0949+354 | 0949+354 | 815 | 09 | 52 | 32.02616745 | +35 | 12 | 52.4029472 | . 00000504 | . 0000932 | -0.0005 | 50241.9 | 56498.7 | 31 |  | 0.15 | 2.6 |
| 0951+175 | 0951+175 | 3030 | 09 | 53 | 59.23132339 | +17 | 20 | 56.6542640 | . 00002957 | . 0007919 | -0.1531 | 53559.8 | 56463.1 | 2 |  |  |  |
| 0951+268 | 0951+268 | 1706 | 09 | 54 | 39.79653520 | +26 | 39 | 24.5432748 | . 00000631 | . 0001551 | -0.0034 | 50218.9 | 56667.8 | 31 |  |  |  |
| 0950+748 | 0950+748 | 3031 | 09 | 54 | 47.44201531 | +74 | 35 | 57.1453858 | . 00046947 | . 0013346 | 0.1526 | 49826.9 | 49827.1 | 1 |  |  |  |
| 0952+179 | AO 0952+17 | 255 | 09 | 54 | 56.82361282 | +17 | 43 | 31.2222352 | . 00000441 | . 0000827 | -0.1650 | 44200.7 | 56347.3 | 83 | 0.39 | 0.18 | 3.0 |
| 0951+488 | 0951+488 | 1707 | 09 | 55 | 5.00119695 | +48 | 38 | 19.0422262 | . 00008651 | . 0009427 | -0.0665 | 53561.0 | 53561.8 | , |  |  |  |
| 0952-185 | 0952-185 | 3032 | 09 | 55 | 14.74315619 | -18 | 45 | 33.6650479 | . 18674390 | . 4428042 | -1.0000 | 53153.1 | 53153.1 | 1 |  |  |  |
| 0951+692 | M 81 nucl | 816 | 09 | 55 | 24.77473316 | +69 | 01 | 13.7016945 | . 00015229 | . 0010927 | 0.2496 | 49247.5 | 49267.7 | 2 |  |  |  |
| 0951+693 | M 81 | 817 | 09 | 55 | 33.17306483 | +69 | 03 | 55.0609198 | . 00001398 | . 0000786 | 0.2573 | 49247.5 | 55112.7 | 61 |  |  |  |
| 0952+581 | 0952+581 | 818 | 09 | 56 | 22.63442307 | +57 | 53 | 55.9041939 | . 00009123 | . 0006867 | -0.0527 | 49576.7 | 50974.7 | 2 |  |  |  |
| 0953+254 | OK 290 | 256 | 09 | 56 | 49.87537857 | +25 | 15 | 16.0498986 | . 00000347 | . 0000531 | 0.1001 | 44446.6 | 56754.2 | 844 | 0.44 | 0.31 | 3.2 |
| 0954-135 | 0954-135 | 1708 | 09 | 57 | 18.18308112 | -13 | 50 | 1.1763485 | . 00001404 | . 0004674 | -0.3255 | 53523.0 | 53572.9 | 2 |  |  |  |
| 0954+556 | 4C 55.17 | 819 | 09 | 57 | 38.18441153 | +55 | 22 | 57.7679362 | . 00013501 | . 0013133 | 0.2447 | 49576.7 | 50989.8 | 3 |  |  |  |
| 0955+476 | 0955+476 | 820 | 09 | 58 | 19.67164008 | +47 | 25 | 7.8424724 | . 00000337 | . 0000504 | -0.0096 | 48720.0 | 56775.2 | 1515 | 0.90 | 0.63 | 1.2 |
| 0955+326 | 3C 232 | 259 | 09 | 58 | 20.94963254 | +32 | 24 | 2.2095066 | . 00000385 | . 0000632 | -0.0700 | 50218.9 | 56748.7 | 92 | 0.61 | 0.37 | 2.8 |
| 0956-359 | 0956-359 | 1709 | 09 | 58 | 30.89417110 | -36 | 12 | 40.7869795 | . 00041130 | . 0177341 | 0.7990 | 53523.0 | 53523.1 | 1 |  |  |  |
| 0955+509 | 0955+509 | 3033 | 09 | 58 | 37.80940272 | +50 | 39 | 57.4834784 | . 00001928 | . 0003012 | -0.1840 | 49576.7 | 54112.4 | 3 |  |  |  |
| 0956-409 | 0956-409 | 3034 | 09 | 58 | 38.29597493 | -41 | 10 | 33.1765806 | . 00017157 | . 0066101 | 0.7489 | 52306.4 | 52409.1 | 2 |  |  |  |
| 0954+658 | 0954+658 | 821 | 09 | 58 | 47.24510305 | +65 | 33 | 54.8180573 | . 00000422 | . 0000537 | -0.0405 | 47917.7 | 56770.4 | 324 | 0.73 |  | 2.6 |
| 0957-082 | 0957-082 | 3035 | 09 | 59 | 57.64765719 | -08 | 28 | 26.0458529 | . 00007782 | . 0034471 | -0.3933 | 54087.4 | 54087.5 | 1 |  |  |  |
| 0958-314 | 0958-314 | 1710 | 10 | 00 | 40.83679038 | -31 | 39 | 52.3748241 | . 00011880 | . 0053605 | -0.0638 | 53134.1 | 53134.1 | 1 |  |  |  |
| 0958+294 | 0958+294 | 3036 | 10 | 01 | 10.20565502 | +29 | 11 | 37.5359820 | . 00001806 | . 0004513 | 0.2533 | 50218.9 | 50219.0 | 1 |  |  |  |
| 0958+346 | 0958+346 | 1711 | 10 | 01 | 11.94921028 | +34 | 24 | 50.4592666 | . 00000606 | . 0001043 | 0.1572 | 50218.9 | 56755.4 | 32 |  |  |  |
| 0959+105 | 0959+105 | 3037 | 10 | 01 | 57.73496448 | +10 | 15 | 49.7046561 | . 00005344 | . 0026915 | -0.3757 | 49913.9 | 49913.9 | 1 |  |  |  |
| 0959-443 | P 0959-443 | 822 | 10 | 01 | 59.90833544 | -44 | 38 | 0.6007316 | . 00010829 | . 0020968 | -0.6211 | 50765.8 | 52409.1 | 3 |  | 0.34 |  |
| 0959+127 | 0959+127 | 3038 | 10 | 02 | 30.53662186 | +12 | 32 | 9.5475929 | . 00001636 | . 0005828 | 0.0549 | 53559.9 | 56036.3 | 2 |  |  |  |
| 1000+125 | 1000+125 | 3039 | 10 | 02 | 52.84523110 | +12 | 16 | 14.5851828 | . 00002104 | . 0004364 | 0.1587 | 49913.9 | 55657.3 | 2 |  |  |  |
| 1001+329 | 1001+329 | 3040 | 10 | 03 | 57.56467209 | +32 | 44 | 3.5421391 | . 00006596 | . 0014002 | 0.5523 | 50218.9 | 50219.1 | 1 |  |  |  |
| 1003+351 | 3C 236 | 1712 | 10 | 06 | 1.75026777 | +34 | 54 | 10.4006306 | . 00003276 | . 0006433 | -0.0384 | 54313.8 | 54314.0 | 1 |  |  |  |
| 1005-739 | 1005-739 | 3041 | 10 | 06 | 4.14468816 | -74 | 09 | 44.0899991 | . 00157800 | . 0038903 | 0.2435 | 52886.9 | 53138.5 | 3 |  |  |  |
| 1004-500 | 1004-500 | 823 | 10 | 06 | 14.00930305 | -50 | 18 | 13.4707542 | . 00000895 | . 0001140 | 0.1995 | 52067.3 | 56716.2 | 69 |  |  |  |
| 1004+054 | 1004+054 | 3042 | 10 | 06 | 37.61073780 | +05 | 09 | 53.9788682 | . 00002718 | . 0007568 | -0.2862 | 54112.4 | 55413.0 | 2 |  |  |  |
| 1004-217 | 1004-217 | 1713 | 10 | 06 | 46.41368250 | -21 | 59 | 20.4099874 | . 00000933 | . 0002017 | -0.0279 | 50631.8 | 56387.6 | 24 |  |  |  |
| 1004-018 | P 1004-018 | 3043 | 10 | 07 | 4.34990697 | -02 | 07 | 10.9178580 | . 00001266 | . 0003852 | -0.0576 | 50576.0 | 50576.2 | 1 |  |  |  |
| 1004-125 | 1004-125 | 3044 | 10 | 07 | 15.22773434 | -12 | 47 | 45.9957008 | . 00002288 | . 0008758 | -0.2826 | 53503.1 | 53503.2 | 1 |  |  |  |
| 1005-333 | 1005-333 | 1714 | 10 | 07 | 31.38747340 | -33 | 33 | 6.7166002 | . 00002661 | . 0008389 | -0.2678 | 53125.1 | 55847.6 | 2 |  | 0.28 |  |
| 1004+141 | GC 1004+14 | 261 | 10 | 07 | 41.49808317 | +13 | 56 | 29.6007905 | . 00000383 | . 0000650 | -0.2142 | 44200.7 | 55168.6 | 292 | 0.24 | 0.22 | 3.5 |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | RA-DecCorr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1005+066 | 1005+066 | 1273 | 10 | 08 | 0.81615831 | +06 | 21 | 21.2161271 | . 00000791 | . 0002147 | -0.1338 | 49913.9 | 56701.4 | 3 | 0.42 | 0.36 |  |
| 1006-093 | 1006-093 | 3045 | 10 | 08 | 43.86530288 | -09 | 33 | 23.3575553 | . 00002916 | . 0009328 | -0.0425 | 50576.0 | 50576.2 | 1 |  |  |  |
| 1007+066 | 1007+066 | 3046 | 10 | 09 | 49.80822956 | +06 | 22 | 0.9852937 | . 00011954 | . 0025547 | -0.1842 | 53572.8 | 53572.9 | 1 |  |  |  |
| 1003+830 | 1003+830 | 3047 | 10 | 10 | 15.78305117 | +82 | 50 | 14.3840292 | . 00020284 | . 0003655 | 0.6948 | 50688.2 | 50688.3 | 1 |  |  |  |
| 1008+082 | 1008+082 | 3048 | 10 | 10 | 47.23311710 | +08 | 03 | 5.5045911 | . 00907464 | . 0064227 | -0.0758 | 53559.9 | 53559.9 | 1 |  |  |  |
| 1008-017 | 1008-017 | 3049 | 10 | 10 | 51.66665650 | -02 | 00 | 19.5736078 | . 00001583 | . 0005638 | -0.4734 | 50576.0 | 50576.2 | 1 |  |  |  |
| 1007+337 | J1010+3330 | 1074 | 10 | 10 | 51.82902368 | +33 | 30 | 17.7605426 | . 00002109 | . 0005407 | -0.2653 | 50219.1 | 50219.2 | 1 |  |  |  |
| 1008-285 | 1008-285 | 1715 | 10 | 11 | 5.51732950 | -28 | 47 | 40.4158541 | . 00002601 | . 0008987 | -0.2573 | 53559.9 | 53559.9 | 1 |  |  |  |
| 1008+013 | 1008+013 | 1716 | 10 | 11 | 15.63923701 | +01 | 06 | 42.5137919 | . 00006198 | . 0027114 | -0.8347 | 53561.0 | 53561.9 | 1 |  |  |  |
| 1009-041 | 1009-041 | 3050 | 10 | 11 | 30.23997429 | -04 | 23 | 27.7066827 | . 00006250 | . 0012860 | 0.3333 | 53572.8 | 55413.0 | 3 |  |  |  |
| 1009+234 | 1009+234 | 1717 | 10 | 12 | 16.38973413 | +23 | 12 | 14.6101796 | . 00001168 | . 0003350 | 0.0123 | 53134.0 | 53134.1 | 1 |  |  |  |
| 1010-374 | 1010-374 | 1718 | 10 | 12 | 24.07552105 | -37 | 40 | 5.8862095 | . 00089233 | . 0326108 | 0.9277 | 53523.1 | 53523.1 | 1 |  |  |  |
| 1010-255 | 1010-255 | 1719 | 10 | 13 | 13.10509027 | -25 | 46 | 54.6933148 | . 00002731 | . 0009182 | -0.1036 | 53125.1 | 53125.1 | 1 |  |  |  |
| 1010+495 | 1010+495 | 3051 | 10 | 13 | 29.93217684 | +49 | 18 | 40.9860319 | . 00070559 | . 0235759 | -0.7237 | 50305.8 | 54314.7 | 2 |  |  |  |
| 1010+350 | 1010+350 | 3052 | 10 | 13 | 49.61404864 | +34 | 45 | 50.7840284 | . 00001092 | . 0002694 | 0.0728 | 50241.9 | 50242.0 | 1 |  |  |  |
| 1011+250 | 1011+250 | 824 | 10 | 13 | 53.42876221 | +24 | 49 | 16.4404218 | . 00000455 | . 0000791 | -0.1401 | 48353.1 | 56782.1 | 101 | 0.41 | 0.15 | 3.2 |
| 1012+232 | 1012+232 | 264 | 10 | 14 | 47.06546248 | +23 | 01 | 16.5708108 | . 00000393 | . 0000647 | -0.1251 | 47253.4 | 56751.6 | 79 | 0.31 | 0.41 | 2.8 |
| 1012-448 | 1012-448 | 1075 | 10 | 14 | 50.35496042 | -45 | 08 | 41.1541283 | . 00001420 | . 0002783 | 0.3411 | 52306.4 | 55784.3 | 18 |  |  |  |
| 1011+496 | 1011+496 | 3053 | 10 | 15 | 4.13986046 | +49 | 26 | 0.7043931 | . 00006223 | . 0008581 | -0.4202 | 50305.8 | 50305.9 | 1 |  |  |  |
| 1013+127 | 1013+127 | 2 | 10 | 15 | 44.02338961 | +12 | 27 | 7.0703994 | . 00000730 | . 0001774 | 0.0123 | 49913.9 | 56770.2 | 23 | 0.30 | 0.41 | 1.1 |
| 1013+014 | 1013+014 | 1720 | 10 | 15 | 57.05514965 | +01 | 09 | 13.7477199 | . 00004373 | . 0009836 | 0.2200 | 53561.0 | 53561.9 | 1 |  |  |  |
| 1013+054 | 1013+054 | 1721 | 10 | 16 | 3.13647375 | +05 | 13 | 2.3413274 | . 00000385 | . 0000681 | 0.0019 | 49913.9 | 56749.0 | 72 | 0.75 | 0.66 |  |
| 1013+208 | OL 224 | 1076 | 10 | 16 | 44.32210159 | +20 | 37 | 47.3056082 | . 00000851 | . 0002122 | 0.0845 | 50084.5 | 54643.7 | 6 | 0.15 | 0.07 | 3.7 |
| 1014+615 | 1014+615 | 825 | 10 | 17 | 25.88757287 | +61 | 16 | 27.4966524 | . 00000713 | . 0000677 | 0.0489 | 49422.1 | 56749.6 | 39 | 0.24 |  |  |
| 1015-314 | 1015-314 | 3054 | 10 | 18 | 9.26754875 | -31 | 44 | 14.0902213 | . 00049963 | . 0140993 | -0.5637 | 52306.3 | 56302.4 | 2 |  |  |  |
| 1015+359 | 1015+359 | 1722 | 10 | 18 | 10.98809912 | +35 | 42 | 39.4409396 | . 00000396 | . 0000660 | 0.1039 | 50241.9 | 56762.7 | 81 |  |  |  |
| 1015+057 | J1018+0530 | 1077 | 10 | 18 | 27.84828297 | +05 | 30 | 29.9620243 | . 00000394 | . 0000624 | 0.0380 | 49913.9 | 56758.5 | 89 | 0.23 | 0.24 |  |
| 1016-311 | 1016-311 | 1078 | 10 | 18 | 28.75348944 | -31 | 23 | 53.8495623 | . 00001035 | . 0001769 | -0.1099 | 52306.3 | 55545.7 | 17 |  | 0.34 |  |
| 1016-268 | 1016-268 | 4078 | 10 | 19 | 8.48297533 | -27 | 08 | 55.6650275 | . 00003010 | . 0012015 | -0.1528 | 56204.6 | 56204.7 | 1 |  |  |  |
| 1016+635 | 1016+635 | 3055 | 10 | 19 | 50.87680477 | +63 | 20 | 1.6263238 | . 00004776 | . 0003028 | 0.4415 | 49827.0 | 54087.6 | 2 |  |  |  |
| 1017+436 | 1017+436 | 1723 | 10 | 20 | 27.20305580 | +43 | 20 | 56.3387610 | . 00004921 | . 0006118 | 0.3388 | 53559.8 | 53560.0 | 1 |  |  |  |
| 1018+348 | 1018+348 | 3056 | 10 | 21 | 17.47469887 | +34 | 37 | 21.6649469 | . 00001553 | . 0003666 | -0.4272 | 50219.1 | 50219.2 | 1 |  |  |  |
| 1019+416 | 1019+416 | 1724 | 10 | 22 | 2.02352343 | +41 | 26 | 5.3724141 | . 00002350 | . 0003406 | 0.0331 | 54187.3 | 55966.4 | 2 | 0.11 | 0.10 |  |
| 1019+429 | 1019+429 | 3057 | 10 | 22 | 13.13234113 | +42 | 39 | 25.6126432 | . 00002140 | . 0004338 | 0.0656 | 50241.9 | 50242.0 | 1 |  |  |  |
| 1019+309 | 1019+309 | 3058 | 10 | 22 | 30.29841684 | +30 | 41 | 5.1166794 | . 00003871 | . 0008168 | -0.5517 | 52306.4 | 52306.5 | 1 |  |  |  |
| 1020-103 | P 1020-103 | 3059 | 10 | 22 | 32.82343260 | -10 | 37 | 44.0895407 | . 02648792 | . 3896672 | 0.9978 | 50576.0 | 50576.0 | 1 |  |  |  |
| 1020+191 | 1020+191 | 3060 | 10 | 22 | 55.15677190 | +18 | 53 | 34.2631899 | . 00016373 | . 0030705 | 0.8220 | 50084.5 | 54482.3 | 3 |  |  |  |
| 1020-097 | 1020-097 | 1725 | 10 | 22 | 57.51769470 | -09 | 58 | 22.5939160 | . 00015996 | . 0042441 | -0.7562 | 53572.8 | 53572.9 | 1 |  |  |  |
| 1020+400 | 1020+400 | 826 | 10 | 23 | 11.56566243 | +39 | 48 | 15.3854051 | . 00000495 | . 0000821 | -0.2130 | 50003.5 | 55320.6 | 21 | 0.34 | 0.39 | 3.1 |
| 1022-665 | 1022-665 | 1274 | 10 | 23 | 43.53319099 | -66 | 46 | 48.7177879 | . 00001679 | . 0001178 | 0.2680 | 52780.6 | 56737.1 | 34 |  |  |  |
| 1021-323 | 1021-323 | 1726 | 10 | 24 | 0.42386720 | -32 | 34 | 16.0586127 | . 00004815 | . 0015014 | -0.1186 | 53134.1 | 53134.1 | 1 |  |  |  |
| 1021-006 | P 1021-00 | 273 | 10 | 24 | 29.58664505 | -00 | 52 | 55.4971894 | . 00001961 | . 0004291 | 0.5383 | 48664.2 | 56741.7 | 11 | 0.10 |  | 4.6 |
| 1022+194 | GC 1022+19 | 274 | 10 | 24 | 44.80959518 | +19 | 12 | 20.4155658 | . 00000386 | . 0000678 | -0.1123 | 47379.8 | 56775.1 | 115 | 0.32 | 0.25 | 2.6 |
| 1022+237 | 1022+237 | 1727 | 10 | 24 | 53.63733289 | +23 | 32 | 33.9636590 | . 00001823 | . 0004329 | -0.2736 | 53523.0 | 56498.0 | 2 | 0.17 | 0.15 |  |
| 1023-049 | 1023-049 | 1728 | 10 | 25 | 45.42295403 | -05 | 09 | 54.1325970 | . 00008311 | . 0024026 | -0.4745 | 53559.9 | 53559.9 | 1 |  |  |  |
| 1023+131 | 1023+131 | 1079 | 10 | 25 | 56.28537067 | +12 | 53 | 49.0219652 | . 00000473 | . 0000904 | -0.1323 | 50084.5 | 56196.5 | 67 | 0.23 | 0.47 |  |
| 1024+483 | 1024+483 | 3061 | 10 | 27 | 13.07991412 | +48 | 03 | 13.5350365 | . 00003865 | . 0006048 | -0.6444 | 50305.8 | 50305.9 | 1 |  |  |  |
| 1023+747 | 1023+747 | 1729 | 10 | 27 | 24.14687097 | +74 | 28 | 26.0980623 | . 00009862 | . 0005982 | 0.0699 | 53561.0 | 53561.8 | 1 |  |  |  |
| 1025+031 | 1025+031 | 3062 | 10 | 28 | 20.40128670 | +02 | 55 | 22.4721848 | . 00002186 | . 0008229 | -0.5221 | 49913.9 | 49914.0 | 1 |  |  |  |
| 1025+242 | 1025+242 | 1730 | 10 | 28 | 21.25995494 | +24 | 01 | 21.7729147 | . 00004933 | . 0017343 | -0.0345 | 53572.8 | 53573.0 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1026-084 | 1026-084 | 1731 | 10 | 28 | 38.79632349 | -08 | 44 | 38.5324671 | . 00010769 | . 0032770 | -0.2907 | 51169.5 | 54482.2 | 2 |  | 0.09 |  |
| 1026+055 | 1026+055 | 3063 | 10 | 29 | 21.83063894 | +05 | 19 | 38.7814896 | . 00007794 | . 0012806 | 0.0109 | 54087.4 | 54087.5 | 1 |  |  |  |
| 1027-186 | 1027-186 | 1732 | 10 | 29 | 33.09770959 | -18 | 52 | 50.2890196 | . 00000731 | . 0001300 | -0.1891 | 50631.8 | 56750.9 | 62 |  |  |  |
| 1027+749 | 1027+749 | 3064 | 10 | 31 | 22.02403637 | +74 | 41 | 58.3458128 | . 00024254 | . 0014800 | 0.5931 | 49827.0 | 49827.2 | 1 |  |  |  |
| 1028+605 | 1028+605 | 3065 | 10 | 31 | 44.75626393 | +60 | 20 | 30.3640243 | . 00023426 | . 0012471 | 0.1360 | 49576.7 | 49576.9 | 1 |  |  |  |
| 1029-222 | 1029-222 | 3066 | 10 | 31 | 52.31211694 | -22 | 28 | 24.9746980 | . 00012294 | . 0034996 | 0.6113 | 50631.8 | 50687.8 | 2 |  |  |  |
| 1029-041 | 1029-041 | 1733 | 10 | 31 | 55.00186027 | -04 | 23 | 52.8694496 | . 00003212 | . 0009962 | 0.7249 | 53560.9 | 53561.0 | 1 |  |  |  |
| 1029-137 | 1029-137 | 1734 | 10 | 32 | 6.22650267 | -14 | 00 | 19.4717053 | . 00025763 | . 0051059 | 0.4377 | 53572.8 | 53572.9 | 1 |  |  |  |
| 1030+415 | 1030+415 | 827 | 10 | 33 | 3.70787184 | +41 | 16 | 6.2329259 | . 00000393 | . 0000582 | -0.0455 | 50242.1 | 56776.7 | 48 | 0.68 | 0.37 | 0.6 |
| 1030-357 | 1030-357 | 1735 | 10 | 33 | 7.66080868 | -36 | 01 | 56.8101525 | . 00018477 | . 0062750 | 0.9138 | 53125.1 | 53125.1 | 1 |  |  |  |
| 1030+398 | 1030+398 | 3067 | 10 | 33 | 22.06100648 | +39 | 35 | 51.0834705 | . 00001496 | . 0003112 | 0.4172 | 50241.9 | 50242.1 | 1 |  |  |  |
| 1030+074 | 1030+074 | 828 | 10 | 33 | 34.02429515 | +07 | 11 | 26.1475490 | . 00000568 | . 0000961 | 0.0433 | 51722.9 | 56653.7 | 75 | 0.33 |  |  |
| 1030+611 | 1030+611 | 3068 | 10 | 33 | 51.42897068 | +60 | 51 | 7.3341817 | . 00007623 | . 0011068 | -0.3057 | 49576.7 | 49576.9 | 1 |  |  |  |
| 1032-199 | P 1032-199 | 829 | 10 | 35 | 2.15531148 | -20 | 11 | 34.3596263 | . 00000459 | . 0000827 | -0.1480 | 48776.1 | 56638.6 | 50 | 0.16 | 0.41 | 3.2 |
| 1032+509 | 1032+509 | 3069 | 10 | 35 | 6.01945175 | +50 | 40 | 6.1012077 | . 00004237 | . 0006413 | -0.5542 | 49576.7 | 54087.5 | 3 |  |  |  |
| 1031+567 | OL 553 | 277 | 10 | 35 | 7.03992561 | +56 | 28 | 46.7959150 | . 00003609 | . 0003308 | 0.4093 | 49328.2 | 53059.7 | 4 |  |  |  |
| 1032+382 | 1032+382 | 4079 | 10 | 35 | 51.16713094 | +37 | 56 | 41.7130115 | . 000083380 | . 0011643 | -0.3613 | 56393.1 | 56393.3 | 1 |  |  |  |
| 1033+223 | 1033+223 | 3070 | 10 | 36 | 32.98065947 | +22 | 03 | 12.2061067 | . 00006875 | . 0010699 | -0.0790 | 50084.5 | 50156.3 | 2 |  |  |  |
| 1034-058 | 1034-058 | 3071 | 10 | 36 | 47.57298023 | -06 | 05 | 41.1835492 | . 00001898 | . 0005656 | 0.1127 | 50576.0 | 50576.2 | 1 |  |  |  |
| 1034-374 | 1034-374 | 1736 | 10 | 36 | 53.43959472 | -37 | 44 | 15.0658891 | . 000000978 | . 0001403 | -0.0770 | 53222.4 | 56573.8 | 24 |  |  |  |
| 1034-293 | P 1034-293 | 278 | 10 | 37 | 16.07973773 | -29 | 34 | 2.8135088 | . 00000349 | . 0000541 | -0.1308 | 44200.6 | 56770.5 | 1570 |  | 1.06 | 2.4 |
| 1035+046 | 1035+046 | 1737 | 10 | 37 | 39.33954029 | +04 | 24 | 1.7458843 | . 00002956 | . 0008665 | 0.3658 | 53559.9 | 53560.0 | 1 |  |  |  |
| 1035-281 | 1035-281 | 3072 | 10 | 37 | 42.45749597 | -28 | 23 | 4.1112209 | . 00010367 | . 0025163 | -0.8324 | 50687.6 | 50687.8 | 1 |  |  |  |
| 1034+288 | 1034+288 | 3073 | 10 | 37 | 43.83527234 | +28 | 34 | 59.4602371 | . 00002992 | . 0006585 | -0.1482 | 50219.1 | 50219.2 | 1 |  |  |  |
| 1036-431 | 1036-431 | 1738 | 10 | 38 | 14.69601561 | -43 | 25 | 45.9049539 | . 00025933 | . 0087724 | 0.9495 | 53134.1 | 53134.1 | 1 |  |  |  |
| 1035+430 | 1035+430 | 1739 | 10 | 38 | 18.19054891 | +42 | 44 | 42.7606020 | . 00004524 | . 0005865 | -0.3672 | 53561.0 | 53561.8 | 1 |  |  |  |
| 1036-529 | 1036-529 | 4080 | 10 | 38 | 40.65717751 | -53 | 11 | 43.2698758 | . 00005952 | . 0006221 | 0.3845 | 56007.1 | 56314.0 | 3 |  |  |  |
| 1036+054 | 1036+054 | 1740 | 10 | 38 | 46.77989254 | +05 | 12 | 29.0871734 | . 00000671 | . 0001851 | -0.1144 | 49913.9 | 53551.9 | 4 | 1.55 | 1.12 |  |
| 1036-154 | 1036-154 | 3074 | 10 | 39 | 6.70511083 | -15 | 41 | 6.6915617 | . 00001817 | . 0006040 | -0.2631 | 50631.8 | 50631.9 | 1 |  |  |  |
| 1038+064 | OL 064.5 | 279 | 10 | 41 | 17.16249692 | +06 | 10 | 16.9236281 | . 00000401 | . 0000828 | -0.2407 | 44203.4 | 56754.1 | 158 | 0.88 | 0.85 | 3.5 |
| 1038+212 | 1038+212 | 1741 | 10 | 41 | 27.10285586 | +21 | 01 | 41.4633629 | . 00026366 | . 0027471 | 0.5214 | 53572.8 | 53572.9 | 1 |  |  |  |
| 1038+528 | 1038+52A | 830 | 10 | 41 | 46.78163432 | +52 | 33 | 28.2314227 | . 00000438 | . 0000627 | -0.0044 | 48524.7 | 56766.5 | 264 | 0.38 |  | 2.8 |
| 1038+529 | 1038+52B | 831 | 10 | 41 | 48.89762163 | +52 | 33 | 55.6080585 | . 00018342 | . 0011347 | -0.3854 | 48650.3 | 53411.0 | 7 |  |  |  |
| 1040+123 | 3C 245 | 281 | 10 | 42 | 44.60524307 | +12 | 03 | 31.2635936 | . 00000972 | . 0001705 | -0.2160 | 44200.8 | 54937.7 | 40 | 0.14 | 0.13 | 3.9 |
| 1040+244 | J1043+2408 | 1080 | 10 | 43 | 9.03577463 | +24 | 08 | 35.4093930 | . 00000357 | . 0000555 | 0.0098 | 50219.1 | 56776.6 | 132 | 0.53 | 0.31 | 1.6 |
| 1041+536 | 1041+536 | 3075 | 10 | 44 | 10.67299394 | +53 | 22 | 20.5413136 | . 00003515 | . 0006220 | -0.1011 | 49576.7 | 49576.9 | 1 |  |  |  |
| 1039+811 | 1039+811 | 832 | 10 | 44 | 23.06253426 | +80 | 54 | 39.4430412 | . 000000975 | . 0000546 | 0.0089 | 48353.0 | 56772.8 | 114 | 0.65 |  | 2.3 |
| 1042+071 | P 1042+071 | 687 | 10 | 44 | 55.91124349 | +06 | 55 | 38.2625777 | . 000000433 | . 00009993 | -0.2710 | 47253.4 | 56754.7 | 96 | 0.23 | 0.28 | 2.5 |
| 1042+178 | 1042+178 | 3076 | 10 | 45 | 14.35978674 | +17 | 35 | 48.0840700 | . 00001153 | . 0003222 | -0.5931 | 50084.5 | 53503.2 | 3 |  |  |  |
| 1043-291 | 1043-291 | 3077 | 10 | 45 | 40.62568642 | -29 | 27 | 26.3358549 | . 00009775 | . 0037943 | 0.3301 | 50687.6 | 50687.8 | 1 |  |  |  |
| 1043+066 | 1043+066A | 1275 | 10 | 45 | 52.73330703 | +06 | 24 | 36.4517230 | . 00002104 | . 0006365 | -0.6582 | 49913.9 | 53575.1 | 2 | 0.26 | 0.17 |  |
| 1043+541 | 1043+541 | 3078 | 10 | 46 | 24.03835981 | +53 | 54 | 26.2356778 | . 00014197 | . 0012070 | 0.4842 | 49576.7 | 49576.9 | 1 |  |  |  |
| 1044-128 | 1044-128 | 3079 | 10 | 47 | 3.93090338 | -13 | 08 | 32.4157474 | . 00004143 | . 0011932 | 0.1042 | 50576.0 | 50576.2 | 1 |  |  |  |
| 1044+007 | 1044+007 | 3080 | 10 | 47 | 6.86403110 | +00 | 29 | 37.0828176 | . 00003072 | . 0007574 | -0.1708 | 53559.9 | 55916.6 | 2 |  |  |  |
| 1045-620 | 1045-620 | 3081 | 10 | 47 | 42.95227156 | -62 | 17 | 14.6344831 | . 00006288 | . 0021504 | -0.3629 | 52872.2 | 52872.3 | 1 |  |  |  |
| 1045-188 | 1045-188 | 833 | 10 | 48 | 6.62060532 | -19 | 09 | 35.7268074 | . 00000387 | . 0000749 | -0.1016 | 50459.4 | 56691.2 | 124 | 0.66 | 0.86 | 3.0 |
| 1045+011 | 1045+011 | 3082 | 10 | 48 | 7.74458140 | +00 | 55 | 43.4822517 | . 00005970 | . 0014839 | -0.5312 | 49913.9 | 49914.0 | 1 |  |  |  |
| 1045+019 | 1045+019 | 3083 | 10 | 48 | 22.86782105 | +01 | 41 | 48.1126097 | . 00022969 | . 0041628 | 0.7094 | 49913.9 | 49914.0 | 1 |  |  |  |
| 1044+719 | 1044+719 | 688 | 10 | 48 | 27.61991405 | +71 | 43 | 35.9384153 | . 00000354 | . 0000504 | -0.0956 | 46925.4 | 56770.4 | 958 | 0.94 |  | 2.2 |
| 1046-409 | 1046-409 | 3084 | 10 | 48 | 38.27115181 | -41 | 14 | 0.1161175 | . 00002026 | . 0005048 | -0.0488 | 54489.4 | 56568.2 | 6 |  | 0.12 |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \text { Source Flux } \\ & \text { (Jy) } \\ & \hline \end{aligned}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1046-222 | 1046-222 | 1742 | 10 | 49 | 21.86915217 | -22 | 31 | 7.5090071 | . 00007020 | . 0029629 | -0.8394 | 54656.9 | 54657.0 | 1 |  |  |  |
| 1047+147 | J1049+14 | 1743 | 10 | 49 | 46.32762010 | +14 | 29 | 38.5739320 | . 00003342 | . 0005691 | -0.5559 | 54112.4 | 54559.3 | 2 |  |  |  |
| 1048-526 | 1048-526 | 3085 | 10 | 50 | 38.02845237 | -52 | 49 | 48.3281808 | . 00003986 | . 0010124 | 0.3643 | 54723.2 | 54723.3 | 1 |  |  |  |
| 1049-726 | 1049-726 | 3086 | 10 | 50 | 45.24979019 | -72 | 54 | 32.3105911 | . 00007480 | . 0004975 | 0.2731 | 54723.2 | 54723.4 | 1 |  |  |  |
| 1048+347 | 1048+347 | 3087 | 10 | 50 | 58.12294679 | +34 | 30 | 10.9406608 | . 00007513 | . 0012304 | -0.5206 | 50219.1 | 50219.2 | 1 |  |  |  |
| 1048+207 | 1048+207 | 1744 | 10 | 51 | 1.37428128 | +20 | 27 | 19.9705963 | . 00001312 | . 0003875 | -0.0217 | 53125.2 | 53126.1 | 1 |  |  |  |
| 1048-313 | P 1048-313 | 284 | 10 | 51 | 4.77752676 | -31 | 38 | 14.3076847 | . 00001257 | . 0001388 | -0.2854 | 50048.7 | 55728.2 | 22 |  | 0.23 | 4.3 |
| 1048+470 | 1048+470 | 3088 | 10 | 51 | 15.89544161 | +46 | 44 | 17.3705217 | . 00030251 | . 0015831 | -0.5223 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1049-650 | 1049-650 | 3089 | 10 | 51 | 23.52178538 | -65 | 18 | 8.6248393 | . 00075152 | . 0030139 | 0.1293 | 52886.9 | 53138.6 | 3 |  |  |  |
| 1049+215 | P 1049+21 | 834 | 10 | 51 | 48.78907895 | +21 | 19 | 52.3137676 | . 00000444 | . 0000791 | -0.0756 | 50085.4 | 56547.5 | 68 | 0.33 | 0.25 | 3.0 |
| 1051+397 | J1054+39 | 3090 | 10 | 54 | 32.42215027 | +39 | 28 | 12.3819830 | . 00005527 | . 0006589 | 0.0486 | 54087.4 | 54087.6 | 1 |  |  |  |
| 1053+704 | 1053+704 | 835 | 10 | 56 | 53.61749571 | +70 | 11 | 45.9156519 | . 000000420 | . 0000519 | -0.0022 | 49125.0 | 56741.5 | 184 | 0.50 |  | 1.8 |
| 1054+004 | 1054+004 | 1745 | 10 | 57 | 15.75361613 | +00 | 12 | 3.5746284 | . 01106223 | . 0616253 | 0.1292 | 54278.1 | 54278.1 | 1 |  |  |  |
| 1054-234 | 1054-234 | 3091 | 10 | 57 | 24.42134813 | -23 | 42 | 1.7108080 | . 00016626 | . 0043704 | 0.8631 | 50631.9 | 50687.8 | 2 |  |  |  |
| 1055-248 | 1055-248 | 3092 | 10 | 57 | 54.13366860 | -25 | 09 | 29.0634716 | . 00002080 | . 0007913 | 0.1258 | 50631.8 | 50687.8 | 2 |  |  |  |
| 1055-242 | P 1055-242 | 3093 | 10 | 57 | 55.40903197 | -24 | 33 | 48.8629746 | . 00030168 | . 0067166 | 0.0039 | 50631.8 | 56749.3 | 4 |  |  |  |
| 1055-301 | 1055-301 | 1746 | 10 | 58 | 0.42742737 | -30 | 24 | 55.0275177 | . 00001485 | . 0002612 | -0.0781 | 53125.1 | 54362.5 | 9 |  |  |  |
| 1055+433 | 1055+433 | 3094 | 10 | 58 | 2.92079514 | +43 | 04 | 41.5053716 | . 00002350 | . 0003890 | -0.5717 | 50242.1 | 50242.2 | 1 |  |  |  |
| 1055-028 | 1055-028 | 1747 | 10 | 58 | 11.01071504 | -03 | 09 | 27.2545339 | . 00004590 | . 0011164 | -0.4199 | 53134.1 | 53134.2 | 1 |  |  |  |
| 1053+815 | 1053+815 | 836 | 10 | 58 | 11.53535861 | +81 | 14 | 32.6751776 | . 00000526 | . 0000509 | 0.0204 | 48720.0 | 56744.2 | 601 | 0.60 |  | 2.3 |
| 1055+201 | 1055+201 | 1748 | 10 | 58 | 17.90082828 | +19 | 51 | 50.8699090 | . 00001319 | . 0003351 | -0.1627 | 50084.5 | 54664.7 | 3 |  |  |  |
| 1055+018 | P 1055+01 | 287 | 10 | 58 | 29.60520412 | +01 | 33 | 58.8237334 | . 00000356 | . 0000609 | -0.2815 | 44200.7 | 56754.1 | 438 | 2.04 | 2.20 | 2.8 |
| 1055+567 | 1055+567 | 3095 | 10 | 58 | 37.72744823 | +56 | 28 | 11.2068512 | . 00040678 | . 0015500 | 0.4041 | 49576.7 | 49576.9 | 1 |  |  |  |
| 1057-797 | P 1057-79 | 837 | 10 | 58 | 43.30974512 | -80 | 03 | 54.1597450 | . 00000858 | . 0000540 | 0.0087 | 47625.6 | 56763.7 | 486 |  |  |  |
| 1056-113 | 1056-113 | 3096 | 10 | 59 | 12.42638361 | -11 | 34 | 22.7779220 | . 00001937 | . 0007333 | -0.0390 | 50576.0 | 50576.2 | 1 |  |  |  |
| 1056+212 | J1059+2057 | 1081 | 10 | 59 | 39.04268435 | +20 | 57 | 21.9558872 | . 00000865 | . 0001350 | 0.0048 | 50084.5 | 55776.1 | 17 |  | 0.15 | 1.9 |
| 1058+393 | 1058+393 | 3097 | 11 | 01 | 30.06956708 | +39 | 04 | 32.6333356 | . 00002548 | . 0004896 | -0.5361 | 50242.1 | 50242.2 | 1 |  |  |  |
| 1058+726 | 1058+726 | 3098 | 11 | 01 | 48.80538145 | +72 | 25 | 37.1181948 | . 00005166 | . 0004276 | 0.3821 | 49827.1 | 49827.2 | 1 |  |  |  |
| 1058+629 | 1058+629 | 3099 | 11 | 01 | 53.45082054 | +62 | 41 | 50.6058436 | . 00006068 | . 0008090 | 0.4791 | 49827.1 | 49827.2 | 1 |  |  |  |
| 1059+229 | 1059+229 | 1749 | 11 | 02 | 3.14444768 | +22 | 41 | 56.1260821 | . 00004140 | . 0008680 | -0.5153 | 53560.9 | 53561.0 | 1 |  |  |  |
| 1059-438 | 1059-438 | 1750 | 11 | 02 | 4.83609317 | -44 | 04 | 22.8385364 | . 00003026 | . 0010119 | 0.1597 | 54853.4 | 54853.4 | 1 |  |  |  |
| 1059+282 | 1059+282 | 1751 | 11 | 02 | 14.28845897 | +27 | 57 | 8.6895538 | . 00000486 | . 0000903 | -0.0965 | 50219.1 | 56772.4 | 51 |  |  |  |
| 1059+599 | 1059+599A | 3100 | 11 | 02 | 42.76282824 | +59 | 41 | 19.5847424 | . 00007416 | . 0005611 | 0.4108 | 49576.7 | 54112.5 | 2 |  |  |  |
| 1100+122 | 1100+122 | 1752 | 11 | 03 | 3.52983839 | +11 | 58 | 16.6242046 | . 00000848 | . 0002434 | -0.0418 | 53125.2 | 55974.0 | 17 |  |  |  |
| 1100+305 | J1103+3014 | 1082 | 11 | 03 | 13.30189460 | +30 | 14 | 42.7023580 | . 00001851 | . 0004425 | -0.5846 | 50219.1 | 53659.0 | 2 | 0.24 | 0.15 |  |
| 1100+223 | P 1100+223 | 3101 | 11 | 03 | 23.06767182 | +22 | 03 | 37.7199429 | . 00003620 | . 0007506 | -0.3232 | 50084.5 | 50156.3 | 2 |  |  |  |
| 1101-325 | P 1101-325 | 290 | 11 | 03 | 31.52641254 | -32 | 51 | 16.6938150 | . 00001661 | . 0002243 | -0.1946 | 52067.2 | 54362.5 | 13 |  |  |  |
| 1101-536 | 1101-536 | 838 | 11 | 03 | 52.22167174 | -53 | 57 | 0.6965838 | . 00001137 | . 0001547 | 0.3277 | 47625.6 | 56504.5 | 36 |  |  |  |
| 1100+798 | 1100+798 | 3102 | 11 | 04 | 5.55883956 | +79 | 32 | 52.9543550 | . 00238748 | . 0028492 | 0.8924 | 49827.1 | 50688.3 | 2 |  |  |  |
| 1101+384 | B2 1101+38 | 291 | 11 | 04 | 27.31394150 | +38 | 12 | 31.7990500 | . 00000351 | . 0000535 | -0.1180 | 49965.8 | 56782.2 | 562 | 0.34 | 0.24 | 2.3 |
| 1102-242 | 1102-242 | 3103 | 11 | 04 | 46.17644899 | -24 | 31 | 25.8005126 | . 00001383 | . 0004467 | -0.2097 | 50631.8 | 50687.8 | 2 | 0.23 | 0.19 |  |
| 1101+609 | 1101+609 | 3104 | 11 | 04 | 53.69461975 | +60 | 38 | 55.3148396 | . 00006126 | . 0008234 | -0.1223 | 49576.8 | 54087.6 | 2 |  |  |  |
| 1102-392 | 1102-392 | 1753 | 11 | 05 | 11.08134998 | -39 | 28 | 42.1556632 | . 00021303 | . 0109272 | 0.6836 | 53153.1 | 53552.0 | 2 |  |  |  |
| 1103+023 | 1103+023 | 1754 | 11 | 05 | 38.99286548 | +02 | 02 | 57.4762777 | . 00011892 | . 0025064 | -0.3592 | 53134.1 | 53134.2 | 1 |  |  |  |
| 1103+284 | 1103+284 | 1755 | 11 | 06 | 7.26170628 | +28 | 12 | 47.0650194 | . 00001853 | . 0004796 | 0.1178 | 53559.9 | 53560.0 | 1 |  |  |  |
| 1104-445 | P 1104-445 | 293 | 11 | 07 | 8.69412570 | -44 | 49 | 7.6185032 | . 00000596 | . 0000824 | -0.1440 | 43808.7 | 56776.7 | 268 |  | 0.48 |  |
| 1105-680 | P 1105-680 | 839 | 11 | 07 | 12.69507374 | -68 | 20 | 50.7278835 | . 00003505 | . 0002524 | 0.5699 | 48387.6 | 55784.5 | 18 |  |  |  |
| 1104+167 | 1104+167 | 3105 | 11 | 07 | 15.04743333 | +16 | 28 | 2.2448121 | . 00002667 | . 0009961 | -0.6412 | 50084.5 | 50156.3 | 2 |  |  |  |
| 1104+525 | 1104+525 | 3106 | 11 | 07 | 25.82780281 | +52 | 19 | 31.6363824 | . 00002850 | . 0004939 | -0.5505 | 53503.1 | 53503.2 | 1 |  |  |  |
| 1104+728 | 1104+728 | 840 | 11 | 07 | 41.72255805 | +72 | 32 | 36.0049778 | . 00003396 | . 0001608 | -0.2363 | 49827.1 | 56568.5 | 13 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1105+437 | 1105+437 | 1083 | 11 | 08 | 23.47692807 | +43 | 30 | 53.6571323 | . 00002048 | . 0003528 | -0.4966 | 50242.1 | 50242.2 | 1 |  | 0.15 |  |
| 1106+084 | 1106+084 | 3107 | 11 | 08 | 37.49883524 | +08 | 11 | 1.5844122 | . 00001290 | . 0004481 | -0.5289 | 53572.9 | 55538.6 | 2 |  |  |  |
| $1106+023$ | 1106+023 | 3108 | 11 | 08 | 45.48840321 | +02 | 02 | 40.9044032 | . 00002051 | . 0005586 | 0.2214 | 53523.0 | 56749.3 | 2 |  |  |  |
| 1106+380 | $1106+380$ | 3109 | 11 | 09 | 28.85382047 | +37 | 44 | 31.1046465 | . 00005830 | . 0011057 | 0.6197 | 52306.4 | 52306.5 | 1 |  |  |  |
| 1107-187 | 1107-187 | 3110 | 11 | 10 | 0.40689892 | -18 | 58 | 48.7445791 | . 00007164 | . 0019172 | -0.3360 | 50631.8 | 50687.8 | 2 |  |  |  |
| 1107+607 | $1107+607$ | 3111 | 11 | 10 | 13.08807659 | +60 | 28 | 42.5665265 | . 00011838 | . 0014875 | 0.5260 | 49576.7 | 49576.9 | 1 |  |  |  |
| $1107+485$ | $1107+485$ | 3112 | 11 | 10 | 36.32374910 | +48 | 17 | 52.4494705 | . 00024433 | . 0051719 | 0.4427 | 50305.9 | 54314.6 | 2 |  |  |  |
| 1107+443 | 1107+443 | 3113 | 11 | 10 | 46.34580890 | +44 | 03 | 25.9251258 | . 00002086 | . 0003373 | -0.4612 | 50242.1 | 50306.0 | 2 |  |  |  |
| 1108+527 | 1108+527 | 4081 | 11 | 11 | 5.88214012 | +52 | 27 | 48.9992684 | . 00012535 | . 0011901 | -0.4361 | 56393.1 | 56393.3 | 1 |  |  |  |
| 1108+201 | 1108+201 | 3114 | 11 | 11 | 20.06575265 | +19 | 55 | 35.9999333 | . 00020922 | . 0024196 | -0.6693 | 50084.5 | 50156.3 | 2 |  |  |  |
| 1109-567 | 1109-567 | 3115 | 11 | 12 | 7.27004154 | -57 | 03 | 39.7460296 | . 00126726 | . 0033262 | -0.1644 | 52676.5 | 52947.9 | 3 |  |  |  |
| 1109+076 | 1109+076 | 1756 | 11 | 12 | 9.55852653 | +07 | 24 | 49.1183049 | . 00001526 | . 0004948 | 0.0074 | 53559.9 | 53560.0 | 1 | 0.09 | 0.09 |  |
| 1109+350 | 1109+350 | 1757 | 11 | 12 | 38.76915467 | +34 | 46 | 39.1096857 | . 00002662 | . 0005780 | -0.3770 | 53560.9 | 53561.0 | 1 |  |  |  |
| 1110-217 | P 1110-217 | 3116 | 11 | 12 | 49.84870362 | -21 | 58 | 29.3523204 | . 00009167 | . 0024422 | -0.3164 | 50631.8 | 50687.8 | 2 |  |  |  |
| 1110-355 | 1110-355 | 3117 | 11 | 13 | 1.48172727 | -35 | 49 | 48.2677822 | . 00024920 | . 0174127 | 0.2146 | 53134.1 | 53134.1 | 1 |  |  |  |
| 1111+149 | GC 1111+14 | 296 | 11 | 13 | 58.69508672 | +14 | 42 | 26.9526321 | . 00000392 | . 0000744 | -0.1949 | 44200.9 | 56775.1 | 169 | 0.26 | 0.23 | 2.5 |
| 1112-080 | 1112-080 | 3118 | 11 | 14 | 32.55064890 | -08 | 16 | 39.0023051 | . 00001412 | . 0004695 | -0.0596 | 50576.0 | 50576.2 | 1 |  |  |  |
| 1113-307 | 1113-307 | 3119 | 11 | 15 | 58.81409406 | -30 | 59 | 27.4251714 | . 00048223 | . 0125935 | 0.7716 | 53503.2 | 53503.2 | 1 |  |  |  |
| 1113+087 | J1116+0829 | 1084 | 11 | 16 | 9.97336007 | +08 | 29 | 22.0323194 | . 00002707 | . 0007996 | -0.4554 | 49913.9 | 49914.0 | 1 | 0.11 | 0.27 |  |
| 1115-122 | 1115-122 | 3120 | 11 | 18 | 17.14137542 | -12 | 32 | 54.2629227 | . 00001146 | . 0003580 | -0.0419 | 50576.0 | 56547.7 | 2 | 0.40 | 0.73 |  |
| 1115-306 | 1115-306 | 3121 | 11 | 18 | 20.61019157 | -30 | 54 | 58.5232984 | . 00040320 | . 0169921 | 0.9457 | 52306.4 | 52306.5 | 1 |  |  |  |
| 1116-462 | 1116-462 | 841 | 11 | 18 | 26.95765152 | -46 | 34 | 15.0012498 | . 00002020 | . 0002537 | 0.1709 | 48110.0 | 54706.4 | 24 |  |  |  |
| 1116+128 | P 1116+12 | 297 | 11 | 18 | 57.30143528 | +12 | 34 | 41.7180375 | . 00000430 | . 0000820 | -0.1728 | 44250.6 | 56637.9 | 76 | 0.61 | 0.35 | 3.3 |
| 1116+603 | 1116+603 | 3122 | 11 | 19 | 14.34543185 | +60 | 04 | 57.2047523 | . 00015358 | . 0010468 | 0.1535 | 49576.7 | 54087.6 | 2 |  |  |  |
| 1116+227 | 1116+227 | 3123 | 11 | 19 | 30.31809205 | +22 | 26 | 49.3681184 | . 00098956 | . 0196058 | -0.9081 | 53560.0 | 56638.7 | 2 |  |  |  |
| 1117+044 | 1117+044 | 3124 | 11 | 19 | 42.82420254 | +04 | 10 | 27.9272665 | . 00002184 | . 0006110 | 0.0754 | 49913.9 | 49914.0 | 1 |  |  |  |
| 1117-248 | 1117-248 | 3125 | 11 | 20 | 9.11967961 | -25 | 08 | 7.6233784 | . 00090199 | . 0205394 | -0.8095 | 50631.8 | 55538.6 | 3 |  |  |  |
| 1117-124 | 1117-124 | 3126 | 11 | 20 | 12.08052247 | -12 | 43 | 37.8305725 | . 00001813 | . 0006619 | 0.0805 | 50576.0 | 50576.2 | 1 |  |  |  |
| 1117-270 | 1117-270 | 3127 | 11 | 20 | 16.19178290 | -27 | 19 | 6.3662107 | . 00001817 | . 0004315 | -0.1128 | 50687.7 | 54664.7 | 2 |  |  |  |
| 1117+146 | 1117+146 | 1085 | 11 | 20 | 27.80625486 | +14 | 20 | 54.9924002 | . 00030510 | . 0034921 | -0.6667 | 50084.5 | 54440.6 | 4 |  |  |  |
| 1118+073 | 1118+073 | 3128 | 11 | 20 | 38.44391224 | +07 | 04 | 47.1753928 | . 00030509 | . 0051551 | 0.8790 | 49913.9 | 49914.0 | 1 |  |  |  |
| 1118-140 | 1118-140 | 3129 | 11 | 20 | 55.56365003 | -14 | 20 | 29.9244489 | . 00001782 | . 0005773 | -0.0396 | 50631.8 | 50631.9 | 1 |  |  |  |
| 1118-056 | 1118-056 | 3130 | 11 | 21 | 25.10805509 | -05 | 53 | 56.4409800 | . 00001139 | . 0003786 | 0.0418 | 50576.0 | 50576.2 | 1 |  |  |  |
| 1119-069 | 1119-069 | 1758 | 11 | 21 | 42.12294505 | -07 | 11 | 6.3422962 | . 00001012 | . 0003425 | -0.1439 | 53572.0 | 56701.4 | 2 | 0.17 | 0.18 |  |
| 1119-044 | 1119-044 | 1759 | 11 | 21 | 43.11428649 | -04 | 42 | 36.1544809 | . 00032417 | . 0088863 | 0.7874 | 53560.9 | 53561.0 | 1 |  |  |  |
| 1119-252 | 1119-252 | 3131 | 11 | 22 | 5.74321898 | -25 | 32 | 33.8315998 | . 00002232 | . 0007324 | -0.2575 | 50631.8 | 50687.8 | 2 |  |  |  |
| 1119+183 | 1119+183 | 1086 | 11 | 22 | 29.71147699 | +18 | 05 | 26.3431554 | . 00000703 | . 0001551 | 0.0127 | 50084.5 | 54125.7 | 4 |  |  | 3.8 |
| 1120-274 | 1120-274 | 1760 | 11 | 22 | 56.41007995 | -27 | 42 | 48.4574693 | . 00017301 | . 0063281 | 0.7236 | 53559.9 | 53560.0 | 1 |  |  |  |
| 1121-147 | 1121-147 | 1761 | 11 | 24 | 2.56568599 | -15 | 01 | 58.9503899 | . 00009585 | . 0022240 | 0.5263 | 53572.0 | 53572.9 | 1 |  |  |  |
| 1121+238 | J1124+2336 | 1087 | 11 | 24 | 2.70587561 | +23 | 36 | 45.8702371 | . 00001990 | . 0002951 | -0.3001 | 50084.5 | 53286.4 | 8 |  | 0.16 |  |
| 1121+234 | 1121+234 | 3132 | 11 | 24 | 31.58826890 | +23 | 07 | 55.9526383 | . 00001708 | . 0004331 | -0.1189 | 54112.4 | 54112.6 | 1 |  |  |  |
| 1123+264 | P 1123+26 | 299 | 11 | 25 | 53.71192231 | +26 | 10 | 19.9786528 | . 00000379 | . 0000588 | -0.1480 | 44200.8 | 56782.1 | 302 | 0.52 | 0.54 | 2.4 |
| 1123+203 | 1123+203 | 3133 | 11 | 25 | 58.74195607 | +20 | 05 | 54.3370883 | . 00003683 | . 0006433 | 0.0507 | 50084.5 | 50156.3 | 2 |  |  |  |
| 1124-382 | 1124-382 | 1762 | 11 | 26 | 44.13297146 | -38 | 28 | 44.0581176 | . 00017259 | . 0088437 | 0.6009 | 53125.2 | 53552.0 | 2 |  |  |  |
| 1124+067 | $1124+067$ | 1763 | 11 | 26 | 53.14592085 | +06 | 25 | 56.9408746 | . 00005485 | . 0010483 | -0.1182 | 53559.9 | 53560.0 | 1 |  |  |  |
| 1124-056 | 1124-056 | 3134 | 11 | 26 | 57.52325697 | -05 | 55 | 52.7859378 | . 00007923 | . 0017602 | -0.2804 | 53560.9 | 55371.1 | 2 |  |  |  |
| 1124+455 | 1124+455 | 3135 | 11 | 26 | 57.65499583 | +45 | 16 | 6.2826418 | . 00003281 | . 0010621 | -0.3061 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1124-186 | P 1124-186 | 300 | 11 | 27 | 4.39244976 | -18 | 57 | 17.4418153 | . 00000339 | . 0000523 | -0.0286 | 47681.9 | 56776.7 | 1239 | 1.17 | 1.27 | 1.5 |
| 1124-073 | 1124-073 | 3136 | 11 | 27 | 12.43626973 | -07 | 35 | 12.1649065 | . 00001035 | . 0003379 | 0.0320 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1125+062 | 1125+062 | 1764 | 11 | 27 | 36.52553886 | +05 | 55 | 32.0591944 | . 00001079 | . 0003145 | -0.0126 | 53125.1 | 53916.1 | 2 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \begin{array}{l} \text { Source Flux } \\ (\mathrm{Jvy}) \end{array} \end{aligned}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1124+571 | 1124+571 | 1765 | 11 | 27 | 40.13511483 | +56 | 50 | 14.7950319 | . 00004776 | . 0004638 | 0.1479 | 49576.7 | 54643.6 | 2 |  |  |  |
| 1125+366 | 1125+366 | 1766 | 11 | 27 | 58.87081889 | +36 | 20 | 28.3512686 | . 00001163 | . 0002238 | -0.1792 | 50242.1 | 56316.8 | 14 |  |  |  |
| $1125+596$ | 1125+596 | 842 | 11 | 28 | 13.34065388 | +59 | 25 | 14.7983280 | . 00001391 | . 0001215 | 0.0862 | 49422.2 | 53612.9 | 5 | 0.59 |  |  |
| $1125+213$ | $1125+213$ | 3137 | 11 | 28 | 35.54142298 | +21 | 02 | 37.3591946 | . 00017457 | . 0025706 | -0.1878 | 50084.5 | 50156.3 | 2 |  |  |  |
| 1126+109 | 1126+109 | 4130 | 11 | 28 | 45.54956502 | +10 | 39 | 6.9797270 | . 00006038 | . 0011219 | 0.2443 | 55775.8 | 55776.0 | 1 |  |  |  |
| 1127-443 | 1127-443 | 3138 | 11 | 29 | 31.72199550 | -44 | 35 | 49.9384482 | . 00006078 | . 0019007 | 0.3365 | 54723.2 | 54723.4 | 1 |  |  |  |
| 1127-368 | 1127-368 | 3139 | 11 | 29 | 55.78376683 | -37 | 07 | 57.3686117 | . 00042273 | . 0174208 | 0.7288 | 53503.2 | 53503.2 | 1 |  |  |  |
| 1127-358 | 1127-358 | 3140 | 11 | 30 | 4.41672162 | -36 | 08 | 4.0833223 | . 00005175 | . 0019463 | 0.2895 | 52409.2 | 56204.7 | 2 |  |  |  |
| 1127-145 | P 1127-14 | 301 | 11 | 30 | 7.05257710 | -14 | 49 | 27.3883109 | . 00000817 | . 0001434 | -0.2359 | 43808.7 | 55545.7 | 68 | 0.22 | 0.73 | 4.3 |
| 1128+090 | 1128+090 | 1767 | 11 | 30 | 35.95153480 | +08 | 46 | 43.1070970 | . 00001401 | . 0004106 | 0.1417 | 53134.1 | 53134.2 | 1 |  |  |  |
| $1128+308$ | 1128+308 | 3141 | 11 | 30 | 42.42917106 | +30 | 31 | 35.3878778 | . 00001969 | . 0004914 | -0.1072 | 50219.1 | 50219.2 | 1 |  |  |  |
| 1128+385 | GC 1128+38 | 302 | 11 | 30 | 53.28261083 | +38 | 15 | 18.5470012 | . 00000337 | . 0000508 | -0.0398 | 44283.3 | 56763.7 | 1033 | 0.97 | 0.76 | 2.0 |
| 1128-047 | P 1128-047 | 303 | 11 | 31 | 30.51674542 | -05 | 00 | 19.6583286 | . 00001139 | . 0003774 | -0.0846 | 49099.2 | 53185.7 | 4 | 0.10 | 0.23 | 3.3 |
| 1129-161 | 1129-161 | 3142 | 11 | 31 | 36.74790051 | -16 | 28 | 33.4365630 | . 00003515 | . 0011684 | 0.2440 | 53560.0 | 55966.5 | 2 |  |  |  |
| 1129-580 | 1129-580 | 1088 | 11 | 31 | 43.28801127 | -58 | 18 | 53.4434038 | . 00001862 | . 0001974 | 0.4239 | 52940.8 | 55784.3 | 18 |  |  |  |
| 1130-741 | 1130-741 | 3143 | 11 | 32 | 19.11006268 | -74 | 25 | 9.0233847 | . 00014189 | . 0006900 | 0.6090 | 54723.2 | 54723.4 | 1 |  |  |  |
| $1130+005$ | 1130+005 | 1304 | 11 | 33 | 3.03005019 | +00 | 15 | 48.9795378 | . 00002414 | . 0005758 | -0.1834 | 53560.9 | 53561.0 | 1 |  |  |  |
| 1130+009 | P 1130+009 | 304 | 11 | 33 | 20.05578763 | +00 | 40 | 52.8372701 | . 00000402 | . 0000862 | -0.1726 | 44203.4 | 56754.1 | 124 | 0.33 | 0.22 | 2.4 |
| 1131-088 | 1131-088 | 3144 | 11 | 33 | 35.99346056 | -09 | 05 | 23.4133583 | . 00483771 | . 1035869 | -0.9997 | 53572.9 | 56161.9 | 2 |  |  |  |
| 1131+730 | 1131+730 | 3145 | 11 | 34 | 11.40775449 | +72 | 49 | 20.0524634 | . 00019863 | . 0019115 | 0.6765 | 49827.1 | 54482.7 | 2 |  |  |  |
| 1132-306 | 1132-306 | 1768 | 11 | 35 | 20.77703583 | -30 | 56 | 29.9264227 | . 00040425 | . 0170657 | 0.8261 | 53523.1 | 53523.1 | 1 |  |  |  |
| 1133-041 | 1133-041 | 1769 | 11 | 35 | 58.23496934 | -04 | 28 | 27.8868424 | . 00001189 | . 0003908 | -0.1861 | 53559.9 | 53560.0 | 1 |  |  |  |
| 1134-739 | 1133-739 | 3146 | 11 | 36 | 9.65960851 | -74 | 15 | 45.2747402 | . 00160103 | . 0037233 | 0.0678 | 52886.9 | 53138.6 | 3 |  |  |  |
| 1133-032 | 1133-032 | 1305 | 11 | 36 | 24.57692778 | -03 | 30 | 29.4966550 | . 00000388 | . 0000711 | -0.0345 | 50576.1 | 56772.3 | 114 |  |  |  |
| 1133+704 | 1133+704 | 1089 | 11 | 36 | 26.40839752 | +70 | 09 | 27.3070687 | . 00005493 | . 0002529 | 0.3178 | 49827.2 | 54087.6 | 4 |  |  |  |
| $1133+344$ | 1133+344 | 1770 | 11 | 36 | 27.34395900 | +34 | 07 | 39.4841892 | . 00002852 | . 0004923 | -0.0103 | 53560.9 | 53561.0 | 1 |  |  |  |
| $1135+480$ | 1135+480 | 3147 | 11 | 38 | 21.13817600 | +47 | 45 | 15.3968695 | . 00004619 | . 0008843 | 0.0822 | 50305.9 | 50306.0 | 1 |  |  |  |
| $1136+408$ | 1136+408 | 3148 | 11 | 39 | 2.73423444 | +40 | 32 | 54.8413593 | . 00002590 | . 0004504 | -0.3510 | 50242.1 | 50242.2 | 1 |  |  |  |
| 1136-135 | 1136-135 | 3149 | 11 | 39 | 10.70257095 | -13 | 50 | 43.6396580 | . 00004215 | . 0013289 | -0.0092 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1136-156 | 1136-156 | 3150 | 11 | 39 | 29.57605698 | -15 | 52 | 51.6536446 | . 00002168 | . 0007464 | 0.4646 | 50631.8 | 50632.0 | 1 |  |  |  |
| 1136+771 | 1136+771 | 3151 | 11 | 39 | 51.53869577 | +76 | 54 | 32.3464339 | . 00008717 | . 0005260 | 0.4176 | 49827.1 | 49827.2 | 1 |  |  |  |
| 1137+660 | 1137+660A | 1771 | 11 | 39 | 57.02550591 | +65 | 47 | 49.4834310 | . 00026473 | . 0017563 | 0.1928 | 55041.8 | 55042.1 | 1 |  |  |  |
| 1137-272 | 1137-272 | 3152 | 11 | 40 | 10.59774945 | -27 | 30 | 40.6822362 | . 00032540 | . 0154112 | 0.6994 | 53572.0 | 53572.9 | 1 |  |  |  |
| 1138-277 | 1138-277 | 3153 | 11 | 40 | 51.36925461 | -28 | 00 | 38.7296198 | . 00003284 | . 0012016 | 0.5371 | 53560.0 | 56463.0 | 2 |  |  |  |
| 1138+644 | 1138+644 | 3154 | 11 | 41 | 12.22821254 | +64 | 10 | 5.5052774 | . 00015602 | . 0013283 | -0.1684 | 49827.1 | 49827.2 | 1 |  |  |  |
| 1138-120 | 1138-120 | 3155 | 11 | 41 | 24.20178460 | -12 | 16 | 38.5426716 | . 01033205 | . 2259329 | 0.9985 | 53561.0 | 53561.0 | 1 |  |  |  |
| 1139+160 | 1139+160 | 1772 | 11 | 42 | 7.73593584 | +15 | 47 | 54.1792687 | . 00006017 | . 0016526 | -0.4990 | 53572.0 | 53572.9 | 1 |  |  |  |
| 1140+188 | 1140+188 | 3156 | 11 | 43 | 26.06964492 | +18 | 34 | 38.3615557 | . 00003901 | . 0011472 | 0.0563 | 50084.5 | 50156.3 | 2 |  |  |  |
| 1140+668 | 1140+668 | 3157 | 11 | 43 | 41.60307421 | +66 | 33 | 31.2286880 | . 00012889 | . 0012069 | 0.3954 | 49827.1 | 49827.2 | 1 | 0.12 |  |  |
| 1141+011 | 1141+011 | 1773 | 11 | 44 | 8.71371873 | +00 | 54 | 36.3351655 | . 00006683 | . 0015596 | -0.1322 | 53559.9 | 53560.0 | 1 |  |  |  |
| 1142+198 | 1142+198 | 1090 | 11 | 45 | 5.00905282 | +19 | 36 | 22.7410405 | . 00001622 | . 0003770 | 0.4319 | 51246.2 | 53153.2 | 6 |  | 0.12 |  |
| 1142+052 | 1142+052 | 1091 | 11 | 45 | 21.31520672 | +04 | 55 | 26.6893284 | . 00009183 | . 0020594 | 0.7311 | 49913.9 | 54643.7 | 3 |  |  |  |
| 1142-225 | 1142-225 | 3158 | 11 | 45 | 22.04678533 | -22 | 50 | 31.3436876 | . 00002384 | . 0007168 | -0.2975 | 50631.8 | 54482.2 | 3 |  |  |  |
| $1143+446$ | $1143+446$ | 3159 | 11 | 45 | 38.51854254 | +44 | 20 | 21.9137994 | . 00006507 | . 0004996 | -0.1220 | 50305.9 | 56036.4 | 2 |  |  |  |
| 1143-696 | 1143-696 | 3160 | 11 | 45 | 53.62416924 | -69 | 54 | 1.7977839 | . 00002500 | . 0001670 | 0.4269 | 52872.3 | 56716.0 | 18 |  |  |  |
| 1143-245 | P 1143-245 | 306 | 11 | 46 | 8.10331930 | -24 | 47 | 32.8965824 | . 00000617 | . 0001149 | -0.0831 | 50209.9 | 55728.2 | 28 |  | 0.21 | 3.5 |
| 1143-287 | 1143-287 | 1774 | 11 | 46 | 26.18856332 | -28 | 59 | 18.5048236 | . 00001127 | . 0001896 | -0.1603 | 50687.7 | 55545.7 | 13 |  | 0.28 |  |
| $1143+590$ | $1143+590$ | 1775 | 11 | 46 | 26.91157265 | +58 | 48 | 34.2631542 | . 00005066 | . 0004377 | 0.1407 | 49576.0 | 54664.7 | 2 |  |  |  |
| 1143-332 | 1143-332 | 1776 | 11 | 46 | 28.45175158 | -33 | 28 | 42.6324034 | . 00001480 | . 0004555 | -0.1808 | 54313.8 | 56568.7 | 6 |  | 0.11 | 2.8 |
| 1144+542 | GC 1144+54 | 3161 | 11 | 46 | 44.20421693 | +53 | 56 | 43.0823331 | . 00006943 | . 0016595 | -0.0912 | 49576.0 | 49576.9 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1144+402 | 1144+402 | 699 | 11 | 46 | 58.29791377 | +39 | 58 | 34.3045056 | . 00000347 | . 0000520 | -0.0358 | 45940.8 | 56772.6 | 333 | 0.72 | 0.63 | 1.5 |
| 1144-379 | P 1144-379 | 309 | 11 | 47 | 1.37070607 | -38 | 12 | 11.0235572 | . 00000354 | . 0000544 | -0.0575 | 43808.7 | 56770.6 | 1009 |  | 1.40 | 2.2 |
| 1144+352 | 1144+352 | 843 | 11 | 47 | 22.13054468 | +35 | 01 | 7.5225977 | . 00003356 | . 0004786 | -0.3053 | 50242.1 | 51184.5 | 3 |  |  |  |
| 1145-071 | 1145-071 | 689 | 11 | 47 | 51.55403037 | -07 | 24 | 41.1412352 | . 00000354 | . 0000617 | -0.1815 | 47379.8 | 56748.2 | 204 | 0.38 | 0.49 | 2.8 |
| 1145+268 | 1145+268 | 1777 | 11 | 47 | 59.76390657 | +26 | 35 | 42.3323393 | . 00000420 | . 0000740 | -0.0089 | 50219.1 | 56751.6 | 93 |  |  |  |
| 1145-005 | 1145-005 | 1778 | 11 | 48 | 7.19179275 | -00 | 46 | 45.6731795 | . 00016043 | . 0047871 | -0.7442 | 53559.9 | 53560.0 | 1 |  |  |  |
| $1146+189$ | 1146+189 | 3162 | 11 | 48 | 37.77678643 | +18 | 40 | 8.9691655 | . 00007984 | . 0009189 | 0.4740 | 50084.5 | 50156.3 | 2 |  |  |  |
| 1146+596 | 1146+596 | 844 | 11 | 48 | 50.35824311 | +59 | 24 | 56.3819790 | . 00004101 | . 0004060 | -0.6374 | 49576.0 | 51787.2 | 6 |  |  | 4.1 |
| 1146-037 | 1146-037 | 3163 | 11 | 48 | 55.88479458 | -04 | 04 | 9.5632979 | . 00001919 | . 0005743 | -0.1117 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1146+531 | 1146+531 | 1227 | 11 | 48 | 56.56907601 | +52 | 54 | 25.3229302 | . 00001611 | . 0002935 | -0.2553 | 53107.1 | 56023.6 | 16 | 0.32 |  |  |
| 1146+286 | 1146+286 | 1779 | 11 | 49 | 8.90554784 | +28 | 24 | 34.8939141 | . 00002840 | . 0005205 | 0.0472 | 53560.9 | 53561.0 | 1 |  |  |  |
| 1146+362 | J1149+35 | 3164 | 11 | 49 | 33.97567356 | +35 | 59 | 8.0948842 | . 00002779 | . 0006918 | -0.2944 | 54112.4 | 54112.5 | 1 |  |  |  |
| $1147+438$ | 1147+438 | 3165 | 11 | 50 | 16.60269386 | +43 | 32 | 5.9055177 | . 00011447 | . 0019926 | -0.1840 | 50242.1 | 50242.2 | 1 |  |  |  |
| 1147+245 | B2 1147+24 | 845 | 11 | 50 | 19.21217386 | +24 | 17 | 53.8353211 | . 00000410 | . 0000717 | -0.0730 | 48720.2 | 56762.6 | 82 | 0.27 | 0.27 | 2.6 |
| 1147-063 | 1147-063 | 3166 | 11 | 50 | 23.98670652 | -06 | 40 | 26.5711910 | . 00001321 | . 0004595 | -0.5104 | 53503.1 | 56111.5 | 2 |  |  |  |
| 1147-192 | 1147-192 | 1780 | 11 | 50 | 31.52711454 | -19 | 30 | 49.5485079 | . 00001251 | . 0004465 | -0.0901 | 54559.2 | 54559.3 | 1 |  |  |  |
| 1147+067 | 1147+067 | 1781 | 11 | 50 | 32.72906204 | +06 | 30 | 29.4195561 | . 00003047 | . 0007906 | -0.1356 | 53572.0 | 53572.9 | 1 |  |  |  |
| 1148-001 | P 1148-00 | 312 | 11 | 50 | 43.87076488 | -00 | 23 | 54.2051550 | . 00001179 | . 0003401 | -0.2365 | 43808.9 | 54184.5 | 36 | 0.21 | 0.17 | 4.6 |
| 1148-171 | 1148-171 | 3167 | 11 | 51 | 3.20366906 | -17 | 23 | 59.8433663 | . 00002543 | . 0008586 | -0.1529 | 50631.8 | 50632.0 | 1 |  |  |  |
| 1148-671 | P 1148-671 | 846 | 11 | 51 | 13.42649141 | -67 | 28 | 11.0936690 | . 00003084 | . 0002933 | 0.2835 | 49014.8 | 54670.4 | 17 |  |  |  |
| 1149-084 | 1149-084 | 1306 | 11 | 52 | 17.20951043 | -08 | 41 | 3.3139139 | . 00000361 | . 0000561 | -0.0146 | 50576.1 | 56770.7 | 206 |  |  |  |
| 1149+499 | 1149+499 | 1228 | 11 | 52 | 32.87106369 | +49 | 39 | 38.7678795 | . 00000974 | . 0001750 | -0.3163 | 52409.1 | 56591.0 | 28 | 0.30 |  |  |
| 1150+334 | 1150+334 | 1782 | 11 | 52 | 51.91010632 | +33 | 07 | 18.7653874 | . 00002998 | . 0010548 | -0.0797 | 53559.9 | 53560.0 | 1 |  |  |  |
| 1150-050 | 1150-050 | 1783 | 11 | 52 | 55.49160033 | -05 | 19 | 48.5367912 | . 00010621 | . 0022411 | -0.0212 | 53560.9 | 53561.0 | 1 |  |  |  |
| 1150+812 | 1150+812 | 847 | 11 | 53 | 12.49918859 | +80 | 58 | 29.1545999 | . 00000982 | . 0000551 | 0.0695 | 47282.8 | 55042.7 | 104 | 0.68 |  | 3.2 |
| 1150+095 | 1150+095 | 3168 | 11 | 53 | 12.55211375 | +09 | 14 | 2.2781717 | . 00004165 | . 0012039 | -0.0856 | 49913.9 | 49914.1 | 1 |  |  |  |
| 1150-108 | 1150-108 | 3169 | 11 | 53 | 22.31373408 | -11 | 05 | 12.5873978 | . 00002796 | . 0009271 | -0.0120 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1150+497 | 4C 49.22 | 848 | 11 | 53 | 24.46663994 | +49 | 31 | 8.8302386 | . 00000463 | . 0000699 | 0.0610 | 49252.9 | 56591.0 | 152 | 0.57 |  | 3.2 |
| 1151+102 | 1151+102 | 3170 | 11 | 53 | 48.52735876 | +09 | 55 | 54.8885334 | . 00003014 | . 0010791 | -0.6235 | 49913.9 | 49914.1 | 1 |  |  |  |
| 1151+408 | $1151+408$ | 3171 | 11 | 53 | 54.65898094 | +40 | 36 | 52.6188388 | . 00002190 | . 0003590 | -0.3619 | 50242.1 | 50242.2 | 1 |  |  |  |
| 1151+598 | 1151+598 | 4082 | 11 | 54 | 1.36623407 | +59 | 34 | 54.1993296 | . 00006391 | . 0010314 | -0.1580 | 56302.3 | 56302.7 | 1 |  |  |  |
| 1151-324 | 1151-324 | 3172 | 11 | 54 | 6.16641470 | -32 | 42 | 42.9814379 | . 00002995 | . 0009373 | -0.5575 | 52306.4 | 52306.5 | 1 |  |  |  |
| 1151+126 | 1151+126 | 4131 | 11 | 54 | 10.40735159 | +12 | 25 | 9.7528059 | . 00004097 | . 0008626 | -0.2780 | 55775.8 | 55776.0 | 1 |  |  |  |
| 1151-348 | 1151-348 | 3173 | 11 | 54 | 21.78714353 | -35 | 05 | 29.0741566 | . 00010903 | . 0046437 | 0.5499 | 52306.4 | 52409.2 | 2 |  |  |  |
| 1152-308 | 1152-308 | 3174 | 11 | 55 | 3.15769961 | -31 | 07 | 58.7273486 | . 00002618 | . 0008800 | -0.2618 | 52306.4 | 52409.2 | 2 |  |  |  |
| 1152+462 | 1152+462 | 3175 | 11 | 55 | 11.00919925 | +45 | 55 | 39.6255527 | . 00026681 | . 0050573 | -0.3811 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1153-119 | 1153-119 | 3176 | 11 | 55 | 36.81941698 | -12 | 16 | 35.5025153 | . 00012390 | . 0030579 | -0.1346 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1153-100 | 1153-100 | 3177 | 11 | 55 | 45.55142159 | -10 | 17 | 52.2471498 | . 00019497 | . 0048774 | 0.3280 | 53572.0 | 53572.9 | 1 |  |  |  |
| 1154+069 | 1154+069 | 3178 | 11 | 57 | 0.65243736 | +06 | 41 | 12.5922580 | . 00003257 | . 0011688 | -0.5108 | 54112.4 | 54112.5 | 1 |  |  |  |
| 1155+169 | 1155+169 | 1092 | 11 | 57 | 34.83625556 | +16 | 38 | 59.6500994 | . 00001047 | . 0002067 | 0.1293 | 50084.5 | 52779.7 | 4 |  | 0.08 |  |
| 1155+251 | GC 1155+25 | 849 | 11 | 58 | 25.78754100 | +24 | 50 | 17.9639904 | . 00002117 | . 0004076 | -0.0930 | 48975.7 | 54937.7 | 13 |  |  | 4.7 |
| 1155+486 | 1155+486 | 3179 | 11 | 58 | 26.76952238 | +48 | 25 | 16.2292937 | . 00002141 | . 0004112 | -0.1529 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1156-221 | P 1156-221 | 3180 | 11 | 59 | 11.26725946 | -22 | 28 | 36.9016963 | . 00002151 | . 0007288 | 0.2785 | 50631.8 | 50687.9 | 2 |  |  |  |
| 1156+101 | 1156+101 | 3181 | 11 | 59 | 11.86747488 | +09 | 54 | 46.9758578 | . 00007692 | . 0025155 | 0.1188 | 53559.9 | 55483.7 | 2 |  |  |  |
| 1156-094 | P 1156-094 | 318 | 11 | 59 | 12.71171352 | -09 | 40 | 52.0492745 | . 00001418 | . 0002728 | -0.6310 | 46797.6 | 53066.0 | 29 | 0.18 | 0.14 | 3.6 |
| 1156-663 | 1156-663 | 3182 | 11 | 59 | 18.30545606 | -66 | 35 | 39.4270750 | . 00002212 | . 0001792 | 0.3078 | 52872.3 | 56538.4 | 22 |  |  |  |
| 1156-214 | 1156-214 | 1784 | 11 | 59 | 21.43254674 | -21 | 42 | 44.9131851 | . 00001251 | . 0004504 | -0.1360 | 54559.2 | 54559.3 | 1 |  |  |  |
| 1156+295 | GC 1156+29 | 319 | 11 | 59 | 31.83391073 | +29 | 14 | 43.8268846 | . 00000337 | . 0000510 | -0.0553 | 47305.1 | 56770.7 | 1176 | 1.45 | 0.93 | 2.5 |
| 1157-215 | P 1157-215 | 3183 | 11 | 59 | 51.90611803 | -21 | 48 | 53.7080338 | . 00001315 | . 0004167 | -0.2851 | 50631.8 | 50687.8 | 2 |  |  |  |
| 1157+532 | 1157+532 | 3184 | 12 | 00 | 11.38428995 | +53 | 00 | 46.8773623 | . 00002963 | . 0004493 | -0.1539 | 53561.1 | 54087.6 | 2 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1158+007 | 1158+007 | 1786 | 12 | 01 | 23.25077307 | +00 | 28 | 28.3160362 | . 00001224 | . 0004047 | -0.2569 | 53572.0 | 55916.6 | 2 | 0.18 | 0.20 |  |
| 1159+148 | 1159+148 | 1787 | 12 | 01 | 44.26886326 | +14 | 31 | 36.4497814 | . 00000858 | . 0002279 | -0.0445 | 53559.9 | 53916.1 | 2 |  |  |  |
| 1200-051 | 1200-051 | 1307 | 12 | 02 | 34.22487262 | -05 | 28 | 2.4902983 | . 00001113 | . 0003707 | 0.0326 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1200+068 | 1200+068 | 1788 | 12 | 03 | 1.01256563 | +06 | 34 | 41.5382054 | . 00008548 | . 0007304 | 0.0892 | 49913.9 | 54664.6 | 2 |  |  |  |
| 1200+608 | $1200+608$ | 3185 | 12 | 03 | 3.50713237 | +60 | 31 | 19.1626907 | . 00007506 | . 0010780 | 0.1843 | 54087.4 | 54087.6 | 1 |  |  |  |
| 1200+045 | 1200+045 | 1789 | 12 | 03 | 21.93497346 | +04 | 14 | 19.0935716 | . 00005599 | . 0008830 | -0.0756 | 54125.4 | 54125.5 | 1 |  |  |  |
| 1200+483 | $1200+483$ | 1229 | 12 | 03 | 29.85302250 | +48 | 03 | 13.6261204 | . 00000753 | . 0001684 | -0.0858 | 52409.1 | 56754.2 | 54 | 0.39 | 0.34 |  |
| $1200+468$ | $1200+468$ | 3186 | 12 | 03 | 31.79784830 | +46 | 32 | 55.5582872 | . 00112755 | . 0133430 | 0.4016 | 50305.9 | 54314.6 | 2 |  |  |  |
| 1202-262 | P 1203-26 | 3187 | 12 | 05 | 33.21233654 | -26 | 34 | 4.4649322 | . 00001950 | . 0006706 | -0.5907 | 50631.8 | 50687.9 | 2 |  |  |  |
| 1204+399 | 1204+399 | 1790 | 12 | 06 | 37.05336632 | +39 | 41 | 3.7473749 | . 00001645 | . 0002851 | -0.3125 | 50242.1 | 54664.7 | 2 |  |  |  |
| 1204+057 | 1204+057 | 3188 | 12 | 06 | 58.02671734 | +05 | 29 | 52.2482165 | . 00006856 | . 0025335 | 0.4856 | 49913.9 | 49914.1 | 1 |  |  |  |
| 1204+124 | J1207+1211 | 850 | 12 | 07 | 12.62452627 | +12 | 11 | 45.8465846 | . 00001716 | . 0003022 | 0.1150 | 49913.9 | 53575.1 | 5 |  | 0.10 |  |
| 1204+281 | 1204+281 | 3189 | 12 | 07 | 27.90046308 | +27 | 54 | 58.8502392 | . 00001313 | . 0003605 | -0.1947 | 50219.1 | 50219.2 | 1 |  |  |  |
| 1204-267 | 1204-267 | 1791 | 12 | 07 | 28.35237275 | -27 | 03 | 10.0877169 | . 00014678 | . 0038583 | -0.5588 | 53561.0 | 53561.0 | 1 |  |  |  |
| 1205-008 | 1205-008 | 1792 | 12 | 07 | 41.67761362 | -01 | 06 | 36.6902114 | . 00000753 | . 0003400 | -0.1288 | 53134.1 | 56782.1 | 19 | 0.14 | 0.10 |  |
| 1205-140 | 1205-140 | 3190 | 12 | 08 | 23.36193454 | -14 | 21 | 43.9170839 | . 09106679 | . 2342167 | -0.9999 | 53560.0 | 53560.0 | 1 |  |  |  |
| 1205+545 | 1205+545 | 3191 | 12 | 08 | 27.49940486 | +54 | 13 | 19.5179864 | . 00023750 | . 0016055 | -0.1742 | 49576.0 | 49576.9 | 1 |  |  |  |
| 1205+011 | 1205+011 | 3192 | 12 | 08 | 33.65421039 | +00 | 54 | 21.9252753 | . 00018694 | . 0045609 | -0.2831 | 53572.0 | 53572.9 | 1 |  |  |  |
| 1206+549 | 1206+549 | 3193 | 12 | 08 | 54.25631470 | +54 | 41 | 58.1641841 | . 00004795 | . 0008096 | 0.1613 | 49576.0 | 49576.9 | 1 |  |  |  |
| 1206-238 | 1206-238 | 1793 | 12 | 09 | 2.44510971 | -24 | 06 | 20.7589513 | . 00001261 | . 0003157 | 0.0720 | 50632.0 | 54643.7 | 3 |  |  |  |
| 1206-202 | 1206-202 | 3194 | 12 | 09 | 14.61097840 | -20 | 32 | 38.9899896 | . 00001360 | . 0004543 | -0.0153 | 50631.8 | 50687.9 | 2 |  |  |  |
| 1206+416 | 1206+415 | 3195 | 12 | 09 | 22.78802664 | +41 | 19 | 41.3699434 | . 00002477 | . 0004002 | -0.3695 | 50242.1 | 50242.2 | 1 |  |  |  |
| 1206-399 | 1206-399 | 3196 | 12 | 09 | 35.24364590 | -40 | 16 | 13.1003129 | . 00006280 | . 0020181 | 0.4593 | 53134.2 | 53134.2 | 1 |  |  |  |
| 1207-319 | 1207-319 | 1276 | 12 | 09 | 40.04464262 | -32 | 14 | 53.1072928 | . 00001191 | . 0003470 | -0.0451 | 52306.4 | 53771.4 | 3 |  | 0.19 |  |
| 1207+260 | 1207+260 | 3197 | 12 | 09 | 45.09511185 | +25 | 47 | 3.7304153 | . 00001583 | . 0004389 | -0.2190 | 50219.1 | 50219.2 | 1 |  |  |  |
| 1207-120 | 1207-120 | 3198 | 12 | 10 | 4.16444938 | -12 | 17 | 44.9400137 | . 00026434 | . 0030586 | 0.7685 | 54112.5 | 54112.5 | 1 |  |  |  |
| 1208+186 | 1208+186 | 3199 | 12 | 11 | 6.68829169 | +18 | 20 | 34.2829541 | . 00004037 | . 0006377 | 0.2365 | 50084.5 | 50156.3 | 2 |  |  |  |
| 1209-191 | 1209-191 | 3200 | 12 | 11 | 57.73867466 | -19 | 26 | 7.6583796 | . 00013852 | . 0025826 | 0.4682 | 50632.0 | 50687.9 | 2 |  |  |  |
| 1209-220 | 1209-220 | 3201 | 12 | 12 | 3.69760768 | -22 | 21 | 51.5128318 | . 00001739 | . 0005720 | -0.4926 | 50632.0 | 50687.9 | 2 |  |  |  |
| 1210+197 | 1210+197 | 1794 | 12 | 12 | 56.09591467 | +19 | 25 | 47.0161657 | . 00006435 | . 0003701 | 0.0863 | 50084.5 | 54643.7 | 3 |  |  |  |
| 1210-097 | 1210-097 | 3202 | 12 | 13 | 22.94288362 | -10 | 03 | 25.2672487 | . 00001965 | . 0007246 | -0.0559 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1210-246 | 1210-246 | 3203 | 12 | 13 | 29.68554082 | -24 | 53 | 13.1729697 | . 00021756 | . 0120276 | 0.9466 | 53561.0 | 55966.5 | 2 |  |  |  |
| 1210+134 | 1210+134 | 3204 | 12 | 13 | 32.17037119 | +13 | 07 | 20.9036889 | . 00024910 | . 0127811 | -0.6559 | 50084.5 | 50085.5 | 1 |  |  |  |
| 1211-167 | 1211-167 | 3205 | 12 | 13 | 43.76781363 | -16 | 58 | 56.7664537 | . 00010163 | . 0036623 | -0.5415 | 54087.5 | 56463.1 | 2 |  |  |  |
| 1211+334 | 1211+334 | 3206 | 12 | 14 | 4.11579353 | +33 | 09 | 45.5955606 | . 00002844 | . 0005441 | -0.0878 | 50219.1 | 50219.2 | 1 |  |  |  |
| 1212+087 | 1212+087 | 3207 | 12 | 14 | 59.91318668 | +08 | 29 | 22.5177821 | . 00009324 | . 0016954 | 0.3436 | 49913.9 | 54482.4 | 2 |  |  |  |
| 1212+171 | J1215+1654 | 1093 | 12 | 15 | 3.97913590 | +16 | 54 | 37.9568294 | . 00000431 | . 0000757 | 0.0127 | 50084.5 | 56638.7 | 69 | 0.21 | 0.14 | 2.2 |
| 1213-172 | P 1213-17 | 326 | 12 | 15 | 46.75175813 | -17 | 31 | 45.4030910 | . 00000400 | . 0000698 | -0.1532 | 49867.9 | 56716.5 | 64 | 0.52 | 0.84 | 2.2 |
| 1213+350 | 4C 35.28 | 851 | 12 | 15 | 55.60104764 | +34 | 48 | 15.2208298 | . 00000635 | . 0001104 | -0.1145 | 48975.8 | 55194.7 | 22 | 0.30 | 0.09 | 3.3 |
| 1213+097 | 1213+097 | 4083 | 12 | 16 | 6.21573285 | +09 | 29 | 9.5251851 | . 02147478 | . 2390691 | -0.7495 | 56302.6 | 56302.6 | 1 |  |  |  |
| 1213-102 | 1213-102 | 3208 | 12 | 16 | 24.40258276 | -10 | 33 | 15.6193849 | . 00001414 | . 0005120 | -0.0976 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1214+588 | 1214+588 | 3209 | 12 | 17 | 11.01861140 | +58 | 35 | 26.2479976 | . 00004297 | . 0005254 | -0.0672 | 49576.0 | 49576.9 | 1 |  |  |  |
| 1215+303 | B2 1215+30 | 328 | 12 | 17 | 52.08196500 | +30 | 07 | 0.6360230 | . 00000478 | . 0000870 | -0.0620 | 50219.1 | 56724.4 | 71 | 0.26 | 0.21 | 2.5 |
| 1215-002 | 1215-002 | 3210 | 12 | 17 | 58.72904866 | -00 | 29 | 46.2996472 | . 00001876 | . 0005652 | 0.0770 | 50576.1 | 55847.7 | 2 | 0.19 | 0.22 |  |
| 1215-457 | 1215-457 | 852 | 12 | 18 | 6.25249719 | -46 | 00 | 28.9970095 | . 00148992 | . 0161192 | -0.6993 | 49329.0 | 56498.0 | 2 |  |  |  |
| 1215+113 | 1215+113 | 1795 | 12 | 18 | 26.09229304 | +11 | 05 | 5.2619142 | . 00001042 | . 0003118 | 0.1185 | 53125.1 | 53125.2 | 1 |  |  |  |
| 1216-010 | 1216-010 | 3211 | 12 | 18 | 34.92982358 | -01 | 19 | 54.3412678 | . 00001407 | . 0004645 | 0.1587 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1216+179 | 1216+179 | 4084 | 12 | 18 | 46.60446776 | +17 | 38 | 17.2678451 | . 00002831 | . 0007071 | -0.0832 | 56393.2 | 56393.4 | 1 |  |  |  |
| 1216-217 | 1216-217 | 3212 | 12 | 18 | 58.76212756 | -21 | 59 | 46.1588815 | . 03217811 | . 1532105 | 0.9866 | 53572.9 | 53572.9 | 1 |  |  |  |
| 1216+487 | 1216+487 | 853 | 12 | 19 | 6.41474508 | +48 | 29 | 56.1647858 | . 00000576 | . 0000751 | 0.0011 | 48378.1 | 56136.3 | 40 | 0.33 |  | 3.1 |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | Observation EpochMJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{aligned} & \text { Str } \\ & \text { Index } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1216+061 | 1216+061 | 1095 | 12 | 19 | 23.21607674 | +05 | 49 | 29.6998787 | . 00002598 | . 0004480 | 0.1311 | 53067.9 | 54125.4 | 2 |  |  |  |
| 1217+662 | 1217+662 | 1796 | 12 | 19 | 35.79396941 | +66 | 00 | 31.8444564 | . 00036797 | . 0017143 | 0.4880 | 53559.8 | 53560.1 | 1 |  |  |  |
| 1217+713 | 1217+713 | 1096 | 12 | 20 | 3.62839424 | +71 | 05 | 31.1335605 | . 00004815 | . 0002988 | -0.0006 | 49827.1 | 53134.3 | 3 | 0.11 |  |  |
| $1217+295$ | NGC 4278 | 3213 | 12 | 20 | 6.82686889 | +29 | 16 | 50.6311711 | . 04951718 | . 3282160 | -0.9989 | 53134.1 | 53134.1 | 1 |  |  |  |
| 1217+348 | 1217+348 | 3214 | 12 | 20 | 8.29414533 | +34 | 31 | 21.7433298 | . 00002802 | . 0006661 | -0.6224 | 50219.1 | 50219.2 | 1 |  |  |  |
| 1217+023 | P 1217+02 | 332 | 12 | 20 | 11.88455927 | +02 | 03 | 42.2248751 | . 00002527 | . 0002873 | 0.0506 | 49913.9 | 53108.6 | 5 |  | 0.08 |  |
| 1218+339 | 1218+339 | 3215 | 12 | 20 | 33.86470511 | +33 | 43 | 11.9921562 | . 00888713 | . 1333890 | 0.4420 | 54278.1 | 54278.1 | 1 |  |  |  |
| 1218+384 | 1218+384 | 3216 | 12 | 20 | 59.22931989 | +38 | 08 | 55.7068549 | . 00002181 | . 0004228 | -0.5270 | 50242.1 | 50242.2 | 1 |  |  |  |
| 1218-024 | 1218-024 | 3217 | 12 | 21 | 23.94118515 | -02 | 41 | 49.6084541 | . 00001564 | . 0004951 | 0.1728 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1218+444 | 1218+444 | 3218 | 12 | 21 | 27.04466580 | +44 | 11 | 29.6717604 | . 00002057 | . 0004465 | 0.0582 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1219+285 | ON 231 | 335 | 12 | 21 | 31.69051617 | +28 | 13 | 58.5001846 | . 00000694 | . 0001151 | -0.3600 | 44446.8 | 55180.6 | 58 | 0.19 | 0.17 | 3.8 |
| 1219-164 | 1219-164 | 3219 | 12 | 22 | 16.09900191 | -16 | 45 | 54.8777427 | . 00025465 | . 0067094 | 0.7373 | 54112.5 | 54112.6 | 1 |  |  |  |
| 1219+044 | P 1219+04 | 336 | 12 | 22 | 22.54962090 | +04 | 13 | 15.7760992 | . 00000339 | . 0000531 | -0.1111 | 48378.1 | 56782.1 | 968 | 0.81 | 0.64 | 1.9 |
| 1221+464 | 1221+464 | 3220 | 12 | 23 | 39.33665988 | +46 | 11 | 18.6021044 | . 00002892 | . 0003191 | 0.0658 | 50305.9 | 56267.5 | 2 |  |  |  |
| 1221+809 | 1221+809 | 854 | 12 | 23 | 40.49374008 | +80 | 40 | 4.3404589 | . 00001261 | . 0000591 | 0.0329 | 48975.8 | 56762.7 | 47 | 0.29 |  | 2.6 |
| 1221+071 | 1221+071 | 3221 | 12 | 23 | 54.62414551 | +06 | 50 | 2.5764947 | . 00038013 | . 0063797 | 0.6759 | 49913.9 | 49914.0 | 1 |  |  |  |
| 1221+484 | 1221+484 | 4085 | 12 | 23 | 58.23064384 | +48 | 12 | 57.6642797 | . 00004085 | . 0005532 | 0.0295 | 56267.5 | 56267.7 | 1 |  |  |  |
| 1222+438 | 1222+438 | 3222 | 12 | 24 | 51.50534822 | +43 | 35 | 19.2868468 | . 00003259 | . 0007394 | -0.1545 | 50242.1 | 50242.2 | 1 |  |  |  |
| 1222+037 | P 1222+037 | 337 | 12 | 24 | 52.42194141 | +03 | 30 | 50.2926637 | . 00000859 | . 0001991 | -0.3975 | 44200.8 | 54184.5 | 104 | 0.29 | 0.31 | 4.5 |
| 1222+216 | P 1222+21 | 1230 | 12 | 24 | 54.45840040 | +21 | 22 | 46.3887712 | . 00000583 | . 0001403 | -0.1496 | 50084.6 | 53552.1 | 5 | 1.19 | 0.95 |  |
| 1222+131 | 3C 272.1 | 1797 | 12 | 25 | 3.74333480 | +12 | 53 | 13.1394089 | . 00000604 | . 0001845 | -0.0151 | 50988.9 | 55112.7 | 11 |  |  |  |
| 1223+395 | 1223+395 | 3223 | 12 | 25 | 50.56908695 | +39 | 14 | 22.6864994 | . 00002140 | . 0004962 | -0.2458 | 50242.1 | 50242.2 | 1 |  |  |  |
| 1223-188 | 1223-188 | 1798 | 12 | 26 | 35.27695746 | -19 | 04 | 38.5335048 | . 00001329 | . 0004901 | -0.3804 | 54559.2 | 54601.2 | 2 |  |  |  |
| 1224-132 | 1224-132 | 1799 | 12 | 26 | 54.41871501 | -13 | 28 | 38.9839119 | . 00003323 | . 0011080 | -0.3295 | 53552.0 | 53552.1 | 1 |  |  |  |
| 1224+439 | 1224+439 | 3224 | 12 | 26 | 57.90456357 | +43 | 40 | 58.4419983 | . 00035261 | . 0096046 | -0.7971 | 53561.0 | 53561.1 | 1 |  |  |  |
| 1224-443 | 1224-443 | 3225 | 12 | 27 | 26.68278866 | -44 | 36 | 38.3478514 | . 00008861 | . 0024140 | -0.6315 | 53125.2 | 53125.2 | 1 |  |  |  |
| 1225+498 | 1225+498 | 1800 | 12 | 27 | 55.72470400 | +49 | 32 | 56.0461255 | . 00002005 | . 0004829 | -0.0909 | 53572.0 | 53572.9 | 1 |  |  |  |
| 1225+368 | ON 363 | 3226 | 12 | 27 | 58.72550829 | +36 | 35 | 11.8268674 | . 00006803 | . 0010659 | -0.5954 | 50242.1 | 50242.2 | 1 |  |  |  |
| $1225+028$ | 1225+028 | 1801 | 12 | 28 | 19.25662392 | +02 | 32 | 29.3965769 | . 00002189 | . 0006837 | -0.1378 | 53560.0 | 53560.0 | 1 |  |  |  |
| 1225+317 | $1225+317 \mathrm{~A}$ | 3227 | 12 | 28 | 24.96599301 | +31 | 28 | 37.6293255 | . 00001475 | . 0004251 | -0.2313 | 50219.1 | 50219.3 | 1 |  |  |  |
| 1224-854 | 1224-854 | 3228 | 12 | 28 | 34.77463355 | -85 | 42 | 55.9518758 | . 20847146 | . 2495402 | -0.9900 | 54723.2 | 54723.2 | 1 |  |  |  |
| 1226-028 | 1226-028 | 855 | 12 | 28 | 36.91730872 | -03 | 04 | 39.3116801 | . 00001522 | . 0004559 | -0.3299 | 50653.9 | 54184.4 | 11 | 0.12 | 0.13 |  |
| 1226+373 | 1226+373 | 856 | 12 | 28 | 47.42367068 | +37 | 06 | 12.0958604 | . 00000377 | . 0000593 | -0.0017 | 48378.1 | 56758.6 | 123 |  |  |  |
| 1226+492 | 1226+492 | 3229 | 12 | 28 | 51.76787398 | +48 | 58 | 1.2920018 | . 00005578 | . 0012039 | 0.3882 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1226+638 | 1226+638 | 3230 | 12 | 29 | 6.02599205 | +63 | 35 | 0.9801917 | . 00037930 | . 0036462 | 0.0284 | 49827.1 | 49827.2 | 1 |  |  |  |
| 1226+023 | 3C 273 | 341 | 12 | 29 | 6.69974236 | +02 | 03 | 8.5982028 | . 00000384 | . 0000733 | -0.3027 | 43808.8 | 54976.8 | 536 |  |  |  |
| 1227+274 | 1227+274 | 3231 | 12 | 29 | 34.24794968 | +27 | 11 | 56.3779614 | . 00002191 | . 0004821 | -0.2297 | 53561.0 | 56036.4 | 2 |  |  |  |
| 1227+587 | 1227+587 | 3232 | 12 | 30 | 7.05725020 | +58 | 30 | 7.7641786 | . 00013021 | . 0021801 | 0.4908 | 49576.0 | 49576.9 | 1 |  |  |  |
| 1227+255 | $1227+255$ | 1097 | 12 | 30 | 14.08935144 | +25 | 18 | 7.1365771 | . 00001266 | . 0002687 | -0.4181 | 50219.1 | 56701.6 | 2 | 0.30 | 0.32 |  |
| 1228-310 | 1228-310 | 1802 | 12 | 30 | 44.93264337 | -31 | 21 | 23.3113688 | . 00008398 | . 0057745 | -0.3329 | 52306.4 | 53134.2 | 3 |  |  |  |
| 1228+126 | 3C 274 | 342 | 12 | 30 | 49.42338206 | +12 | 23 | 28.0437044 | . 00000341 | . 0000524 | -0.0961 | 44200.8 | 56772.6 | 1271 | 0.25 |  | 3.6 |
| 1228-113 | 1228-113 | 3233 | 12 | 30 | 55.55593834 | -11 | 39 | 9.7956767 | . 00004452 | . 0014154 | -0.5337 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1228-352 | 1228-352 | 3234 | 12 | 31 | 16.54218207 | -35 | 33 | 18.9231495 | . 00029870 | . 0133694 | -0.1629 | 53503.2 | 56161.9 | 2 |  |  |  |
| 1228+045 | 1228+045 | 3235 | 12 | 31 | 27.58580192 | +04 | 18 | 1.8897695 | . 00010151 | . 0014825 | 0.1397 | 49913.9 | 49914.1 | 1 |  |  |  |
| 1229-123 | 1229-123 | 3236 | 12 | 31 | 50.26248262 | -12 | 36 | 37.0773287 | . 02948465 | . 0892676 | 0.9682 | 53560.0 | 53560.0 | 1 |  |  |  |
| 1229-021 | 1229-021 | 3237 | 12 | 32 | 0.01601299 | -02 | 24 | 4.7945054 | . 00001193 | . 0003663 | 0.0612 | 50576.1 | 50576.2 | 1 |  |  |  |
| 1229-099 | 1229-099 | 1803 | 12 | 32 | 15.85986651 | -10 | 15 | 25.1684456 | . 00009349 | . 0024343 | -0.1478 | 53561.0 | 53561.1 | 1 |  |  |  |
| 1230+486 | 1230+486 | 3238 | 12 | 32 | 34.78761968 | +48 | 21 | 32.9403367 | . 00004487 | . 0007476 | 0.1935 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1231+811 | 1231+811 | 3239 | 12 | 33 | 12.89308144 | +80 | 54 | 33.9712506 | . 00010612 | . 0003826 | -0.3494 | 54112.4 | 54112.6 | 1 |  |  |  |
| 1230-101 | 1230-101 | 3240 | 12 | 33 | 13.16487440 | -10 | 25 | 18.4383897 | . 00002537 | . 0008327 | 0.4370 | 50576.1 | 50576.2 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-DecCorr. | $\begin{gathered} \hline \text { Observation Epoch } \\ \text { MJD } \end{gathered}$ |  | No. Obs. | $\begin{gathered} \hline \hline \begin{array}{c} \text { Source Flux } \\ \text { (Jy) } \end{array} \\ \hline \end{gathered}$ |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1231+481 | 1231+481 | 3241 | 12 | 34 | 13.33078220 | +47 | 53 | 51.2356043 | . 00004771 | . 0008321 | 0.0978 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1232-338 | 1232-338 | 3242 | 12 | 34 | 46.12015492 | -34 | 08 | 59.0538299 | . 00002506 | . 0008843 | -0.0242 | 55111.8 | 55112.7 | 1 |  |  |  |
| 1232+366 | 1232+366 | 3243 | 12 | 35 | 5.80645223 | +36 | 21 | 19.3211433 | . 00003047 | . 0004911 | -0.3647 | 50242.1 | 54482.5 | 2 |  |  |  |
| 1234-504 | 1234-504 | 857 | 12 | 37 | 15.23914073 | -50 | 46 | 23.1770833 | . 00256622 | . 0086133 | -0.8042 | 50048.9 | 52941.1 | 2 |  |  |  |
| 1235+196 | 1235+196 | 3244 | 12 | 37 | 36.42036702 | +19 | 24 | 40.6198876 | . 00001238 | . 0004121 | -0.1146 | 50084.6 | 50156.3 | 2 |  |  |  |
| 1235+208 | 1235+208 | 1804 | 12 | 37 | 56.59089227 | +20 | 34 | 18.8500687 | . 00005833 | . 0009274 | 0.5680 | 53560.0 | 53560.1 | 1 |  |  |  |
| 1235+076 | 1235+076 | 3245 | 12 | 38 | 2.44564471 | +07 | 23 | 21.8176202 | . 00002067 | . 0005740 | -0.0273 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1236-381 | 1236-381 | 3246 | 12 | 38 | 52.73158755 | -38 | 25 | 56.9984262 | . 00025450 | . 0126086 | 0.1662 | 52306.5 | 53125.2 | 3 |  |  |  |
| 1236+077 | P 1236+077 | 344 | 12 | 39 | 24.58832736 | +07 | 30 | 17.1890668 | . 00000411 | . 0000707 | 0.0106 | 48378.3 | 56749.5 | 45 | 0.39 | 0.70 | 2.8 |
| 1236+049 | 1236+049 | 3247 | 12 | 39 | 32.75567730 | +04 | 43 | 5.2343170 | . 00001913 | . 0006244 | -0.2229 | 49914.0 | 49914.2 | , |  |  |  |
| 1237-101 | P 1237-10 | 345 | 12 | 39 | 43.06147618 | -10 | 23 | 28.6925179 | . 00000427 | . 0000808 | -0.0672 | 49960.0 | 55229.7 | 40 | 0.28 | 0.25 | 4.3 |
| 1236-684 | P 1236-684 | 858 | 12 | 39 | 46.65141584 | -68 | 45 | 30.8926013 | . 00004921 | . 0003378 | -0.3543 | 50181.7 | 54706.7 | 13 |  |  |  |
| 1237-113 | M 104 | 346 | 12 | 39 | 59.43185813 | -11 | 37 | 22.9961997 | . 00006324 | . 0028803 | -0.8319 | 50002.7 | 53552.1 | 8 |  |  |  |
| 1238+702 | 1238+702 | 3248 | 12 | 40 | 34.70031029 | +69 | 58 | 30.6099933 | . 00007482 | . 0005971 | -0.2421 | 49827.2 | 54087.6 | 2 |  |  |  |
| 1238-110 | 1238-110 | 3249 | 12 | 40 | 37.32848504 | -11 | 21 | 25.7950278 | . 05409824 | . 0011455 | 0.9999 | 53572.9 | 53572.9 | 1 |  |  |  |
| 1238+243 | 1238+243 | 3250 | 12 | 40 | 47.98501588 | +24 | 05 | 14.1513087 | . 00016181 | . 0027479 | -0.3477 | 50219.1 | 50219.3 | 1 |  |  |  |
| 1239+552 | 1239+552 | 3251 | 12 | 41 | 27.70387075 | +54 | 58 | 19.0575097 | . 00086116 | . 0107728 | 0.8623 | 54439.8 | 54440.7 | 1 |  |  |  |
| 1239+606 | 1239+606 | 859 | 12 | 41 | 29.59054595 | +60 | 20 | 41.3225198 | . 00005253 | . 0004124 | -0.4255 | 49576.0 | 54112.6 | 5 |  |  |  |
| 1239+376 | 1239+376A | 1232 | 12 | 42 | 9.81238176 | +37 | 20 | 5.6927747 | . 00001391 | . 0002372 | -0.1736 | 50242.1 | 52990.9 | 9 |  |  |  |
| 1240+381 | 1240+381 | 861 | 12 | 42 | 51.36906479 | +37 | 51 | 0.0253798 | . 00000487 | . 0000741 | -0.0914 | 49750.4 | 56650.2 | 36 | 0.16 | 0.18 | 2.8 |
| 1240-294 | 1240-294 | 1805 | 12 | 43 | 10.66193027 | -29 | 43 | 22.5044708 | . 00001767 | . 0005559 | -0.1404 | 53125.2 | 53125.2 | 1 |  |  |  |
| 1241+735 | 1241+735 | 3252 | 12 | 43 | 11.21713610 | +73 | 15 | 59.2500341 | . 00010501 | . 0004781 | -0.4292 | 53560.9 | 56204.5 | 2 |  |  |  |
| 1241+749 | 1241+749 | 3253 | 12 | 43 | 45.03359130 | +74 | 42 | 37.1142959 | . 00045130 | . 0023611 | 0.2391 | 49827.1 | 49827.2 | 1 |  |  |  |
| 1241+166 | 1241+166 | 1806 | 12 | 43 | 57.64917551 | +16 | 22 | 53.3944456 | . 00004331 | . 0021472 | 0.1224 | 54313.9 | 54314.1 | 1 |  |  |  |
| 1241+176 | 1241+176 | 1277 | 12 | 44 | 10.82492131 | +17 | 21 | 4.5063341 | . 00025898 | . 0053954 | -0.9429 | 53719.5 | 55413.1 | 3 |  |  |  |
| 1241-262 | 1241-262 | 1807 | 12 | 44 | 14.64192402 | -26 | 33 | 24.9995094 | . 00003399 | . 0012087 | 0.0660 | 53560.0 | 53560.0 | 1 |  |  |  |
| 1242+410 | 1242+410 | 3254 | 12 | 44 | 49.18716260 | +40 | 48 | 6.1528269 | . 00027530 | . 0054302 | 0.9112 | 50242.1 | 50242.3 | 1 |  |  |  |
| 1243-160 | 1243-160 | 1808 | 12 | 45 | 53.74227810 | -16 | 16 | 45.7050257 | . 00000573 | . 0001109 | 0.0454 | 50632.0 | 56744.6 | 58 |  |  |  |
| 1243-412 | 1243-412 | 3255 | 12 | 45 | 57.70320305 | -41 | 28 | 44.0976830 | . 29529761 | . 6366224 | 1.0000 | 54292.0 | 54292.0 | 1 |  |  |  |
| 1243-072 | 1243-072 | 690 | 12 | 46 | 4.23211008 | -07 | 30 | 46.5747361 | . 00000387 | . 0000678 | -0.1469 | 47253.5 | 56782.1 | 138 | 0.62 | 0.59 | 2.1 |
| 1244-255 | P 1244-255 | 350 | 12 | 46 | 46.80203641 | -25 | 47 | 49.2889729 | . 00000388 | . 0000622 | -0.1856 | 44200.7 | 56772.4 | 269 | 0.56 | 0.84 | 0.2 |
| 1245+710 | 1245+710 | 3256 | 12 | 47 | 7.55341187 | +70 | 46 | 45.1230758 | . 00066376 | . 0027638 | 0.2152 | 54112.4 | 54112.6 | 1 |  |  |  |
| 1245+676 | 1245+676 | 3257 | 12 | 47 | 33.32957568 | +67 | 23 | 16.4503806 | . 00021315 | . 0014830 | -0.1902 | 49827.2 | 54087.6 | 2 |  |  |  |
| 1245-235 | 1245-235 | 3258 | 12 | 47 | 59.35117733 | -23 | 48 | 59.2808391 | . 00015896 | . 0037491 | 0.4955 | 50632.0 | 50687.9 | 2 |  |  |  |
| 1246+586 | 1246+586 | 3259 | 12 | 48 | 18.78463158 | +58 | 20 | 28.7172620 | . 00006487 | . 0010498 | 0.3188 | 49576.0 | 49576.9 | 1 |  |  |  |
| 1245-062 | 1245-062 | 1308 | 12 | 48 | 22.97565533 | -06 | 32 | 9.8180411 | . 00000663 | . 0002635 | -0.0028 | 50576.1 | 56782.1 | 19 | 0.21 | 0.16 |  |
| 1245-197 | P 1245-197 | 3260 | 12 | 48 | 23.89814841 | -19 | 59 | 18.5894887 | . 00005874 | . 0013581 | 0.6143 | 50632.0 | 50688.0 | 2 |  |  |  |
| 1245-457 | 1245-454 | 3261 | 12 | 48 | 28.49512507 | -45 | 59 | 47.1800883 | . 00001501 | . 0002681 | 0.3508 | 53138.3 | 54670.6 | 12 |  |  |  |
| 1246+489 | 1246+489 | 3262 | 12 | 48 | 50.94798650 | +48 | 39 | 53.1526024 | . 00062372 | . 0128645 | 0.6982 | 50305.9 | 54314.1 | 2 |  |  |  |
| 1246+285 | 1246+285 | 1809 | 12 | 49 | 18.40927510 | +28 | 17 | 43.6147320 | . 00003348 | . 0006628 | -0.3694 | 53125.1 | 53125.3 | 1 |  |  |  |
| 1247+022 | 1247+022 | 1810 | 12 | 50 | 6.84191373 | +01 | 58 | 4.1445510 | . 00028176 | . 0052061 | 0.8052 | 53134.1 | 53134.2 | 1 |  |  |  |
| 1247+166 | 1247+166 | 1811 | 12 | 50 | 9.22709044 | +16 | 21 | 21.4619824 | . 00013609 | . 0019025 | 0.0051 | 53560.0 | 53560.1 | 1 |  |  |  |
| 1247-442 | 1247-442 | 3263 | 12 | 50 | 22.80484481 | -44 | 32 | 3.4816919 | . 00003704 | . 0011191 | -0.0970 | 55168.6 | 55168.6 | 1 |  |  |  |
| 1247+139 | 1247+139 | 3264 | 12 | 50 | 28.21804811 | +13 | 43 | 40.3846666 | . 00001042 | . 0003344 | -0.0381 | 53572.0 | 55371.2 | 2 |  |  |  |
| 1247+025 | 1247+025 | 1812 | 12 | 50 | 32.58077876 | +02 | 16 | 32.1728017 | . 00001178 | . 0004024 | -0.2052 | 53561.0 | 53561.1 | 1 |  |  |  |
| 1248-170 | 1248-170 | 1813 | 12 | 51 | 14.47512821 | -17 | 17 | 13.1599057 | . 00002122 | . 0007401 | -0.5209 | 53561.0 | 53561.1 | 1 |  |  |  |
| 1248-350 | 1248-350 | 3265 | 12 | 51 | 39.22514929 | -35 | 18 | 39.5695091 | . 00025091 | . 0160001 | 0.3452 | 53134.2 | 53134.2 | 1 |  |  |  |
| 1250-330 | 1250-330 | 1814 | 12 | 52 | 58.39738464 | -33 | 19 | 59.5614878 | . 00002160 | . 0006896 | -0.3282 | 53125.2 | 53125.2 | 1 |  |  |  |
| 1250+293 | 1250+293 | 4086 | 12 | 53 | 6.40901610 | +29 | 05 | 13.8842964 | . 00016023 | . 0044127 | -0.0991 | 56393.2 | 56393.4 | 1 |  |  |  |
| 1250+532 | 1250+532 | 3266 | 12 | 53 | 11.92032334 | +53 | 01 | 11.7375156 | . 00024307 | . 0017151 | 0.6808 | 49576.9 | 49576.9 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | $\begin{gathered} \hline \hline \begin{array}{l} \text { Source Flux } \\ \text { (Jy) } \end{array} \\ \hline \end{gathered}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1251-407 | 1251-407 | 3267 | 12 | 53 | 59.53349207 | -40 | 59 | 30.7051435 | . 00034628 | . 0241951 | 0.1695 | 52306.5 | 53134.2 | 3 |  |  |  |
| 1252+458 | J1254+4536 | 1098 | 12 | 54 | 28.82867120 | +45 | 36 | 4.3260758 | . 00003665 | . 0008231 | 0.2455 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1251-130 | 1251-130 | 1815 | 12 | 54 | 31.46819732 | -13 | 17 | 16.2146280 | . 00005061 | . 0020980 | 0.4469 | 53560.0 | 53560.1 | 1 |  |  |  |
| 1251-197 | 1251-197 | 3268 | 12 | 54 | 37.25558526 | -20 | 00 | 56.4070172 | . 00001735 | . 0005054 | -0.3300 | 54489.4 | 56546.9 | 3 |  |  |  |
| 1252+119 | P 1252+11 | 351 | 12 | 54 | 38.25559439 | +11 | 41 | 5.8950749 | . 00000441 | . 0000795 | -0.1637 | 48353.1 | 56776.7 | 81 | 0.42 | 0.39 | 2.9 |
| 1252+028 | 1252+028 | 1816 | 12 | 54 | 45.46653260 | +02 | 33 | 28.9621949 | . 00006307 | . 0015881 | 0.2937 | 53572.0 | 53573.0 | 1 |  |  |  |
| 1252-441 | 1252-441 | 3269 | 12 | 54 | 57.51336936 | -44 | 24 | 56.6006637 | . 00043782 | . 0318614 | -0.4134 | 53125.2 | 53125.2 | 1 |  |  |  |
| 1252+092 | 1252+092 | 3270 | 12 | 54 | 58.95766826 | +08 | 59 | 47.5504422 | . 00006035 | . 0020460 | -0.7155 | 54087.5 | 54087.6 | 1 |  |  |  |
| 1251-713 | P 1251-71 | 862 | 12 | 54 | 59.92147961 | -71 | 38 | 18.4365316 | . 00001987 | . 0001116 | 0.2455 | 47625.8 | 56741.0 | 34 |  |  |  |
| 1253+185 | J1255+1817 | 1099 | 12 | 55 | 31.75994551 | +18 | 17 | 50.9111902 | . 00001989 | . 0005658 | 0.4177 | 50084.6 | 50156.3 | 2 |  |  |  |
| 1253-055 | 3C 279 | 352 | 12 | 56 | 11.16655988 | -05 | 47 | 21.5247870 | . 00000432 | . 0000939 | -0.1706 | 43808.9 | 56681.6 | 194 | 2.72 | 2.84 | 4.1 |
| 1254+571 | 1254+571 | 863 | 12 | 56 | 14.23396786 | +56 | 52 | 25.2379384 | . 00002474 | . 0003884 | -0.2944 | 51245.7 | 53515.2 | 9 | 0.13 |  |  |
| 1253-216 | 1253-216 | 1817 | 12 | 56 | 25.51111867 | -21 | 55 | 21.1471509 | . 00026216 | . 0068370 | -0.5901 | 53561.0 | 53561.0 | 1 |  |  |  |
| 1256+802 | 1256+802 | 3271 | 12 | 57 | 31.72641656 | +79 | 58 | 2.5069546 | . 00076840 | . 0014035 | -0.1385 | 50688.2 | 55168.4 | 2 |  |  |  |
| 1255+327 | 1255+327 | 3272 | 12 | 57 | 57.23185475 | +32 | 29 | 29.3261023 | . 00001277 | . 0003600 | -0.4543 | 50219.1 | 50219.3 | 1 |  |  |  |
| 1255-316 | 1255-316 | 864 | 12 | 57 | 59.06082100 | -31 | 55 | 16.8517908 | . 00000382 | . 0000608 | 0.0908 | 48748.7 | 56776.6 | 692 |  | 0.23 | 3.2 |
| 1255-177 | 1255-177 | 1818 | 12 | 58 | 38.30170720 | -18 | 00 | 3.1245167 | . 00000499 | . 0000838 | 0.0172 | 50632.0 | 56770.7 | 81 |  |  |  |
| 1256-220 | 1256-220 | 1278 | 12 | 58 | 54.47877948 | -22 | 19 | 31.1255170 | . 00000714 | . 0002219 | -0.2672 | 50632.0 | 53820.2 | 5 | 0.42 | 0.30 |  |
| 1256-229 | 1256-229 | 3273 | 12 | 59 | 8.46203425 | -23 | 10 | 38.6547550 | . 00001143 | . 0003828 | -0.2541 | 50632.0 | 50688.0 | 2 |  |  |  |
| 1256-243 | 1256-243 | 3274 | 12 | 59 | 12.62560009 | -24 | 36 | 5.5040284 | . 00003780 | . 0012106 | 0.2070 | 50632.0 | 50688.0 | 2 |  |  |  |
| 1257+519 | 1257+519 | 3275 | 12 | 59 | 31.17401805 | +51 | 40 | 56.2607766 | . 00002774 | . 0003886 | -0.2294 | 49576.0 | 54112.6 | 2 |  |  |  |
| 1257+123 | 1257+123 | 3276 | 13 | 00 | 1.93886449 | +12 | 06 | 22.1186841 | . 00005753 | . 0012258 | -0.3028 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1257+145 | P 1257+145 | 356 | 13 | 00 | 20.91881525 | +14 | 17 | 18.5315992 | . 00000641 | . 0001201 | 0.1285 | 48811.9 | 55293.7 | 31 |  | 0.21 | 2.1 |
| 1258+287 | 1258+287 | 3277 | 13 | 00 | 28.52992803 | +28 | 30 | 10.1886774 | . 00003123 | . 0005174 | 0.2425 | 53125.1 | 53125.2 | 1 |  |  |  |
| 1258+087 | 1258+087 | 3278 | 13 | 00 | 36.43874869 | +08 | 28 | 2.8636683 | . 00002948 | . 0009286 | -0.3667 | 53503.2 | 53503.3 | 1 |  |  |  |
| 1258+145 | 1258+145 | 3279 | 13 | 00 | 41.03699297 | +14 | 17 | 29.4145750 | . 00002454 | . 0006226 | -0.0385 | 53560.0 | 56106.1 | 2 |  |  |  |
| 1258+507 | 1258+507 | 3280 | 13 | 00 | 41.24704992 | +50 | 29 | 36.7653636 | . 00003056 | . 0006362 | -0.2061 | 49576.0 | 50306.0 | 2 |  |  |  |
| 1257-326 | 1257-326 | 1819 | 13 | 00 | 42.42599749 | -32 | 53 | 12.1135557 | . 00003908 | . 0014819 | -0.1552 | 52306.5 | 53411.6 | 3 |  |  |  |
| 1259+468 | 1259+468 | 1820 | 13 | 01 | 32.60629373 | +46 | 34 | 2.9397831 | . 00003684 | . 0006800 | 0.1642 | 53561.0 | 53561.1 | 1 |  |  |  |
| 1300+485 | 1300+485 | 3281 | 13 | 02 | 17.19607971 | +48 | 19 | 17.5744409 | . 00001616 | . 0002165 | -0.0323 | 50305.9 | 56749.5 | 2 | 0.14 | 0.08 |  |
| 1300+693 | 1300+693 | 3282 | 13 | 02 | 37.92470618 | +69 | 02 | 51.6011447 | . 00034793 | . 0036300 | 0.4854 | 49827.2 | 49827.2 | 1 |  |  |  |
| 1300+580 | 1300+580 | 865 | 13 | 02 | 52.46527374 | +57 | 48 | 37.6093823 | . 00000341 | . 0000505 | -0.0061 | 49422.2 | 56782.1 | 968 | 0.49 |  | 1.3 |
| 1300-105 | 1300-105 | 3283 | 13 | 03 | 13.86792909 | -10 | 51 | 17.1293994 | . 00001050 | . 0003164 | 0.1173 | 50575.3 | 56463.2 | 4 |  |  |  |
| 1302-034 | 1302-034 | 3284 | 13 | 04 | 43.64221139 | -03 | 46 | 2.5517223 | . 00001952 | . 0005948 | -0.0449 | 50575.3 | 50575.3 | 1 |  |  |  |
| 1302+641 | 1302+641 | 3285 | 13 | 04 | 47.37007508 | +63 | 53 | 47.4316993 | . 00234213 | . 0882086 | 0.4794 | 53125.1 | 53134.3 | 2 |  |  |  |
| 1302-208 | 1302-208 | 1821 | 13 | 04 | 59.06930254 | -21 | 06 | 42.4589347 | . 00005651 | . 0016430 | -0.0168 | 54965.1 | 54965.2 | 1 |  |  |  |
| 1304+791 | 1304+791 | 3286 | 13 | 05 | 0.01395863 | +78 | 54 | 35.7964979 | . 00020380 | . 0002746 | 0.1583 | 49827.2 | 50688.3 | 2 |  |  |  |
| 1302-285 | 1302-285 | 3287 | 13 | 05 | 8.46859740 | -28 | 50 | 42.0272544 | . 00005882 | . 0019485 | 0.3657 | 50687.9 | 50688.0 | 1 |  |  |  |
| 1302-312 | 1302-312 | 3288 | 13 | 05 | 31.07332345 | -31 | 32 | 52.2095871 | . 00136739 | . 0406592 | 0.6709 | 52306.5 | 52306.5 | 1 |  |  |  |
| 1302-102 | P 1302-102 | 359 | 13 | 05 | 33.01502367 | -10 | 33 | 19.4281979 | . 00000450 | . 0001024 | -0.3157 | 47379.8 | 56782.1 | 146 | 0.34 | 0.26 | 3.3 |
| 1303+557 | 1303+557 | 3289 | 13 | 06 | 3.35107333 | +55 | 29 | 43.8606030 | . 00027316 | . 0021111 | 0.3699 | 49576.0 | 49576.9 | , |  |  |  |
| 1303-170 | 1303-170 | 3290 | 13 | 06 | 32.66050970 | -17 | 18 | 58.3896025 | . 00002002 | . 0007749 | -0.0245 | 50632.0 | 50632.2 | 1 |  |  |  |
| 1304-318 | 1304-318 | 3291 | 13 | 07 | 15.17883546 | -32 | 07 | 58.6412364 | . 00002786 | . 0009149 | 0.4219 | 55482.8 | 55482.8 | 1 |  |  |  |
| 1305+502 | 1305+502 | 3292 | 13 | 08 | 7.92424637 | +49 | 57 | 53.4697656 | . 00005108 | . 0007140 | 0.4735 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1305+042 | 1305+042 | 1822 | 13 | 08 | 15.55306598 | +04 | 01 | 9.3516424 | . 00002514 | . 0008876 | -0.6983 | 53125.2 | 53125.3 | 1 |  |  |  |
| 1306+360 | 1306+360 | 1823 | 13 | 08 | 23.70913267 | +35 | 46 | 37.1640807 | . 00000425 | . 0000704 | -0.0422 | 52409.1 | 56498.7 | 50 | 0.39 | 0.35 | 1.6 |
| 1305-247 | 1305-247 | 3293 | 13 | 08 | 32.72735419 | -24 | 58 | 32.4082084 | . 00007382 | . 0026831 | -0.8199 | 54112.5 | 54112.6 | 1 |  |  |  |
| 1303-827 | 1303-827 | 3294 | 13 | 08 | 38.19583283 | -82 | 59 | 34.7950028 | . 00280616 | . 0060145 | 0.2706 | 52886.9 | 53138.6 | 3 |  |  |  |
| 1307+562 | 1307+562 | 3295 | 13 | 09 | 9.75440437 | +55 | 57 | 38.1963050 | . 00004544 | . 0009949 | -0.1294 | 49576.0 | 49576.9 | 1 |  |  |  |
| 1307+121 | 1307+121 | 866 | 13 | 09 | 33.93244463 | +11 | 54 | 24.5531035 | . 00000512 | . 0000925 | 0.1258 | 49099.2 | 53690.0 | 87 | 0.18 | 0.12 | 3.6 |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | $\begin{gathered} \hline \begin{array}{c} \text { Observation Epoch } \\ \text { MJD } \end{array} \\ \hline \end{gathered}$ |  | No. Obs. | $\begin{aligned} & \hline \hline \begin{array}{l} \text { Source Flux } \\ (\mathrm{Jvy}) \end{array} \end{aligned}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1306-395 | 1306-395 | 1824 | 13 | 09 | 48.48837870 | -39 | 48 | 33.0872887 | . 00002945 | . 0011382 | -0.1564 | 53523.2 | 55916.6 | 2 |  | 0.20 |  |
| 1307+010 | 1307+010 | 1100 | 13 | 10 | 28.50431051 | +00 | 44 | 8.8841961 | . 00004482 | . 0008695 | -0.2359 | 49914.1 | 55776.1 | 2 | 0.14 |  |  |
| 1308+326 | B2 1308+32 | 361 | 13 | 10 | 28.66385083 | +32 | 20 | 43.7829086 | . 00000337 | . 0000508 | -0.0987 | 44200.9 | 56724.4 | 1528 | 1.07 | 1.16 | 3.3 |
| 1308+471 | 1308+471 | 3296 | 13 | 10 | 53.59159134 | +46 | 53 | 52.2182140 | . 00009799 | . 0017029 | 0.3844 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1308+328 | 1308+328 | 867 | 13 | 10 | 59.40272753 | +32 | 33 | 34.4495822 | . 000000356 | . 0000538 | -0.0103 | 50219.1 | 56772.6 | 147 | 0.43 | 0.31 | 2.7 |
| 1308+554 | 1308+554 | 1279 | 13 | 11 | 3.21079864 | +55 | 13 | 54.3226707 | . 00000658 | . 0000857 | -0.0595 | 49576.0 | 56547.6 | 33 | 0.17 |  | 2.1 |
| 1308+145 | 1308+145 | 3297 | 13 | 11 | 7.82433210 | +14 | 17 | 46.6481382 | . 00006294 | . 0013455 | -0.3804 | 50084.6 | 50156.3 | 2 |  |  |  |
| 1308+172 | 1308+172 | 3298 | 13 | 11 | 23.82011123 | +16 | 58 | 44.1896085 | . 00012171 | . 0039929 | -0.8564 | 50084.6 | 50156.3 | 2 |  |  |  |
| 1309+257 | 1309+257 | 1825 | 13 | 12 | 14.28882676 | +25 | 31 | 13.1764529 | . 00012138 | . 0022624 | -0.3751 | 53134.1 | 53134.3 | 1 |  |  |  |
| 1310+487 | 1310+487 | 3299 | 13 | 12 | 43.35369476 | +48 | 28 | 30.9408409 | . 00005415 | . 0007292 | -0.0006 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1310-041 | 1310-041 | 3300 | 13 | 12 | 50.90122154 | -04 | 24 | 49.8921328 | . 00000669 | . 0003241 | -0.1357 | 50575.3 | 56782.1 | 18 | 0.22 | 0.26 |  |
| 1310-271 | 1310-271 | 3301 | 13 | 13 | 1.42140253 | -27 | 22 | 58.8474174 | . 00024233 | . 0082853 | -0.1572 | 50632.0 | 50688.0 | 2 |  |  |  |
| 1311+678 | 1311+678 | 3302 | 13 | 13 | 27.98585632 | +67 | 35 | 50.3812077 | . 00084101 | . 0044707 | -0.3884 | 52409.1 | 52409.3 | 1 |  |  |  |
| 1311+552 | 1311+552 | 3303 | 13 | 13 | 37.85312016 | +54 | 58 | 23.8993262 | . 00010873 | . 0010137 | -0.0931 | 49576.0 | 54087.6 | 2 |  |  |  |
| 1312+533 | 1312+533 | 3304 | 13 | 14 | 43.83055573 | +53 | 06 | 27.7306587 | . 00007023 | . 0012979 | 0.1083 | 49576.0 | 49576.9 | 1 |  |  |  |
| 1312+126 | 1312+126 | 1826 | 13 | 15 | 1.85285753 | +12 | 20 | 52.6384862 | . 00006974 | . 0021493 | -0.8212 | 53561.0 | 53561.1 | 1 |  |  |  |
| 1312+289 | 1312+289 | 1827 | 13 | 15 | 13.49151600 | +28 | 40 | 53.6692234 | . 00002376 | . 0005159 | 0.1115 | 53125.1 | 53125.3 | 1 |  |  |  |
| 1313-333 | OP-322 | 363 | 13 | 16 | 7.98594635 | -33 | 38 | 59.1727761 | . 00000380 | . 0000644 | -0.2230 | 43808.8 | 56671.2 | 348 |  | 0.86 | 2.7 |
| 1313+200 | 1313+200 | 3305 | 13 | 16 | 24.56803860 | +19 | 47 | 4.4605644 | . 00020820 | . 0023210 | -0.0092 | 50084.6 | 54482.4 | 3 |  |  |  |
| 1314-202 | 1314-202 | 1828 | 13 | 17 | 26.14897193 | -20 | 31 | 38.1320467 | . 00013924 | . 0062312 | -0.8126 | 53134.2 | 53134.2 | 1 |  |  |  |
| 1315+346 | OP 326 | 364 | 13 | 17 | 36.49418185 | +34 | 25 | 15.9326228 | . 00000532 | . 0000930 | -0.0800 | 47946.2 | 56691.2 | 69 | 0.26 | 0.15 | 3.5 |
| 1314-134 | 1314-134 | 3306 | 13 | 17 | 36.53769476 | -13 | 45 | 32.6518576 | . 00002922 | . 0008854 | 0.4821 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1315+415 | 1315+415 | 1829 | 13 | 17 | 39.19382394 | +41 | 15 | 45.6185084 | . 00021703 | . 0034510 | 0.5316 | 53560.0 | 53560.1 | 1 |  |  |  |
| 1315+047 | 1315+047 | 4087 | 13 | 18 | 29.64220640 | +04 | 30 | 10.0112198 | . 00001798 | . 0006780 | -0.2585 | 56161.9 | 56162.0 | 1 |  |  |  |
| 1315-058 | 1315-058 | 3307 | 13 | 18 | 33.70942601 | -06 | 07 | 23.8202911 | . 00001261 | . 0004719 | -0.2737 | 54112.5 | 54112.6 | 1 |  |  |  |
| 1316-120 | 1316-120 | 3308 | 13 | 19 | 12.07204173 | -12 | 17 | 32.1287098 | . 00002003 | . 0005882 | 0.3139 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1319-126 | NGC 5077 | 3309 | 13 | 19 | 31.66962157 | -12 | 39 | 25.0749954 | . 00001896 | . 0006894 | -0.4574 | 53503.2 | 53503.3 | 1 |  |  |  |
| 1317-005 | 1317-005 | 1830 | 13 | 19 | 38.76620837 | -00 | 49 | 39.9380397 | . 00001866 | . 0007382 | 0.2907 | 53552.0 | 53552.1 | 1 |  |  |  |
| 1317+520 | 1317+520 | 1831 | 13 | 19 | 46.19807172 | +51 | 48 | 5.7779001 | . 00007154 | . 0005673 | -0.1176 | 49576.0 | 54664.7 | 2 |  |  |  |
| 1317+019 | 1317+019 | 3310 | 13 | 20 | 26.79487177 | +01 | 40 | 36.8116151 | . 00001913 | . 0004006 | 0.2509 | 49914.0 | 54643.0 | 2 |  |  |  |
| 1318+508 | 1318+508 | 3311 | 13 | 20 | 42.20805415 | +50 | 36 | 7.7990523 | . 00057358 | . 0023164 | -0.5056 | 49576.1 | 54112.6 | 3 |  |  |  |
| 1318+225 | 1318+225 | 1101 | 13 | 21 | 11.20255636 | +22 | 16 | 12.1082287 | . 00000832 | . 0001818 | 0.0246 | 50084.6 | 53362.1 | 28 |  | 0.07 |  |
| 1318-434 | 1318-434 | 1832 | 13 | 21 | 12.84449495 | -43 | 42 | 16.8623307 | . 00030321 | . 0185533 | 0.2355 | 55042.0 | 55042.0 | 1 |  |  |  |
| 1318-263 | 1318-263 | 3312 | 13 | 21 | 14.03691479 | -26 | 36 | 10.4670698 | . 00003572 | . 0016542 | -0.6655 | 50632.0 | 54664.7 | 3 |  |  |  |
| 1322+835 | 1322+835 | 3313 | 13 | 21 | 45.60896627 | +83 | 16 | 13.4236209 | . 00008029 | . 0001996 | -0.0983 | 50688.2 | 56498.4 | 4 |  |  |  |
| 1319+220 | 1319+220 | 3314 | 13 | 22 | 11.40358521 | +21 | 48 | 12.2790182 | . 00002092 | . 0004532 | -0.2886 | 54087.5 | 54087.7 | 1 |  |  |  |
| 1319+270 | 1319+270 | 3315 | 13 | 22 | 14.97080024 | +26 | 45 | 46.3193132 | . 00480605 | . 0614543 | -0.9156 | 50219.1 | 50219.3 | 1 |  |  |  |
| 1319-093 | 1319-093 | 3316 | 13 | 22 | 36.91261498 | -09 | 37 | 37.7998117 | . 00000618 | . 0002910 | -0.0691 | 50575.3 | 56782.1 | 15 | 0.71 | 0.64 |  |
| 1320+394 | 1320+394 | 1833 | 13 | 22 | 55.66443485 | +39 | 12 | 7.9516027 | . 00003881 | . 0007680 | 0.4282 | 53560.0 | 53560.1 | 1 |  |  |  |
| 1320-385 | 1320-385 | 1834 | 13 | 23 | 4.14838057 | -38 | 49 | 0.6922161 | . 00024410 | . 0165551 | 0.1073 | 53153.2 | 53153.2 | 1 |  |  |  |
| 1320-446 | P 1320-446 | 868 | 13 | 23 | 4.24688937 | -44 | 52 | 33.8569173 | . 00035603 | . 0096751 | 0.0574 | 49329.0 | 52409.2 | 4 |  |  |  |
| 1320-338 | 1320-338 | 3317 | 13 | 23 | 17.13878800 | -34 | 07 | 12.3503596 | . 00004916 | . 0014535 | -0.3464 | 53134.2 | 56638.7 | 2 |  |  |  |
| 1320-303 | 1320-303 | 1835 | 13 | 23 | 19.46731158 | -30 | 38 | 6.6656304 | . 00001633 | . 0005822 | 0.0100 | 54943.2 | 54943.3 | 1 |  |  |  |
| 1323+799 | 1323+799 | 1836 | 13 | 23 | 51.56973810 | +79 | 42 | 51.8470112 | . 00012288 | . 0002169 | 0.1596 | 50688.2 | 54664.6 | 2 |  |  |  |
| 1321-323 | 1321-323 | 3318 | 13 | 24 | 11.86079594 | -32 | 35 | 35.5903426 | . 00014579 | . 0040802 | 0.8894 | 52306.5 | 52409.3 | 2 |  |  |  |
| 1321+410 | 1321+410 | 3319 | 13 | 24 | 12.09560667 | +40 | 48 | 11.7631204 | . 00003084 | . 0005699 | -0.1860 | 50242.1 | 50242.3 | 1 |  |  |  |
| 1321-105 | 1321-105 | 3320 | 13 | 24 | 25.79309527 | -10 | 49 | 23.1340262 | . 000000830 | . 0003200 | 0.0041 | 50575.3 | 56701.6 | 2 | 0.48 | 0.45 |  |
| 1322+479 | 1322+479 | 3321 | 13 | 24 | 29.34245477 | +47 | 43 | 20.6235817 | . 00006399 | . 0009179 | -0.1973 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1322+366 | NGC 5141 | 3322 | 13 | 24 | 51.44093442 | +36 | 22 | 42.7654005 | . 00031265 | . 0076314 | 0.5820 | 53134.1 | 53134.3 | 1 |  |  |  |
| 1322-078 | 1322-078 | 3323 | 13 | 25 | 9.61553074 | -08 | 04 | 48.3902433 | 00003857 | 0011660 | -0.4302 | 5 | 54112.6 |  |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \begin{array}{l} \text { Source Flux } \\ (\mathrm{Jvy}) \end{array} \end{aligned}$ |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1322-110 | 1322-110 | 3324 | 13 | 25 | 13.21960353 | -11 | 17 | 39.0824603 | . 00002539 | . 0010927 | -0.3928 | 54087.6 | 54087.7 | 1 |  |  |  |
| 1322-427 | P 1322-42 | 869 | 13 | 25 | 27.61520072 | -43 | 01 | 8.8054738 | . 00004636 | . 0009826 | 0.6477 | 48110.0 | 52409.2 | 6 |  |  |  |
| $1323+321$ | 1323+321 | 870 | 13 | 26 | 16.51167402 | +31 | 54 | 9.5197844 | . 00017090 | . 0023522 | -0.1549 | 48975.8 | 50219.3 | 4 |  |  | 4.6 |
| 1323-527 | 1323-527 | 3325 | 13 | 26 | 49.22916814 | -52 | 56 | 23.6327503 | . 00003769 | . 0008725 | 0.4613 | 54723.3 | 54723.4 | 1 |  |  |  |
| 1324+574 | 1324+574 | 3326 | 13 | 26 | 50.57254580 | +57 | 12 | 6.7504227 | . 00044907 | . 0051934 | -0.6393 | 49576.0 | 49577.0 | 1 |  |  |  |
| 1324-047 | 1324-047 | 3327 | 13 | 26 | 54.59927978 | -05 | 00 | 59.2865011 | . 07716167 | . 6109859 | 1.0000 | 53572.1 | 53572.1 | 1 |  |  |  |
| 1324+224 | 1324+224 | 704 | 13 | 27 | 0.86131055 | +22 | 10 | 50.1628462 | . 00000339 | . 0000514 | -0.0515 | 48428.4 | 56770.7 | 440 | 0.98 | 0.73 | 0.3 |
| $1325+437$ | 1325+436 | 3328 | 13 | 27 | 20.97901302 | +43 | 26 | 27.9891058 | . 00002520 | . 0004334 | 0.0690 | 50242.1 | 50242.3 | 1 |  |  |  |
| 1325+504 | 1325+504 | 3329 | 13 | 27 | 25.12365858 | +50 | 08 | 49.1724925 | . 00004360 | . 0008675 | 0.1541 | 49576.0 | 54112.6 | 3 |  |  |  |
| 1325-133 | 1325-133 | 4088 | 13 | 27 | 42.02372042 | -13 | 36 | 0.1621825 | . 00002999 | . 0010651 | 0.2110 | 55966.4 | 55966.5 | 1 |  |  |  |
| 1325+126 | 1325+126 | 1837 | 13 | 27 | 54.68300085 | +12 | 23 | 9.1781743 | . 00000783 | . 0002064 | -0.1607 | 53523.2 | 56749.5 | 2 | 0.21 | 0.30 |  |
| 1325-558 | 1325-558 | 1102 | 13 | 29 | 1.14489996 | -56 | 08 | 2.6657519 | . 00001465 | . 0001832 | 0.4025 | 52676.6 | 56604.4 | 33 |  |  |  |
| 1327+504 | 1327+504 | 1838 | 13 | 29 | 5.80271279 | +50 | 09 | 26.4009657 | . 00000667 | . 0000798 | -0.1910 | 49576.0 | 56749.6 | 35 |  |  |  |
| 1327+321 | 1327+321A | 1839 | 13 | 29 | 52.86491768 | +31 | 54 | 11.0547472 | . 00000527 | . 0000974 | -0.1553 | 50219.1 | 53770.8 | 5 |  |  |  |
| 1326-697 | 1326-698 | 3330 | 13 | 30 | 11.07684370 | -70 | 03 | 13.0777255 | . 00006110 | . 0003537 | 0.2330 | 54723.3 | 54723.7 | 1 |  |  |  |
| 1327-311 | 1327-311 | 3331 | 13 | 30 | 19.08406486 | -31 | 22 | 59.1353457 | . 00001847 | . 0006475 | -0.4067 | 52306.5 | 52409.3 | 2 |  |  |  |
| 1328+254 | 3C 287 | 1840 | 13 | 30 | 37.69029243 | +25 | 09 | 10.8762199 | . 00018111 | . 0022641 | -0.3573 | 52409.2 | 54187.5 | 2 |  |  |  |
| 1328+522 | 1328+522 | 3332 | 13 | 30 | 42.60508462 | +52 | 02 | 15.4960494 | . 01239303 | . 0700404 | 0.9933 | 49577.0 | 49577.0 | 1 |  |  |  |
| 1328+307 | 3C 286 | 370 | 13 | 31 | 8.28807656 | +30 | 30 | 32.9598432 | . 00013690 | . 0022366 | 0.3479 | 49253.8 | 53185.6 | 7 |  |  | 5.7 |
| 1328-263 | 1328-263 | 3333 | 13 | 31 | 11.69294047 | -26 | 39 | 9.6147856 | . 00011415 | . 0048060 | -0.6703 | 53503.2 | 53503.3 | 1 |  |  |  |
| 1328-034 | 1328-034 | 1841 | 13 | 31 | 29.16142412 | -03 | 41 | 14.1134708 | . 00003366 | . 0008482 | 0.0419 | 53552.0 | 53552.1 | 1 |  |  |  |
| 1329+063 | 1329+063 | 1103 | 13 | 31 | 53.89715309 | +06 | 08 | 23.3917481 | . 00004016 | . 0008210 | 0.1298 | 53125.2 | 53125.3 | 1 |  | 0.12 |  |
| 1329-049 | 1329-049 | 3334 | 13 | 32 | 4.46466605 | -05 | 09 | 43.3056775 | . 00001481 | . 0004194 | 0.2087 | 50575.3 | 56463.2 | 2 | 0.60 | 0.48 |  |
| 1330+300 | 1330+300 | 3335 | 13 | 32 | 20.56711826 | +29 | 49 | 45.5964039 | . 04973303 | . 0362618 | -0.9985 | 53561.0 | 53561.0 | 1 |  |  |  |
| 1329-137 | 1329-137 | 3336 | 13 | 32 | 30.92817605 | -14 | 02 | 13.1865755 | . 00005159 | . 0014119 | -0.0815 | 53560.0 | 56106.1 | 2 |  |  |  |
| 1329-126 | 1329-126 | 1842 | 13 | 32 | 39.25155203 | -12 | 56 | 15.3422004 | . 00005599 | . 0017782 | 0.3731 | 53572.0 | 53572.1 | 1 |  |  |  |
| 1330+476 | 1330+476 | 871 | 13 | 32 | 45.24641497 | +47 | 22 | 22.6677345 | . 000000758 | . 0000866 | 0.0674 | 50305.9 | 56761.9 | 10 |  | 0.12 | 0.8 |
| 1330+022 | 1330+022 | 1843 | 13 | 32 | 53.27053704 | +02 | 00 | 45.6992584 | . 00000731 | . 0001927 | -0.3815 | 54187.3 | 56770.7 | 6 |  |  |  |
| 1330+071 | 1330+071 | 1844 | 13 | 33 | 4.99696664 | +06 | 52 | 31.9708193 | . 00002200 | . 0006013 | -0.0273 | 53134.2 | 53134.3 | 1 |  |  |  |
| 1330+276 | 1330+276 | 3337 | 13 | 33 | 7.49072994 | +27 | 25 | 18.3831937 | . 00001503 | . 0004392 | -0.3226 | 50219.1 | 50219.3 | 1 |  |  |  |
| 1331+170 | 1331+170 | 1104 | 13 | 33 | 35.78263392 | +16 | 49 | 4.0149248 | . 00000954 | . 0001825 | 0.2807 | 50084.6 | 54643.7 | 4 |  |  |  |
| 1330-236 | 1330-236 | 3338 | 13 | 33 | 38.92594352 | -23 | 56 | 25.5803508 | . 00011297 | . 0055400 | -0.3358 | 54087.6 | 54087.7 | 1 |  |  |  |
| 1331-195 | 1331-195 | 3339 | 13 | 33 | 45.17564493 | -19 | 50 | 42.3452784 | . 00006165 | . 0020477 | -0.1772 | 50632.0 | 50688.0 | 2 |  |  |  |
| 1331-115 | 1331-115 | 3340 | 13 | 34 | 4.19076921 | -11 | 50 | 14.2711491 | . 00002340 | . 0006739 | 0.3522 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1332+031 | 1332+031 | 3341 | 13 | 35 | 11.90483794 | +02 | 53 | 9.5072625 | . 00005282 | . 0012454 | -0.0883 | 53125.2 | 56106.2 | 2 |  |  |  |
| 1333+459 | 1333+459 | 3342 | 13 | 35 | 21.96227359 | +45 | 42 | 38.2314227 | . 00002564 | . 0004188 | -0.0017 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1333+589 | 1333+589 | 3343 | 13 | 35 | 25.92839599 | +58 | 44 | 0.2923105 | . 00004364 | . 0004872 | -0.3506 | 49576.0 | 49577.0 | 1 |  |  |  |
| 1333-049 | 1333-049 | 3344 | 13 | 35 | 56.47671981 | -05 | 11 | 41.6592852 | . 00002282 | . 0006598 | 0.3109 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1333-082 | 1333-082 | 3345 | 13 | 36 | 8.25981546 | -08 | 29 | 51.7972160 | . 000000920 | . 0004738 | -0.0607 | 50575.3 | 56748.2 | 11 | 0.34 | 0.09 |  |
| 1333-152 | 1333-152 | 1845 | 13 | 36 | 34.08915082 | -15 | 29 | 48.0708979 | . 00001183 | . 0003880 | -0.0853 | 54559.3 | 56560.9 | 5 |  |  |  |
| 1333-186 | 1333-186 | 1846 | 13 | 36 | 34.39329679 | -18 | 52 | 41.6744036 | . 00003053 | . 0009709 | 0.1472 | 53560.0 | 53560.1 | 1 |  |  |  |
| 1333-337 | 1333-337 | 3346 | 13 | 36 | 39.03253945 | -33 | 57 | 57.0739465 | . 00002405 | . 0005065 | -0.4664 | 54489.6 | 56638.7 | 5 |  |  |  |
| 1335+658 | 1335+658 | 1847 | 13 | 37 | 16.05969118 | +65 | 32 | 46.3166871 | . 00003105 | . 0002157 | 0.0349 | 54943.1 | 54943.4 | 1 |  |  |  |
| 1334-127 | DW 1335-12 | 376 | 13 | 37 | 39.78277782 | -12 | 57 | 24.6934188 | . 00000337 | . 0000520 | -0.0648 | 43816.8 | 56782.1 | 1929 | 2.24 | 2.45 | 2.3 |
| 1335+552 | 1335+552 | 1848 | 13 | 37 | 49.64221706 | +55 | 01 | 2.1180012 | . 00004882 | . 0004045 | 0.1115 | 49576.0 | 54643.6 | 2 |  |  |  |
| 1336-237 | 1336-237 | 3347 | 13 | 39 | 1.74638534 | -24 | 01 | 14.0065417 | . 00001038 | . 0003522 | -0.2348 | 50632.0 | 50688.0 | 2 |  |  |  |
| 1336-260 | P 1336-260 | 3348 | 13 | 39 | 19.89077553 | -26 | 20 | 30.4962328 | . 00001311 | . 0003725 | -0.0519 | 50632.0 | 54643.7 | 3 |  |  |  |
| 1337+637 | 1337+637 | 3349 | 13 | 39 | 23.78304910 | +63 | 28 | 58.4249949 | . 00015698 | . 0011998 | 0.4045 | 49827.2 | 49827.3 | 1 |  |  |  |
| 1337-013 | 1337-013 | 3350 | 13 | 40 | 4.61505471 | -01 | 37 | 46.5435018 | . 00003415 | . 0009579 | 0.5768 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1337-033 | 1337-033 | 1849 | 13 | 40 | 13.30450921 | -03 | 35 | 20.8055937 | . 00022816 | . 0028404 | -0.4740 | 54125.3 | 54125.4 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1338+381 | 1338+381 | 872 | 13 | 40 | 22.95179488 | +37 | 54 | 43.8339193 | . 00001388 | . 0002656 | -0.2421 | 48942.0 | 55801.0 | 36 | 0.08 | 0.07 | 3.8 |
| 1338+362 | 1338+362 | 3351 | 13 | 40 | 36.00996741 | +36 | 00 | 26.7382918 | . 00024967 | . 0036581 | 0.6855 | 54112.5 | 54112.7 | 1 |  |  |  |
| 1339+696 | 1339+696 | 3352 | 13 | 40 | 48.03465088 | +69 | 23 | 22.5102974 | . 02546544 | . 4520616 | -0.9727 | 49827.2 | 49827.2 | 1 |  |  |  |
| 1338+285 | 1338+285 | 3353 | 13 | 41 | 15.28275990 | +28 | 16 | 5.0771583 | . 00002257 | . 0006623 | -0.5373 | 50219.1 | 50219.3 | 1 |  |  |  |
| 1339-206 | 1339-206 | 3354 | 13 | 42 | 4.73952030 | -20 | 51 | 29.5417967 | . 00001666 | . 0005510 | -0.2386 | 50632.0 | 50688.0 | 2 |  |  |  |
| 1339+274 | 1339+274 | 3355 | 13 | 42 | 8.37669072 | +27 | 09 | 30.6174303 | . 00001401 | . 0003646 | -0.1399 | 50219.2 | 50219.3 | 1 |  |  |  |
| 1339-287 | 1339-287 | 1850 | 13 | 42 | 15.34563587 | -29 | 00 | 41.8317527 | . 00001231 | . 0002990 | -0.1030 | 50687.9 | 56498.1 | 11 |  |  |  |
| 1341+691 | 1341+691 | 3356 | 13 | 43 | 0.55333280 | +68 | 55 | 17.1602424 | . 00029333 | . 0045060 | 0.3815 | 49827.2 | 54087.7 | 2 |  |  |  |
| 1340-175 | 1340-175 | 3357 | 13 | 43 | 37.41427786 | -17 | 47 | 55.4448045 | . 00003302 | . 0009736 | 0.0529 | 50632.0 | 50632.2 | 1 |  |  |  |
| 1342+662 | GC 1342+662 | 691 | 13 | 43 | 45.95958132 | +66 | 02 | 25.7452377 | . 00000400 | . 0000522 | 0.0266 | 45301.1 | 56744.2 | 253 | 0.34 |  | 1.9 |
| 1342+663 | GC 1342+663 | 382 | 13 | 44 | 8.67963954 | +66 | 06 | 11.6438648 | . 00000530 | . 0000568 | 0.0395 | 44263.7 | 56723.6 | 222 | 0.26 |  | 2.8 |
| 1341-171 | 1341-171 | 1851 | 13 | 44 | 14.40246127 | -17 | 23 | 40.3950719 | . 00000893 | . 0002926 | -0.0539 | 53572.0 | 56749.4 | 2 | 0.29 | 0.33 |  |
| 1343+451 | 1343+451 | 1852 | 13 | 45 | 33.17246742 | +44 | 52 | 59.5730268 | . 00001783 | . 0003404 | 0.0186 | 53561.0 | 53561.1 | 1 |  |  |  |
| 1343+386 | 1343+386 | 3358 | 13 | 45 | 36.94235931 | +38 | 23 | 12.4610190 | . 00009699 | . 0037964 | 0.0282 | 54112.5 | 56302.7 | 2 |  |  |  |
| 1343+073 | 1343+073 | 1853 | 13 | 45 | 49.31476359 | +07 | 06 | 31.1214598 | . 00004807 | . 0012661 | 0.2024 | 53560.0 | 53560.1 | 1 |  |  |  |
| 1343-300 | 1343-300 | 3359 | 13 | 45 | 51.51990508 | -30 | 15 | 4.5941742 | . 00013348 | . 0038252 | 0.5899 | 52306.5 | 52306.6 | 1 |  |  |  |
| 1343-601 | 1343-601 | 3360 | 13 | 46 | 49.04335334 | -60 | 24 | 29.3539967 | . 00048262 | . 0018742 | -0.0546 | 52887.1 | 53138.7 | 3 |  |  |  |
| 1344+188 | 1344+188 | 3361 | 13 | 47 | 23.49018394 | +18 | 35 | 37.5735330 | . 00001169 | . 0003364 | 0.1252 | 50084.6 | 50156.3 | 2 |  |  |  |
| 1345+061 | 1345+061 | 3362 | 13 | 47 | 31.44472984 | +05 | 52 | 33.8045360 | . 00003589 | . 0008839 | 0.3051 | 53134.2 | 56203.9 | 2 |  |  |  |
| 1345+125 | P 1345+12 | 383 | 13 | 47 | 33.36163614 | +12 | 17 | 24.2407858 | . 00004267 | . 0015167 | 0.0170 | 48975.7 | 53612.8 | 6 | 0.18 | 0.12 | 5.4 |
| 1344-375 | 1344-375 | 1854 | 13 | 47 | 40.42895776 | -37 | 50 | 36.6189197 | . 00004898 | . 0014625 | -0.0001 | 53153.2 | 53153.2 | 1 |  |  |  |
| 1345+289 | 1345+289 | 4089 | 13 | 48 | 4.34910275 | +28 | 40 | 25.3660338 | . 00005210 | . 0012265 | -0.2083 | 56393.2 | 56393.4 | 1 |  |  |  |
| 1346-109 | 1346-109 | 3363 | 13 | 49 | 3.15104793 | -11 | 09 | 59.3107738 | . 16266840 | . 9817112 | -1.0000 | 53560.0 | 53560.0 | 1 |  |  |  |
| 1346-306 | 1346-306 | 1855 | 13 | 49 | 20.39851866 | -30 | 56 | 24.1955641 | . 00003545 | . 0012423 | 0.3434 | 54965.2 | 54965.2 | 1 |  |  |  |
| 1346-113 | 1346-113 | 3364 | 13 | 49 | 31.44325999 | -11 | 32 | 53.8294273 | . 00002450 | . 0007321 | 0.2816 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1347+539 | 1347+539 | 873 | 13 | 49 | 34.65661660 | +53 | 41 | 17.0401812 | . 00000696 | . 0000818 | -0.0954 | 48720.2 | 55349.5 | 23 | 0.27 |  | 3.0 |
| 1347-218 | 1347-218 | 3365 | 13 | 50 | 14.09005245 | -22 | 04 | 41.0762160 | . 00004990 | . 0014299 | 0.2636 | 50632.0 | 50688.0 | 2 |  |  |  |
| 1347+099 | 1347+099 | 3366 | 13 | 50 | 22.13603749 | +09 | 40 | 10.6554484 | . 00010552 | . 0015935 | 0.4015 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1347-163 | 1347-163 | 3367 | 13 | 50 | 36.14392929 | -16 | 34 | 49.5139548 | . 00002040 | . 0007434 | 0.3031 | 53561.0 | 56267.7 | 2 |  |  |  |
| 1349+617 | 1349+617 | 3368 | 13 | 50 | 38.18070385 | +61 | 32 | 48.5744933 | . 02721773 | . 2615708 | -0.9940 | 49576.1 | 49576.1 | 1 |  |  |  |
| 1348+237 | 1348+237 | 1856 | 13 | 50 | 45.65839589 | +23 | 31 | 45.1593425 | . 00005106 | . 0007407 | 0.0116 | 53125.2 | 53125.3 | 1 |  |  |  |
| 1348+308 | 1348+308 | 1857 | 13 | 50 | 52.73621944 | +30 | 34 | 53.5905485 | . 00000544 | . 0000962 | 0.0336 | 50219.2 | 56463.1 | 43 |  |  |  |
| 1348+087 | 1348+087 | 1858 | 13 | 51 | 16.91907553 | +08 | 30 | 39.9034946 | . 00000768 | . 0002276 | -0.0551 | 53125.2 | 56749.5 | 2 | 0.22 | 0.13 |  |
| 1348-289 | 1348-289 | 1859 | 13 | 51 | 46.83881215 | -29 | 12 | 17.6506314 | . 00004666 | . 0013382 | -0.8575 | 53125.2 | 53125.3 | 1 |  |  |  |
| 1349-145 | 1349-145 | 3369 | 13 | 51 | 52.64960829 | -14 | 49 | 14.5552110 | . 00001717 | . 0007048 | -0.2109 | 50632.0 | 50632.2 | 1 |  |  |  |
| 1349-275 | 1349-275 | 1860 | 13 | 52 | 28.04620994 | -27 | 45 | 7.1294952 | . 00013660 | . 0053810 | -0.5831 | 53572.0 | 53572.1 | 1 |  |  |  |
| 1349-439 | P 1349-439 | 387 | 13 | 52 | 56.53494042 | -44 | 12 | 40.3876181 | . 00001066 | . 0001109 | -0.4005 | 44265.5 | 56538.5 | 72 |  | 0.22 | 2.2 |
| 1352+757 | 1352+757 | 3370 | 13 | 53 | 23.16806670 | +75 | 32 | 57.7350452 | . 00019966 | . 0008291 | 0.5318 | 49827.2 | 49827.3 | 1 |  |  |  |
| 1351+021 | 1351+021 | 1861 | 13 | 53 | 51.58447728 | +01 | 51 | 53.8939256 | . 00015337 | . 0040976 | 0.7453 | 53560.0 | 53560.1 | 1 |  |  |  |
| 1351-018 | P 1351-018 | 388 | 13 | 54 | 6.89532276 | -02 | 06 | 3.1904809 | . 00000341 | . 0000571 | 0.0068 | 48572.8 | 56782.2 | 1010 | 0.52 | 0.12 | 2.3 |
| 1352-104 | P 1352-104 | 389 | 13 | 54 | 46.51868725 | -10 | 41 | 2.6561544 | . 00000475 | . 0000807 | 0.0422 | 50456.4 | 56649.7 | 82 |  | 0.39 | 2.6 |
| 1352-632 | 1352-632 | 3371 | 13 | 55 | 46.61210257 | -63 | 26 | 42.5705852 | . 00063377 | . 0034594 | -0.2805 | 52941.0 | 55784.5 | 2 |  |  |  |
| 1353-341 | P 1353-341 | 3372 | 13 | 56 | 5.38663200 | -34 | 21 | 10.8602772 | . 00006265 | . 0019268 | -0.5845 | 52306.5 | 52306.6 | 1 |  |  |  |
| 1353-171 | 1353-171 | 1862 | 13 | 56 | 6.95303990 | -17 | 24 | 31.8208812 | . 00022861 | . 0066398 | -0.0471 | 53572.0 | 53572.1 | 1 |  |  |  |
| 1354+247 | $1354+247$ | 4090 | 13 | 56 | 40.38050163 | +24 | 31 | 0.2005724 | . 00029528 | . 0079530 | -0.9445 | 56393.2 | 56393.4 | 1 |  |  |  |
| 1354-107 | 1354-107 | 1863 | 13 | 56 | 46.83189025 | -11 | 01 | 29.2220100 | . 00030249 | . 0038834 | 0.7441 | 53561.0 | 53561.1 | 1 |  |  |  |
| 1354+195 | P 1354+19 | 392 | 13 | 57 | 4.43665049 | +19 | 19 | 7.3724330 | . 00000448 | . 0000768 | -0.3939 | 44200.9 | 55271.7 | 208 | 0.62 | 0.79 | 3.7 |
| 1354-174 | P 1354-174 | 390 | 13 | 57 | 6.07419012 | -17 | 44 | 1.9049582 | . 00001029 | . 0001441 | -0.1188 | 50456.4 | 55545.0 | 29 | 0.07 |  |  |
| 1354-152 | OP-192 | 391 | 13 | 57 | 11.24497741 | -15 | 27 | 28.7869248 | . 00000373 | . 0000622 | -0.1649 | 47253.4 | 56782.1 | 306 | 0.58 | 0.60 | 1.7 |
| 1355+441 | 1355+441 | 3373 | 13 | 57 | 40.59226160 | +43 | 53 | 59.7687189 | . 00005497 | . 0005127 | -0.0963 | 52409.1 | 52409.3 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | Observation EpochMJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1357+769 | 1357+769 | 874 | 13 | 57 | 55.37152959 | +76 | 43 | 21.0510632 | . 00000361 | . 0000503 | -0.0169 | 49341.7 | 56776.7 | 1300 | 0.75 |  | 0.7 |
| 1355+115 | 1355+115 | 1864 | 13 | 58 | 22.41964692 | +11 | 19 | 32.9192121 | . 00003584 | . 0009334 | -0.1688 | 53560.0 | 53560.1 | 1 |  |  |  |
| 1356+478 | 1356+478 | 1865 | 13 | 58 | 40.66638330 | +47 | 37 | 58.3108678 | . 00005394 | . 0006824 | 0.0324 | 53561.0 | 53561.1 | 1 |  |  |  |
| 1355-416 | P 1355-41 | 394 | 13 | 59 | 0.18447844 | -41 | 52 | 52.6369867 | . 00056819 | . 0028321 | -0.8303 | 48110.1 | 54076.7 | 6 |  |  |  |
| 1357+559 | 1357+559 | 3374 | 13 | 59 | 5.72830109 | +55 | 44 | 29.2957209 | . 03356495 | . 2062889 | 0.9971 | 53572.1 | 53572.1 | 1 |  |  |  |
| 1356+022 | 1356+022 | 1866 | 13 | 59 | 27.14932572 | +01 | 59 | 54.5640244 | . 00001730 | . 0006516 | -0.6241 | 49914.0 | 54482.6 | 2 |  |  |  |
| 1357+404 | 1357+404 | 3375 | 13 | 59 | 38.09427775 | +40 | 11 | 38.2504447 | . 00001461 | . 0003385 | -0.2215 | 50242.1 | 50242.3 | 1 |  |  |  |
| 1357-187 | 1357-187 | 1867 | 14 | 00 | 3.86602619 | -18 | 58 | 11.0868596 | . 00001395 | . 0004975 | -0.2637 | 53523.2 | 53523.2 | 1 |  |  |  |
| 1358+624 | 1358+624 | 3376 | 14 | 00 | 28.64862597 | +62 | 10 | 38.5888043 | . 00014794 | . 0013412 | -0.5451 | 52409.2 | 52409.3 | 1 |  |  |  |
| 1358+046 | 1358+046 | 3377 | 14 | 00 | 48.44918279 | +04 | 25 | 30.9573972 | . 02183004 | . 2728712 | 0.9983 | 53560.0 | 53560.0 | 1 |  |  |  |
| 1358-090 | 1358-090 | 3378 | 14 | 01 | 5.33184950 | -09 | 16 | 31.5723474 | . 00002094 | . 0007075 | -0.2888 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1358-298 | 1358-298 | 1868 | 14 | 01 | 34.93941485 | -30 | 04 | 36.8694711 | . 00009766 | . 0031313 | 0.5398 | 53125.2 | 53125.2 | 1 |  |  |  |
| 1400+588 | 1400+588 | 3379 | 14 | 01 | 45.70005984 | +58 | 35 | 42.2646310 | . 00023492 | . 0019578 | -0.3590 | 53561.2 | 54087.7 | 2 |  |  |  |
| 1359-281 | 1359-281 | 3380 | 14 | 02 | 2.40169332 | -28 | 22 | 25.1433942 | . 00002957 | . 0011562 | -0.2197 | 50687.9 | 50688.0 | 1 |  |  |  |
| 1400+162 | 1400+162 | 3381 | 14 | 02 | 44.51358570 | +15 | 59 | 56.6759043 | . 00070688 | . 0060260 | -0.2083 | 53572.0 | 53572.0 | 1 |  |  |  |
| 1400-184 | 1400-184 | 3382 | 14 | 02 | 48.50453661 | -18 | 40 | 47.4902444 | . 00001501 | . 0005840 | 0.1405 | 54112.6 | 54112.6 | 1 |  |  |  |
| 1402+660 | 1402+660 | 3383 | 14 | 04 | 5.27905704 | +65 | 51 | 37.5835832 | . 00011924 | . 0010235 | -0.3550 | 52409.2 | 52409.3 | 1 |  |  |  |
| 1401+000 | 1401+000 | 3384 | 14 | 04 | 12.12398670 | -00 | 13 | 25.0912472 | . 00001436 | . 0004175 | -0.0461 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1402+077 | 1402+077 | 1869 | 14 | 04 | 32.99232110 | +07 | 28 | 46.9643711 | . 00002916 | . 0007771 | 0.5591 | 53560.0 | 53560.1 | 1 |  |  |  |
| 1402-012 | P 1402-012 | 397 | 14 | 04 | 45.89547922 | -01 | 30 | 21.9470661 | . 00000851 | . 0001168 | -0.1856 | 48664.4 | 55544.9 | 26 |  | 0.24 |  |
| 1402+044 | P 1402+044 | 398 | 14 | 05 | 1.11981763 | +04 | 15 | 35.8189400 | . 00000484 | . 0001059 | -0.1888 | 48887.8 | 56638.2 | 49 |  | 0.19 | 3.0 |
| 1403+411 | 1403+411 | 1870 | 14 | 05 | 7.79546817 | +40 | 56 | 57.8311885 | . 00001215 | . 0002239 | -0.0466 | 53125.2 | 53125.3 | 1 |  |  |  |
| 1402-144 | 1402-144 | 3385 | 14 | 05 | 32.86737332 | -14 | 40 | 18.2964057 | . 00002209 | . 0009489 | -0.2984 | 50575.3 | 50575.4 | 1 | 0.13 | 0.08 |  |
| 1403-085 | DW 1403-08 | 3386 | 14 | 06 | 0.70185329 | -08 | 48 | 6.8799659 | . 00001819 | . 0005535 | -0.3313 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1406+787 | 1406+787 | 3387 | 14 | 06 | 36.56689770 | +78 | 28 | 10.4063975 | . 00023294 | . 0004968 | -0.3613 | 49827.2 | 50688.3 | 2 |  |  |  |
| 1404+347 | 1404+347 | 3388 | 14 | 06 | 53.84725617 | +34 | 33 | 37.3064023 | . 00001742 | . 0005090 | -0.3134 | 50219.2 | 50219.3 | 1 |  |  |  |
| 1404+286 | OQ 208 | 400 | 14 | 07 | 0.39441466 | +28 | 27 | 14.6901958 | . 00000340 | . 0000520 | -0.1122 | 44341.1 | 56657.2 | 1394 | 0.29 | 0.18 | 3.6 |
| 1406+767 | 1406+767 | 3389 | 14 | 07 | 1.98932754 | +76 | 28 | 13.4246053 | . 00582792 | . 2736611 | -0.4632 | 49827.3 | 49827.3 | 1 |  |  |  |
| 1404-267 | 1404-267 | 3390 | 14 | 07 | 29.76219916 | -27 | 01 | 4.2918147 | . 00011256 | . 0031564 | 0.1931 | 50632.1 | 50688.0 | 2 |  |  |  |
| 1404-342 | 1404-342 | 3391 | 14 | 07 | 54.91684877 | -34 | 31 | 28.2730869 | . 00016730 | . 0055423 | 0.3449 | 54489.5 | 54489.6 | 1 |  |  |  |
| 1406+564 | 1406+564 | 1105 | 14 | 08 | 12.94626298 | +56 | 13 | 32.4843855 | . 00003482 | . 0004209 | -0.6660 | 49576.0 | 54482.7 | 2 |  |  |  |
| 1407+691 | 1407+691 | 3392 | 14 | 08 | 19.07541530 | +68 | 54 | 50.8269914 | . 00036693 | . 0023560 | 0.1080 | 49827.2 | 49827.3 | 1 |  |  |  |
| 1405-287 | 1405-287 | 3393 | 14 | 08 | 49.61370683 | -29 | 00 | 23.6076045 | . 00002322 | . 0008036 | 0.1207 | 50687.9 | 50688.0 | 1 |  |  |  |
| 1406-076 | P 1406-076 | 402 | 14 | 08 | 56.48119624 | -07 | 52 | 26.6665893 | . 00000377 | . 0000651 | -0.1682 | 47379.9 | 56782.2 | 167 | 0.58 | 0.72 | 2.3 |
| 1406-230 | 1406-230 | 3394 | 14 | 09 | 11.97617108 | -23 | 15 | 49.6115041 | . 00009325 | . 0030273 | -0.2430 | 50632.1 | 50688.0 | 2 |  |  |  |
| 1406-267 | 1406-267 | 1871 | 14 | 09 | 50.16978568 | -26 | 57 | 36.9802599 | . 00000507 | . 0001105 | 0.1226 | 50632.1 | 56763.1 | 92 |  | 0.28 |  |
| $1407+022$ | 1407+022 | 1872 | 14 | 10 | 4.65596070 | +02 | 03 | 6.9127730 | . 00000977 | . 0003287 | -0.1272 | 53134.2 | 53134.3 | 1 |  |  |  |
| 1408+077 | 1408+077 | 3395 | 14 | 10 | 35.07536440 | +07 | 31 | 21.4898228 | . 00007659 | . 0016902 | -0.5847 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1409+373 | 1409+373 | 1873 | 14 | 11 | 14.51613363 | +37 | 05 | 35.6235960 | . 00002877 | . 0006175 | -0.4621 | 53572.0 | 53572.1 | 1 |  |  |  |
| 1409+218 | 1409+218 | 875 | 14 | 11 | 54.86222627 | +21 | 34 | 23.4374022 | . 00000916 | . 0002447 | -0.3700 | 50459.5 | 53131.5 | 4 |  | 0.11 | 2.5 |
| 1410+138 | 1410+138 | 3396 | 14 | 12 | 36.37265503 | +13 | 34 | 38.1526669 | . 00002722 | . 0007416 | -0.4633 | 50084.6 | 50156.3 | 2 |  |  |  |
| 1412+461 | 1412+461 | 3397 | 14 | 14 | 14.85260667 | +45 | 54 | 48.7183437 | . 00059476 | . 0100831 | -0.2738 | 50305.9 | 54314.1 | 2 |  |  |  |
| 1412-279 | 1412-279 | 3398 | 14 | 15 | 4.48619716 | -28 | 09 | 54.4311130 | . 00002285 | . 0008512 | -0.0967 | 53572.0 | 55916.7 | 2 |  |  |  |
| 1412+087 | 1412+087 | 3399 | 14 | 15 | 9.91842694 | +08 | 32 | 5.3691704 | . 00003187 | . 0006665 | -0.5493 | 54112.6 | 55413.1 | 2 |  |  |  |
| 1412-097 | 1412-097 | 3400 | 14 | 15 | 20.83391214 | -09 | 55 | 58.3309114 | . 00002353 | . 0007490 | 0.2198 | 53561.1 | 55846.9 | 2 |  |  |  |
| 1412-368 | 1412-368 | 1106 | 14 | 15 | 26.01632717 | -37 | 05 | 26.9702281 | . 00001493 | . 0002371 | -0.2407 | 52306.6 | 55545.1 | 19 |  |  |  |
| 1413+373 | 1413+373 | 3401 | 14 | 15 | 28.46678861 | +37 | 06 | 21.1623185 | . 00003060 | . 0005129 | -0.2806 | 50242.1 | 50242.3 | 1 |  |  |  |
| 1413+135 | P 1413+135 | 404 | 14 | 15 | 58.81750927 | +13 | 20 | 23.7128570 | . 00000403 | . 0000741 | -0.1494 | 48353.2 | 56751.6 | 74 | 0.44 | 0.35 | 1.9 |
| 1413+349 | OQ 323 | 405 | 14 | 16 | 4.18624375 | +34 | 44 | 36.4274195 | . 00001544 | . 0003911 | 0.1004 | 50219.2 | 51687.5 | 2 |  |  |  |
| 1413-168 | 1413-168 | 1874 | 14 | 16 | 34.36977292 | -17 | 05 | 45.7350427 | . 00003551 | . 0011998 | -0.2581 | 53560.0 | 53560.1 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | $\begin{gathered} \hline \begin{array}{c} \text { Observation Epoch } \\ \text { MJD } \end{array} \\ \hline \end{gathered}$ |  | No. Obs. | $\begin{gathered} \hline \hline \begin{array}{c} \text { Source Flux } \\ \text { (Jy) } \end{array} \\ \hline \end{gathered}$ |  | $\begin{aligned} & \text { Str } \\ & \text { Index } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1415+463 | 1415+463 | 3402 | 14 | 17 | 8.16134856 | +46 | 07 | 5.4481472 | . 00004551 | . 0005120 | 0.1186 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1415-349 | J1418-35 | 1875 | 14 | 18 | 58.91694685 | -35 | 09 | 42.5075800 | . 00003160 | . 0009453 | -0.1636 | 53134.2 | 53134.2 | 1 |  |  |  |
| $1416+067$ | 1416+067 | 876 | 14 | 19 | 8.18019516 | +06 | 28 | 34.8034847 | . 00001443 | . 0002524 | -0.1971 | 49176.9 | 54440.7 | 10 | 0.08 | 0.07 | 3.1 |
| $1418+546$ | GC 1418+54 | 408 | 14 | 19 | 46.59739890 | +54 | 23 | 14.7872331 | . 00000345 | . 0000509 | -0.0677 | 44282.8 | 56782.1 | 903 | 0.45 |  | 3.0 |
| 1417+385 | 1417+385 | 877 | 14 | 19 | 46.61376002 | +38 | 21 | 48.4751137 | . 000000345 | . 0000518 | -0.0246 | 49750.4 | 56772.7 | 385 | 1.14 | 0.36 | 1.9 |
| 1417-192 | 1417-192 | 3403 | 14 | 19 | 49.73876890 | -19 | 28 | 25.2672279 | . 00001132 | . 0003725 | -0.1120 | 50632.1 | 50688.0 | 2 |  |  |  |
| 1417+273 | $1417+273$ | 878 | 14 | 19 | 59.29706798 | +27 | 06 | 25.5528442 | . 00000502 | . 0000826 | -0.0031 | 50219.2 | 55112.7 | 18 |  |  |  |
| 1417+375 | 1417+375 | 1876 | 14 | 20 | 0.34105795 | +37 | 21 | 34.6595670 | . 00002560 | . 0003693 | 0.1108 | 53134.1 | 53134.3 | 1 |  |  |  |
| 1418-065 | 1418-065 | 3404 | 14 | 21 | 7.75558313 | -06 | 43 | 56.3560897 | . 00004455 | . 0010714 | 0.5833 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1419+469 | 1419+469 | 1107 | 14 | 21 | 23.07301605 | +46 | 45 | 47.9869461 | . 00004654 | . 0006152 | 0.0429 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1418-192 | 1418-192 | 1877 | 14 | 21 | 36.95802295 | -19 | 31 | 18.8461925 | . 00006827 | . 0040674 | -0.9127 | 54601.3 | 54601.3 | 1 |  |  |  |
| 1420+326 | 1420+326 | 879 | 14 | 22 | 30.37896015 | +32 | 23 | 10.4401087 | . 00000978 | . 0001816 | -0.1209 | 50209.9 | 53136.6 | 6 |  |  |  |
| 1419-229 | 1419-229 | 4091 | 14 | 22 | 37.10634830 | -23 | 08 | 30.1364437 | . 00005014 | . 0017428 | -0.4326 | 56498.0 | 56498.1 | 1 |  |  |  |
| 1421+482 | 1421+482 | 3405 | 14 | 23 | 6.15673130 | +48 | 02 | 10.8459458 | . 00009832 | . 0009658 | 0.0425 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1421+511 | 1421+511 | 3406 | 14 | 23 | 14.18654580 | +50 | 55 | 37.2833675 | . 00015037 | . 0023440 | -0.5740 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1421+122 | 1421+122 | 3407 | 14 | 23 | 30.10122025 | +11 | 59 | 51.2405334 | . 00028652 | . 0029889 | -0.4685 | 49914.1 | 54314.2 | 2 |  |  |  |
| 1420-220 | 1420-220 | 3408 | 14 | 23 | 40.81027437 | -22 | 18 | 17.5148598 | . 00009053 | . 0025499 | 0.2672 | 53503.2 | 53503.3 | 1 |  |  |  |
| 1418-782 | 1417-782 | 3409 | 14 | 23 | 43.55155992 | -78 | 29 | 34.8999966 | . 00182186 | . 0045214 | 0.2301 | 52887.0 | 53138.6 | 3 |  |  |  |
| 1421+048 | 1421+048 | 4092 | 14 | 24 | 9.50093940 | +04 | 34 | 52.0823631 | . 00003687 | . 0008684 | -0.3322 | 56161.9 | 56162.1 | 1 |  |  |  |
| 1421-138 | 1421-138 | 1878 | 14 | 24 | 16.03501690 | -14 | 07 | 2.9968029 | . 00011114 | . 0024665 | 0.2816 | 53560.0 | 53560.2 | 1 |  |  |  |
| 1422+473 | 1422+473 | 3410 | 14 | 24 | 37.07980756 | +47 | 05 | 56.6982005 | . 00006628 | . 0012232 | -0.0578 | 50305.9 | 50306.0 | 1 |  |  |  |
| 1422+231 | 1422+231 | 3411 | 14 | 24 | 38.10362692 | +22 | 56 | 0.9013526 | . 00091399 | . 0141136 | 0.9904 | 53125.3 | 53561.2 | 2 |  |  |  |
| 1420-724 | 1420-725 | 3412 | 14 | 24 | 52.23818095 | -72 | 41 | 17.0949280 | . 00007660 | . 0003896 | 0.1819 | 54723.3 | 54723.8 | 1 |  |  |  |
| 1420-679 | 1420-679 | 3413 | 14 | 24 | 55.55737135 | -68 | 07 | 58.0945595 | . 00002160 | . 0002007 | 0.3298 | 52872.4 | 56713.4 | 18 |  |  |  |
| 1422-249 | 1422-249 | 1879 | 14 | 25 | 23.03739369 | -25 | 13 | 6.9707455 | . 00002535 | . 0007859 | -0.3862 | 53134.2 | 53134.3 | 1 |  |  |  |
| 1423+146 | 1423+146 | 1109 | 14 | 25 | 49.01801112 | +14 | 24 | 56.9017993 | . 00000516 | . 0001156 | -0.1098 | 50084.6 | 56574.2 | 31 |  | 0.23 |  |
| $1424+366$ | 1424+366 | 880 | 14 | 26 | 37.08748877 | +36 | 25 | 9.5737197 | . 00000532 | . 0000822 | 0.0146 | 50242.1 | 56687.2 | 50 | 0.19 | 0.14 | 2.6 |
| 1424+240 | $1424+240$ | 881 | 14 | 27 | 0.39177542 | +23 | 48 | 0.0375261 | . 00000640 | . 0001590 | -0.0730 | 50084.6 | 56754.1 | 43 | 0.16 | 0.14 | 2.1 |
| 1425+267 | $1425+267$ | 1233 | 14 | 27 | 35.60764555 | +26 | 32 | 14.5379407 | . 00448374 | . 1177446 | 0.9918 | 53313.7 | 53313.7 | 1 |  |  |  |
| 1424-328 | 1424-328 | 1880 | 14 | 27 | 41.36110596 | -33 | 05 | 31.5066912 | . 00002573 | . 0014667 | -0.0725 | 53125.3 | 54087.7 | 2 |  |  |  |
| 1424-418 | P 1424-41 | 409 | 14 | 27 | 56.29756245 | -42 | 06 | 19.4376937 | . 00000360 | . 0000550 | -0.0274 | 47305.3 | 56776.7 | 812 |  | 1.42 | 2.5 |
| 1427+543 | 1427+543 | 882 | 14 | 29 | 21.87880303 | +54 | 06 | 11.1227633 | . 00002029 | . 0002054 | -0.3789 | 49576.0 | 51471.5 | 6 |  |  |  |
| 1427+109 | P 1427+109 | 3414 | 14 | 30 | 9.73879194 | +10 | 43 | 26.8620885 | . 00001292 | . 0003966 | 0.0662 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1428+422 | 1428+422 | 883 | 14 | 30 | 23.74160876 | +42 | 04 | 36.4909604 | . 00000994 | . 0001437 | 0.1333 | 50242.1 | 54664.7 | 13 |  |  |  |
| 1428+370 | $1428+370$ | 1881 | 14 | 30 | 40.58369404 | +36 | 49 | 3.8888833 | . 00000579 | . 0000932 | 0.0732 | 53134.1 | 56498.3 | 27 |  |  |  |
| $1429+400$ | $1429+400$ | 3415 | 14 | 31 | 20.53840675 | +39 | 52 | 41.5300372 | . 00001918 | . 0005402 | -0.2584 | 50242.2 | 50242.3 | 1 |  |  |  |
| 1430+365 | 1430+365 | 1882 | 14 | 32 | 39.82958656 | +36 | 18 | 7.9320104 | . 00010321 | . 0009286 | -0.4623 | 51687.0 | 51687.4 | 1 |  |  |  |
| 1430-178 | OQ-151 | 412 | 14 | 32 | 57.69062744 | -18 | 01 | 35.2489726 | . 00001351 | . 0002154 | -0.8008 | 44227.7 | 54664.7 | 49 | 0.08 | 0.29 | 3.9 |
| 1430-155 | P 1430-155 | 3416 | 14 | 33 | 21.45930810 | -15 | 48 | 44.6874999 | . 00001075 | . 0003495 | -0.1544 | 50632.1 | 50632.2 | 1 |  |  |  |
| 1432+422 | 1432+422 | 3417 | 14 | 34 | 5.69448205 | +42 | 03 | 15.9915384 | . 00001520 | . 0003430 | -0.2027 | 50242.2 | 50242.3 | 1 |  |  |  |
| 1431-115 | 1431-115 | 3418 | 14 | 34 | 21.13590420 | -11 | 46 | 19.5121038 | . 00003126 | . 0011709 | -0.6894 | 53503.2 | 53503.3 | 1 |  |  |  |
| 1432+200 | 1432+200 | 884 | 14 | 34 | 39.79335700 | +19 | 52 | 0.7357336 | . 00000412 | . 0000741 | 0.0702 | 50084.6 | 56498.0 | 66 |  |  |  |
| 1433+304 | 1433+304 | 885 | 14 | 35 | 35.40216872 | +30 | 12 | 24.5193476 | . 00002454 | . 0003222 | 0.2892 | 50002.9 | 52809.0 | 5 |  |  |  |
| 1433-040 | 1433-040 | 1883 | 14 | 35 | 39.90457818 | -04 | 14 | 55.2991267 | . 00016956 | . 0042712 | 0.3132 | 53153.2 | 53153.2 | 1 |  |  |  |
| 1436+763 | 1436+763 | 3419 | 14 | 35 | 47.10038056 | +76 | 05 | 25.8315709 | . 00118718 | . 0054869 | 0.1671 | 49827.2 | 54112.7 | 2 |  |  |  |
| 1434+235 | P 1434+235 | 1110 | 14 | 36 | 40.98108533 | +23 | 21 | 3.2599769 | . 00000830 | . 0001985 | -0.2312 | 50084.6 | 54482.7 | 6 | 0.32 | 0.18 |  |
| 1435+638 | 1435+638 | 886 | 14 | 36 | 45.80215071 | +63 | 36 | 37.8664143 | . 00001153 | . 0000981 | 0.0897 | 49827.2 | 55271.7 | 18 | 0.52 |  | 4.2 |
| 1435-218 | P 1435-218 | 887 | 14 | 38 | 9.46939664 | -22 | 04 | 54.7482886 | . 00000547 | . 0001125 | -0.3112 | 48161.8 | 56782.2 | 61 | 0.27 | 0.32 | 4.5 |
| $1436+445$ | 1436+445 | 3420 | 14 | 38 | 28.50447506 | +44 | 18 | 12.0718269 | . 00004647 | . 0007297 | 0.0480 | 50305.9 | 50306.1 | 1 |  |  |  |
| 1437+624 | 1437+624 | 3421 | 14 | 38 | 44.78301351 | +62 | 11 | 54.4367292 | 00013047 | 0009838 | -0.6525 | 09.2 | 52409.3 |  |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \text { Source Flux } \\ & \text { (Jy) } \\ & \hline \end{aligned}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1436+373 | 1436+373 | 1884 | 14 | 38 | 53.61097717 | +37 | 10 | 35.4167220 | . 00001244 | . 0002213 | -0.1184 | 50242.2 | 51687.3 | 2 |  | 0.16 |  |
| $1436+214$ | $1436+214$ | 1885 | 14 | 39 | 8.90235532 | +21 | 14 | 50.8223987 | . 00009444 | . 0014016 | 0.2910 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1437+331 | 1437+331 | 1886 | 14 | 39 | 23.65437537 | +32 | 53 | 54.8245616 | . 00021318 | . 0013263 | -0.4497 | 51687.1 | 51687.5 | 1 |  |  |  |
| 1438+501 | 1438+501 | 3422 | 14 | 39 | 46.97622710 | +49 | 58 | 5.4551451 | . 00002156 | . 0003761 | -0.0912 | 50305.9 | 50306.1 | 1 |  |  |  |
| 1437-153 | 1437-153 | 3423 | 14 | 39 | 56.87205619 | -15 | 31 | 50.5554653 | . 00001183 | . 0003956 | -0.1452 | 50632.1 | 56498.1 | 2 | 0.21 | 0.17 |  |
| 1437+061 | 1437+061 | 3424 | 14 | 40 | 17.98506775 | +05 | 56 | 34.0902256 | . 00004485 | . 0010121 | -0.1764 | 54112.5 | 55413.1 | 2 |  |  |  |
| 1438+385 | 1438+385 | 3425 | 14 | 40 | 22.33609488 | +38 | 20 | 13.6163413 | . 00001202 | . 0002907 | -0.1701 | 50242.2 | 50242.3 | 1 |  |  |  |
| 1438+016 | 1438+016 | 1887 | 14 | 40 | 33.64696285 | +01 | 27 | 5.2103287 | . 00004767 | . 0013015 | -0.3120 | 53523.2 | 53523.3 | 1 |  |  |  |
| 1438+021 | $1438+021$ | 1888 | 14 | 40 | 59.49587931 | +01 | 57 | 44.1512144 | . 00001613 | . 0005177 | -0.0681 | 53561.1 | 53561.2 | 1 |  |  |  |
| 1438-328 | 1438-328 | 1889 | 14 | 41 | 19.89353512 | -33 | 03 | 24.3986643 | . 00003050 | . 0009316 | 0.0804 | 53134.3 | 53134.3 | 1 |  |  |  |
| 1438-347 | 1438-347 | 1890 | 14 | 41 | 23.97014397 | -34 | 56 | 45.9450897 | . 00022562 | . 0114442 | -0.6065 | 53125.3 | 53125.3 | 1 |  |  |  |
| 1438-151 | 1438-151 | 1891 | 14 | 41 | 45.41724139 | -15 | 23 | 36.2655880 | . 00004150 | . 0014759 | -0.2883 | 53560.0 | 53560.2 | 1 |  |  |  |
| 1440+635 | 1440+635 | 3426 | 14 | 41 | 58.66921379 | +63 | 18 | 33.4365718 | . 00061243 | . 0048657 | 0.8537 | 49827.2 | 49827.3 | 1 |  |  |  |
| $1439+327$ | $1439+327$ | 3427 | 14 | 42 | 0.13896569 | +32 | 34 | 20.3014987 | . 00002459 | . 0006312 | -0.1341 | 50219.2 | 50219.3 | 1 |  |  |  |
| 1441+522 | 1441+522B | 1892 | 14 | 43 | 2.76060354 | +52 | 01 | 37.2988863 | . 00006673 | . 0008750 | -0.0129 | 53767.8 | 53768.5 | 1 |  |  |  |
| 1441+252 | 1441+252 | 1893 | 14 | 43 | 56.89218753 | +25 | 01 | 44.4906879 | . 00000449 | . 0000765 | 0.0333 | 52409.3 | 56475.6 | 46 |  |  |  |
| 1442+637 | 1442+637 | 1894 | 14 | 43 | 58.60077130 | +63 | 32 | 26.3650655 | . 00003542 | . 0002899 | 0.1366 | 49827.2 | 54664.7 | 2 |  |  |  |
| 1442+031 | 1442+031 | 4093 | 14 | 44 | 31.76668436 | +02 | 57 | 53.5155877 | . 00003027 | . 0010260 | 0.0554 | 56749.5 | 56749.5 | 1 |  |  |  |
| 1442+101 | OQ 172 | 420 | 14 | 45 | 16.46524640 | +09 | 58 | 36.0728515 | . 00000624 | . 0000979 | 0.0968 | 48572.8 | 55320.7 | 34 |  | 0.14 | 3.6 |
| 1442-245 | 1442-245 | 3428 | 14 | 45 | 44.21148152 | -24 | 45 | 41.5932893 | . 00002484 | . 0008515 | 0.0381 | 55413.0 | 55413.1 | 1 |  |  |  |
| 1443-162 | 1443-162 | 692 | 14 | 45 | 53.37628777 | -16 | 29 | 1.6190478 | . 00000602 | . 0000934 | -0.4139 | 47379.9 | 56782.2 | 69 | 0.28 | 0.36 | 2.8 |
| 1444+175 | 1444+175 | 1111 | 14 | 46 | 35.34629380 | +17 | 21 | 7.5812023 | . 00000651 | . 0001681 | -0.1459 | 50084.6 | 53946.0 | 9 | 0.57 | 0.47 |  |
| 1445-161 | P 1445-16 | 421 | 14 | 48 | 15.05414615 | -16 | 20 | 24.5490842 | . 00000760 | . 0001339 | -0.6693 | 47379.9 | 54802.0 | 66 | 0.12 | 0.24 | 3.5 |
| 1448+762 | $1448+762$ | 888 | 14 | 48 | 28.77902761 | +76 | 01 | 11.5972767 | . 00000808 | . 0000561 | -0.0242 | 49827.2 | 56770.6 | 45 | 0.46 |  | 2.7 |
| 1446+042 | 1446+042 | 3429 | 14 | 48 | 50.36107734 | +04 | 02 | 19.8921771 | . 00016527 | . 0030115 | 0.6540 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1446-111 | 1446-111 | 3430 | 14 | 48 | 51.16009835 | -11 | 22 | 15.7379378 | . 00007116 | . 0023848 | 0.6766 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1446-005 | 1446-005 | 3431 | 14 | 49 | 16.59033735 | -00 | 45 | 19.2299099 | . 00004119 | . 0010651 | -0.2735 | 53503.2 | 53503.3 | 1 |  |  |  |
| 1448+093 | 1448+093 | 3432 | 14 | 50 | 31.16894691 | +09 | 10 | 27.9551586 | . 00002189 | . 0006879 | -0.3754 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1448-232 | 1448-232 | 1895 | 14 | 51 | 2.50975389 | -23 | 29 | 31.1044164 | . 00031659 | . 0145679 | -0.7753 | 53572.1 | 53572.1 | 1 |  |  |  |
| 1449+139 | 1449+139 | 1896 | 14 | 51 | 31.49102273 | +13 | 43 | 24.0007858 | . 00011310 | . 0013109 | 0.1918 | 50084.8 | 53134.3 | 3 |  |  |  |
| 1449-012 | 1449-012 | 3433 | 14 | 51 | 47.41230043 | -01 | 27 | 35.3079824 | . 00001633 | . 0005287 | -0.5053 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1450+641 | $1450+641 \mathrm{~A}$ | 3434 | 14 | 51 | 57.36250675 | +63 | 57 | 19.1999389 | . 00029255 | . 0019313 | -0.5227 | 54087.5 | 54087.7 | 1 |  |  |  |
| 1450+455 | 1450+455 | 3435 | 14 | 52 | 24.67423690 | +45 | 22 | 23.6696971 | . 00017513 | . 0027931 | -0.7657 | 50305.9 | 50306.1 | 1 |  |  |  |
| 1448-648 | 1448-648 | 3436 | 14 | 52 | 39.67920111 | -65 | 02 | 3.4332890 | . 00003381 | . 0002296 | 0.2598 | 52887.0 | 56504.7 | 14 |  |  |  |
| 1451+352 | 1451+352 | 1897 | 14 | 53 | 18.54529001 | +35 | 05 | 39.3640282 | . 00005002 | . 0013880 | -0.0114 | 53572.0 | 53572.1 | 1 |  |  |  |
| 1450-251 | 1450-251 | 1898 | 14 | 53 | 44.21893413 | -25 | 22 | 47.5033809 | . 00003644 | . 0012055 | -0.4926 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1451+106 | 1451+106 | 1899 | 14 | 53 | 44.24111302 | +10 | 25 | 57.5634517 | . 00002969 | . 0007499 | 0.0308 | 53561.1 | 53561.2 | 1 |  |  |  |
| 1451+270 | 1451+270 | 4094 | 14 | 53 | 53.60063965 | +26 | 48 | 33.4099374 | . 00001020 | . 0002610 | -0.3374 | 50219.2 | 53575.3 | 4 | 0.37 | 0.39 |  |
| 1451+094 | 1451+094 | 3438 | 14 | 53 | 59.73209869 | +09 | 15 | 43.3292362 | . 00001722 | . 0004267 | -0.0983 | 53560.2 | 55657.5 | 2 |  |  |  |
| 1450-338 | 1450-338 | 3439 | 14 | 54 | 2.47338085 | -34 | 00 | 57.2134112 | . 00010934 | . 0045009 | 0.4985 | 52306.5 | 52409.3 | 2 |  |  |  |
| 1452+166 | 1452+166 | 1900 | 14 | 54 | 20.85505776 | +16 | 24 | 24.3709364 | . 00001212 | . 0004124 | -0.1304 | 53523.2 | 53523.3 | 1 |  |  |  |
| 1451-375 | P 1451-375 | 423 | 14 | 54 | 27.40975845 | -37 | 47 | 33.1449603 | . 00000420 | . 0000701 | -0.0009 | 48110.1 | 56772.5 | 287 |  | 0.45 | 3.0 |
| 1452+301 | 1452+301 | 3440 | 14 | 54 | 32.29790551 | +29 | 55 | 58.0566120 | . 00002524 | . 0008500 | 0.0685 | 53561.1 | 55371.3 | 2 |  |  |  |
| 1451-400 | 1451-400 | 889 | 14 | 54 | 32.91235685 | -40 | 12 | 32.5143182 | . 00000730 | . 0001396 | 0.0377 | 49330.2 | 56574.2 | 57 |  | 0.20 |  |
| 1451-248 | 1451-248 | 3441 | 14 | 54 | 46.69901749 | -25 | 05 | 12.4918331 | . 00013366 | . 0052643 | -0.6177 | 50632.1 | 50688.0 | 2 |  |  |  |
| 1452-168 | 1452-168 | 3442 | 14 | 55 | 2.81065603 | -17 | 00 | 13.9534379 | . 000009985 | . 0024568 | 0.0798 | 50632.1 | 50632.2 | 1 |  |  |  |
| 1453+217 | $1453+217$ | 1901 | 14 | 55 | 31.84631811 | +21 | 31 | 39.1757178 | . 00001915 | . 0004738 | 0.0349 | 53125.2 | 53125.3 | 1 |  |  |  |
| 1454+447 | 1454+447 | 3443 | 14 | 55 | 54.13577205 | +44 | 31 | 37.6549632 | . 00005502 | . 0009168 | -0.2734 | 50305.9 | 50306.1 | 1 |  |  |  |
| 1454+510 | 1454+510 | 3444 | 14 | 56 | 8.11974046 | +50 | 48 | 36.3003414 | . 00022021 | . 0015951 | 0.3953 | 49576.1 | 50306.2 | 2 |  |  |  |
| 1454-354 | 1454-354 | 1902 | 14 | 57 | 26.71170955 | -35 | 39 | 9.9715016 | . 00001209 | . 0002163 | 0.1018 | 53134.3 | 55545.0 | 14 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | $\begin{gathered} \hline \begin{array}{c} \text { Observation Epoch } \\ \text { MJD } \end{array} \\ \hline \end{gathered}$ |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1455+080 | $1455+080$ | 3445 | 14 | 57 | 38.12870719 | +07 | 49 | 54.7150316 | . 00001995 | . 0005795 | -0.0424 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1455+247 | $1455+247$ | 1903 | 14 | 57 | 43.42526568 | +24 | 35 | 7.7233697 | . 00033839 | . 0087442 | 0.0608 | 53340.9 | 53341.6 | 1 |  |  |  |
| 1455+098 | 1455+098 | 1904 | 14 | 57 | 52.53165977 | +09 | 38 | 16.5486775 | . 00017330 | . 0039351 | -0.4330 | 53572.1 | 53572.1 | 1 |  |  |  |
| 1456+375 | 1456+375 | 3446 | 14 | 58 | 44.79443237 | +37 | 20 | 21.6229213 | . 00002785 | . 0006429 | -0.2644 | 50242.2 | 50242.3 | 1 |  |  |  |
| 1456+044 | 1456+044 | 1112 | 14 | 58 | 59.35620912 | +04 | 16 | 13.8204979 | . 00000469 | . 0000874 | -0.0542 | 49914.0 | 56758.8 | 78 | 0.34 | 0.37 |  |
| 1458+718 | 3C 309.1 | 426 | 14 | 59 | 7.58392410 | +71 | 40 | 19.8664458 | . 00000795 | . 0000641 | -0.0707 | 49268.0 | 56751.7 | 32 | 0.21 |  | 4.0 |
| 1456-367 | 1456-367 | 3447 | 14 | 59 | 15.76376192 | -36 | 55 | 47.9382261 | . 00006586 | . 0019806 | -0.3137 | 52306.6 | 52409.3 | 2 |  |  |  |
| 1457+449 | 1457+449 | 1905 | 14 | 59 | 35.45807433 | +44 | 42 | 7.9195291 | . 00002572 | . 0005864 | 0.2898 | 53560.1 | 53560.1 | 1 |  |  |  |
| 1458+088 | 1458+088 | 3448 | 15 | 00 | 34.00377761 | +08 | 39 | 41.8058178 | . 00010522 | . 0025779 | 0.1822 | 54112.7 | 55966.6 | 2 |  |  |  |
| 1459+480 | 1459+480 | 890 | 15 | 00 | 48.65421793 | +47 | 51 | 15.5381907 | . 00000486 | . 0000671 | -0.0176 | 49252.9 | 56776.5 | 64 | 0.23 | 0.15 | 2.6 |
| 1457-237 | 1457-237 | 1906 | 15 | 00 | 51.88927488 | -23 | 58 | 20.1906767 | . 00010256 | . 0061604 | -0.2645 | 53572.1 | 53572.1 | 1 |  |  |  |
| 1458-391 | 1458-391 | 3449 | 15 | 01 | 34.75785554 | -39 | 18 | 39.4397367 | . 00011864 | . 0036248 | 0.8161 | 52306.6 | 52409.3 | 2 |  |  |  |
| 1459-149 | 1459-149 | 1907 | 15 | 02 | 25.01743587 | -15 | 08 | 52.5193458 | . 00003514 | . 0013114 | -0.2575 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1500+094 | 1500+094 | 3450 | 15 | 03 | 0.89951570 | +09 | 17 | 58.9830543 | . 00003150 | . 0006347 | 0.2152 | 54087.6 | 54087.7 | 1 |  |  |  |
| 1500+045 | 1500+045 | 1908 | 15 | 03 | 28.88772023 | +04 | 19 | 48.9912541 | . 00002073 | . 0007134 | -0.5060 | 53561.1 | 53561.2 | 1 |  |  |  |
| 1502+330 | 1502+330 | 3451 | 15 | 04 | 7.52536772 | +32 | 49 | 21.1825432 | . 00006593 | . 0010209 | 0.1605 | 50219.2 | 50219.3 | 1 |  |  |  |
| 1502+106 | OR 103 | 428 | 15 | 04 | 24.97978115 | +10 | 29 | 39.1985506 | . 00000353 | . 0000581 | -0.2167 | 43809.0 | 56754.2 | 519 | 0.95 | 0.89 | 2.9 |
| 1502+291 | 1502+291 | 3452 | 15 | 04 | 26.69653922 | +28 | 54 | 30.5424353 | . 00003592 | . 0010898 | 0.1634 | 50219.2 | 50219.3 | 1 |  |  |  |
| 1501-343 | 1501-343 | 1909 | 15 | 05 | 2.37034490 | -34 | 32 | 56.8201785 | . 00001563 | . 0004230 | -0.1956 | 54818.6 | 54818.7 | 1 |  |  |  |
| 1502+036 | P 1502+036 | 429 | 15 | 05 | 6.47715506 | +03 | 26 | 30.8125708 | . 00000360 | . 0000575 | -0.0417 | 49914.0 | 56772.7 | 175 | 0.47 | 0.50 | 1.7 |
| 1503-091 | 1503-091 | 3453 | 15 | 06 | 3.03497390 | -09 | 19 | 12.0548317 | . 00014779 | . 0038549 | 0.2034 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1504+377 | 1504+377 | 891 | 15 | 06 | 9.52996555 | +37 | 30 | 51.1324827 | . 00000433 | . 0000676 | -0.0205 | 47940.7 | 56770.4 | 119 | 0.32 | 0.19 | 2.0 |
| 1510+835 | 1510+835 | 3454 | 15 | 06 | 24.71427252 | +83 | 19 | 28.0370896 | . 00059753 | . 0008491 | -0.3758 | 50688.2 | 50688.3 | , |  |  |  |
| 1505+497 | 1505+497 | 3455 | 15 | 06 | 44.11436406 | +49 | 33 | 55.8039698 | . 00003711 | . 0005342 | -0.5460 | 50306.1 | 50306.2 | 1 |  |  |  |
| 1505+428 | 1505+428 | 1236 | 15 | 06 | 53.04185918 | +42 | 39 | 23.0353691 | . 00000975 | . 0001741 | -0.0594 | 50242.2 | 53946.8 | 8 | 0.27 | 0.17 | 3.4 |
| 1504-166 | P 1504-167 | 431 | 15 | 07 | 4.78695776 | -16 | 52 | 30.2672214 | . 00000436 | . 0000787 | -0.3640 | 45154.0 | 56638.3 | 159 | 0.58 | 0.52 | 3.5 |
| 1505+514 | 1505+514 | 3456 | 15 | 07 | 11.61558910 | +51 | 17 | 16.8629338 | . 00003825 | . 0005129 | -0.0625 | 49576.1 | 54112.7 | 3 |  |  |  |
| 1504+127 | 1504+127 | 1910 | 15 | 07 | 21.75810898 | +12 | 36 | 29.0759630 | . 00002439 | . 0007675 | -0.2891 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1505+044 | 1505+044 | 3457 | 15 | 07 | 59.73243389 | +04 | 15 | 11.9853497 | . 00001243 | . 0004237 | -0.1250 | 52306.5 | 52306.6 | 1 |  |  |  |
| 1505-156 | 1505-156 | 1911 | 15 | 08 | 35.70156765 | -15 | 48 | 31.5319946 | . 00001487 | . 0005649 | -0.3722 | 53561.1 | 53561.2 | 1 |  | 0.07 |  |
| 1505-496 | 1505-496 | 1113 | 15 | 08 | 38.94457079 | -49 | 53 | 2.3112136 | . 00041356 | . 0025325 | -0.5562 | 52676.6 | 53165.6 | 4 |  |  |  |
| 1505-304 | 1505-304 | 1912 | 15 | 08 | 52.99313262 | -30 | 36 | 29.4301843 | . 00007795 | . 0021889 | -0.8159 | 53125.3 | 55784.4 | 2 |  |  |  |
| 1506+163 | 1506+163 | 1913 | 15 | 09 | 10.11183457 | +16 | 11 | 27.7356055 | . 00002168 | . 0007696 | -0.4182 | 53125.2 | 53125.3 | 1 |  |  |  |
| 1506-074 | 1506-074 | 1914 | 15 | 09 | 20.55344875 | -07 | 35 | 48.1772728 | . 00008216 | . 0016613 | 0.3562 | 53572.1 | 53572.1 | 1 |  |  |  |
| 1508+572 | 1508+572 | 892 | 15 | 10 | 2.92236806 | +57 | 02 | 43.3760689 | . 00000596 | . 0000706 | 0.1651 | 49576.1 | 56772.5 | 53 | 0.21 |  |  |
| 1508-111 | 1508-111 | 4132 | 15 | 10 | 44.43370867 | -11 | 21 | 39.7040039 | . 00005301 | . 0018899 | -0.4753 | 55776.0 | 55776.1 | 1 |  |  |  |
| 1508-055 | 1508-055 | 893 | 15 | 10 | 53.59142133 | -05 | 43 | 7.4175864 | . 00000455 | . 0000835 | -0.0451 | 50575.3 | 55313.7 | 21 | 0.33 | 0.40 | 3.0 |
| 1508+223 | 1508+223 | 3458 | 15 | 11 | 5.58493166 | +22 | 08 | 6.6377206 | . 03128306 | . 3038564 | -0.9944 | 54087.7 | 54087.7 | 1 |  |  |  |
| 1509+054 | 1509+054 | 3459 | 15 | 11 | 41.26654570 | +05 | 18 | 9.2600713 | . 00001235 | . 0003563 | -0.1711 | 52306.5 | 52306.6 | 1 |  |  |  |
| 1508-325 | 1508-325 | 1915 | 15 | 11 | 50.40275758 | -32 | 42 | 57.7901319 | . 00010873 | . 0043821 | -0.0814 | 54943.3 | 54943.4 | 1 |  |  |  |
| 1509+022 | 1509+022 | 1282 | 15 | 12 | 15.74175696 | +02 | 03 | 16.9785611 | . 00003642 | . 0009592 | -0.8159 | 53768.5 | 53768.6 | 1 |  |  |  |
| 1510-089 | P 1510-08 | 433 | 15 | 12 | 50.53292914 | -09 | 05 | 59.8298329 | . 00000374 | . 0000660 | -0.2752 | 43808.9 | 56782.2 | 394 | 1.29 | 1.47 | 2.9 |
| 1508-656 | 1508-656 | 3460 | 15 | 12 | 51.55085547 | -65 | 53 | 2.2234316 | . 00110525 | . 0041393 | 0.2863 | 52887.1 | 53138.7 | 3 |  |  |  |
| 1510-319 | 1510-319 | 3461 | 15 | 13 | 21.77727575 | -32 | 09 | 32.6958988 | . 00003265 | . 0009676 | -0.2541 | 55482.8 | 55482.9 | 1 |  |  |  |
| 1510-421 | 1510-421 | 1916 | 15 | 13 | 30.62277582 | -42 | 21 | 56.0484841 | . 00038536 | . 0207851 | 0.1481 | 55042.0 | 55042.1 | 1 |  |  |  |
| 1511+238 | 1511+238 | 3462 | 15 | 13 | 40.18558817 | +23 | 38 | 35.2003245 | . 00006017 | . 0008225 | -0.2125 | 50084.6 | 50155.6 | 2 |  |  |  |
| 1511-100 | P 1511-100 | 434 | 15 | 13 | 44.89342217 | -10 | 12 | 0.2648067 | . 00000462 | . 0000911 | -0.3621 | 47254.5 | 56706.7 | 65 | 0.59 | 0.65 | 2.6 |
| 1511-210 | P 1511-210 | 3463 | 15 | 13 | 56.97012422 | -21 | 14 | 57.5070986 | . 00000951 | . 0003269 | -0.0766 | 50632.1 | 50688.0 | 2 | 0.22 | 0.23 |  |
| 1512+030 | 1512+030 | 1917 | 15 | 14 | 34.73446379 | +02 | 52 | 48.5080364 | . 00002237 | . 0006652 | 0.1740 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1511-476 | 1511-476 | 1114 | 15 | 14 | 40.02457032 | -47 | 48 | 29.8579211 | . 00001579 | . 0003170 | 0.3892 | 52676.6 | 54706.6 | 12 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | Observation Epoch MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \text { Source Flux } \\ & \text { (Jy) } \\ & \hline \end{aligned}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1511-360 | 1511-360 | 3464 | 15 | 14 | 40.87384039 | -36 | 17 | 4.8848813 | . 00012654 | . 0045813 | -0.4916 | 55167.8 | 55168.6 | 1 |  |  |  |
| 1511-558 | 1511-558 | 4095 | 15 | 15 | 12.67274871 | -55 | 59 | 32.8378794 | . 00014153 | . 0009540 | -0.0944 | 56007.1 | 56439.8 | 3 |  |  |  |
| 1514+004 | 1514+004 | 1283 | 15 | 16 | 40.21905785 | +00 | 15 | 1.9088756 | . 00000645 | . 0001974 | -0.2896 | 49914.0 | 53945.9 | 6 | 0.49 | 0.51 |  |
| 1514+197 | GC 1514+19 | 437 | 15 | 16 | 56.79616389 | +19 | 32 | 12.9920958 | . 00000409 | . 0000711 | -0.0624 | 50084.6 | 56709.4 | 71 | 0.62 | 0.64 | 2.0 |
| 1514-241 | P 1514-24 | 438 | 15 | 17 | 41.81313102 | -24 | 22 | 19.4761235 | . 00000358 | . 0000641 | -0.2173 | 47254.5 | 56638.3 | 303 | 0.71 | 0.50 | 3.5 |
| 1517-116 | 1517-116 | 1918 | 15 | 19 | 44.78403390 | -11 | 51 | 44.5277625 | . 00002104 | . 0007650 | 0.1471 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1518+162 | 1518+162 | 4096 | 15 | 20 | 37.06113155 | +16 | 01 | 26.6310566 | . 00006724 | . 0012180 | -0.2963 | 56463.1 | 56463.3 | 1 |  |  |  |
| 1522+791 | 1522+791 | 3465 | 15 | 21 | 2.79780184 | +78 | 58 | 30.2603971 | . 00035840 | . 0006324 | -0.5355 | 49827.3 | 50688.3 | 2 |  |  |  |
| 1518+046 | 1518+046 | 3466 | 15 | 21 | 14.41937495 | +04 | 30 | 21.6603926 | . 00023831 | . 0053059 | 0.5231 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1519+181 | 1519+181 | 3467 | 15 | 21 | 17.57899338 | +17 | 56 | 1.0688047 | . 00007873 | . 0012854 | -0.2698 | 54112.6 | 56463.3 | 2 |  |  |  |
| 1518+045 | 1518+045 | 1115 | 15 | 21 | 22.54357614 | +04 | 20 | 30.1327203 | . 00020994 | . 0071276 | 0.9214 | 49914.0 | 49914.1 | 1 |  |  |  |
| 1520+437 | 1520+437 | 1919 | 15 | 21 | 49.61387549 | +43 | 36 | 39.2682449 | . 00000373 | . 0000561 | 0.0325 | 50242.2 | 56749.6 | 176 |  |  |  |
| 1520+319 | 1520+319 | 1920 | 15 | 22 | 9.99172878 | +31 | 44 | 14.3819291 | . 00000374 | . 0000567 | 0.0273 | 50219.2 | 56776.1 | 155 |  |  |  |
| 1519-294 | 1519-294 | 1921 | 15 | 22 | 25.48633975 | -29 | 36 | 25.2308694 | . 00000901 | . 0001324 | -0.0289 | 50687.9 | 56769.8 | 35 |  |  |  |
| 1519-273 | P 1519-273 | 440 | 15 | 22 | 37.67598839 | -27 | 30 | 10.7855796 | . 00000352 | . 0000539 | -0.0267 | 44200.9 | 56776.7 | 779 |  | 1.09 | 1.8 |
| 1521-300 | 1521-300 | 1922 | 15 | 24 | 33.41450751 | -30 | 12 | 21.3399865 | . 00014683 | . 0048030 | 0.9261 | 53134.3 | 53134.3 | 1 |  |  |  |
| 1522+155 | 1522+155 | 1116 | 15 | 24 | 41.61148095 | +15 | 21 | 21.0505345 | . 00000893 | . 0002634 | -0.1791 | 50084.6 | 53333.2 | 48 |  |  |  |
| 1522+113 | 1522+113 | 3468 | 15 | 25 | 2.93403808 | +11 | 07 | 44.0604988 | . 00013231 | . 0036941 | -0.1830 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1523-042 | 1523-042 | 1923 | 15 | 26 | 15.01470455 | -04 | 25 | 10.0582025 | . 00008008 | . 0019358 | 0.5280 | 53561.1 | 53561.2 | 1 |  |  |  |
| 1526+670 | J1526+6650 | 1117 | 15 | 26 | 42.87420892 | +66 | 50 | 54.6417671 | . 00004393 | . 0002802 | 0.4973 | 49827.2 | 54643.4 | 5 | 0.19 |  |  |
| 1524-136 | P 1524-13 | 3469 | 15 | 26 | 59.44073630 | -13 | 51 | 0.1650511 | . 00017442 | . 0042766 | -0.2239 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1525+314 | 1525+314 | 3470 | 15 | 27 | 18.73703987 | +31 | 15 | 24.3862259 | . 00006947 | . 0010097 | 0.1379 | 50219.2 | 50219.3 | 1 |  |  |  |
| 1526+384 | 1526+384 | 4097 | 15 | 28 | 37.00614752 | +38 | 16 | 5.9026190 | . 00006265 | . 0009310 | -0.2477 | 56498.0 | 56498.2 | 1 |  |  |  |
| 1526-189 | 1526-189 | 3471 | 15 | 29 | 40.14153286 | -19 | 04 | 54.5847642 | . 00114797 | . 0172894 | 0.3287 | 53152.3 | 53152.3 | 1 |  |  |  |
| 1528+381 | 1528+381 | 3472 | 15 | 30 | 16.25225745 | +37 | 58 | 31.1666612 | . 00008402 | . 0016230 | -0.1831 | 54112.5 | 54112.7 | 1 |  |  |  |
| 1531+722 | 1531+722 | 3473 | 15 | 31 | 33.57840404 | +72 | 06 | 41.2271833 | . 00011762 | . 0004927 | 0.4172 | 49827.2 | 49827.4 | 1 |  |  |  |
| 1529+346 | 1529+346 | 3474 | 15 | 31 | 39.14597624 | +34 | 30 | 3.8209761 | . 00035796 | . 0030817 | 0.0173 | 53523.2 | 53523.2 | 1 |  |  |  |
| 1529-271 | 1529-271 | 1924 | 15 | 32 | 2.57168445 | -27 | 16 | 37.9191242 | . 00003093 | . 0009973 | -0.5037 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1532+680 | 1532+680 | 3475 | 15 | 32 | 43.34185987 | +67 | 55 | 14.0082127 | . 00037143 | . 0029197 | 0.8297 | 49827.4 | 54087.8 | 2 |  |  |  |
| 1529-131 | 1529-131 | 1925 | 15 | 32 | 45.37472524 | -13 | 19 | 10.0866786 | . 00002237 | . 0005963 | -0.0533 | 53572.1 | 53572.2 | 1 |  |  |  |
| 1530+239 | 1530+239 | 1926 | 15 | 32 | 46.34519074 | +23 | 44 | 5.2681429 | . 00001162 | . 0002694 | 0.0391 | 53125.2 | 53125.4 | 1 |  |  |  |
| 1530-041 | 1530-041 | 1927 | 15 | 33 | 14.20533633 | -04 | 21 | 16.6290305 | . 00004203 | . 0015188 | 0.0553 | 53523.2 | 53523.3 | 1 |  |  |  |
| 1531-379 | 1531-379 | 3476 | 15 | 34 | 21.62258243 | -38 | 05 | 6.2779898 | . 00898541 | . 3036621 | 0.9934 | 53153.2 | 53153.2 | 1 |  |  |  |
| 1531-225 | 1531-225 | 3477 | 15 | 34 | 22.80136444 | -22 | 43 | 57.6261212 | . 00011068 | . 0030444 | 0.7585 | 53153.2 | 56638.7 | 2 |  |  |  |
| 1531-221 | 1531-221 | 1928 | 15 | 34 | 23.52794321 | -22 | 18 | 54.3406750 | . 00009078 | . 0030189 | -0.3633 | 53552.1 | 53561.2 | 2 |  |  |  |
| 1532+016 | P 1532+01 | 442 | 15 | 34 | 52.45367760 | +01 | 31 | 4.2064619 | . 00000618 | . 0001172 | -0.1507 | 47253.5 | 56638.2 | 57 | 0.23 | 0.46 | 4.1 |
| 1531-352 | 1531-352 | 3478 | 15 | 34 | 54.68748715 | -35 | 26 | 23.4969075 | . 00001915 | . 0007000 | 0.3143 | 54489.6 | 54489.6 | 1 |  |  |  |
| 1533+487 | 1533+487 | 3479 | 15 | 35 | 14.65337436 | +48 | 36 | 59.6949758 | . 00019537 | . 0011648 | -0.4571 | 50306.1 | 50306.2 | 1 |  |  |  |
| 1533+200 | 1533+200 | 1929 | 15 | 35 | 16.53386996 | +19 | 54 | 50.9050197 | . 00014099 | . 0021552 | 0.0531 | 53134.2 | 53134.3 | 1 |  |  |  |
| 1534+501 | 1534+501 | 3480 | 15 | 35 | 52.03896687 | +49 | 57 | 39.0795487 | . 00005788 | . 0008193 | -0.6441 | 50306.1 | 50306.2 | 1 |  |  |  |
| 1541+835 | 1541+835 | 1930 | 15 | 35 | 56.12670921 | +83 | 26 | 15.2470922 | . 00040798 | . 0007948 | -0.6427 | 53560.1 | 53560.3 | 1 |  |  |  |
| 1534+387 | 1534+387 | 1118 | 15 | 36 | 13.84617772 | +38 | 33 | 28.6057518 | . 00002447 | . 0004662 | -0.1076 | 53523.2 | 53523.3 | 1 |  |  |  |
| 1533-316 | 1533-316 | 3481 | 15 | 36 | 54.49811667 | -31 | 51 | 15.1289589 | . 00007169 | . 0025982 | -0.8197 | 53125.3 | 53503.3 | 2 |  |  |  |
| 1534-152 | 1534-152 | 1931 | 15 | 37 | 41.57312981 | -15 | 27 | 12.5005463 | . 00001217 | . 0004338 | -0.4456 | 53523.2 | 53560.2 | 2 | 0.16 | 0.16 |  |
| 1533-652 | 1533-653 | 3482 | 15 | 38 | 11.91526452 | -65 | 25 | 51.1951231 | . 00011742 | . 0014347 | 0.6888 | 54723.4 | 54723.8 | 1 |  |  |  |
| 1535+004 | P 1535+004 | 1932 | 15 | 38 | 15.95309575 | +00 | 19 | 5.3242717 | . 00002417 | . 0007901 | -0.2538 | 49914.0 | 54482.7 | 2 |  |  |  |
| 1535-036 | 1535-036 | 3483 | 15 | 38 | 20.35160747 | -03 | 46 | 14.3124531 | . 00028332 | . 0054923 | 0.7025 | 53152.3 | 53153.2 | 1 |  |  |  |
| 1536+057 | 1536+057 | 1933 | 15 | 39 | 5.20651949 | +05 | 34 | 38.4378176 | . 00029363 | . 0058985 | 0.7925 | 53561.1 | 53561.2 | 1 |  |  |  |
| 1536+046 | 1536+046 | 1934 | 15 | 39 | 10.10496561 | +04 | 30 | 51.2298698 | . 00001547 | . 0004644 | -0.0951 | 53125.3 | 53125.4 | 1 |  |  |  |
| 1537+312 | 1537+312 | 1935 | 15 | 39 | 16.17438558 | +31 | 04 | 7.6742278 | . 00004616 | . 0007143 | -0.2219 | 53572.0 | 53572.2 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1537+162 | 1537+162 | 3484 | 15 | 39 | 25.09905424 | +16 | 04 | 0.3401626 | . 00002371 | . 0006012 | 0.0423 | 50084.6 | 50155.6 | 2 |  |  |  |
| 1537+279 | 1537+279 | 1119 | 15 | 39 | 39.13710681 | +27 | 44 | 38.2143319 | . 00003793 | . 0011624 | -0.2990 | 50219.2 | 50219.3 | 1 |  |  |  |
| 1537-082 | 1537-082 | 1936 | 15 | 40 | 3.15240152 | -08 | 23 | 25.5041308 | . 00016029 | . 0030822 | 0.0942 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1537-389 | 1537-389 | 3485 | 15 | 40 | 34.55095887 | -39 | 06 | 17.7359943 | . 00019891 | . 0086622 | -0.6627 | 53552.2 | 56162.1 | 2 |  |  |  |
| 1538+149 | GC 1538+14 | 444 | 15 | 40 | 49.49151529 | +14 | 47 | 45.8847253 | . 00000391 | . 0000651 | -0.1407 | 48102.9 | 56782.1 | 140 | 0.56 | 0.70 | 2.4 |
| 1539-111 | 1539-111 | 1937 | 15 | 42 | 0.03426583 | -11 | 18 | 52.9042754 | . 00009735 | . 0023393 | -0.0206 | 53561.1 | 53561.2 | 1 |  |  |  |
| 1539-093 | 1539-093 | 3486 | 15 | 42 | 7.46471561 | -09 | 27 | 43.2461202 | . 03928302 | . 4002447 | -0.9842 | 50575.4 | 50575.4 | 1 |  |  |  |
| 1542+616 | 1542+616 | 3487 | 15 | 42 | 56.94370513 | +61 | 29 | 55.3455557 | . 00036507 | . 0018917 | -0.7700 | 53503.2 | 53503.4 | 1 |  |  |  |
| 1540-077 | P 1540-077 | 3488 | 15 | 43 | 1.68720085 | -07 | 57 | 6.6339717 | . 00004572 | . 0008407 | 0.5993 | 50575.3 | 56547.1 | 5 |  |  |  |
| 1541+050 | 1541+050 | 1938 | 15 | 43 | 33.92576403 | +04 | 52 | 19.3194495 | . 00002655 | . 0009327 | 0.1608 | 49914.1 | 54314.2 | 2 |  |  |  |
| 1542+328 | 1542+328 | 3489 | 15 | 44 | 5.65662488 | +32 | 40 | 48.3207054 | . 00002846 | . 0005980 | -0.5236 | 50219.3 | 50219.4 | 1 |  |  |  |
| 1541-230 | 1541-230 | 1939 | 15 | 44 | 14.17794405 | -23 | 12 | 1.3489293 | . 00016247 | . 0054590 | 0.8472 | 53572.1 | 53572.1 | 1 |  |  |  |
| 1542+042 | 1542+042 | 3490 | 15 | 44 | 59.42731399 | +04 | 07 | 46.3563753 | . 00008666 | . 0022089 | -0.2730 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1543+517 | $1543+517$ | 3491 | 15 | 45 | 2.82369377 | +51 | 35 | 0.8730762 | . 00001742 | . 0003265 | -0.2899 | 49576.1 | 50306.2 | 2 |  |  |  |
| 1543+480 | 1543+480 | 3492 | 15 | 45 | 8.52982817 | +47 | 51 | 54.6641476 | . 00003884 | . 0006112 | -0.4305 | 50306.1 | 50306.2 | 1 |  |  |  |
| 1544+541 | 1544+541 | 1940 | 15 | 45 | 43.82575579 | +54 | 00 | 42.7600643 | . 00009309 | . 0014104 | -0.0889 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1543+005 | DW 1543+00 | 3493 | 15 | 46 | 9.53146232 | +00 | 26 | 24.6139302 | . 00001526 | . 0004845 | 0.0054 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1544-095 | 1544-095 | 1941 | 15 | 47 | 41.28569886 | -09 | 43 | 33.0009040 | . 00007136 | . 0018656 | -0.3321 | 53561.1 | 53561.2 | 1 |  |  |  |
| 1545+210 | 1545+210 | 4098 | 15 | 47 | 43.53782789 | +20 | 52 | 16.6162303 | . 00008066 | . 0019472 | 0.3482 | 56301.8 | 56302.5 | 1 |  |  |  |
| 1545-120 | 1545-120 | 3494 | 15 | 48 | 12.93938553 | -12 | 13 | 31.3216033 | . 00014476 | . 0025536 | 0.6632 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1547+507 | 1547+507 | 894 | 15 | 49 | 17.46854919 | +50 | 38 | 5.7882919 | . 00000537 | . 0000753 | 0.0155 | 49576.1 | 56052.7 | 30 | 0.59 |  | 3.3 |
| 1546+027 | P 1546+027 | 446 | 15 | 49 | 29.43684436 | +02 | 37 | 1.1632678 | . 00000344 | . 0000530 | -0.0299 | 48353.3 | 56770.7 | 288 | 1.26 | 0.89 | 2.7 |
| 1547-054 | 1547-054 | 1942 | 15 | 50 | 29.84746971 | -05 | 38 | 11.0171347 | . 00010796 | . 0021319 | 0.2655 | 53572.1 | 53572.2 | 1 |  |  |  |
| 1548+056 | DW 1548+05 | 448 | 15 | 50 | 35.26924146 | +05 | 27 | 10.4484215 | . 00000364 | . 0000619 | -0.1403 | 45888.3 | 56679.6 | 288 | 1.43 | 0.66 | 2.9 |
| 1548+114 | 1548+114 | 1943 | 15 | 50 | 43.59477613 | +11 | 20 | 47.4554314 | . 00002475 | . 0008226 | -0.5482 | 53134.2 | 53134.4 | 1 |  |  |  |
| 1540-828 | P 1540-82 | 895 | 15 | 50 | 59.14237560 | -82 | 58 | 6.8576373 | . 00581834 | . 0196432 | -0.2918 | 49329.2 | 49329.4 | 1 |  |  |  |
| 1548-177 | 1548-177 | 1944 | 15 | 51 | 14.59828484 | -17 | 55 | 2.3301350 | . 00016799 | . 0051104 | -0.3527 | 53152.3 | 53153.2 | 1 |  |  |  |
| 1550+582 | 1550+582 | 3495 | 15 | 51 | 58.20787155 | +58 | 06 | 44.4537279 | . 00009798 | . 0015263 | -0.1986 | 49576.1 | 49577.0 | 1 |  |  |  |
| 1549+089 | 1549+089 | 1945 | 15 | 52 | 3.26162339 | +08 | 50 | 47.3353460 | . 00003477 | . 0009460 | -0.3484 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1549-242 | 1549-242 | 4099 | 15 | 52 | 5.52191998 | -24 | 25 | 20.7923867 | . 00003441 | . 0011901 | 0.0125 | 56393.3 | 56393.4 | 1 |  |  |  |
| 1550-242 | 1550-242 | 3496 | 15 | 53 | 31.62781252 | -24 | 22 | 6.0360066 | . 00000863 | . 0002051 | -0.0952 | 50632.1 | 56498.1 | 22 | 0.08 | 0.29 |  |
| 1551+130 | 1551+130 | 3497 | 15 | 53 | 32.69787394 | +12 | 56 | 51.7163982 | . 00002125 | . 0007002 | -0.0088 | 50084.7 | 50155.6 | 2 |  |  |  |
| 1550-269 | P 1550-269 | 3498 | 15 | 54 | 2.46977824 | -27 | 04 | 40.2335302 | . 00001853 | . 0004629 | 0.1816 | 50632.1 | 54664.7 | 3 |  |  |  |
| 1551-416 | 1551-416 | 4142 | 15 | 55 | 18.11799889 | -41 | 50 | 31.7030881 | . 00012789 | . 0070842 | 0.6472 | 55616.5 | 55616.5 | 1 |  |  |  |
| 1552-033 | 1552-033 | 3499 | 15 | 55 | 30.74815114 | -03 | 26 | 49.5196761 | . 00001669 | . 0005465 | 0.0211 | 50575.3 | 50575.4 | 1 |  |  |  |
| 1553+113 | 1553+113 | 3500 | 15 | 55 | 43.04401248 | +11 | 11 | 24.3655993 | . 00002384 | . 0007149 | -0.0263 | 49914.0 | 49914.2 | 1 |  |  |  |
| 1556+744 | 1556+744 | 3501 | 15 | 56 | 3.00463814 | +74 | 20 | 57.9906827 | . 01311614 | . 1389930 | -0.9872 | 49827.3 | 49827.3 | 1 |  |  |  |
| 1554+185 | 1554+185 | 3502 | 15 | 56 | 54.81663255 | +18 | 25 | 13.5741344 | . 00023821 | . 0032272 | 0.1344 | 53572.1 | 53572.2 | 1 |  |  |  |
| 1549-790 | P 1549-79 | 896 | 15 | 56 | 58.86980709 | -79 | 14 | 4.2815883 | . 00004843 | . 0001466 | 0.3149 | 47625.8 | 55784.5 | 26 |  |  |  |
| 1555+001 | DW 1555+00 | 452 | 15 | 57 | 51.43397036 | -00 | 01 | 50.4137152 | . 00000369 | . 0000643 | -0.3012 | 43808.9 | 56745.3 | 402 | 0.49 | 0.51 | 1.8 |
| 1555+030 | 1555+030 | 1946 | 15 | 57 | 52.76340479 | +02 | 53 | 27.8823949 | . 00011090 | . 0044661 | -0.4723 | 53560.2 | 53560.2 | 1 |  |  |  |
| 1555-140 | P 1555-140 | 453 | 15 | 58 | 21.94809304 | -14 | 09 | 59.0518914 | . 00002835 | . 0005459 | -0.5498 | 45474.5 | 51168.7 | 13 |  |  | 4.0 |
| 1557+565 | 1557+565 | 1947 | 15 | 58 | 48.28889589 | +56 | 25 | 14.1191801 | . 00003816 | . 0003645 | 0.0136 | 53125.2 | 53125.4 | 1 |  |  |  |
| 1554-643 | 1554-643 | 1284 | 15 | 58 | 50.28432550 | -64 | 32 | 29.6374512 | . 00002166 | . 0002001 | 0.1693 | 52860.5 | 56504.7 | 17 |  |  |  |
| 1558+595 | 1558+595 | 3503 | 15 | 59 | 1.70197767 | +59 | 24 | 21.8347184 | . 00006950 | . 0006181 | 0.1558 | 53561.1 | 55657.6 | 2 |  |  |  |
| 1557+032 | 1557+032 | 897 | 15 | 59 | 30.97261400 | +03 | 04 | 48.2568521 | . 00000460 | . 0000867 | -0.0586 | 49736.4 | 56699.3 | 46 |  |  |  |
| 1556-245 | 1556-245 | 1948 | 15 | 59 | 41.40908012 | -24 | 42 | 38.8322607 | . 00001047 | . 0001465 | -0.2143 | 50632.1 | 55728.4 | 18 |  |  |  |
| 1557-053 | 1557-053 | 3504 | 15 | 59 | 49.64225371 | -05 | 31 | 22.5665683 | . 00001573 | . 0004827 | -0.0215 | 53572.1 | 55916.6 | 2 |  |  |  |
| 1558-072 | 1558-072 | 1949 | 16 | 00 | 56.47653217 | -07 | 22 | 5.2248643 | . 00006066 | . 0022414 | 0.7491 | 53152.3 | 53153.2 | 1 |  |  |  |
| 1600+432 | $1600+43 \mathrm{~A}$ | 3505 | 16 | 01 | 40.44388840 | +43 | 16 | 47.7567840 | . 00018580 | . 0046330 | 0.6082 | 50560.1 | 50560.3 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation EpochMJD |  | No. Obs. | $\begin{aligned} & \hline \hline \text { Source Flux } \\ & \text { (Jy) } \\ & \hline \end{aligned}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1600+431 | 1600+43B | 3506 | 16 | 01 | 40.51538827 | +43 | 16 | 46.4780223 | . 00277044 | . 0347823 | 0.9926 | 50560.3 | 50560.3 | 1 |  |  |  |
| 1559+140 | 1559+140 | 1950 | 16 | 01 | 54.53722652 | +13 | 57 | 10.7641123 | . 00010657 | . 0025760 | 0.0202 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1600+335 | B2 1600+33 | 455 | 16 | 02 | 7.26346105 | +33 | 26 | 53.0723598 | . 00000480 | . 0000838 | -0.1099 | 48102.9 | 56119.2 | 48 | 0.28 | 0.18 | 4.0 |
| 1600+244 | 1600+244 | 3507 | 16 | 02 | 13.83839461 | +24 | 18 | 37.7944637 | . 00006168 | . 0009905 | -0.1410 | 54087.7 | 54087.8 | 1 |  |  |  |
| 1600-294 | 1600-294 | 1951 | 16 | 03 | 16.57144220 | -29 | 33 | 55.4247692 | . 00001890 | . 0005815 | -0.0579 | 54559.4 | 54601.3 | 2 |  |  |  |
| 1603+699 | 1603+699 | 4100 | 16 | 03 | 18.62161535 | +69 | 45 | 57.4418052 | . 00018333 | . 0014590 | -0.6901 | 56301.9 | 56302.4 | 1 |  |  |  |
| 1600-099 | 1600-099 | 1952 | 16 | 03 | 18.77827284 | -10 | 07 | 21.2958909 | . 00002049 | . 0006929 | -0.5264 | 53152.3 | 53153.2 | 1 |  |  |  |
| 1601+173 | 1601+173 | 1285 | 16 | 03 | 32.08362682 | +17 | 11 | 55.3082252 | . 08220396 | . 7567606 | 0.9999 | 53928.4 | 54075.9 | 2 |  |  |  |
| 1601+160 | 1601+160 | 3508 | 16 | 03 | 38.06239325 | +15 | 54 | 2.3592217 | . 00002338 | . 0006158 | -0.0698 | 50155.4 | 56393.5 | 2 |  |  |  |
| 1601+112 | 1601+112 | 1953 | 16 | 03 | 41.93125488 | +11 | 05 | 48.6790574 | . 00000611 | . 0001136 | 0.2110 | 49914.1 | 56772.7 | 32 |  |  |  |
| 1600-489 | 1600-489 | 3509 | 16 | 03 | 50.68391919 | -49 | 04 | 5.5115063 | . 01306752 | . 0843894 | 0.9953 | 52676.7 | 52947.9 | 2 |  |  |  |
| 1602+576 | 1602+576 | 3510 | 16 | 03 | 55.93157027 | +57 | 30 | 54.4122643 | . 00018784 | . 0017706 | -0.6256 | 49576.1 | 49576.3 | 1 |  |  |  |
| 1601-222 | 1601-222 | 3511 | 16 | 04 | 1.47171711 | -22 | 23 | 40.9880322 | . 00003714 | . 0012560 | 0.5586 | 50632.1 | 50688.0 | 2 |  |  |  |
| 1600-445 | 1600-445 | 3512 | 16 | 04 | 31.02090459 | -44 | 41 | 31.9718736 | . 00011102 | . 0017365 | 0.8832 | 52675.9 | 54440.7 | 6 |  | 0.12 |  |
| 1603+573 | 1603+573 | 1237 | 16 | 04 | 37.35461296 | +57 | 14 | 36.6608375 | . 00002563 | . 0001983 | 0.1177 | 49576.1 | 53306.1 | 3 |  |  |  |
| 1602+195 | 1602+195 | 1954 | 16 | 04 | 49.99377587 | +19 | 26 | 20.9417206 | . 00005825 | . 0012265 | 0.1247 | 53561.1 | 53561.2 | 1 |  |  |  |
| 1602-115 | 1602-115 | 1955 | 16 | 05 | 17.53165301 | -11 | 39 | 26.8311814 | . 00000436 | . 0000915 | -0.0374 | 53552.1 | 56763.1 | 99 | 0.37 | 0.33 |  |
| 1603+301 | 1603+301 | 3513 | 16 | 05 | 33.04804806 | +30 | 01 | 29.7015869 | . 00004135 | . 0008168 | -0.6480 | 50219.3 | 50219.4 | 1 |  |  |  |
| 1604+554 | 1604+554 | 4101 | 16 | 06 | 7.61743289 | +55 | 21 | 35.4201046 | . 00090524 | . 0070469 | -0.3155 | 56266.9 | 56267.6 | 1 |  |  |  |
| 1604+315 | 1604+315 | 3514 | 16 | 06 | 8.51838449 | +31 | 24 | 46.4577214 | . 00001751 | . 0004100 | -0.4850 | 50219.3 | 50219.4 | 1 |  |  |  |
| 1604+183 | 1604+183A | 1956 | 16 | 06 | 16.02785333 | +18 | 14 | 59.8173055 | . 00003162 | . 0010800 | -0.6786 | 53572.1 | 53572.2 | 1 |  |  |  |
| 1605+542 | 1605+542 | 4102 | 16 | 06 | 23.56582004 | +54 | 05 | 55.7629897 | . 00025457 | . 0014329 | -0.4797 | 56266.9 | 56267.6 | 1 |  |  |  |
| 1604+274 | 1604+274 | 3515 | 16 | 06 | 58.30033565 | +27 | 17 | 5.5829609 | . 00003281 | . 0007722 | -0.7567 | 50219.3 | 50219.4 | 1 |  |  |  |
| 1604+159 | 1604+159 | 3516 | 16 | 07 | 6.43044254 | +15 | 51 | 34.4849749 | . 00001804 | . 0004801 | -0.0206 | 50084.6 | 50155.6 | 2 |  |  |  |
| 1604-333 | P 1604-333 | 457 | 16 | 07 | 34.76233801 | -33 | 31 | 8.9134964 | . 00000890 | . 0001109 | -0.6010 | 48393.3 | 56638.7 | 68 |  | 0.20 | 2.8 |
| 1605-162 | 1605-162 | 3517 | 16 | 08 | 7.02130994 | -16 | 25 | 0.0718971 | . 00012287 | . 0056392 | -0.2532 | 54087.7 | 54087.8 | 1 |  |  |  |
| 1607+563 | 1607+563 | 3518 | 16 | 08 | 20.75220465 | +56 | 13 | 56.3701762 | . 00024542 | . 0040551 | -0.8022 | 49576.1 | 49576.3 | 1 |  |  |  |
| $1606+403$ | $1606+403$ | 3519 | 16 | 08 | 22.15771708 | +40 | 12 | 17.8327718 | . 00003578 | . 0006118 | -0.4235 | 53503.3 | 53503.4 | 1 |  |  |  |
| 1606+106 | P 1606+10 | 458 | 16 | 08 | 46.20318619 | +10 | 29 | 7.7757317 | . 00000336 | . 0000510 | -0.0491 | 48102.9 | 56782.1 | 1555 | 0.51 | 0.60 | 2.5 |
| 1607+268 | CTD 93 | 459 | 16 | 09 | 13.32075948 | +26 | 41 | 29.0355441 | . 00002846 | . 0005311 | -0.0347 | 44090.9 | 53659.1 | 8 |  | 0.07 | 4.4 |
| 1606-219 | 1606-219 | 1957 | 16 | 09 | 34.93278042 | -22 | 05 | 46.6096268 | . 00021772 | . 0064050 | -0.4160 | 53561.2 | 53561.2 | 1 |  |  |  |
| 1606-056 | 1606-056 | 3520 | 16 | 09 | 38.74961893 | -05 | 47 | 24.5726286 | . 00008598 | . 0030633 | -0.5520 | 53560.2 | 56302.6 | 2 |  |  |  |
| 1606-398 | 1606-398 | 1121 | 16 | 10 | 21.87912853 | -39 | 58 | 58.3298381 | . 00001853 | . 0004082 | 0.0156 | 52306.6 | 54362.7 | 16 |  | 0.35 |  |
| 1608+243 | J1610+2414 | 1122 | 16 | 10 | 42.02677623 | +24 | 14 | 49.0116384 | . 00000546 | . 0000965 | -0.0798 | 50219.3 | 56749.5 | 45 |  |  |  |
| 1613+782 | 1613+782 | 4103 | 16 | 10 | 50.60475739 | +78 | 09 | 0.5418610 | . 00012373 | . 0002834 | 0.5904 | 56748.8 | 56749.3 | 1 |  |  |  |
| 1609+190 | 1609+190 | 3521 | 16 | 11 | 49.04754317 | +18 | 56 | 38.1069723 | . 00001459 | . 0003896 | -0.2025 | 50084.6 | 50155.6 | 2 |  |  |  |
| 1611+343 | DA 406 | 460 | 16 | 13 | 41.06424344 | +34 | 12 | 47.9089402 | . 00000336 | . 0000507 | -0.0586 | 43809.1 | 56775.1 | 1428 | 1.83 | 1.30 | 3.2 |
| 1613+216 | 1613+216 | 3522 | 16 | 15 | 31.09339289 | +21 | 30 | 11.0840316 | . 00053425 | . 0063627 | 0.7808 | 50084.6 | 50155.6 | 2 |  |  |  |
| 1614+466 | 1614+466 | 1958 | 16 | 16 | 3.76673222 | +46 | 32 | 25.2400139 | . 00002594 | . 0005381 | -0.0152 | 53560.1 | 53560.2 | 1 |  |  |  |
| 1611-710 | 1611-710 | 3523 | 16 | 16 | 30.64150626 | -71 | 08 | 31.4544498 | . 00003481 | . 0002009 | 0.3301 | 52887.1 | 56504.6 | 15 |  |  |  |
| 1614+051 | P 1614+051 | 461 | 16 | 16 | 37.55681259 | +04 | 59 | 32.7365006 | . 00000382 | . 0000690 | -0.2446 | 46659.3 | 56745.3 | 231 | 0.57 | 0.52 | 3.0 |
| 1613-350 | 1613-350 | 1959 | 16 | 16 | 43.00525691 | -35 | 09 | 41.8407847 | . 00003121 | . 0009146 | -0.2772 | 54965.3 | 54965.4 | 1 |  |  |  |
| 1615+364 | 1615+364 | 3524 | 16 | 16 | 55.58005087 | +36 | 21 | 34.5015880 | . 00009633 | . 0009279 | 0.2514 | 50242.2 | 50242.3 | 1 |  |  |  |
| 1614-112 | 1614-112 | 1960 | 16 | 17 | 5.99490315 | -11 | 22 | 38.6190709 | . 00009402 | . 0030957 | 0.2419 | 53572.1 | 53572.2 | 1 |  |  |  |
| 1614+042 | 1614+042 | 3525 | 16 | 17 | 13.58894951 | +04 | 08 | 41.6981578 | . 00029159 | . 0032126 | -0.1107 | 53561.1 | 56302.6 | 2 |  |  |  |
| 1613-586 | 1613-586 | 4104 | 16 | 17 | 17.89126422 | -58 | 48 | 7.8587503 | . 00018114 | . 0012731 | 0.3734 | 56007.5 | 56314.0 | 3 |  |  |  |
| 1614-255 | 1614-255 | 1961 | 16 | 17 | 20.57093282 | -25 | 37 | 23.6571701 | . 00002987 | . 0010221 | -0.0347 | 54559.4 | 54559.4 | 1 |  |  |  |
| 1614-195 | 1614-195 | 1962 | 16 | 17 | 27.09306783 | -19 | 41 | 32.0154367 | . 00003038 | . 0010711 | -0.0550 | 53152.3 | 55847.0 | 2 | 0.10 | 0.15 |  |
| 1610-771 | P 1610-77 | 900 | 16 | 17 | 49.27643565 | -77 | 17 | 18.4676274 | . 00001204 | . 0000655 | 0.0256 | 47625.9 | 56638.7 | 210 |  |  |  |
| 1615+029 | P 1615+029 | 1963 | 16 | 17 | 49.90811346 | +02 | 46 | 43.1048318 | . 00000616 | . 0001427 | 0.0627 | 49914.1 | 56740.9 | 54 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1616+063 | DW 1616+06 | 464 | 16 | 19 | 3.68767549 | +06 | 13 | 2.2429311 | . 00000475 | . 0000976 | -0.1730 | 49914.1 | 56751.7 | 61 | 0.10 | 0.11 | 2.8 |
| 1617+229 | 1617+229 | 1123 | 16 | 19 | 14.82459821 | +22 | 47 | 47.8510353 | . 00000363 | . 0000578 | -0.1284 | 50084.6 | 56770.7 | 179 | 0.26 | 0.36 | 2.2 |
| 1616-181 | 1616-181 | 1964 | 16 | 19 | 16.68111300 | -18 | 17 | 21.7000044 | . 00004254 | . 0014437 | -0.4747 | 53560.2 | 53560.2 | 1 |  |  |  |
| 1619+491 | 1619+491 | 1965 | 16 | 20 | 31.22519097 | +49 | 01 | 53.2570511 | . 00001992 | . 0004204 | -0.1976 | 50306.1 | 54643.7 | 2 |  |  |  |
| 1618-399 | 1618-399 | 1966 | 16 | 21 | 59.68936570 | -40 | 03 | 34.4752388 | . 00026678 | . 0152165 | -0.2875 | 55042.1 | 55042.1 | 1 |  |  |  |
| 1620+145 | 1620+145 | 1967 | 16 | 22 | 33.99577894 | +14 | 26 | 20.5971338 | . 00002150 | . 0004713 | 0.2715 | 53134.2 | 53134.4 | 1 |  |  |  |
| 1622+665 | 1622+665 | 3526 | 16 | 23 | 4.52166082 | +66 | 24 | 1.0792615 | . 00008437 | . 0008325 | 0.2360 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1621+392 | 1621+392 | 3527 | 16 | 23 | 7.62238241 | +39 | 09 | 32.4112180 | . 00001816 | . 0004063 | -0.0885 | 50242.2 | 50242.3 | 1 |  |  |  |
| 1621+078 | 1621+078 | 3528 | 16 | 23 | 58.25191619 | +07 | 41 | 30.5501555 | . 00001613 | . 0004160 | 0.1244 | 49914.1 | 55371.3 | 2 |  |  |  |
| 1621+058 | 1621+058 | 1968 | 16 | 24 | 7.73388004 | +05 | 43 | 24.2450029 | . 00001253 | . 0003983 | -0.0141 | 53125.3 | 53125.4 | 1 |  |  |  |
| 1619-680 | P 1619-680 | 901 | 16 | 24 | 18.43696747 | -68 | 09 | 12.4965148 | . 00001630 | . 0001208 | 0.1741 | 47625.8 | 56770.7 | 33 |  |  |  |
| 1621-351 | 1621-351 | 1969 | 16 | 24 | 22.45182857 | -35 | 16 | 31.2046946 | . 00005654 | . 0026531 | -0.7701 | 54943.4 | 54943.4 | 1 |  |  |  |
| 1623+578 | 1623+578 | 1124 | 16 | 24 | 24.80755983 | +57 | 41 | 16.2810454 | . 00000603 | . 0000643 | -0.0224 | 49576.1 | 56751.4 | 140 | 0.31 |  |  |
| 1623+569 | 1623+569 | 3529 | 16 | 24 | 32.17956046 | +56 | 52 | 28.0020577 | . 00007413 | . 0016803 | 0.1309 | 49576.1 | 49576.3 | 1 |  |  |  |
| 1621-067 | 1621-067 | 3530 | 16 | 24 | 32.92674095 | -06 | 49 | 49.6273808 | . 00001576 | . 0004489 | 0.1523 | 50575.3 | 56638.7 | 5 |  |  |  |
| 1621-321 | 1621-321 | 3531 | 16 | 24 | 59.61947454 | -32 | 13 | 24.4439130 | . 00004844 | . 0017778 | -0.0842 | 55413.1 | 55413.1 | 1 |  |  |  |
| 1622-253 | P 1622-253 | 465 | 16 | 25 | 46.89164131 | -25 | 27 | 38.3269581 | . 000000342 | . 0000531 | -0.0341 | 47737.0 | 56758.2 | 1688 | 0.63 | 1.01 | 2.0 |
| 1622-310 | 1622-310 | 1970 | 16 | 25 | 55.50394611 | -31 | 08 | 8.5794120 | . 00001672 | . 0005208 | 0.0038 | 54965.3 | 55111.9 | 2 |  |  |  |
| 1624+416 | 1624+416 | 902 | 16 | 25 | 57.66971238 | +41 | 34 | 40.6293301 | . 00000552 | . 0000822 | -0.0931 | 47940.8 | 55264.6 | 60 | 0.16 | 0.17 | 3.7 |
| 1622-297 | P 1622-29 | 466 | 16 | 26 | 6.02083634 | -29 | 51 | 26.9712469 | . 00000539 | . 0000853 | -0.3747 | 47254.6 | 56601.3 | 97 |  | 1.00 | 3.8 |
| 1625+582 | 1625+582 | 3532 | 16 | 26 | 37.23658455 | +58 | 09 | 17.6676639 | . 00004788 | . 0007864 | -0.3119 | 49576.1 | 54087.8 | 2 |  |  |  |
| 1626+229 | $1626+229$ | 3533 | 16 | 28 | 15.23995449 | +22 | 47 | 57.3108909 | . 00026482 | . 0075296 | -0.6838 | 50084.6 | 50155.6 | 2 |  |  |  |
| 1627+476 | 1627+476 | 3534 | 16 | 28 | 37.50435817 | +47 | 34 | 10.4148217 | . 00049671 | . 0056273 | 0.6032 | 50306.1 | 54314.3 | 2 |  |  |  |
| 1625-141 | 1625-141 | 3535 | 16 | 28 | 46.61979412 | -14 | 15 | 41.8869662 | . 00004249 | . 0012205 | -0.4119 | 50575.3 | 50575.5 | 1 |  |  |  |
| 1626-005 | 1626-005 | 1971 | 16 | 28 | 48.46773438 | -00 | 41 | 39.7037122 | . 00006045 | . 0015466 | 0.1924 | 53523.2 | 53572.2 | 2 |  |  |  |
| 1624-617 | 1624-617 | 1126 | 16 | 28 | 54.68980169 | -61 | 52 | 36.3982645 | . 00001614 | . 0001510 | 0.1257 | 52780.7 | 56723.4 | 23 |  |  |  |
| 1626-172 | 1626-172 | 3536 | 16 | 29 | 16.76016861 | -17 | 20 | 43.0906176 | . 01066347 | . 3964775 | 0.9995 | 53560.2 | 53560.2 | 1 |  |  |  |
| 1629+680 | 1629+680 | 3537 | 16 | 29 | 51.83811797 | +67 | 57 | 14.9785683 | . 00019992 | . 0041099 | -0.1420 | 49827.3 | 54112.8 | 3 |  |  |  |
| 1628+216 | 1628+216A | 3538 | 16 | 30 | 11.23088972 | +21 | 31 | 34.3112826 | . 00027908 | . 0051518 | 0.8339 | 50853.8 | 50853.8 | 1 |  |  |  |
| 1628+071 | 1628+071 | 1972 | 16 | 30 | 41.81713422 | +07 | 01 | 9.1066166 | . 00012867 | . 0020114 | 0.0870 | 53561.2 | 53561.2 | 1 |  |  |  |
| 1629+495 | 1629+495 | 3539 | 16 | 31 | 16.53988922 | +49 | 27 | 39.5159485 | . 00002832 | . 0005001 | -0.2787 | 50306.1 | 50306.2 | 1 |  |  |  |
| 1637+826 | 1637+826 | 903 | 16 | 32 | 31.96989626 | +82 | 32 | 16.3999350 | . 00001331 | . 0000546 | -0.1813 | 50687.3 | 56741.3 | 176 | 0.26 |  | 3.7 |
| 1630-107 | 1630-107 | 1973 | 16 | 32 | 50.10970411 | -10 | 52 | 31.9964819 | . 00018417 | . 0046393 | -0.5814 | 53561.2 | 53561.3 | 1 |  |  |  |
| 1630-004 | 1630-004 | 1974 | 16 | 32 | 57.68132874 | -00 | 33 | 21.0751900 | . 00005871 | . 0025148 | -0.3046 | 53560.2 | 53560.2 | 1 |  |  |  |
| 1630-258 | 1630-258 | 1975 | 16 | 33 | 28.89072802 | -25 | 57 | 35.4765354 | . 00012822 | . 0044152 | 0.3179 | 53572.1 | 53572.2 | 1 |  |  |  |
| 1632+321 | 1632+321 | 1976 | 16 | 34 | 12.78980353 | +32 | 03 | 35.4249039 | . 00001789 | . 0005023 | 0.1373 | 53125.3 | 53125.4 | 1 |  |  |  |
| 1631-208 | 1631-208 | 1977 | 16 | 34 | 30.32372783 | -20 | 58 | 25.9391414 | . 00003947 | . 0012267 | 0.6667 | 53552.2 | 53552.2 | 1 |  |  |  |
| 1634+628 | 3C 343 | 3540 | 16 | 34 | 33.84473910 | +62 | 45 | 35.3079255 | . 04343001 | . 5736110 | -0.9972 | 52409.3 | 52409.3 | 1 |  |  |  |
| 1633+382 | GC 1633+38 | 468 | 16 | 35 | 15.49297361 | +38 | 08 | 4.5006135 | . 00000365 | . 0000561 | -0.0632 | 44202.8 | 56010.2 | 368 | 1.44 | 0.94 | 3.4 |
| 1634+600 | 1634+600 | 3541 | 16 | 35 | 37.64877507 | +59 | 55 | 15.0773126 | . 00002802 | . 0004191 | -0.2292 | 54112.6 | 54112.7 | 1 |  |  |  |
| 1634+604 | 1634+604 | 3542 | 16 | 35 | 37.65479181 | +60 | 19 | 56.7492593 | . 00016211 | . 0019854 | 0.5596 | 49576.2 | 54087.8 | 2 |  |  |  |
| 1633+186 | 1633+186 | 3543 | 16 | 35 | 39.19324145 | +18 | 31 | 3.3784659 | . 03210182 | . 3019991 | -0.9921 | 54087.8 | 54087.8 | 1 |  |  |  |
| 1633-131 | 1633-131 | 1978 | 16 | 36 | 15.86093454 | -13 | 15 | 32.6931417 | . 00007599 | . 0018491 | 0.1815 | 53560.2 | 53560.2 | 1 |  |  |  |
| 1634+213 | J1636+2112 | 1127 | 16 | 36 | 38.18343912 | +21 | 12 | 55.5947404 | . 00001477 | . 0002842 | -0.0676 | 50084.6 | 53020.2 | 5 |  | 0.09 |  |
| 1633-409 | 1633-409 | 1979 | 16 | 36 | 55.37516954 | -41 | 02 | 0.5011074 | . 00020004 | . 0077912 | -0.1273 | 54852.8 | 54853.6 | 1 |  |  |  |
| 1634-330 | 1634-330 | 1980 | 16 | 37 | 36.53601163 | -33 | 09 | 4.8379174 | . 00013645 | . 0069453 | -0.3494 | 53152.3 | 53152.3 | 1 |  |  |  |
| 1636+473 | 1636+473 | 904 | 16 | 37 | 45.13055609 | +47 | 17 | 33.8312814 | . 00000388 | . 0000573 | -0.0477 | 50306.1 | 56772.7 | 205 | 0.53 | 0.27 | 2.5 |
| 1637+574 | P 1637+574 | 905 | 16 | 38 | 13.45629576 | +57 | 20 | 23.9790737 | . 00000397 | . 0000554 | 0.0218 | 45140.9 | 56754.1 | 408 | 0.92 |  | 2.5 |
| 1635-035 | 1635-035 | 3544 | 16 | 38 | 19.25202424 | -03 | 40 | 5.0871346 | . 00000890 | . 0002390 | 0.0416 | 50575.3 | 56701.7 | 5 |  |  |  |
| 1637+626 | 3C 343.1 | 3545 | 16 | 38 | 28.23738295 | +62 | 34 | 43.8603417 | . 04562978 | . 5741919 | -0.9971 | 52409.3 | 52409.3 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1635-141 | 1635-141 | 3546 | 16 | 38 | 45.28498799 | -14 | 15 | 50.2371832 | . 00004991 | . 0013878 | -0.5831 | 50575.3 | 50575.5 | 1 |  |  |  |
| 1654+866 | 1654+866 | 3547 | 16 | 39 | 25.02103311 | +86 | 31 | 53.1247844 | . 00497810 | . 0037523 | -0.7444 | 52409.3 | 52409.4 | 1 |  |  |  |
| 1638+540 | 1638+540 | 3548 | 16 | 39 | 39.84295225 | +53 | 57 | 47.1196647 | . 00012537 | . 0016467 | 0.5588 | 49576.1 | 49576.3 | 1 |  |  |  |
| 1637+166 | 1637+166 | 3549 | 16 | 39 | 42.13711344 | +16 | 32 | 21.7599507 | . 00036200 | . 0053630 | -0.9574 | 53561.2 | 56267.7 | 2 |  |  |  |
| 1637-001 | 1637-001 | 1981 | 16 | 40 | 10.58617341 | -00 | 11 | 47.5450024 | . 00004068 | . 0010707 | 0.0122 | 53560.2 | 53560.2 | 1 |  |  |  |
| 1638+398 | NRAO 512 | 472 | 16 | 40 | 29.63277123 | +39 | 46 | 46.0284949 | . 00000337 | . 0000507 | -0.0589 | 43873.9 | 56776.7 | 943 | 0.70 | 0.55 | 1.6 |
| 1637-373 | 1637-373 | 3550 | 16 | 40 | 41.08722882 | -37 | 27 | 27.5285090 | . 00030464 | . 0131240 | 0.2261 | 53152.3 | 56267.7 | 2 |  |  |  |
| 1638+124 | 1638+124 | 3551 | 16 | 40 | 47.93883131 | +12 | 20 | 2.0787920 | . 00002441 | . 0006130 | -0.2928 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1638+118 | 1638+118 | 3552 | 16 | 40 | 58.89435270 | +11 | 44 | 4.2237557 | . 00158267 | . 0115402 | -0.0989 | 53572.1 | 53572.2 | 1 |  |  |  |
| 1639+230 | 1639+230 | 906 | 16 | 41 | 25.22756471 | +22 | 57 | 4.0327891 | . 00000359 | . 0000562 | -0.0445 | 50084.6 | 56776.3 | 194 |  | 0.22 | 1.3 |
| 1639-062 | 1639-062 | 1982 | 16 | 42 | 2.17771627 | -06 | 21 | 23.6950437 | . 00000355 | . 0000538 | 0.0187 | 53125.3 | 56776.7 | 161 | 0.87 | 1.07 | 2.3 |
| 1639-200 | 1639-200 | 1983 | 16 | 42 | 5.29097344 | -20 | 07 | 24.8510804 | . 00026561 | . 0134623 | -0.9251 | 54601.3 | 54601.4 | 1 | 0.09 | 0.07 | 1.8 |
| 1642+690 | 1642+690 | 907 | 16 | 42 | 7.84851022 | +68 | 56 | 39.7564543 | . 00000413 | . 0000522 | 0.0126 | 44089.1 | 56671.7 | 208 | 1.16 |  | 3.0 |
| 1640+254 | 1640+254 | 3553 | 16 | 42 | 40.41183941 | +25 | 23 | 7.6821125 | . 00001680 | . 0004426 | -0.3709 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1633-810 | 1633-810 | 3554 | 16 | 42 | 57.34553742 | -81 | 08 | 35.0702536 | . 00006195 | . 0001877 | 0.2501 | 52860.5 | 56538.6 | 21 |  |  |  |
| 1641+399 | 3C 345 | 473 | 16 | 42 | 58.80996787 | +39 | 48 | 36.9939626 | . 00000377 | . 0000582 | -0.2274 | 44088.9 | 56728.6 | 520 | 1.67 | 2.01 | 4.1 |
| 1639-287 | 1639-287 | 3555 | 16 | 42 | 59.37310834 | -28 | 49 | 57.9428389 | . 00011774 | . 0044349 | -0.5711 | 53561.2 | 56393.4 | 2 |  |  |  |
| 1640-231 | 1640-231 | 1286 | 16 | 43 | 33.39057718 | -23 | 16 | 7.8594570 | . 00028740 | . 0093597 | 0.8445 | 53992.0 | 53992.1 | 1 |  |  |  |
| 1637-771 | 1637-771 | 3556 | 16 | 44 | 16.12108896 | -77 | 15 | 48.8115169 | . 00147291 | . 0043426 | 0.1631 | 52887.1 | 53138.5 | 3 |  |  |  |
| 1641+074 | 1641+074 | 1128 | 16 | 44 | 16.32973074 | +07 | 20 | 33.7576464 | . 00011987 | . 0045934 | -0.6861 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1641-179 | 1641-179 | 1984 | 16 | 44 | 35.74671767 | -18 | 04 | 32.4588174 | . 00015085 | . 0052270 | -0.3303 | 53152.3 | 53152.3 | 1 |  |  |  |
| 1642-076 | 1642-076 | 4133 | 16 | 44 | 52.05853671 | -07 | 43 | 43.1789943 | . 00003542 | . 0009833 | -0.6476 | 55776.1 | 55776.2 | 1 |  |  |  |
| 1642+183 | 1642+183 | 1129 | 16 | 44 | 52.43239807 | +18 | 13 | 17.2383695 | . 00004445 | . 0015645 | -0.7523 | 50084.6 | 50155.6 | 2 |  |  |  |
| 1642+256 | 1642+256 | 3557 | 16 | 44 | 59.06084282 | +25 | 36 | 30.5880933 | . 00005262 | . 0008553 | -0.5324 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1645+635 | 1645+635 | 3558 | 16 | 45 | 58.55270333 | +63 | 30 | 10.9227763 | . 00009478 | . 0009137 | 0.4212 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1647+744 | 1647+744 | 3559 | 16 | 46 | 15.17245479 | +74 | 19 | 11.0827930 | . 00160470 | . 0129049 | 0.6108 | 53523.2 | 56749.3 | 3 |  |  |  |
| 1645+410 | 1645+410 | 3560 | 16 | 46 | 56.85870077 | +40 | 59 | 17.1721774 | . 00000994 | . 0002232 | 0.1494 | 50242.2 | 50242.3 | 1 |  |  |  |
| 1645+271 | 1645+271 | 1985 | 16 | 47 | 33.59838190 | +27 | 05 | 58.2921597 | . 00007097 | . 0010744 | 0.3895 | 50219.4 | 54314.4 | 2 |  |  |  |
| 1646+499 | 1646+499 | 3561 | 16 | 47 | 34.91195506 | +49 | 50 | 0.5874660 | . 00009658 | . 0012232 | -0.5280 | 50306.1 | 50306.2 | 1 |  |  |  |
| 1645+174 | 1645+174 | 3562 | 16 | 47 | 41.83918896 | +17 | 20 | 11.8424794 | . 00026804 | . 0042913 | 0.0181 | 54314.1 | 54314.3 | 1 |  |  |  |
| 1645+224 | J1648+2224 | 1130 | 16 | 48 | 1.53553818 | +22 | 24 | 33.1480471 | . 00001890 | . 0003523 | 0.1817 | 50084.6 | 52975.3 | 4 |  |  |  |
| 1646+411 | 1646+411 | 3563 | 16 | 48 | 29.25797259 | +41 | 04 | 5.5536894 | . 00003345 | . 0004830 | -0.6526 | 50242.3 | 50242.4 | 1 |  |  |  |
| 1645-329 | 1645-329 | 3564 | 16 | 48 | 42.35108572 | -33 | 01 | 48.9312626 | . 00001172 | . 0003969 | -0.0763 | 54489.6 | 54489.7 | 1 |  |  |  |
| 1645-262 | 1645-262 | 3565 | 16 | 49 | 4.31531233 | -26 | 20 | 8.6119831 | . 00005163 | . 0020216 | 0.1538 | 53560.2 | 56302.7 | 2 |  |  |  |
| 1646+042 | 1646+042 | 1131 | 16 | 49 | 27.67945381 | +04 | 12 | 3.9866188 | . 00004619 | . 0013066 | -0.6994 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1651+747 | 1651+747 | 1986 | 16 | 49 | 40.95346783 | +74 | 42 | 44.6197005 | . 00028077 | . 0012826 | 0.3034 | 53552.1 | 53552.3 | 1 |  |  |  |
| 1647+065 | 1647+065 | 3566 | 16 | 49 | 50.49136869 | +06 | 26 | 53.4486048 | . 00010003 | . 0013132 | 0.3715 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1646-506 | 1646-506 | 3567 | 16 | 50 | 16.62717974 | -50 | 44 | 48.2107110 | . 00038388 | . 0024427 | 0.9266 | 52676.7 | 52948.1 | 3 |  |  |  |
| 1648+084 | 1648+084 | 1987 | 16 | 50 | 37.56271036 | +08 | 24 | 52.2307001 | . 00001692 | . 0004419 | -0.1642 | 49914.1 | 54314.7 | 2 |  |  |  |
| 1647-296 | P 1647-296 | 477 | 16 | 50 | 39.54412368 | -29 | 43 | 46.9548573 | . 00000995 | . 0001140 | -0.6497 | 48345.6 | 55728.4 | 53 |  | 0.39 | 2.3 |
| 1648+015 | P 1648+015 | 3568 | 16 | 51 | 3.66235917 | +01 | 29 | 23.4578286 | . 00001675 | . 0005507 | -0.4321 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1649+216 | 1649+216 | 3569 | 16 | 51 | 37.84413127 | +21 | 35 | 24.6535546 | . 00003288 | . 0007253 | 0.3722 | 53561.2 | 56547.2 | 2 |  |  |  |
| 1649+063 | 1649+063 | 3570 | 16 | 52 | 1.40008549 | +06 | 18 | 55.3537090 | . 00004587 | . 0013424 | -0.4357 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1651+391 | 1651+391 | 1988 | 16 | 52 | 58.50958368 | +39 | 02 | 49.8222685 | . 00000379 | . 0000573 | -0.0409 | 50242.3 | 56706.6 | 50 |  |  |  |
| 1651+312 | 1651+312 | 1132 | 16 | 53 | 29.91065020 | +31 | 07 | 56.8726487 | . 00001399 | . 0003259 | -0.3584 | 50219.4 | 53659.1 | 2 |  | 0.19 |  |
| 1650-157 | 1650-157 | 1989 | 16 | 53 | 34.20642367 | -15 | 51 | 29.8882228 | . 00001826 | . 0005571 | 0.1002 | 54853.6 | 54853.7 | 1 |  |  |  |
| 1652+398 | DA 426 | 479 | 16 | 53 | 52.21668456 | +39 | 45 | 36.6089839 | . 00000384 | . 0000574 | -0.0895 | 48196.2 | 56744.5 | 314 | 0.52 | 0.34 | 3.4 |
| 1653+426 | J1655+42 | 1990 | 16 | 55 | 18.79497900 | +42 | 33 | 39.8235720 | . 00001924 | . 0004817 | -0.1893 | 53572.1 | 53572.2 | 1 |  |  |  |
| 1653-329 | 1653-329 | 3571 | 16 | 56 | 16.86095809 | -33 | 02 | 10.7995633 | . 00011889 | . 0043449 | -0.6830 | 55413.1 | 55413.1 | 1 |  |  |  |
| 1654+185 | 1654+185 | 3572 | 16 | 56 | 34.08907443 | +18 | 26 | 26.3472347 | . 00005220 | . 0010212 | 0.2107 | 50084.6 | 50155.6 | 2 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \text { Source Flux } \\ & \text { (Jy) } \\ & \hline \end{aligned}$ |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1655+534 | 1655+534 | 3573 | 16 | 56 | 39.62412584 | +53 | 21 | 48.7720566 | . 00003223 | . 0004420 | -0.0581 | 54087.6 | 54087.8 | 1 |  |  |  |
| 1656+602 | 1656+602 | 1991 | 16 | 56 | 48.24495084 | +60 | 12 | 16.4348773 | . 00003287 | . 0003913 | -0.1433 | 53560.1 | 53560.3 | 1 |  |  |  |
| 1654-020 | 1654-020 | 3574 | 16 | 56 | 56.11815597 | -02 | 06 | 49.5200415 | . 00003138 | . 0008656 | -0.1222 | 50575.3 | 50575.5 | 1 |  |  |  |
| 1656+571 | 1656+571 | 1238 | 16 | 57 | 20.70895267 | +57 | 05 | 53.5039224 | . 00001375 | . 0001751 | 0.0449 | 49576.1 | 54428.8 | 35 | 0.38 |  |  |
| 1654-199 | 1654-199 | 1992 | 16 | 57 | 33.33472183 | -20 | 04 | 34.9821171 | . 00003603 | . 0010504 | -0.1529 | 53503.3 | 53561.2 | 2 |  |  |  |
| 1656+482 | 1656+482 | 3575 | 16 | 57 | 46.87894140 | +48 | 08 | 33.0414948 | . 00001739 | . 0003127 | -0.1969 | 50306.1 | 50306.2 | 1 |  |  |  |
| 1656+348 | 1656+348 | 908 | 16 | 58 | 1.41919343 | +34 | 43 | 28.4019813 | . 00000937 | . 0001286 | 0.0013 | 49254.0 | 55306.7 | 16 |  | 0.13 | 3.1 |
| 1656+477 | 1656+477 | 909 | 16 | 58 | 2.77959764 | +47 | 37 | 49.2309762 | . 00000617 | . 0000910 | -0.0642 | 50306.1 | 56707.0 | 40 | 0.49 | 0.15 | 4.0 |
| 1655+077 | OS 092 | 480 | 16 | 58 | 9.01146435 | +07 | 41 | 27.5404334 | . 00000424 | . 0000763 | -0.3034 | 46338.2 | 56638.3 | 99 | 0.69 | 0.96 | 3.2 |
| 1656+053 | DW 1656+05 | 481 | 16 | 58 | 33.44733697 | +05 | 15 | 16.4438785 | . 00000444 | . 0000810 | -0.1747 | 44200.9 | 56599.8 | 91 | 0.34 | 0.38 | 3.2 |
| 1656-075 | 1656-075 | 1993 | 16 | 58 | 44.06198896 | -07 | 39 | 17.6942068 | . 00000456 | . 0000940 | 0.0961 | 52306.6 | 56679.2 | 90 | 0.46 | 0.24 |  |
| 1657+265 | B2 1657+26 | 1133 | 16 | 59 | 24.14944818 | +26 | 29 | 36.9432300 | . 00001463 | . 0003664 | -0.2113 | 50219.4 | 56498.3 | 3 | 0.32 | 0.34 |  |
| 1657+022 | 1657+022 | 1994 | 16 | 59 | 44.99720870 | +02 | 13 | 7.0433827 | . 00005264 | . 0020712 | -0.7074 | 53572.1 | 53572.2 | 1 |  |  |  |
| 1700+685 | 1700+685 | 3576 | 17 | 00 | 9.29289588 | +68 | 30 | 6.9600348 | . 00006041 | . 0003175 | 0.0251 | 49826.5 | 54112.5 | 2 |  |  |  |
| 1657+054 | 1657+054 | 1995 | 17 | 00 | 23.95598578 | +05 | 22 | 44.0948893 | . 00001052 | . 0003421 | -0.0826 | 53134.3 | 53134.4 | 1 |  |  |  |
| 1657-261 | P 1657-261 | 484 | 17 | 00 | 53.15406005 | -26 | 10 | 51.7254602 | . 00000382 | . 0000602 | -0.2295 | 45356.7 | 56776.4 | 306 | 0.60 | 0.62 | 2.1 |
| 1658+037 | 1658+037 | 3577 | 17 | 01 | 21.37818903 | +03 | 38 | 51.1739913 | . 00002289 | . 0008400 | -0.4731 | 54087.7 | 54087.8 | 1 |  |  |  |
| 1659+399 | 1659+399 | 1996 | 17 | 01 | 24.63481489 | +39 | 54 | 37.0916581 | . 00000518 | . 0000840 | 0.0421 | 53523.2 | 56499.8 | 32 |  |  |  |
| 1658-189 | 1658-189 | 1997 | 17 | 01 | 26.89421026 | -19 | 03 | 31.5757563 | . 00004978 | . 0019622 | -0.0530 | 53560.2 | 53560.3 | 1 |  |  |  |
| 1657-562 | 1657-562 | 1287 | 17 | 01 | 44.85809023 | -56 | 21 | 55.9020342 | . 00001132 | . 0001648 | 0.3094 | 52675.8 | 56643.7 | 38 |  |  |  |
| 1700+151 | 1700+151 | 3578 | 17 | 02 | 21.71813823 | +15 | 02 | 6.0817613 | . 00014005 | . 0025736 | 0.5340 | 50084.7 | 50155.6 | 2 |  |  |  |
| 1700+320 | 1700+320 | 4105 | 17 | 02 | 32.61019808 | +31 | 57 | 52.3527621 | . 00024337 | . 0139136 | -0.4270 | 56463.1 | 56463.4 | 1 |  |  |  |
| 1659-621 | 1659-621 | 3579 | 17 | 03 | 36.54122050 | -62 | 12 | 40.0084450 | . 00001412 | . 0001335 | 0.4419 | 52779.7 | 56763.2 | 31 |  |  |  |
| 1701-132 | 1701-132 | 1998 | 17 | 04 | 5.08676264 | -13 | 16 | 34.2335464 | . 00022859 | . 0033076 | 0.2818 | 53152.3 | 53152.3 | 1 |  |  |  |
| 1701+016 | 1701+016 | 1999 | 17 | 04 | 7.48912353 | +01 | 34 | 8.4742937 | . 00007840 | . 0013556 | -0.0091 | 53561.2 | 53561.3 | 1 |  |  |  |
| 1704+512 | 1704+512 | 3580 | 17 | 05 | 26.41352832 | +51 | 09 | 35.3988345 | . 00007149 | . 0019314 | -0.0060 | 50306.1 | 54112.8 | 2 |  |  |  |
| 1704+122 | 1704+122 | 2000 | 17 | 06 | 20.49752064 | +12 | 08 | 59.7947452 | . 00004617 | . 0009047 | 0.2917 | 53560.2 | 53560.3 | 1 |  |  |  |
| 1704+099 | 1704+099 | 2001 | 17 | 06 | 36.72732915 | +09 | 53 | 59.6371070 | . 00003834 | . 0009833 | -0.2231 | 53572.1 | 53572.2 | 1 |  |  |  |
| 1705+456 | 1705+456 | 910 | 17 | 07 | 17.75340821 | +45 | 36 | 10.5529528 | . 00000679 | . 0000908 | 0.0371 | 49268.0 | 55342.6 | 18 |  |  |  |
| 1704-141 | 1704-141 | 3581 | 17 | 07 | 20.39056544 | -14 | 15 | 23.1275860 | . 00002902 | . 0007360 | -0.4739 | 53503.3 | 53503.4 | 1 |  |  |  |
| 1705+018 | P 1705+018 | 485 | 17 | 07 | 34.41526919 | +01 | 48 | 45.6992937 | . 00000368 | . 0000600 | 0.0596 | 49271.7 | 56762.0 | 138 | 0.62 | 0.31 | 2.6 |
| 1705+135 | 1705+135 | 1134 | 17 | 07 | 45.63727460 | +13 | 31 | 5.2326192 | . 00001035 | . 0002795 | -0.0086 | 50084.6 | 53212.9 | 6 |  |  |  |
| 1705+188 | 1705+188 | 2002 | 17 | 07 | 53.74751365 | +18 | 46 | 39.0205111 | . 00003169 | . 0008885 | -0.6787 | 53561.2 | 53561.3 | 1 |  |  |  |
| 1706+338 | 1706+338 | 3582 | 17 | 08 | 1.25144191 | +33 | 46 | 46.3769604 | . 00002834 | . 0007006 | -0.0108 | 54087.7 | 54087.8 | 1 |  |  |  |
| 1706+006 | 1706+006 | 3583 | 17 | 08 | 44.64748910 | +00 | 35 | 9.5140710 | . 00013728 | . 0042358 | -0.8098 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1705-353 | 1705-353 | 3584 | 17 | 09 | 18.66628461 | -35 | 25 | 22.1936281 | . 00021106 | . 0074309 | -0.2396 | 54489.6 | 54489.7 | 1 |  |  |  |
| 1706-174 | OT-111 | 486 | 17 | 09 | 34.34539095 | -17 | 28 | 53.3650861 | . 00000463 | . 0000827 | -0.4715 | 45356.7 | 56758.3 | 224 | 0.25 | 0.33 | 2.4 |
| 1708+433 | 1708+433 | 2003 | 17 | 09 | 41.08658716 | +43 | 18 | 44.5328418 | . 00001110 | . 0001784 | -0.1662 | 54075.9 | 54076.6 | 1 |  |  |  |
| 1707-038 | 1707-038 | 3585 | 17 | 10 | 17.20540138 | -03 | 55 | 50.1286150 | . 00001767 | . 0005036 | 0.1336 | 50575.3 | 50575.5 | 1 |  |  |  |
| 1708-250 | 1708-250 | 3586 | 17 | 11 | 27.78869148 | -25 | 11 | 5.2888602 | . 11482701 | . 0834446 | -0.9998 | 53560.2 | 53560.2 | 1 |  |  |  |
| 1710+542 | 1710+542 | 2004 | 17 | 11 | 40.50475984 | +54 | 11 | 45.1348202 | . 00002255 | . 0004435 | -0.3359 | 53572.2 | 53572.2 | 1 |  |  |  |
| 1708-335 | 1708-335 | 3587 | 17 | 11 | 48.99351394 | -33 | 38 | 41.0568796 | . 00019230 | . 0085819 | -0.0751 | 53552.2 | 56106.2 | 2 |  |  |  |
| 1709-182 | 1709-182 | 2005 | 17 | 12 | 31.69732304 | -18 | 20 | 2.7680547 | . 00007788 | . 0036612 | -0.2461 | 53561.2 | 53561.3 | 1 |  |  |  |
| 1710-269 | 1710-269 | 3588 | 17 | 13 | 31.27559629 | -26 | 58 | 52.5275048 | . 00001235 | . 0004124 | -0.1846 | 50632.1 | 50688.0 | 2 | 0.22 | 0.21 |  |
| 1712+493 | 1712+493 | 3589 | 17 | 13 | 35.14760419 | +49 | 16 | 32.5369118 | . 00003965 | . 0005829 | -0.2156 | 50306.1 | 50306.3 | 1 |  |  |  |
| 1710-323 | 1710-323 | 3590 | 17 | 13 | 50.79022880 | -32 | 26 | 12.2091408 | . 00003789 | . 0013323 | -0.1138 | 54489.6 | 54489.7 | 1 |  |  |  |
| 1711-208 | 1711-208 | 2006 | 17 | 14 | 32.51300597 | -20 | 53 | 54.2905784 | . 00007996 | . 0027832 | -0.0102 | 53523.3 | 53523.4 | 1 |  |  |  |
| 1711-209 | 1711-209 | 2007 | 17 | 14 | 40.26187795 | -21 | 00 | 41.3562565 | . 00010241 | . 0022255 | 0.3989 | 54853.6 | 54853.7 | 1 |  |  |  |
| 1712-059 | 1712-059 | 3591 | 17 | 14 | 56.57371095 | -05 | 58 | 20.5942475 | . 00001466 | . 0004750 | -0.5441 | 53503.3 | 53503.4 | 1 |  |  |  |
| 1714+219 | 1714+219 | 3592 | 17 | 16 | 11.19070447 | +21 | 52 | 13.6671849 | . 00009333 | . 0010404 | -0.3398 | 50084.6 | 50155.6 | 2 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1716+686 | 1716+686 | 3593 | 17 | 16 | 13.93803271 | +68 | 36 | 38.7448332 | . 00003562 | . 0003542 | 0.2706 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1713-048 | 1713-048 | 2008 | 17 | 16 | 26.48808941 | -04 | 52 | 11.9456927 | . 00001660 | . 0006215 | -0.2871 | 53552.2 | 53552.3 | 1 |  |  |  |
| 1714+193 | 1714+193 | 2009 | 17 | 17 | 1.16594481 | +19 | 17 | 40.6555081 | . 00001741 | . 0004995 | -0.3531 | 53561.2 | 53561.3 | 1 |  |  |  |
| 1714-336 | 1714-336 | 3594 | 17 | 17 | 36.02903212 | -33 | 42 | 8.8245641 | . 00022925 | . 0059912 | -0.1508 | 53134.4 | 53503.4 | 2 |  |  |  |
| 1714-397 | 1714-397 | 3595 | 17 | 17 | 38.59961825 | -39 | 48 | 52.6442577 | . 00089452 | . 0282719 | 0.2716 | 53523.3 | 56547.1 | 2 |  |  |  |
| 1715-112 | 1715-112 | 2010 | 17 | 18 | 14.94821536 | -11 | 20 | 44.9696726 | . 00018011 | . 0056162 | 0.0504 | 53152.3 | 53152.4 | 1 |  |  |  |
| 1715-287 | 1715-287 | 2011 | 17 | 18 | 49.37973005 | -28 | 50 | 41.0983551 | . 00016715 | . 0047632 | 0.7141 | 53572.2 | 53572.2 | 1 |  |  |  |
| 1716-142 | 1716-142 | 2012 | 17 | 19 | 2.01996808 | -14 | 20 | 19.0103401 | . 00002049 | . 0007490 | -0.5201 | 53552.2 | 53552.3 | 1 |  |  |  |
| 1716+070 | 1716+070 | 2013 | 17 | 19 | 10.93338124 | +06 | 58 | 15.7464020 | . 00001039 | . 0003418 | -0.1550 | 53125.3 | 53125.4 | 1 |  |  |  |
| 1717+178 | GC 1717+17 | 489 | 17 | 19 | 13.04847895 | +17 | 45 | 6.4373369 | . 00000385 | . 0000679 | -0.0841 | 44203.6 | 56770.4 | 115 | 0.49 | 0.28 | 2.8 |
| 1718+481 | 1718+481 | 2014 | 17 | 19 | 38.24952922 | +48 | 04 | 12.2488646 | . 00008687 | . 0010615 | 0.0004 | 53560.1 | 53560.3 | 1 |  |  |  |
| 1717+083 | 1717+083 | 3596 | 17 | 19 | 52.20620618 | +08 | 17 | 3.5541403 | . 00001106 | . 0003767 | 0.0087 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1718+384 | 1718+384 | 3597 | 17 | 20 | 10.33481825 | +38 | 25 | 56.1648500 | . 00003904 | . 0007297 | -0.3235 | 54111.8 | 54112.7 | 1 |  |  |  |
| 1718-084 | 1718-084 | 3598 | 17 | 20 | 59.68630937 | -08 | 32 | 17.3290388 | . 00037522 | . 0165314 | -0.7515 | 53152.3 | 53152.3 | 1 |  |  |  |
| 1719+357 | 1719+357 | 3599 | 17 | 21 | 9.49103100 | +35 | 42 | 16.0636193 | . 00002466 | . 0006567 | -0.3757 | 50242.3 | 50242.4 | 1 |  |  |  |
| 1718-259 | 1718-259 | 3600 | 17 | 21 | 55.97913994 | -25 | 58 | 40.6920147 | . 00006940 | . 0020577 | 0.0807 | 54601.3 | 55847.0 | 2 | 0.07 | 0.09 |  |
| 1719-050 | 1719-050 | 3601 | 17 | 22 | 3.53851420 | -05 | 03 | 25.0065279 | . 00002094 | . 0006099 | -0.3504 | 53503.3 | 53503.4 | 1 |  |  |  |
| 1721+589 | 1721+589 | 1239 | 17 | 22 | 36.72655663 | +58 | 56 | 22.2606986 | . 00003254 | . 0002490 | -0.0188 | 49576.1 | 53306.1 | 4 |  |  |  |
| 1722+611 | 1722+611 | 2015 | 17 | 22 | 40.05936341 | +61 | 05 | 59.7874359 | . 00002172 | . 0002252 | -0.4853 | 49576.1 | 54087.9 | 4 |  |  |  |
| 1720+282 | 1720+282 | 3602 | 17 | 22 | 42.16158047 | +28 | 15 | 0.0765056 | . 00001736 | . 0004666 | -0.2402 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1720+102 | 1720+102 | 2016 | 17 | 22 | 44.58279047 | +10 | 13 | 35.7731577 | . 00001482 | . 0003969 | 0.0366 | 53134.3 | 53134.4 | 1 |  |  |  |
| 1720+250 | 1720+250 | 3603 | 17 | 22 | 52.98990802 | +24 | 58 | 34.6921010 | . 00010871 | . 0034015 | 0.2570 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1723+658 | 1723+658 | 2017 | 17 | 23 | 14.13812974 | +65 | 47 | 46.1785337 | . 00014227 | . 0014067 | -0.3630 | 53560.1 | 53560.3 | 1 |  |  |  |
| 1721+343 | 1721+343 | 3604 | 17 | 23 | 20.79591675 | +34 | 17 | 57.9650842 | . 00004515 | . 0009451 | -0.3712 | 54124.9 | 54125.5 | 1 |  |  |  |
| 1722+526 | 1722+526 | 2019 | 17 | 23 | 39.74627566 | +52 | 36 | 48.3956763 | . 00008404 | . 0008207 | -0.0747 | 49576.1 | 54664.5 | 2 |  |  |  |
| 1718-649 | P 1718-649 | 911 | 17 | 23 | 41.02932373 | -65 | 00 | 36.6104731 | . 00002659 | . 0002407 | 0.2255 | 48110.1 | 54670.7 | 17 |  |  |  |
| 1726+769 | 1726+769 | 3605 | 17 | 23 | 59.44517064 | +76 | 53 | 11.5519523 | . 00007166 | . 0003569 | 0.5153 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1722+401 | 1722+401 | 3606 | 17 | 24 | 5.42883709 | +40 | 04 | 36.4568700 | . 00001881 | . 0003379 | -0.5671 | 50242.3 | 54482.3 | 2 |  |  |  |
| 1722+330 | 1722+330 | 2020 | 17 | 24 | 14.19783000 | +33 | 03 | 3.9392370 | . 00000586 | . 0001128 | -0.0821 | 50219.4 | 56748.6 | 37 |  |  |  |
| 1724+609 | 1724+609 | 3607 | 17 | 24 | 41.41503222 | +60 | 55 | 55.7279272 | . 00015767 | . 0010723 | -0.5198 | 49576.1 | 54112.8 | 2 |  |  |  |
| 1721-146 | 1721-146 | 2021 | 17 | 24 | 46.96653883 | -14 | 43 | 59.7611233 | . 00002111 | . 0005711 | -0.4238 | 53552.2 | 53552.3 | 1 |  |  |  |
| 1723+051 | 1723+051 | 2022 | 17 | 26 | 24.78347924 | +05 | 04 | 42.6745752 | . 00008258 | . 0018115 | 0.1488 | 53560.2 | 53560.3 | 1 |  |  |  |
| 1724+322 | 1724+322 | 2023 | 17 | 26 | 35.12467111 | +32 | 13 | 23.0222315 | . 00001620 | . 0004298 | -0.3659 | 53572.2 | 53572.2 | 1 |  |  |  |
| 1724+066 | 1724+066 | 2024 | 17 | 26 | 44.94527916 | +06 | 39 | 18.5098871 | . 00001617 | . 0005130 | -0.2888 | 53561.2 | 53561.3 | 1 |  |  |  |
| 1723-229 | 1723-229 | 3608 | 17 | 26 | 58.90450953 | -22 | 58 | 1.5476024 | . 00004179 | . 0014166 | -0.0025 | 53503.4 | 53503.4 | 1 |  |  |  |
| 1726+552 | 1726+552 | 3609 | 17 | 27 | 23.46924458 | +55 | 10 | 53.5370524 | . 00007984 | . 0011718 | -0.4998 | 49576.1 | 49576.3 | 1 |  |  |  |
| 1726+455 | 1726+455 | 912 | 17 | 27 | 27.65080653 | +45 | 30 | 39.7313758 | . 00000342 | . 0000509 | -0.0076 | 48720.4 | 56758.7 | 929 | 0.64 | 0.46 | 2.2 |
| 1725+123 | J1728+1215 | 913 | 17 | 28 | 7.05121569 | +12 | 15 | 39.4854689 | . 00000481 | . 0000989 | -0.0138 | 49914.1 | 56749.6 | 49 | 0.34 | 0.24 | 2.5 |
| 1727+502 | 1727+502 | 914 | 17 | 28 | 18.62402595 | +50 | 13 | 10.4700395 | . 00001529 | . 0002233 | 0.1237 | 49176.9 | 56627.2 | 24 | 0.07 |  |  |
| 1725+044 | P 1725+044 | 493 | 17 | 28 | 24.95272669 | +04 | 27 | 4.9136793 | . 00000446 | . 0000855 | -0.1660 | 49177.0 | 56770.4 | 65 | 0.46 | 0.29 | 3.2 |
| 1726-038 | 1726-038 | 3610 | 17 | 28 | 50.23514584 | -03 | 50 | 50.4351646 | . 00004014 | . 0009859 | 0.6423 | 50575.3 | 50575.5 | 1 |  |  |  |
| 1727+386 | 1727+386 | 2025 | 17 | 28 | 59.14138109 | +38 | 38 | 26.4480041 | . 00002181 | . 0004256 | 0.2668 | 53134.3 | 53134.4 | 1 |  |  |  |
| 1726-269 | 1726-269 | 3611 | 17 | 29 | 8.21641077 | -26 | 57 | 50.7407959 | . 00011910 | . 0043266 | -0.1021 | 54087.8 | 54087.8 | 1 |  |  |  |
| 1727-052 | 1727-052 | 3612 | 17 | 30 | 33.07598382 | -05 | 15 | 8.0737091 | . 00020238 | . 0045828 | 0.2502 | 54111.8 | 54112.7 | 1 |  |  |  |
| 1728+004 | 1728+004 | 2026 | 17 | 30 | 34.99948470 | +00 | 24 | 38.6905651 | . 00005087 | . 0022050 | -0.5353 | 53125.3 | 53125.4 | 1 |  |  |  |
| 1730-130 | NRAO 530 | 495 | 17 | 33 | 2.70578762 | -13 | 04 | 49.5482551 | . 00000364 | . 0000612 | -0.2413 | 43809.0 | 56702.3 | 430 | 1.71 | 1.34 | 2.5 |
| 1729-373 | 1729-373 | 3613 | 17 | 33 | 15.19310077 | -37 | 22 | 32.3930630 | . 00007489 | . 0041064 | 0.5209 | 52306.7 | 52409.4 | 2 |  |  |  |
| 1725-795 | 1725-795 | 3614 | 17 | 33 | 40.70019611 | -79 | 35 | 55.7169614 | . 00004812 | . 0001802 | 0.2265 | 52887.1 | 56504.7 | 14 |  |  |  |
| 1732+389 | 1732+389 | 700 | 17 | 34 | 20.57854080 | +38 | 57 | 51.4431634 | . 00000375 | . 0000576 | -0.0203 | 48196.2 | 56775.2 | 201 | 0.51 | 0.53 | 1.7 |
| 1732+094 | GC 1732+09 | 3615 | 17 | 34 | 58.37698423 | +09 | 26 | 58.2603528 | . 00003142 | . 0007219 | -0.1633 | 49914.1 | 49914.3 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1732+081 | 1732+081 | 2027 | 17 | 35 | 10.44551836 | +08 | 08 | 31.0633684 | . 00002465 | . 0007382 | 0.2827 | 53560.2 | 53560.3 | 1 |  |  |  |
| 1732-059 | 1732-059 | 2028 | 17 | 35 | 26.78448689 | -05 | 59 | 50.2151543 | . 00008567 | . 0025353 | -0.1796 | 53561.2 | 53561.3 | 1 |  |  |  |
| 1734+363 | 1734+363 | 915 | 17 | 35 | 48.08662691 | +36 | 16 | 45.6114588 | . 00000894 | . 0001241 | 0.1263 | 50242.4 | 53770.9 | 7 | 0.33 | 0.17 |  |
| 1734+508 | 1734+508 | 916 | 17 | 35 | 49.00517766 | +50 | 49 | 11.5662209 | . 00001036 | . 0001948 | -0.0910 | 49576.1 | 55221.1 | 22 | 0.35 |  |  |
| 1734+065 | 1734+065 | 4134 | 17 | 36 | 28.58370910 | +06 | 31 | 47.5272837 | . 00003288 | . 0006356 | -0.4111 | 55776.1 | 55776.3 | 1 |  |  |  |
| 1734-228 | 1734-228 | 3616 | 17 | 37 | 2.03320935 | -22 | 51 | 55.3935674 | . 00036522 | . 0088432 | 0.5904 | 54111.8 | 54112.7 | 1 |  |  |  |
| 1734+063 | P 1734+063 | 3617 | 17 | 37 | 13.72902429 | +06 | 21 | 3.5723904 | . 00001056 | . 0003452 | -0.2016 | 49914.1 | 54482.7 | 2 |  |  |  |
| 1733-565 | 1733-565 | 917 | 17 | 37 | 35.77065329 | -56 | 34 | 3.1546186 | . 00044074 | . 0024196 | 0.8379 | 48388.0 | 52878.4 | 5 |  |  |  |
| 1735-150 | 1735-150 | 2029 | 17 | 38 | 11.63555788 | -15 | 03 | 0.5971102 | . 00003693 | . 0011769 | -0.6837 | 53572.2 | 53572.3 | 1 |  |  |  |
| 1736+324 | J1738+3224 | 1135 | 17 | 38 | 40.50181970 | +32 | 24 | 9.0257101 | . 00000725 | . 0001685 | -0.1184 | 50219.4 | 56170.6 | 10 |  |  |  |
| 1738+499 | 1738+499 | 918 | 17 | 39 | 27.39049693 | +49 | 55 | 3.3684846 | . 00000494 | . 0000685 | -0.0008 | 49422.4 | 56748.1 | 38 | 0.20 |  | 2.3 |
| 1737+339 | 1737+339 | 3618 | 17 | 39 | 35.36253024 | +33 | 58 | 8.1938893 | . 00002202 | . 0004680 | -0.4400 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1738+476 | OT 465 | 498 | 17 | 39 | 57.12907546 | +47 | 37 | 58.3615819 | . 00000444 | . 0000649 | 0.0363 | 43809.2 | 56775.1 | 156 | 0.46 | 0.19 | 2.7 |
| 1737-081 | 1737-081 | 2030 | 17 | 40 | 1.56619958 | -08 | 11 | 14.7823118 | . 00000968 | . 0003185 | 0.1428 | 53523.3 | 56498.3 | 4 |  |  |  |
| 1737+222 | 1737+222 | 3619 | 17 | 40 | 5.86285819 | +22 | 11 | 0.9733046 | . 00002817 | . 0009026 | -0.1762 | 50084.7 | 50155.6 | 2 |  |  |  |
| 1738+451 | 1738+451 | 3620 | 17 | 40 | 6.37261399 | +45 | 06 | 50.3710266 | . 00001829 | . 0003314 | -0.5492 | 50306.1 | 50306.3 | 1 |  |  |  |
| 1738+197 | 1738+197 | 3621 | 17 | 40 | 26.97048967 | +19 | 43 | 19.6799122 | . 00005496 | . 0010711 | 0.0160 | 54087.8 | 54087.9 | 1 |  |  |  |
| 1739+522 | 4C 51.37 | 919 | 17 | 40 | 36.97784906 | +52 | 11 | 43.4074818 | . 00000338 | . 0000504 | -0.0315 | 47283.3 | 56775.1 | 1455 | 0.78 |  | 1.5 |
| 1738+032 | 1738+032 | 2031 | 17 | 40 | 37.19901040 | +03 | 11 | 47.8389557 | . 00010187 | . 0013805 | -0.1605 | 53503.3 | 53560.3 | 2 |  |  |  |
| 1739+438 | 1739+438 | 3622 | 17 | 40 | 48.95053577 | +43 | 48 | 16.1508421 | . 00003311 | . 0005357 | -0.5456 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1740+478 | 1740+478 | 3623 | 17 | 41 | 34.82194826 | +47 | 51 | 32.5366853 | . 00005680 | . 0007012 | -0.4340 | 50306.1 | 50306.3 | 1 |  |  |  |
| 1739-152 | 1739-152 | 2032 | 17 | 42 | 11.66286236 | -15 | 17 | 29.1598159 | . 00003294 | . 0012207 | -0.2742 | 53552.2 | 53561.3 | 2 | 0.09 | 0.08 |  |
| 1740-190 | 1740-190 | 3624 | 17 | 42 | 59.54919129 | -19 | 03 | 8.5594670 | . 00002960 | . 0010608 | 0.4343 | 53503.4 | 55966.7 | 2 |  |  |  |
| 1740+134 | 1740+134 | 3625 | 17 | 43 | 3.00386947 | +13 | 26 | 36.3012992 | . 02220350 | . 0096471 | 0.1136 | 53134.3 | 53134.3 | 1 |  |  |  |
| 1740-169 | 1740-169 | 3626 | 17 | 43 | 6.21830719 | -16 | 58 | 15.9674380 | . 00003029 | . 0010504 | -0.0374 | 53152.4 | 56106.3 | 2 |  |  |  |
| 1740-309 | 1740-309 | 3627 | 17 | 43 | 17.87447519 | -30 | 58 | 18.1594778 | . 00901313 | . 3072780 | -0.9813 | 52306.7 | 52409.4 | 2 |  |  |  |
| 1742+378 | 1742+378 | 3628 | 17 | 43 | 47.64631500 | +37 | 47 | 53.8302920 | . 00002286 | . 0004550 | -0.5364 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1741+279 | 1741+279 | 4106 | 17 | 43 | 56.43739287 | +27 | 52 | 50.3489196 | . 00003080 | . 0005398 | -0.3151 | 56463.2 | 56463.4 | 1 |  |  |  |
| 1741+196 | 1741+196 | 2033 | 17 | 43 | 57.83259927 | +19 | 35 | 9.0176974 | . 00013389 | . 0013266 | 0.2253 | 53572.1 | 53572.3 | 1 |  |  |  |
| 1741-038 | P 1741-038 | 500 | 17 | 43 | 58.85613405 | -03 | 50 | 4.6167605 | . 00000335 | . 0000513 | -0.0114 | 43809.0 | 56776.7 | 2397 | 1.82 | 1.55 | 1.9 |
| 1742+402 | 1742+402 | 3629 | 17 | 44 | 25.09588877 | +40 | 14 | 48.1409788 | . 00024287 | . 0019692 | -0.0367 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1742-088 | 1742-088 | 3630 | 17 | 44 | 47.60186660 | -08 | 49 | 14.3316501 | . 00003663 | . 0011224 | -0.0425 | 54111.8 | 56637.9 | 2 |  |  |  |
| 1744+557 | 1744+557 | 1136 | 17 | 44 | 56.60706265 | +55 | 42 | 17.1611966 | . 00000918 | . 0000926 | 0.2463 | 51283.9 | 54943.4 | 14 |  |  |  |
| 1742+228 | 1742+228 | 1137 | 17 | 45 | 4.66884016 | +22 | 52 | 48.0772876 | . 00002337 | . 0006507 | 0.2736 | 50084.7 | 50155.6 | 2 |  |  |  |
| 1742-078 | 1742-078 | 1288 | 17 | 45 | 27.10493874 | -07 | 53 | 3.9476530 | . 00000943 | . 0003203 | 0.1674 | 52306.6 | 53946.0 | 4 | 0.48 | 0.14 |  |
| 1743+173 | GC 1743+17 | 501 | 17 | 45 | 35.20817169 | +17 | 20 | 1.4236180 | . 00000407 | . 0000779 | -0.2543 | 48103.0 | 56770.4 | 138 | 0.38 | 0.20 | 2.6 |
| 1745+670 | 1745+670 | 2034 | 17 | 45 | 54.35683425 | +67 | 03 | 49.2975812 | . 00049848 | . 0022285 | 0.4037 | 49827.3 | 54314.3 | 2 |  |  |  |
| 1743+182 | 1743+182 | 3631 | 17 | 45 | 55.92741621 | +18 | 14 | 50.4198821 | . 00003374 | . 0012737 | 0.0262 | 50084.7 | 50155.6 | 2 |  |  |  |
| 1745+624 | 1745+624 | 920 | 17 | 46 | 14.03413799 | +62 | 26 | 54.7384202 | . 00000361 | . 0000512 | 0.0800 | 48915.8 | 55182.7 | 779 | 0.30 |  | 1.7 |
| 1744+260 | 1744+260 | 2035 | 17 | 46 | 48.27890775 | +26 | 03 | 20.3541375 | . 00002098 | . 0005552 | -0.2542 | 53560.2 | 53560.3 | 1 |  |  |  |
| 1746+470 | 1746+470 | 921 | 17 | 47 | 26.64727957 | +46 | 58 | 50.9264027 | . 00000454 | . 0000654 | 0.0115 | 49422.4 | 56782.1 | 102 | 0.29 | 0.26 | 1.1 |
| 1746+340 | 1746+340 | 3632 | 17 | 48 | 5.81968462 | +34 | 04 | 1.1804054 | . 00001779 | . 0005199 | -0.3446 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1745+085 | 1745+085 | 3633 | 17 | 48 | 6.26040190 | +08 | 32 | 19.2864417 | . 00003415 | . 0014193 | -0.6216 | 54087.8 | 54087.9 | 1 |  |  |  |
| 1749+701 | 1749+701 | 502 | 17 | 48 | 32.84033439 | +70 | 05 | 50.7688325 | . 00000947 | . 0000705 | -0.0399 | 44202.8 | 55299.6 | 44 | 0.27 |  | 3.0 |
| 1747+433 | 1747+433 | 3634 | 17 | 49 | 0.36039999 | +43 | 21 | 51.2869709 | . 00002005 | . 0003646 | -0.4525 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1746+197 | 1746+197 | 3635 | 17 | 49 | 5.47372501 | +19 | 44 | 8.8398862 | . 00004622 | . 0011074 | 0.4430 | 50084.7 | 50155.6 | 2 |  |  |  |
| 1749+096 | OT 081 | 503 | 17 | 51 | 32.81857303 | +09 | 39 | 0.7283891 | . 00000335 | . 0000510 | -0.0229 | 44446.1 | 56772.7 | 1921 | 2.33 | 1.91 | 1.3 |
| 1749+293 | 1749+293 | 2036 | 17 | 51 | 42.68397682 | +29 | 20 | 50.2022572 | . 00001763 | . 0003788 | -0.1314 | 53125.3 | 53125.5 | 1 |  |  |  |
| 1748-253 | 1748-253 | 922 | 17 | 51 | 51.26255064 | -25 | 24 | 0.0646765 | . 00009170 | . 0023945 | 0.2951 | 48110.2 | 52409.4 | 4 |  |  |  |
| 1753+731 | 1753+731 | 2037 | 17 | 52 | 11.69246600 | +73 | 11 | 20.5450770 | . 00012717 | . 0007401 | 0.2923 | 53560.1 | 53560.3 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1749+062 | 1749+062 | 2038 | 17 | 52 | 14.66871925 | +06 | 11 | 48.1552658 | . 00001842 | . 0006634 | -0.2294 | 53572.2 | 53572.2 | 1 |  |  |  |
| 1749-299 | 1749-299 | 3636 | 17 | 52 | 33.10804622 | -29 | 56 | 44.9171787 | . 00036018 | . 0089056 | 0.1242 | 53552.2 | 56547.1 | 2 |  |  |  |
| 1749-101 | 1749-101 | 3637 | 17 | 52 | 36.97411519 | -10 | 11 | 44.7311512 | . 00006453 | . 0017044 | -0.2453 | 50575.3 | 50575.5 | 1 |  |  |  |
| 1750+175 | 1750+175 | 3638 | 17 | 52 | 46.00288065 | +17 | 34 | 20.3501932 | . 00001388 | . 0004471 | 0.0293 | 50084.7 | 50155.6 | 2 |  |  |  |
| 1750-187 | 1750-187 | 3639 | 17 | 53 | 9.08867213 | -18 | 43 | 38.5230331 | . 00001969 | . 0006990 | 0.0680 | 53503.4 | 55616.7 | 3 | 0.08 |  |  |
| 1751+441 | 1751+441 | 923 | 17 | 53 | 22.64789280 | +44 | 09 | 45.6863219 | . 00000576 | . 0000780 | -0.0410 | 50242.4 | 55168.7 | 20 | 0.17 | 0.17 | 3.2 |
| 1751+288 | GC 1751+28 | 504 | 17 | 53 | 42.47364638 | +28 | 48 | 4.9388875 | . 00000360 | . 0000553 | -0.0475 | 48103.2 | 56776.7 | 127 | 1.06 | 0.76 | 2.3 |
| 1753+648 | 1753+648 | 3640 | 17 | 54 | 7.58978130 | +64 | 52 | 2.6318306 | . 00027211 | . 0031732 | -0.1705 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1751+050 | 1751+050 | 3641 | 17 | 54 | 17.52500466 | +04 | 59 | 39.6148021 | . 00094438 | . 0118524 | 0.2673 | 53134.3 | 53134.4 | 1 |  |  |  |
| 1752-225 | 1752-225 | 2039 | 17 | 55 | 26.28494912 | -22 | 32 | 10.6191929 | . 00019132 | . 0039023 | -0.1833 | 53134.4 | 53134.4 | 1 |  |  |  |
| 1753+204 | 1753+204 | 1138 | 17 | 55 | 35.52094848 | +20 | 23 | 57.1369519 | . 00003983 | . 0013096 | -0.7058 | 50084.7 | 54643.7 | 3 |  |  |  |
| 1755+626 | 1755+626 | 3642 | 17 | 55 | 48.43891542 | +62 | 36 | 44.1293505 | . 00183023 | . 0084256 | 0.4444 | 55371.1 | 56036.6 | 2 |  |  |  |
| 1753+049 | 1753+049 | 4107 | 17 | 55 | 51.15203599 | +04 | 54 | 52.5736022 | . 00020200 | . 0023882 | -0.0300 | 56162.0 | 56162.2 | 1 |  |  |  |
| 1753+183 | 1753+183 | 3643 | 17 | 55 | 59.78224552 | +18 | 20 | 17.6681519 | . 00024215 | . 0038880 | 0.8822 | 52305.8 | 52409.5 | 2 |  |  |  |
| 1755+578 | 1755+578 | 3644 | 17 | 56 | 3.62828527 | +57 | 48 | 47.9977242 | . 00015520 | . 0016662 | 0.3665 | 49576.1 | 54643.7 | 2 |  |  |  |
| 1753-144 | 1753-144 | 2040 | 17 | 56 | 25.86252659 | -14 | 27 | 9.5617588 | . 00007002 | . 0020214 | 0.0847 | 54087.8 | 55042.2 | 2 |  |  |  |
| 1754+159 | 1754+159 | 1140 | 17 | 56 | 33.72560739 | +15 | 53 | 43.8328202 | . 00001023 | . 0003396 | -0.2424 | 50084.8 | 53761.4 | 12 |  |  |  |
| 1754+155 | 1754+155 | 1141 | 17 | 56 | 53.10214109 | +15 | 35 | 20.8264747 | . 00000380 | . 0000600 | 0.0668 | 52305.8 | 56464.6 | 167 | 0.25 | 0.21 | 2.1 |
| 1753-418 | 1753-418 | 3645 | 17 | 57 | 15.67137323 | -41 | 49 | 18.6825696 | . 00009735 | . 0043681 | 0.7218 | 55167.8 | 55167.8 | , |  |  |  |
| 1759+756 | 1759+756 | 4108 | 17 | 57 | 46.35889873 | +75 | 39 | 16.1797397 | . 00016637 | . 0014951 | -0.1906 | 56301.9 | 56302.4 | 1 |  |  |  |
| 1755+055 | 1755+055 | 2041 | 17 | 57 | 58.82500912 | +05 | 31 | 48.0228138 | . 00012688 | . 0054382 | 0.0509 | 53125.4 | 53125.5 | 1 |  |  |  |
| 1756+061 | 1756+061 | 2042 | 17 | 58 | 34.11761363 | +06 | 10 | 32.9695869 | . 00004684 | . 0017259 | -0.7373 | 53572.2 | 53572.2 | 1 |  |  |  |
| 1756+237 | P 1756+237 | 1142 | 17 | 59 | 0.35808248 | +23 | 43 | 46.9535445 | . 00001569 | . 0003216 | 0.2046 | 50084.7 | 53613.0 | 5 | 0.32 | 0.13 |  |
| 1758+388 | 1758+388 | 924 | 18 | 00 | 24.76536251 | +38 | 48 | 30.6975014 | . 00000390 | . 0000604 | 0.0053 | 49749.8 | 56763.7 | 93 | 0.79 | 0.63 | 2.2 |
| 1803+784 | 1803+784 | 693 | 18 | 00 | 45.68391713 | +78 | 28 | 4.0184547 | . 00000376 | . 0000503 | 0.0106 | 45459.6 | 56751.8 | 1757 | 1.38 |  | 2.5 |
| 1758+046 | 1758+046 | 2043 | 18 | 01 | 4.24178176 | +04 | 38 | 18.2042522 | . 00002639 | . 0008419 | -0.0294 | 53134.3 | 53134.4 | 1 |  |  |  |
| 1800+440 | 1800+440 | 925 | 18 | 01 | 32.31481994 | +44 | 04 | 21.9003865 | . 00000369 | . 0000561 | 0.0281 | 50242.4 | 56782.1 | 150 | 0.71 | 0.33 | 2.2 |
| 1801+459 | 1801+459 | 3646 | 18 | 02 | 25.14266497 | +45 | 57 | 34.6351450 | . 00013855 | . 0014773 | 0.1993 | 50306.1 | 50306.3 | 1 |  |  |  |
| 1759-396 | 1759-396 | 2044 | 18 | 02 | 42.68005482 | -39 | 40 | 7.9081396 | . 00000472 | . 0000714 | -0.0012 | 52306.7 | 56770.0 | 264 |  | 0.73 | 2.4 |
| 1800-045 | 1800-045 | 3647 | 18 | 03 | 9.42759094 | -04 | 33 | 2.8008329 | . 00011438 | . 0029982 | 0.1528 | 53503.3 | 55537.9 | 2 |  |  |  |
| 1758-651 | P 1758-651 | 926 | 18 | 03 | 23.49665201 | -65 | 07 | 36.7613900 | . 00001188 | . 0000929 | 0.2024 | 48756.8 | 56758.3 | 51 |  |  |  |
| 1801+036 | 1801+036 | 4143 | 18 | 03 | 56.28253054 | +03 | 41 | 7.6072365 | . 00001415 | . 0003786 | 0.0687 | 55616.5 | 55616.7 | 1 |  |  |  |
| 1801+010 | 1801+010 | 3648 | 18 | 04 | 15.98459112 | +01 | 01 | 32.4080428 | . 00006817 | . 0014818 | -0.0287 | 49914.1 | 54643.0 | 2 |  |  |  |
| 1801-077 | 1801-077 | 3649 | 18 | 04 | 31.07364005 | -07 | 47 | 19.6184612 | . 00193449 | . 0146458 | 0.0449 | 53523.3 | 53523.3 | 1 |  |  |  |
| 1802-046 | 1802-046 | 3650 | 18 | 05 | 31.11563358 | -04 | 38 | 9.7230040 | . 00016283 | . 0039306 | -0.1133 | 53125.4 | 55966.6 | 2 |  |  |  |
| 1802-141 | 1802-141 | 3651 | 18 | 05 | 31.19984300 | -14 | 08 | 45.4305941 | . 24977334 | . 1474719 | 1.0000 | 53552.3 | 53552.3 | 1 |  |  |  |
| 1803+172 | 1803+172 | 2045 | 18 | 05 | 47.43634830 | +17 | 14 | 55.9211691 | . 00001686 | . 0004877 | -0.1513 | 53560.2 | 53560.3 | 1 |  |  |  |
| 1805+616 | 1805+616 | 3652 | 18 | 06 | 19.94584347 | +61 | 41 | 18.3295587 | . 00020833 | . 0010946 | 0.0092 | 49576.2 | 49827.4 | 2 |  |  |  |
| 1807+698 | 3C 371 | 512 | 18 | 06 | 50.68064994 | +69 | 49 | 28.1085892 | . 00000353 | . 0000504 | 0.0184 | 44202.8 | 56744.8 | 1007 | 0.58 |  | 3.2 |
| 1805+310 | 1805+310 | 2046 | 18 | 07 | 31.75813655 | +31 | 06 | 21.5779680 | . 00007716 | . 0019141 | -0.6315 | 53572.2 | 53572.3 | 1 |  |  |  |
| 1805+220 | 1805+220 | 2047 | 18 | 07 | 38.80615488 | +22 | 04 | 56.4108666 | . 00002514 | . 0005087 | -0.1998 | 53561.2 | 53561.3 | 1 |  |  |  |
| 1804-251 | 1804-251 | 2048 | 18 | 07 | 40.68790270 | -25 | 06 | 25.9427479 | . 00014900 | . 0036840 | 0.1160 | 53134.4 | 53134.4 | 1 |  |  |  |
| 1806+456 | 1806+456 | 927 | 18 | 08 | 21.88588955 | +45 | 42 | 20.8665183 | . 00000388 | . 0000571 | -0.0500 | 49422.5 | 56772.7 | 132 |  | 0.25 | 0.0 |
| 1807+279 | J1809+2758 | 1143 | 18 | 09 | 11.97860763 | +27 | 58 | 11.7996915 | . 00001206 | . 0003594 | -0.1650 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1806-458 | P 1806-458 | 509 | 18 | 09 | 57.87173269 | -45 | 52 | 41.0140367 | . 00001439 | . 0001714 | -0.2138 | 52067.3 | 56637.9 | 37 |  |  |  |
| 1809+568 | 1809+568 | 3653 | 18 | 10 | 3.31916389 | +56 | 49 | 22.9681600 | . 00008915 | . 0011111 | -0.5978 | 49576.1 | 49576.3 | 1 |  |  |  |
| 1809+170 | 1809+170 | 1240 | 18 | 11 | 43.18347658 | +17 | 04 | 57.2575902 | . 00001028 | . 0002762 | 0.0740 | 53134.3 | 53305.9 | 2 |  |  |  |
| 1809-286 | 1809-286 | 3654 | 18 | 12 | 40.19227018 | -28 | 36 | 26.9416994 | . 00005527 | . 0019541 | 0.2628 | 53503.4 | 53503.5 | 1 |  |  |  |
| 1810-068 | 1810-068 | 3655 | 18 | 12 | 50.94172941 | -06 | 48 | 23.8473996 | . 01389822 | . 2753391 | -0.9957 | 50575.3 | 50575.5 | 1 |  |  |  |
| 1812+560 | 1812+560 | 3656 | 18 | 12 | 57.66947670 | +56 | 03 | 49.2000482 | . 00002381 | . 0002575 | -0.2066 | 49576.2 | 54087.9 | 2 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1811+430 | 1811+430 | 3657 | 18 | 13 | 14.68941282 | +43 | 04 | 15.6764642 | . 00002355 | . 0003687 | -0.3698 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1811+062 | 1811+062 | 3658 | 18 | 13 | 33.41164201 | +06 | 15 | 42.0339920 | . 00005268 | . 0015929 | -0.5814 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1811+298 | 1811+298 | 3659 | 18 | 13 | 37.26680951 | +29 | 52 | 37.8710864 | . 00001829 | . 0004784 | -0.4288 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1812+412 | 1812+412 | 2049 | 18 | 14 | 22.70618740 | +41 | 13 | 5.6086161 | . 00001559 | . 0002655 | -0.4261 | 50242.4 | 54643.7 | 2 |  |  |  |
| 1813+163 | 1813+163 | 4135 | 18 | 15 | 14.85448772 | +16 | 23 | 46.2955496 | . 00003042 | . 0005759 | -0.3862 | 55776.1 | 55776.3 | 1 |  |  |  |
| 1815+614 | 1815+614 | 3660 | 18 | 15 | 36.79197852 | +61 | 27 | 11.6472803 | . 00059756 | . 0031748 | 0.4258 | 49576.1 | 49827.4 | 2 |  |  |  |
| 1814+349 | 1814+349 | 3661 | 18 | 16 | 23.90082847 | +34 | 57 | 45.7490826 | . 00026048 | . 0038444 | -0.0883 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1815+531 | 1815+531 | 3662 | 18 | 16 | 57.07081028 | +53 | 07 | 44.4992358 | . 00004224 | . 0005118 | -0.3778 | 49576.1 | 54112.6 | 2 |  |  |  |
| 1815-111 | 1815-111 | 3663 | 18 | 18 | 19.31360199 | -11 | 08 | 48.3186092 | . 00018568 | . 0026507 | 0.3125 | 53125.4 | 55537.9 | 2 |  |  |  |
| 1817+502 | 1817+502 | 3664 | 18 | 18 | 30.51924814 | +50 | 17 | 19.7438544 | . 00003871 | . 0005216 | -0.2412 | 49576.2 | 50306.3 | 2 |  |  |  |
| 1816-029 | 1816-029 | 3665 | 18 | 19 | 17.40883328 | -02 | 58 | 7.8690018 | . 00003233 | . 0005493 | 0.3768 | 50575.5 | 56498.3 | 4 |  |  |  |
| 1817+387 | 1817+387 | 2050 | 18 | 19 | 26.54736812 | +38 | 45 | 1.7863984 | . 00001019 | . 0001897 | -0.0576 | 53134.3 | 56701.5 | 2 | 0.26 | 0.11 |  |
| 1814-637 | P 1814-63 | 928 | 18 | 19 | 35.00271493 | -63 | 45 | 48.2037145 | . 00021826 | . 0034238 | -0.6105 | 49329.2 | 53108.4 | 2 |  |  |  |
| 1817+157 | 1817+157 | 3666 | 18 | 19 | 38.28932792 | +15 | 43 | 44.7275767 | . 00003647 | . 0006297 | 0.0425 | 54087.8 | 55112.1 | 2 |  |  |  |
| 1815-553 | P 1815-554 | 929 | 18 | 19 | 45.39952011 | -55 | 21 | 20.7454609 | . 00001018 | . 0000732 | -0.0733 | 47626.0 | 56639.5 | 262 |  |  |  |
| 1817-254 | 1817-254 | 664 | 18 | 20 | 57.84869608 | -25 | 28 | 12.5842581 | . 00000841 | . 0002587 | -0.2728 | 47407.2 | 53134.4 | 15 | 0.18 | 0.16 | 3.5 |
| 1818-050 | 1818-050 | 3667 | 18 | 21 | 11.80952136 | -05 | 02 | 20.0873224 | . 00004079 | . 0011897 | 0.1283 | 53503.4 | 53503.5 | 1 |  |  |  |
| 1822+682 | 1822+682 | 3668 | 18 | 21 | 59.49178140 | +68 | 18 | 43.0092377 | . 00009526 | . 0005435 | 0.5998 | 49826.5 | 54087.9 | 2 |  |  |  |
| 1820+397 | 1820+397 | 3669 | 18 | 21 | 59.70062622 | +39 | 45 | 59.6564036 | . 00013102 | . 0020826 | -0.5381 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1819+159 | 1819+159 | 1144 | 18 | 22 | 9.96896586 | +16 | 00 | 14.8439958 | . 00002792 | . 0007656 | 0.2863 | 50084.7 | 50155.7 | 2 |  |  |  |
| 1826+796 | 1826+796 | 930 | 18 | 23 | 14.10871996 | +79 | 38 | 49.0024603 | . 00005928 | . 0001574 | 0.3250 | 48353.1 | 53613.4 | 19 | 0.21 |  | 4.4 |
| 1820-274 | 1820-274 | 2051 | 18 | 23 | 19.65174574 | -27 | 26 | 26.3798898 | . 00131268 | . 0362553 | -0.8916 | 50631.3 | 56302.7 | 3 |  |  |  |
| 1823+689 | 1823+689 | 2052 | 18 | 23 | 32.85391398 | +68 | 57 | 52.6126480 | . 00000682 | . 0000637 | 0.0748 | 49826.5 | 56772.6 | 71 |  |  |  |
| 1821+107 | P 1821+10 | 513 | 18 | 24 | 2.85525545 | +10 | 44 | 23.7739848 | . 00000422 | . 0000896 | -0.3211 | 44202.8 | 56770.4 | 132 | 0.62 | 0.31 | 3.2 |
| 1821+114 | 1821+114 | 2053 | 18 | 24 | 3.94796536 | +11 | 27 | 37.6996008 | . 00008841 | . 0026994 | -0.6185 | 53572.2 | 53572.3 | 1 |  |  |  |
| 1823+568 | 1823+568 | 931 | 18 | 24 | 7.06837657 | +56 | 51 | 1.4908954 | . 00000383 | . 0000538 | -0.0126 | 47620.3 | 56782.1 | 384 | 0.77 |  | 2.5 |
| 1822+033 | 1822+033 | 2054 | 18 | 24 | 32.06597694 | +03 | 22 | 5.9424485 | . 00019795 | . 0042985 | -0.5714 | 54314.2 | 54314.3 | 1 |  |  |  |
| 1822+012 | 1822+012 | 1145 | 18 | 24 | 48.14342677 | +01 | 19 | 34.2020606 | . 00000768 | . 0002409 | -0.2325 | 53134.4 | 56749.6 | 4 | 0.26 | 0.20 |  |
| 1822-173 | 1822-173 | 3670 | 18 | 25 | 36.53228508 | -17 | 18 | 49.8476862 | . 00002935 | . 0008202 | 0.1817 | 51732.1 | 55518.1 | 3 |  |  |  |
| 1822-076 | 1822-076 | 3671 | 18 | 25 | 37.60953788 | -07 | 37 | 30.0133264 | . 00002196 | . 0004930 | 0.2285 | 52305.8 | 55518.0 | 3 |  |  |  |
| 1824+578 | 1824+578 | 2055 | 18 | 25 | 41.59870777 | +57 | 53 | 5.9578116 | . 00015367 | . 0013018 | 0.3408 | 53560.2 | 53560.3 | 1 |  |  |  |
| 1822-368 | 1822-368 | 2056 | 18 | 26 | 8.13488634 | -36 | 50 | 49.7260082 | . 00004043 | . 0012803 | 0.0119 | 53152.4 | 53152.4 | 1 |  |  |  |
| 1824+185 | 1824+185 | 3672 | 18 | 26 | 17.71068841 | +18 | 31 | 52.8932178 | . 00027596 | . 0039455 | -0.0335 | 50084.7 | 50155.7 | 2 |  |  |  |
| 1823-294 | 1823-294 | 2057 | 18 | 26 | 20.59910607 | -29 | 24 | 24.9522785 | . 00003795 | . 0011711 | 0.3904 | 53503.4 | 53561.3 | 2 |  |  |  |
| 1823+017 | 1823+017 | 2058 | 18 | 26 | 25.06119622 | +01 | 49 | 40.1193045 | . 00001039 | . 0003225 | -0.1173 | 53552.2 | 53552.3 | 1 |  |  |  |
| 1825+344 | 1825+344 | 3673 | 18 | 26 | 59.98285835 | +34 | 31 | 14.1198249 | . 00002021 | . 0004756 | -0.3670 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1823-455 | 1823-455 | 3674 | 18 | 27 | 10.23811634 | -45 | 33 | 9.9636906 | . 00006677 | . 0019673 | -0.3049 | 52306.7 | 52306.7 | 1 |  |  |  |
| 1825+266 | 1825+266 | 3675 | 18 | 27 | 20.13461218 | +26 | 38 | 24.1510714 | . 00003934 | . 0010055 | 0.1952 | 54111.8 | 54112.7 | 1 |  |  |  |
| 1825-041 | 1825-041 | 3676 | 18 | 27 | 45.04052694 | -04 | 05 | 44.5764909 | . 00002325 | . 0006430 | 0.1318 | 50575.5 | 56547.2 | 5 |  |  |  |
| 1825+269 | 1825+269 | 3677 | 18 | 27 | 55.42496184 | +26 | 58 | 5.9180262 | . 00003883 | . 0010458 | -0.7313 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1827+645 | 1827+645 | 3678 | 18 | 28 | 9.85761472 | +64 | 34 | 16.0335210 | . 00020623 | . 0015696 | 0.5146 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1825-214 | 1825-214 | 2059 | 18 | 28 | 19.48690413 | -21 | 23 | 38.7709968 | . 00014389 | . 0034661 | -0.1890 | 54657.2 | 54657.3 | 1 |  |  |  |
| 1825-055 | 1825-055 | 1289 | 18 | 28 | 40.15340833 | -05 | 30 | 50.8654207 | . 00014362 | . 0036980 | -0.3523 | 53991.9 | 56393.6 | 2 |  |  |  |
| 1824-582 | 1824-582 | 3679 | 18 | 29 | 12.40236091 | -58 | 13 | 55.1619285 | . 00002040 | . 0001774 | 0.4434 | 53222.6 | 56504.7 | 16 |  |  |  |
| 1826+052 | 1826+052 | 3680 | 18 | 29 | 21.27914996 | +05 | 18 | 12.8498988 | . 05425868 | . 7322705 | -0.9986 | 53572.3 | 53572.3 | 1 |  |  |  |
| 1826-391 | 1826-391 | 3681 | 18 | 29 | 28.90280284 | -39 | 04 | 0.3644131 | . 00050650 | . 0302376 | -0.3489 | 53152.4 | 53152.4 | 1 |  |  |  |
| 1828+487 | 3C 380 | 2060 | 18 | 29 | 31.78095422 | +48 | 44 | 46.1609145 | . 00001193 | . 0002632 | -0.2327 | 53552.2 | 53552.4 | 1 |  |  |  |
| 1828+399 | 1828+399 | 3682 | 18 | 29 | 56.52021002 | +39 | 57 | 34.7031541 | . 00002676 | . 0004382 | -0.5004 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1826-447 | 1826-447 | 3683 | 18 | 30 | 0.86975323 | -44 | 41 | 11.6767089 | . 00012111 | . 0032978 | -0.0180 | 55167.8 | 55167.9 | 1 |  |  |  |
| 1827+062 | 1827+062 | 3684 | 18 | 30 | 5.93986731 | +06 | 19 | 15.9525551 | . 00002508 | . 0007927 | -0.5832 | 49914.1 | 49914.3 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1827-272 | 1827-272 | 1290 | 18 | 31 | 0.04484560 | -27 | 14 | 6.1812446 | . 00003218 | . 0017689 | -0.1579 | 53767.8 | 53768.6 | 1 |  |  |  |
| 1829+290 | 1829+290 | 3685 | 18 | 31 | 14.85922067 | +29 | 07 | 10.2934330 | . 00021081 | . 0028030 | -0.0365 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1829+219 | 1829+219 | 3686 | 18 | 31 | 18.89180892 | +22 | 00 | 12.3350101 | . 00040555 | . 0034250 | -0.7842 | 50155.5 | 53503.5 | 2 |  |  |  |
| 1829-207 | 1829-207 | 1241 | 18 | 32 | 11.04653098 | -20 | 39 | 48.2040517 | . 00004354 | . 0008672 | 0.6383 | 50631.3 | 53551.5 | 3 | 0.07 |  | 4.8 |
| 1829-106 | 1829-106 | 663 | 18 | 32 | 20.83398038 | -10 | 35 | 11.1674533 | . 00196013 | . 0271871 | -0.9185 | 51732.1 | 55537.9 | 3 |  |  |  |
| 1832+687 | 1832+687 | 3687 | 18 | 32 | 35.52237222 | +68 | 48 | 7.1484898 | . 00114192 | . 0036972 | -0.5616 | 55482.8 | 55538.6 | 2 |  |  |  |
| 1830+012 | 1830+012 | 2061 | 18 | 32 | 40.09375823 | +01 | 18 | 16.4731249 | . 00006211 | . 0020253 | -0.3319 | 53125.4 | 53125.5 | 1 |  |  |  |
| 1830+074 | 1830+074 | 3688 | 18 | 32 | 41.98909205 | +07 | 31 | 55.1245031 | . 00004153 | . 0018136 | -0.7936 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1830+139 | 1830+139 | 1146 | 18 | 32 | 43.47108243 | +13 | 57 | 44.4007067 | . 00001215 | . 0003871 | -0.3653 | 50084.7 | 53770.9 | 6 | 0.24 | 0.13 |  |
| 1830+285 | GC 1830+28 | 516 | 18 | 32 | 50.18562277 | +28 | 33 | 35.9552667 | . 00000556 | . 0001014 | -0.2641 | 50219.4 | 55112.7 | 20 |  |  |  |
| 1830+011 | LANA | 2062 | 18 | 33 | 7.76086498 | +01 | 15 | 35.3012168 | . 00004061 | . 0012141 | -0.6239 | 53523.3 | 53523.4 | 1 |  |  |  |
| 1830-211 | 1830-21B | 932 | 18 | 33 | 39.88514132 | -21 | 03 | 40.5806961 | . 00040671 | . 0056297 | 0.9278 | 49177.2 | 50688.1 | 3 |  |  |  |
| 1831-030 | 1831-030 | 2063 | 18 | 34 | 14.07465787 | -03 | 01 | 19.6272311 | . 00002844 | . 0005641 | 0.0458 | 53134.4 | 55518.0 | 2 |  |  |  |
| 1831+050 | 1831+050 | 2064 | 18 | 34 | 27.31152755 | +05 | 06 | 3.9655620 | . 00013972 | . 0021775 | -0.0515 | 53560.2 | 53560.3 | 1 |  |  |  |
| 1828-733 | 1828-733 | 3689 | 18 | 34 | 53.19783764 | -73 | 15 | 14.3345489 | . 00022466 | . 0010380 | -0.2504 | 54722.9 | 54723.7 | 1 |  |  |  |
| 1833+326 | 1833+326 | 3690 | 18 | 35 | 3.38963120 | +32 | 41 | 46.8568011 | . 00004429 | . 0006203 | 0.0051 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1832-113 | 1832-113 | 4136 | 18 | 35 | 19.57593912 | -11 | 15 | 59.3143105 | . 00031059 | . 0052226 | 0.4082 | 55537.8 | 55538.0 | 1 |  |  |  |
| 1834+612 | 1834+612 | 3691 | 18 | 35 | 19.67526656 | +61 | 19 | 40.0138108 | . 00006587 | . 0008680 | -0.1101 | 49576.2 | 49576.4 | 1 |  |  |  |
| 1829-718 | P 1829-718 | 933 | 18 | 35 | 37.21189692 | -71 | 49 | 58.2318000 | . 01715436 | . 1003374 | 0.1060 | 50259.0 | 50259.1 | 1 |  |  |  |
| 1833+240 | 1833+240 | 2065 | 18 | 35 | 46.27250833 | +24 | 07 | 50.8298703 | . 00001477 | . 0004242 | -0.1749 | 53552.3 | 53561.4 | 2 |  |  |  |
| 1831-693 | 1831-693 | 3692 | 18 | 37 | 5.56390985 | -69 | 17 | 33.3304087 | . 00016088 | . 0013346 | 0.3626 | 54722.9 | 54723.8 | 1 |  |  |  |
| 1831-711 | P 1831-711 | 934 | 18 | 37 | 28.71493325 | -71 | 08 | 43.5549111 | . 00002453 | . 0001756 | 0.1578 | 47626.0 | 56538.7 | 15 |  |  |  |
| 1835+064 | 1835+064 | 3693 | 18 | 38 | 22.91199200 | +06 | 28 | 8.7092717 | . 00015914 | . 0064577 | -0.1701 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1835-345 | 1835-345 | 2066 | 18 | 38 | 28.49698130 | -34 | 27 | 41.7550685 | . 00012871 | . 0056222 | -0.7279 | 53523.4 | 53523.4 | 1 |  |  |  |
| 1836+040 | 1836+040 | 3694 | 18 | 38 | 48.82902620 | +04 | 04 | 24.6694998 | . 00017931 | . 0026673 | -0.3206 | 49914.1 | 49914.3 | 1 |  |  |  |
| 1836+094 | 1836+094 | 2067 | 18 | 38 | 54.83524497 | +09 | 27 | 27.8966844 | . 00002642 | . 0011339 | -0.6024 | 53125.4 | 53125.5 | 1 |  |  |  |
| 1837+409 | 1837+409 | 3695 | 18 | 39 | 5.80336872 | +41 | 00 | 59.0917145 | . 00030923 | . 0054506 | 0.2096 | 54111.8 | 54112.7 | 1 |  |  |  |
| 1839+389 | 1839+389 | 1147 | 18 | 40 | 57.15423224 | +39 | 00 | 45.7242840 | . 00001570 | . 0002846 | -0.3541 | 50242.4 | 54664.7 | 2 |  |  |  |
| 1839+548 | 1839+548 | 3696 | 18 | 40 | 57.37670213 | +54 | 52 | 15.9102708 | . 00004258 | . 0005816 | 0.1298 | 49576.2 | 54087.9 | 3 | 0.13 |  |  |
| 1845+797 | 3C 390.3 | 519 | 18 | 42 | 8.98990458 | +79 | 46 | 17.1283963 | . 00004010 | . 0001190 | -0.3628 | 44202.9 | 54936.8 | 60 | 0.20 |  | 3.9 |
| 1842+681 | 1842+681 | 935 | 18 | 42 | 33.64169817 | +68 | 09 | 25.2278020 | . 00000578 | . 0000579 | -0.0544 | 49422.0 | 56762.7 | 40 | 0.82 |  | 1.9 |
| 1841+447 | 1841+447 | 2068 | 18 | 43 | 7.91744466 | +44 | 49 | 51.5226900 | . 00014732 | . 0012974 | -0.1856 | 53125.3 | 53125.5 | 1 |  |  |  |
| 1841+131 | 1841+131 | 3697 | 18 | 44 | 7.26249449 | +13 | 12 | 28.0398996 | . 00009625 | . 0022963 | -0.6871 | 50084.7 | 50155.7 | 2 |  |  |  |
| 1841+116 | 1841+116 | 3698 | 18 | 44 | 18.05166888 | +11 | 40 | 23.7675274 | . 06256736 | . 1349903 | -0.9992 | 53561.3 | 53561.3 | 1 |  |  |  |
| 1842-134 | 1842-134 | 3699 | 18 | 44 | 50.30407115 | -13 | 24 | 45.2795631 | . 03249903 | . 3464792 | -0.9999 | 53152.4 | 53152.4 | 1 |  |  |  |
| 1843+400 | 1843+400 | 1148 | 18 | 45 | 11.13152513 | +40 | 07 | 51.5791485 | . 00008462 | . 0008442 | 0.7862 | 53067.8 | 53068.5 | 1 |  |  |  |
| 1843+356 | 1843+356 | 3700 | 18 | 45 | 35.10884401 | +35 | 41 | 16.7264426 | . 00002304 | . 0004735 | -0.0915 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1842-220 | 1842-220 | 3701 | 18 | 45 | 39.90284181 | -22 | 00 | 36.5796913 | . 00005416 | . 0018686 | -0.0709 | 53552.3 | 55847.1 | 2 |  |  |  |
| 1842-289 | 1842-289 | 2069 | 18 | 45 | 51.36828697 | -28 | 52 | 40.2761545 | . 00001107 | . 0003774 | -0.0021 | 53152.4 | 56749.6 | 2 |  | 0.18 |  |
| 1843-001 | 1843-001 | 3702 | 18 | 46 | 3.78234488 | -00 | 03 | 38.2530053 | . 00011454 | . 0030991 | 0.4653 | 55413.1 | 55413.3 | 1 |  |  |  |
| 1843-069 | 1843-069 | 2070 | 18 | 46 | 6.30039209 | -06 | 51 | 27.7469222 | . 00027229 | . 0030973 | -0.1090 | 53134.4 | 53134.5 | 1 |  |  |  |
| 1844+081 | J1847+0810 | 1150 | 18 | 47 | 12.66038705 | +08 | 10 | 35.3876855 | . 00002892 | . 0007575 | 0.2333 | 49914.1 | 49914.2 | 1 |  |  |  |
| 1846+322 | 1846+322 | 2071 | 18 | 48 | 22.08857934 | +32 | 19 | 2.6037501 | . 00000346 | . 0000523 | -0.0083 | 50219.4 | 56772.7 | 300 |  |  |  |
| 1846+326 | 1846+326 | 3703 | 18 | 48 | 34.36117450 | +32 | 44 | 0.1394456 | . 00001928 | . 0004151 | -0.3378 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1845-273 | 1845-273 | 2072 | 18 | 48 | 47.50413664 | -27 | 18 | 18.0717319 | . 00002043 | . 0008183 | -0.3831 | 54601.4 | 56393.5 | 2 |  | 0.27 | 0.0 |
| 1849+670 | 1849+670 | 697 | 18 | 49 | 16.07228831 | +67 | 05 | 41.6803784 | . 00000413 | . 0000526 | -0.0159 | 49826.5 | 56770.7 | 343 | 1.16 |  | 1.5 |
| 1847+303 | 1847+303 | 3704 | 18 | 49 | 20.10341465 | +30 | 24 | 14.2371594 | . 00001704 | . 0005555 | -0.2007 | 50219.4 | 50219.5 | 1 |  |  |  |
| 1849+499 | 1849+499 | 3705 | 18 | 50 | 22.23121128 | +49 | 59 | 21.2594839 | . 01592474 | . 3434159 | 0.9910 | 50306.3 | 50306.3 | 1 |  |  |  |
| 1848+283 | 1848+283 | 1242 | 18 | 50 | 27.58984934 | +28 | 25 | 13.1550700 | . 00001537 | . 0003394 | -0.6639 | 50219.5 | 54482.3 | 8 | 0.27 | 0.41 |  |
| 1849+005 | 1849+005 | 3706 | 18 | 51 | 46.72559138 | +00 | 35 | 32.3204184 | . 05631245 | . 8783502 | -0.9997 | 52409.5 | 52409.5 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | $\begin{aligned} & \text { RA Error } \\ & \text { (s) } \end{aligned}$ | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1851+609 | 1851+609 | 3707 | 18 | 51 | 52.36088313 | +61 | 00 | 38.7790794 | . 00047002 | . 0019803 | 0.5500 | 49576.3 | 54112.6 | 2 |  |  |  |
| 1851+488 | J1852+4855 | 1151 | 18 | 52 | 28.54780056 | +48 | 55 | 47.4815160 | . 00001966 | . 0002571 | 0.0909 | 50306.2 | 54482.7 | 2 | 0.40 |  |  |
| 1850+402 | 1850+402 | 3708 | 18 | 52 | 30.37252168 | +40 | 19 | 6.6082274 | . 00001847 | . 0003643 | -0.2237 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1850+143 | 1850+143 | 3709 | 18 | 52 | 50.58042350 | +14 | 26 | 39.7024736 | . 00004933 | . 0018403 | -0.8171 | 54087.8 | 54087.9 | 1 |  |  |  |
| 1849-365 | 1849-365 | 2073 | 18 | 53 | 17.92014795 | -36 | 28 | 42.1773786 | . 00011480 | . 0074364 | -0.1084 | 52306.7 | 53134.4 | 3 |  |  |  |
| 1851+331 | 1851+331 | 2074 | 18 | 53 | 26.78725125 | +33 | 10 | 56.1328950 | . 00004529 | . 0010148 | -0.5180 | 53561.3 | 53561.4 | 1 |  |  |  |
| 1851+236 | 1851+236 | 2075 | 18 | 53 | 27.62798141 | +23 | 44 | 35.5311066 | . 00004257 | . 0016262 | -0.6035 | 53523.3 | 53523.5 | 1 |  |  |  |
| 1851-157 | 1851-157 | 2076 | 18 | 54 | 4.33206298 | -15 | 39 | 13.1999614 | . 00002904 | . 0009339 | 0.3194 | 53552.3 | 53572.3 | 2 |  |  |  |
| 1851-162 | 1851-162 | 2077 | 18 | 54 | 16.46663305 | -16 | 11 | 38.6175131 | . 00013255 | . 0032108 | 0.6805 | 55042.2 | 55042.3 | 1 |  |  |  |
| 1856+737 | 1856+736 | 936 | 18 | 54 | 57.29991715 | +73 | 51 | 19.9069997 | . 00001396 | . 0000829 | 0.0537 | 49268.1 | 55333.8 | 21 | 0.32 |  |  |
| 1853+376 | 1853+376 | 3710 | 18 | 55 | 27.70679908 | +37 | 42 | 56.9662884 | . 00003526 | . 0009601 | -0.7222 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1853+027 | 1853+027 | 3711 | 18 | 55 | 35.43643720 | +02 | 51 | 19.5607791 | . 00009020 | . 0018703 | 0.1515 | 52306.7 | 55616.6 | 3 |  |  |  |
| 1852-275 | 1852-275 | 3712 | 18 | 55 | 36.31387433 | -27 | 27 | 9.0179571 | . 09449280 | . 5940877 | -0.9996 | 53152.4 | 53152.4 | 1 |  |  |  |
| 1853-122 | 1853-122 | 3713 | 18 | 55 | 54.44542996 | -12 | 09 | 57.9674559 | . 00001683 | . 0005997 | 0.0156 | 53503.4 | 56637.9 | 5 |  |  |  |
| 1853-179 | 1853-179 | 3714 | 18 | 55 | 56.37866968 | -17 | 54 | 42.9348352 | . 00005475 | . 0014263 | -0.0393 | 53152.3 | 56266.9 | 2 |  |  |  |
| 1854+061 | 1854+061 | 3715 | 18 | 56 | 31.83884711 | +06 | 10 | 16.7626343 | . 00018922 | . 0039722 | 0.5073 | 52305.8 | 52409.5 | 2 |  |  |  |
| 1853-226 | 1853-226 | 3716 | 18 | 56 | 36.46401862 | -22 | 36 | 16.7132703 | . 07379718 | . 5513249 | 0.9999 | 53523.4 | 53523.4 | 1 |  |  |  |
| 1852-534 | 1852-534 | 3717 | 18 | 57 | 0.45152662 | -53 | 25 | 0.3419766 | . 00116060 | . 0240997 | 0.4219 | 50989.4 | 50989.6 | 1 |  |  |  |
| 1855+163 | 1855+163 | 3718 | 18 | 57 | 25.59557057 | +16 | 24 | 55.8373007 | . 00006541 | . 0024446 | 0.7629 | 54111.9 | 54112.7 | 1 |  |  |  |
| 1855+031 | 1855+031 | 1291 | 18 | 58 | 2.35283098 | +03 | 13 | 16.2956064 | . 00011838 | . 0021664 | -0.2289 | 53978.0 | 55616.6 | 2 |  |  |  |
| 1855-252 | 1855-252 | 3719 | 18 | 58 | 19.07776552 | -25 | 10 | 50.7142992 | . 00006099 | . 0020848 | -0.0211 | 53152.4 | 55847.0 | 2 |  |  |  |
| 1856-252 | 1856-252 | 2078 | 18 | 59 | 5.03812719 | -25 | 09 | 47.1080478 | . 00003274 | . 0011168 | -0.1375 | 54817.8 | 54817.9 | 1 |  |  |  |
| 1858+273 | 1858+273 | 3720 | 19 | 00 | 34.67742557 | +27 | 22 | 30.9175965 | . 00010175 | . 0021420 | 0.0303 | 50219.5 | 50219.5 | 1 |  |  |  |
| 1858+269 | 1858+269 | 3721 | 19 | 00 | 48.51392979 | +27 | 01 | 57.5712770 | . 00004605 | . 0010982 | -0.6016 | 50219.5 | 50219.5 | 1 |  |  |  |
| 1858-255 | 1858-255 | 3722 | 19 | 01 | 32.12635092 | -25 | 28 | 14.2283794 | . 00002712 | . 0010483 | -0.1061 | 53503.5 | 55657.6 | 2 |  |  |  |
| 1901+319 | 3C 395 | 521 | 19 | 02 | 55.93889893 | +31 | 59 | 41.7017526 | . 00000506 | . 0000775 | -0.1415 | 48103.1 | 55159.5 | 50 | 0.30 | 0.38 | 3.9 |
| 1902+556 | 1902+556 | 3723 | 19 | 03 | 11.60703798 | +55 | 40 | 38.4494435 | . 00072242 | . 0081351 | 0.7992 | 49576.2 | 54087.9 | 2 |  |  |  |
| 1901+016 | 1901+016 | 2079 | 19 | 03 | 53.06292201 | +01 | 45 | 26.3122497 | . 00051943 | . 0064371 | -0.7752 | 54075.9 | 54076.2 | 1 |  |  |  |
| 1901+155 | 1901+155 | 1152 | 19 | 04 | 14.36113263 | +15 | 36 | 38.4513331 | . 00001887 | . 0006176 | -0.0928 | 50084.7 | 53314.8 | 16 |  |  |  |
| 1902-119 | 1902-119 | 3724 | 19 | 05 | 28.58789488 | -11 | 53 | 32.4158022 | . 00009411 | . 0020318 | 0.7373 | 53503.4 | 54112.7 | 2 |  |  |  |
| 1903+196 | 1903+196 | 2080 | 19 | 05 | 36.47208680 | +19 | 43 | 8.0454592 | . 00001507 | . 0004695 | -0.3366 | 53552.3 | 53552.4 | 1 | 0.14 | 0.14 | 4.6 |
| 1903+097 | 1903+097 | 4109 | 19 | 05 | 39.89899018 | +09 | 52 | 8.4093837 | . 00012297 | . 0021957 | -0.2481 | 56637.8 | 56637.9 | 1 |  |  |  |
| 1904+013 | 1904+013 | 1153 | 19 | 07 | 11.99619701 | +01 | 27 | 8.9621001 | . 00003060 | . 0006241 | 0.1176 | 49914.1 | 55518.0 | 3 |  |  |  |
| 1905+222 | 1905+222 | 2081 | 19 | 08 | 6.21082997 | +22 | 22 | 34.1476658 | . 00000836 | . 0001750 | 0.1732 | 53561.3 | 56701.6 | 5 |  |  |  |
| 1905-297 | 1905-297 | 2082 | 19 | 08 | 29.43320786 | -29 | 42 | 16.9426604 | . 00004506 | . 0019138 | -0.0324 | 54559.5 | 54559.6 | 1 |  |  |  |
| 1905-252 | 1905-252 | 3725 | 19 | 08 | 48.46281334 | -25 | 09 | 28.6558198 | . 16413285 | . 8066207 | 1.0000 | 53152.4 | 53152.4 | 1 |  |  |  |
| 1907+425 | 1907+425 | 3726 | 19 | 08 | 49.54919409 | +42 | 35 | 29.1535022 | . 02646417 | . 9297944 | -0.9926 | 53125.4 | 53125.4 | 1 |  |  |  |
| 1906-217 | 1906-217 | 2083 | 19 | 09 | 45.15460275 | -21 | 39 | 35.4012292 | . 00004168 | . 0011549 | -0.4826 | 54087.9 | 54965.5 | 2 |  |  |  |
| 1908+484 | 1908+484 | 2084 | 19 | 09 | 46.56271001 | +48 | 34 | 31.8204735 | . 00002442 | . 0002233 | -0.0268 | 50306.2 | 56568.3 | 7 |  |  |  |
| 1908+230 | 1908+230 | 2085 | 19 | 10 | 45.12719357 | +23 | 05 | 58.6111322 | . 00004121 | . 0012031 | -0.2698 | 50155.5 | 53134.5 | 2 |  |  |  |
| 1907-224 | 1907-224 | 2086 | 19 | 10 | 57.55718923 | -22 | 23 | 29.3214532 | . 00004310 | . 0016442 | 0.2527 | 55042.2 | 55042.3 | 1 |  |  |  |
| 1908-201 | OV-213 | 522 | 19 | 11 | 9.65289121 | -20 | 06 | 55.1091941 | . 00000345 | . 0000573 | -0.1224 | 45356.9 | 56770.4 | 887 | 1.01 | 0.73 | 2.5 |
| 1909+268 | 1909+268 | 3727 | 19 | 11 | 35.07735283 | +26 | 58 | 13.7631849 | . 00002947 | . 0006884 | -0.5670 | 50219.5 | 50219.5 | 1 |  |  |  |
| 1908-211 | 1908-211 | 2087 | 19 | 11 | 53.93740581 | -21 | 02 | 43.8021001 | . 00003371 | . 0012282 | -0.7500 | 53125.5 | 53125.5 | 1 |  |  |  |
| 1909-194 | 1909-194 | 2088 | 19 | 11 | 56.51917332 | -19 | 21 | 50.9637507 | . 00012543 | . 0030690 | 0.3610 | 53572.2 | 53572.3 | 1 |  |  |  |
| 1909+161 | J1911+1611 | 1154 | 19 | 11 | 58.25740513 | +16 | 11 | 46.8652709 | . 00000366 | . 0000597 | 0.0549 | 50084.7 | 56775.9 | 182 |  |  |  |
| 1909-081 | 1909-081 | 2089 | 19 | 12 | 7.12880064 | -08 | 04 | 21.9027351 | . 00003072 | . 0008463 | 0.0831 | 53152.3 | 53152.5 | 1 |  |  |  |
| 1909-151 | 1909-151 | 2090 | 19 | 12 | 11.93963202 | -15 | 04 | 57.5429454 | . 00001826 | . 0006021 | -0.2382 | 53523.4 | 53523.5 | 1 |  |  |  |
| 1910+375 | 1910+375 | 1155 | 19 | 12 | 25.12359005 | +37 | 40 | 36.6450238 | . 00001620 | . 0003712 | -0.4179 | 50242.4 | 50242.5 | 1 |  | 0.15 |  |
| 1903-802 | P 1904-80 | 937 | 19 | 12 | 40.01909095 | -80 | 10 | 5.9466459 | . 00005151 | . 0001402 | 0.1464 | 47626.0 | 55229.1 | 21 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1910+052 | 1910+052 | 3728 | 19 | 12 | 54.25764997 | +05 | 18 | 0.4214131 | . 00003027 | . 0004449 | 0.0185 | 50919.4 | 55538.0 | 4 |  |  |  |
| 1910-365 | 1910-365 | 4110 | 19 | 13 | 20.88947975 | -36 | 30 | 19.4292747 | . 00009090 | . 0034264 | -0.0424 | 56301.8 | 56301.8 | 1 |  |  |  |
| 1911-019 | 1911-019 | 3729 | 19 | 13 | 39.13105793 | -01 | 51 | 47.0427969 | . 02327816 | . 0610856 | 0.9762 | 53134.4 | 53134.4 | 1 |  |  |  |
| 1911+165 | 1911+165A | 3730 | 19 | 14 | 14.50123349 | +16 | 36 | 38.1787548 | . 05920797 | . 3003353 | -0.9993 | 52306.7 | 52306.7 | 1 |  |  |  |
| 1911+013 | 1911+013 | 3731 | 19 | 14 | 14.52622894 | +01 | 24 | 26.8277801 | . 15188460 | . 2298488 | -0.9999 | 53560.3 | 53560.3 | 1 |  |  |  |
| 1915+657 | 1915+657 | 3732 | 19 | 15 | 23.81913619 | +65 | 48 | 46.3847241 | . 00017052 | . 0018862 | -0.0595 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1913-272 | 1913-272 | 2091 | 19 | 16 | 19.86275572 | -27 | 08 | 32.2610946 | . 00001316 | . 0005163 | -0.0789 | 54852.8 | 54853.7 | 1 |  |  |  |
| 1914-154 | 1914-154 | 2092 | 19 | 16 | 52.51100734 | -15 | 19 | 0.0715845 | . 00001271 | . 0004562 | -0.3121 | 53503.4 | 53561.4 | 2 | 0.14 | 0.13 |  |
| 1914-212 | 1914-212 | 3733 | 19 | 17 | 8.64444633 | -21 | 10 | 30.7833493 | . 00036272 | . 0114475 | 0.1595 | 53560.3 | 53560.4 | 1 |  |  |  |
| 1914-194 | 1914-194 | 2093 | 19 | 17 | 44.81929600 | -19 | 21 | 31.6095018 | . 00002036 | . 0008060 | -0.4654 | 53572.3 | 53572.3 | 1 |  |  |  |
| 1917+552 | J1918+5520 | 1156 | 19 | 18 | 10.75003329 | +55 | 20 | 38.6096154 | . 00005231 | . 0005647 | -0.5152 | 49576.2 | 49576.4 | 1 | 0.53 |  |  |
| 1917+495 | 1917+495 | 2094 | 19 | 18 | 45.57959657 | +49 | 37 | 56.0340834 | . 00003391 | . 0006063 | -0.3467 | 53561.3 | 53561.4 | 1 |  |  |  |
| 1916+062 | 1916+062 | 3734 | 19 | 19 | 17.35220415 | +06 | 19 | 42.7335553 | . 00961616 | . 1905342 | -0.9990 | 52306.7 | 56637.8 | 2 |  |  |  |
| 1917-248 | 1917-248 | 3735 | 19 | 20 | 14.43095829 | -24 | 45 | 5.8004605 | . 00003142 | . 0010761 | -0.2895 | 53572.3 | 55371.3 | 2 |  |  |  |
| 1918+267 | 1918+267 | 1157 | 19 | 20 | 29.10816159 | +26 | 51 | 48.0018475 | . 00003877 | . 0015960 | -0.1943 | 54111.9 | 54112.7 | 1 |  |  |  |
| 1917-386 | 1917-386 | 3736 | 19 | 20 | 43.00948190 | -38 | 31 | 6.0577771 | . 00012195 | . 0036225 | 0.6376 | 53503.5 | 55966.7 | 2 |  |  |  |
| 1918-026 | 1918-026 | 2095 | 19 | 20 | 43.26220274 | -02 | 36 | 11.6060347 | . 00001096 | . 0003504 | -0.1009 | 53552.3 | 56498.4 | 4 |  |  |  |
| 1919+434 | 1919+434 | 3737 | 19 | 21 | 9.93471419 | +43 | 33 | 41.8376709 | . 00011669 | . 0011275 | -0.3569 | 54087.8 | 54087.9 | 1 |  |  |  |
| 1920+450 | 1920+450 | 3738 | 19 | 21 | 54.20527970 | +45 | 06 | 26.8866502 | . 00057004 | . 0032441 | -0.3383 | 50306.2 | 50306.3 | 1 |  |  |  |
| 1919+086 | 1919+086 | 2096 | 19 | 22 | 18.63375822 | +08 | 41 | 57.3714940 | . 00011777 | . 0038325 | -0.6147 | 50700.1 | 50700.1 | 1 |  |  |  |
| 1920+154 | 1920+154 | 3739 | 19 | 22 | 34.69900777 | +15 | 30 | 10.0334405 | . 00023707 | . 0022272 | 0.1272 | 50084.7 | 50155.7 | 2 |  |  |  |
| 1918-634 | 1918-634 | 3740 | 19 | 23 | 24.60601451 | -63 | 20 | 45.7660599 | . 00005632 | . 0005250 | 0.1870 | 54722.9 | 54723.8 | 1 |  |  |  |
| 1922+478 | 1922+478 | 3741 | 19 | 23 | 27.22977405 | +47 | 54 | 16.8171624 | . 00003977 | . 0007321 | 0.2330 | 50306.2 | 50306.3 | 1 |  |  |  |
| 1920-211 | OV-235 | 665 | 19 | 23 | 32.18981769 | -21 | 04 | 33.3332217 | . 00000384 | . 0000624 | -0.2376 | 46709.1 | 56772.7 | 273 | 0.80 | 0.76 | 2.5 |
| 1922+333 | 1922+333 | 3742 | 19 | 24 | 17.48218382 | +33 | 29 | 29.7456256 | . 00036510 | . 0027895 | 0.2998 | 52305.8 | 52306.6 | 1 |  |  |  |
| 1922+155 | 1922+155 | 2097 | 19 | 24 | 39.45587584 | +15 | 40 | 43.9413875 | . 00000701 | . 0001602 | -0.0543 | 50084.8 | 50654.5 | 3 | 0.24 | 0.17 | 2.3 |
| 1921-293 | OV-236 | 524 | 19 | 24 | 51.05595243 | -29 | 14 | 30.1211716 | . 00000346 | . 0000551 | 0.0185 | 43809.0 | 56763.7 | 1197 |  | 3.09 | 2.8 |
| 1922-341 | 1922-341 | 2098 | 19 | 25 | 17.02025665 | -34 | 01 | 1.5374254 | . 00003741 | . 0011916 | -0.1346 | 53125.5 | 53125.5 | 1 |  |  |  |
| 1922-224 | 1922-224 | 2099 | 19 | 25 | 39.79016891 | -22 | 19 | 35.1124531 | . 00001224 | . 0001941 | 0.1005 | 53523.4 | 56512.2 | 3 |  |  |  |
| 1923+123 | 1923+123 | 2100 | 19 | 25 | 40.81708231 | +12 | 27 | 38.0869590 | . 00002569 | . 0007684 | 0.1672 | 53134.4 | 53134.5 | 1 |  |  |  |
| 1923+210 | OV 239.7 | 526 | 19 | 25 | 59.60535909 | +21 | 06 | 26.1620219 | . 00000347 | . 0000520 | 0.0646 | 46367.8 | 56749.7 | 828 | 0.75 | 0.74 | 3.3 |
| 1924+507 | 1924+507 | 3743 | 19 | 26 | 6.32163773 | +50 | 52 | 57.0177080 | . 00002975 | . 0004566 | 0.1214 | 49576.2 | 50306.3 | 2 |  |  |  |
| 1923-101 | 1923-101 | 2101 | 19 | 26 | 26.96695409 | -10 | 05 | 51.9593562 | . 00019536 | . 0047787 | 0.7263 | 53560.3 | 53560.4 | 1 |  |  |  |
| 1928+770 | 1928+770 | 2102 | 19 | 26 | 31.19095180 | +77 | 06 | 31.4977842 | . 00030713 | . 0011074 | -0.2253 | 53572.2 | 53572.4 | 1 |  |  |  |
| 1926+611 | 1926+611 | 3744 | 19 | 27 | 30.44257132 | +61 | 17 | 32.8789571 | . 00004753 | . 0004078 | -0.3611 | 49576.2 | 49576.4 | 1 |  |  |  |
| 1928+738 | 1928+738 | 701 | 19 | 27 | 48.49516065 | +73 | 58 | 1.5699035 | . 00000808 | . 0000595 | -0.0095 | 44772.1 | 55847.7 | 172 | 1.19 |  | 3.9 |
| 1925-206 | 1925-206 | 2103 | 19 | 28 | 9.18334304 | -20 | 35 | 43.7845846 | . 00001143 | . 0003400 | -0.3446 | 54559.5 | 54601.5 | 2 |  |  |  |
| 1926+440 | 1926+440 | 2104 | 19 | 28 | 21.35157202 | +44 | 12 | 1.8545634 | . 00013053 | . 0028092 | 0.4117 | 50306.2 | 53125.5 | 2 |  |  |  |
| 1926+087 | 1926+087 | 938 | 19 | 28 | 40.85549722 | +08 | 48 | 48.4126926 | . 00000806 | . 0002293 | -0.2391 | 50065.0 | 54937.0 | 13 |  |  |  |
| 1926+233 | 1926+233 | 3745 | 19 | 29 | 4.57595579 | +23 | 25 | 29.2781893 | . 00006990 | . 0008848 | -0.0254 | 50084.7 | 50155.7 | 2 |  |  |  |
| 1926+050 | 1926+050 | 3746 | 19 | 29 | 19.94806208 | +05 | 07 | 57.5899310 | . 00013867 | . 0038108 | -0.3901 | 49914.3 | 49914.4 | 1 |  |  |  |
| 1927+256 | 1927+256 | 3747 | 19 | 29 | 44.91811747 | +25 | 43 | 16.2455677 | . 00001062 | . 0002406 | 0.3195 | 50219.5 | 56547.3 | 5 |  |  |  |
| 1927+090 | 1927+090 | 3748 | 19 | 29 | 47.86322763 | +09 | 10 | 3.6434882 | . 00016872 | . 0033865 | -0.6570 | 53561.3 | 55483.1 | 2 |  |  |  |
| 1925-610 | 1925-610 | 939 | 19 | 30 | 6.16009352 | -60 | 56 | 9.1842964 | . 00001474 | . 0001381 | 0.1547 | 47626.0 | 56638.6 | 32 |  |  |  |
| 1928+154 | 1928+154 | 1159 | 19 | 30 | 52.76699794 | +15 | 32 | 34.4274174 | . 00000868 | . 0001914 | 0.1206 | 52305.8 | 53613.0 | 3 | 0.42 | 0.27 |  |
| 1929+312 | 1929+312 | 3749 | 19 | 31 | 8.67383703 | +31 | 22 | 33.3962492 | . 00010891 | . 0016554 | -0.3930 | 50219.5 | 50219.5 | 1 |  |  |  |
| 1929+226 | 1929+226 | 940 | 19 | 31 | 24.91678201 | +22 | 43 | 31.2586138 | . 00000388 | . 0000670 | -0.1218 | 48613.6 | 56758.8 | 161 | 0.30 | 0.28 | 2.5 |
| 1929-295 | 1929-295 | 2105 | 19 | 32 | 35.45376035 | -29 | 28 | 42.0479278 | . 00002083 | . 0007665 | -0.2891 | 53552.3 | 53552.4 | 1 |  |  |  |
| 1929-457 | 1929-457 | 3750 | 19 | 32 | 44.88776364 | -45 | 36 | 37.9288987 | . 00001636 | . 0002811 | 0.2287 | 53222.6 | 54669.9 | 11 |  |  |  |
| 1931+149 | 1931+149 | 3751 | 19 | 33 | 21.80501757 | +15 | 04 | 46.4003563 | . 00005782 | . 0018866 | -0.1392 | 52305.8 | 52306.7 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | Observation Epoch MJD |  | No. Obs. | $\begin{aligned} & \hline \hline \begin{array}{l} \text { Source Flux } \\ (\mathrm{Jvy}) \end{array} \end{aligned}$ |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1928-698 | 1928-698 | 3752 | 19 | 33 | 31.15982028 | -69 | 42 | 58.9146744 | . 00012964 | . 0005465 | -0.2596 | 53222.7 | 53569.0 | 2 |  |  |  |
| 1933+655 | J1933+6540 | 1160 | 19 | 33 | 57.33725564 | +65 | 40 | 16.8283989 | . 00003778 | . 0004707 | 0.2199 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1932+106 | 1932+106 | 941 | 19 | 34 | 35.02550873 | +10 | 43 | 40.3662211 | . 00017387 | . 0068169 | -0.3247 | 51168.9 | 51169.7 | 1 |  |  |  |
| 1934+615 | 1934+615 | 2106 | 19 | 34 | 40.68334424 | +61 | 38 | 41.6234635 | . 00004783 | . 0004814 | -0.1722 | 53572.2 | 53572.4 | 1 |  |  |  |
| 1931-243 | 1931-243 | 2107 | 19 | 34 | 52.84873713 | -24 | 16 | 24.3611353 | . 00008216 | . 0024118 | -0.1421 | 53152.4 | 53152.5 | 1 |  |  |  |
| 1932+204 | 1932+204 | 942 | 19 | 35 | 10.47290942 | +20 | 31 | 54.1541181 | . 00000543 | . 0001101 | -0.0455 | 48916.1 | 56568.7 | 24 | 0.22 | 0.13 | 2.1 |
| 1939+813 | 1939+813 | 3753 | 19 | 35 | 22.72236143 | +81 | 30 | 14.5541725 | . 00032744 | . 0004340 | -0.5454 | 50687.3 | 50687.4 | 1 |  |  |  |
| 1932-161 | 1932-161 | 3754 | 19 | 35 | 35.79528578 | -16 | 02 | 32.3720319 | . 00004915 | . 0014191 | -0.1403 | 54111.8 | 54111.8 | 1 |  |  |  |
| 1936+714 | 1936+714 | 2108 | 19 | 36 | 3.56081914 | +71 | 31 | 31.7847237 | . 00004107 | . 0002777 | 0.2207 | 49826.5 | 54664.6 | 3 |  |  |  |
| 1934+365 | 1934+365 | 3755 | 19 | 36 | 27.81664204 | +36 | 42 | 34.9808445 | . 00006036 | . 0007913 | 0.0325 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1934+226 | 1934+226 | 3756 | 19 | 36 | 29.30469629 | +22 | 46 | 25.8561812 | . 00009119 | . 0011925 | 0.5108 | 52306.6 | 55483.2 | 2 |  |  |  |
| 1933-400 | P 1933-400 | 528 | 19 | 37 | 16.21735610 | -39 | 58 | 1.5531911 | . 00000751 | . 0000939 | -0.4919 | 44228.0 | 56574.3 | 94 |  | 0.60 |  |
| 1934-065 | 1934-065 | 3757 | 19 | 37 | 19.99229130 | -06 | 27 | 28.0851570 | . 00003883 | . 0011264 | -0.0010 | 53503.6 | 55847.1 | 2 |  |  |  |
| 1935+360 | 1935+360 | 2109 | 19 | 37 | 31.43662992 | +36 | 07 | 35.8415110 | . 00001129 | . 0001977 | -0.0228 | 53134.4 | 56701.6 | 2 | 0.15 | 0.16 |  |
| 1935-179 | 1935-179 | 2110 | 19 | 38 | 4.95831549 | -17 | 49 | 20.3891348 | . 00002977 | . 0011168 | -0.6805 | 53560.3 | 53560.4 | 1 |  |  |  |
| 1936+046 | 1936+046 | 3758 | 19 | 38 | 30.66955024 | +04 | 48 | 11.6138316 | . 00001469 | . 0004018 | -0.1781 | 49914.3 | 56463.4 | 2 | 0.16 | 0.29 |  |
| 1936+095 | 1936+095 | 3759 | 19 | 38 | 43.61050354 | +09 | 42 | 20.0122921 | . 00994056 | . 2096576 | -0.9979 | 54087.9 | 55167.8 | 2 |  |  |  |
| 1934-638 | P 1934-63 | 943 | 19 | 39 | 25.02773793 | -63 | 42 | 45.6051531 | . 00410432 | . 0410676 | 0.6903 | 50181.6 | 50182.4 | 1 |  |  |  |
| 1936-155 | P 1936-15 | 529 | 19 | 39 | 26.65774887 | -15 | 25 | 43.0585211 | . 00000377 | . 0000640 | -0.2129 | 47301.3 | 56770.5 | 207 | 0.57 | 0.59 | 2.1 |
| 1937+381 | 1937+381 | 2111 | 19 | 39 | 33.56694443 | +38 | 17 | 35.3892598 | . 00009381 | . 0008157 | 0.4231 | 53125.4 | 53125.5 | 1 |  |  |  |
| 1938+371 | 1938+371 | 3760 | 19 | 39 | 51.80642388 | +37 | 13 | 30.4868841 | . 00005656 | . 0006674 | -0.2920 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1937-101 | P 1937-101 | 530 | 19 | 39 | 57.25657418 | -10 | 02 | 41.5205298 | . 00000608 | . 0001391 | -0.0554 | 48110.4 | 55112.4 | 26 |  |  |  |
| 1935-692 | 1935-692 | 944 | 19 | 40 | 25.52816203 | -69 | 07 | 56.9716668 | . 00001581 | . 0001171 | 0.0735 | 47626.0 | 56638.7 | 38 |  |  |  |
| 1939+429 | 1939+429 | 2112 | 19 | 40 | 49.32005070 | +43 | 04 | 24.6580737 | . 00007385 | . 0008428 | 0.3053 | 53572.2 | 53572.3 | 1 |  |  |  |
| 1938-302 | 1938-302 | 3761 | 19 | 41 | 10.24275425 | -30 | 07 | 20.4280106 | . 00038502 | . 0097236 | 0.8410 | 53503.5 | 53503.5 | 1 |  |  |  |
| 1936-623 | P 1936-623 | 3762 | 19 | 41 | 21.76866420 | -62 | 11 | 21.0568871 | . 00006637 | . 0008541 | -0.5337 | 52941.0 | 54670.1 | 7 |  |  |  |
| 1942+722 | 1942+722 | 2113 | 19 | 41 | 26.98411623 | +72 | 21 | 42.2182193 | . 00053712 | . 0054322 | 0.3077 | 53560.2 | 53560.5 | 1 |  |  |  |
| 1939-053 | 1939-053 | 2114 | 19 | 41 | 47.00857387 | -05 | 11 | 32.3828835 | . 00002652 | . 0009176 | -0.5806 | 53523.4 | 53523.5 | 1 |  |  |  |
| 1939-316 | 1939-316 | 2115 | 19 | 42 | 40.91400897 | -31 | 30 | 14.6084490 | . 00003811 | . 0014323 | -0.6317 | 53523.4 | 53523.5 | 1 |  |  |  |
| 1941+413 | 1941+413 | 2116 | 19 | 42 | 58.63811636 | +41 | 29 | 23.0600345 | . 00001122 | . 0002457 | 0.1167 | 53133.5 | 53134.4 | 1 |  |  |  |
| 1943+546 | 1943+546 | 1244 | 19 | 44 | 31.51232273 | +54 | 48 | 7.0635386 | . 00011637 | . 0009920 | 0.4445 | 49576.2 | 53167.2 | 2 | 0.12 |  |  |
| 1942+097 | 1942+097 | 3763 | 19 | 45 | 15.92279035 | +09 | 52 | 59.5627307 | . 00002926 | . 0012139 | 0.1107 | 49914.3 | 49914.4 | 1 |  |  |  |
| 1942-020 | 1942-020 | 2117 | 19 | 45 | 22.82079104 | -01 | 53 | 21.8309583 | . 00001178 | . 0004087 | -0.3355 | 53552.3 | 53561.4 | 2 |  |  |  |
| 1946+708 | 1946+708 | 3764 | 19 | 45 | 53.51997301 | +70 | 55 | 48.7319637 | . 00033071 | . 0017506 | 0.3429 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1942-313 | 1942-313 | 2118 | 19 | 45 | 59.36937068 | -31 | 11 | 38.3569648 | . 00002243 | . 0007217 | -0.3662 | 54943.5 | 54943.6 | 1 |  |  |  |
| 1943+228 | 1943+228 | 945 | 19 | 46 | 6.25140594 | +23 | 00 | 4.4139955 | . 00001822 | . 0004365 | -0.2711 | 48797.2 | 52620.1 | 4 |  |  |  |
| 1944+126 | 1944+126 | 3765 | 19 | 47 | 19.52673520 | +12 | 48 | 55.4208280 | . 00006226 | . 0010792 | 0.1228 | 50084.7 | 50155.7 | 2 |  |  |  |
| 1945-011 | 1945-011 | 3766 | 19 | 47 | 43.78374290 | -01 | 03 | 24.5279436 | . 00002197 | . 0007243 | -0.6282 | 53503.4 | 53503.6 | 1 |  |  |  |
| 1946+358 | 1946+358 | 3767 | 19 | 48 | 4.52010321 | +35 | 56 | 20.6706869 | . 00008432 | . 0012369 | -0.0576 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1945-325 | 1945-325 | 4137 | 19 | 48 | 25.24917471 | -32 | 28 | 6.4498624 | . 00008510 | . 0031424 | 0.7466 | 55616.7 | 55616.7 | 1 |  |  |  |
| 1946+396 | 1946+396 | 3768 | 19 | 48 | 35.77023554 | +39 | 43 | 52.0681916 | . 00014116 | . 0014900 | 0.0564 | 54087.9 | 54088.0 | 1 |  |  |  |
| 1947+242 | 1947+242 | 3769 | 19 | 49 | 33.14262079 | +24 | 21 | 18.2450647 | . 00037467 | . 0035826 | 0.6398 | 52305.8 | 52306.7 | 1 |  |  |  |
| 1950+727 | 1950+727 | 3770 | 19 | 49 | 35.23113415 | +72 | 52 | 42.9679071 | . 00034466 | . 0034310 | -0.1894 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1948+505 | 1948+505 | 2119 | 19 | 49 | 43.49229166 | +50 | 41 | 31.9729042 | . 00002798 | . 0004866 | 0.2435 | 49576.2 | 54664.7 | 3 |  |  |  |
| 1946-200 | 1946-200 | 3771 | 19 | 49 | 53.42017764 | -19 | 57 | 13.3303028 | . 00000886 | . 0003021 | 0.0910 | 50631.3 | 50688.2 | 2 | 0.25 | 0.23 |  |
| 1947+079 | 1947+079 | 946 | 19 | 50 | 5.53973224 | +08 | 07 | 13.9847094 | . 00002931 | . 0005874 | -0.6594 | 48103.1 | 52306.7 | 24 |  | 0.09 | 5.1 |
| 1946-582 | 1946-582 | 3772 | 19 | 50 | 37.40167091 | -58 | 04 | 39.7487305 | . 00004261 | . 0006722 | 0.3945 | 54722.9 | 54723.8 | 1 |  |  |  |
| 1948-047 | 1948-047 | 3773 | 19 | 50 | 44.05507775 | -04 | 36 | 11.8400681 | . 00012039 | . 0022760 | -0.1442 | 50575.5 | 50575.6 | 1 |  |  |  |
| 1950+573 | 1950+573 | 3774 | 19 | 51 | 6.98247970 | +57 | 27 | 17.1764840 | . 00029472 | . 0020934 | 0.4986 | 49576.2 | 49576.4 | 1 |  |  |  |
| 1949+014 | 1949+014 | 2120 | 19 | 51 | 36.01847615 | +01 | 34 | 42.7142285 | . 00001109 | . 0003265 | -0.0188 | 53125.4 | 53125.5 | 1 | 0.18 | 0.14 |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1949-052 | 1949-052 | 2121 | 19 | 51 | 47.46845999 | -05 | 09 | 43.9622051 | . 00001117 | . 0003590 | -0.0052 | 53523.4 | 56749.7 | 2 | 0.14 | 0.13 |  |
| 1950+253 | 1950+253 | 3775 | 19 | 52 | 48.29395668 | +25 | 26 | 53.4844629 | . 00001563 | . 0003618 | 0.0406 | 52409.4 | 52409.6 | 1 |  |  |  |
| 1951+355 | 1951+355 | 947 | 19 | 53 | 30.87574864 | +35 | 37 | 59.3594733 | . 00001537 | . 0002874 | 0.3665 | 49177.1 | 53131.6 | 7 |  |  |  |
| 1951-115 | 1951-115 | 2122 | 19 | 54 | 41.15572250 | -11 | 23 | 22.6416995 | . 00001191 | . 0004088 | -0.2100 | 53523.4 | 53523.5 | 1 |  |  |  |
| 1950-613 | P 1950-613 | 948 | 19 | 55 | 10.77047527 | -61 | 15 | 19.1389395 | . 00012756 | . 0011092 | 0.4005 | 49329.4 | 56111.8 | 4 |  |  |  |
| 1952+138 | J1955+1358 | 949 | 19 | 55 | 11.57140968 | +13 | 58 | 16.2410326 | . 00001623 | . 0004833 | -0.1209 | 50084.7 | 53946.1 | 5 | 0.26 | 0.11 |  |
| 1954+513 | 1954+513 | 950 | 19 | 55 | 42.73825370 | +51 | 31 | 48.5462846 | . 00000429 | . 0000609 | -0.0520 | 47612.7 | 56782.2 | 160 | 0.53 |  | 2.6 |
| 1954+282 | 1954+282 | 1245 | 19 | 56 | 46.04047365 | +28 | 20 | 57.9772110 | . 00001119 | . 0002634 | -0.1036 | 52409.4 | 53306.4 | 2 |  |  |  |
| 1953-325 | P 1953-325 | 3776 | 19 | 56 | 59.45528506 | -32 | 25 | 46.0080012 | . 00001556 | . 0005074 | -0.1898 | 52305.8 | 56204.1 | 2 |  | 0.43 |  |
| 1955+343 | 1955+343 | 3777 | 19 | 57 | 34.45469820 | +34 | 27 | 54.6334229 | . 00152774 | . 0410697 | 0.7279 | 54292.2 | 54292.5 | 1 |  |  |  |
| 1955+335 | 1955+335 | 951 | 19 | 57 | 40.54992400 | +33 | 38 | 27.9432680 | . 00004038 | . 0004221 | 0.0583 | 49403.5 | 52711.5 | 4 |  |  |  |
| 1954-388 | P 1954-388 | 533 | 19 | 57 | 59.81927689 | -38 | 45 | 6.3559766 | . 00000361 | . 0000557 | -0.0628 | 49014.8 | 56776.7 | 786 |  | 1.00 | 2.6 |
| 1957+386 | 1957+386 | 2123 | 19 | 59 | 22.03919879 | +38 | 46 | 54.1657134 | . 00005590 | . 0007692 | 0.1008 | 53572.3 | 53572.4 | 1 |  |  |  |
| 1957+406 | 3C 405 | 1162 | 19 | 59 | 28.35633622 | +40 | 44 | 2.0959473 | . 00009856 | . 0010176 | 0.0500 | 53067.9 | 53068.5 | 1 |  |  |  |
| 1959+650 | 1959+650 | 3778 | 19 | 59 | 59.85215726 | +65 | 08 | 54.6529986 | . 00019327 | . 0019629 | 0.1911 | 49826.5 | 49827.4 | 1 |  |  |  |
| 1957-135 | 1957-135 | 2124 | 20 | 00 | 42.14511885 | -13 | 25 | 33.5329671 | . 00001199 | . 0004036 | -0.1258 | 53552.3 | 53552.4 | 1 |  |  |  |
| 1958-179 | OV-198 | 534 | 20 | 00 | 57.09044337 | -17 | 48 | 57.6726839 | . 00000342 | . 0000529 | -0.0138 | 43809.1 | 56776.7 | 1177 | 1.09 | 1.21 | 1.5 |
| 1958+103 | 1958+103 | 3779 | 20 | 01 | 10.64346530 | +10 | 27 | 58.1161359 | . 00013492 | . 0020444 | -0.4930 | 49914.3 | 49914.4 | 1 |  |  |  |
| 1959+437 | 1959+437 | 3780 | 20 | 01 | 12.87371687 | +43 | 52 | 52.8384130 | . 00060889 | . 0068088 | 0.2603 | 50242.4 | 50242.5 | 1 |  |  |  |
| 1959+241 | 1959+241 | 2125 | 20 | 01 | 53.77800066 | +24 | 16 | 39.9905206 | . 00002762 | . 0006921 | 0.3402 | 53561.3 | 53561.4 | 1 |  |  |  |
| 1959+067 | 1959+067 | 3781 | 20 | 02 | 9.57487451 | +06 | 51 | 15.3918270 | . 00007813 | . 0016544 | 0.4657 | 54111.8 | 54111.9 | 1 |  |  |  |
| 2000+472 | 2000+472 | 1246 | 20 | 02 | 10.41825445 | +47 | 25 | 28.7739027 | . 00000351 | . 0000518 | -0.0238 | 50306.2 | 56758.7 | 287 | 0.45 | 0.45 | 2.1 |
| 2000+148 | 2000+148 | 2126 | 20 | 02 | 41.99923555 | +15 | 01 | 14.5738807 | . 00000441 | . 0000935 | -0.1320 | 50084.7 | 56701.7 | 44 |  |  |  |
| 1959-169 | 1959-169 | 3782 | 20 | 02 | 43.08826114 | -16 | 49 | 22.7069633 | . 00009928 | . 0030793 | -0.5129 | 54087.9 | 54087.9 | 1 |  |  |  |
| 2001+449 | 2001+449 | 2127 | 20 | 02 | 52.09615828 | +45 | 06 | 8.3274912 | . 00001704 | . 0002675 | -0.0725 | 50306.2 | 53523.5 | 2 |  |  |  |
| 2000-330 | P 2000-330 | 535 | 20 | 03 | 24.11632722 | -32 | 51 | 45.1329009 | . 00000764 | . 0001465 | -0.2070 | 48579.8 | 55334.7 | 28 |  | 0.25 | 4.1 |
| 2000-045 | 2000-045 | 3783 | 20 | 03 | 24.97542897 | -04 | 21 | 38.4290246 | . 00015697 | . 0065616 | 0.1813 | 53560.3 | 53560.4 | 1 |  |  |  |
| 2001+304 | 2001+304 | 3784 | 20 | 03 | 30.24406002 | +30 | 34 | 30.7885967 | . 00001073 | . 0002994 | 0.0680 | 52409.4 | 52409.5 | 1 |  |  |  |
| 2003+662 | 2003+662 | 3785 | 20 | 03 | 54.50964068 | +66 | 25 | 56.3759751 | . 00036440 | . 0016800 | 0.2588 | 49826.5 | 54112.7 | 2 |  |  |  |
| 2005+737 | 2005+737 | 4111 | 20 | 04 | 17.12176758 | +73 | 55 | 6.0094894 | . 00012373 | . 0002886 | -0.0240 | 55966.0 | 55966.5 | 1 |  |  |  |
| 2002-185 | 2002-185 | 3786 | 20 | 05 | 17.29314996 | -18 | 22 | 3.3231337 | . 00001707 | . 0008388 | -0.1684 | 50631.3 | 50688.2 | 2 |  |  |  |
| 2007+777 | 2007+777 | 952 | 20 | 05 | 30.99851794 | +77 | 52 | 43.2475477 | . 00000760 | . 0000539 | -0.0369 | 48377.8 | 55293.5 | 162 | 0.59 |  | 3.4 |
| 2004+443 | 2004+443 | 3787 | 20 | 05 | 52.08826874 | +44 | 28 | 55.1231338 | . 00054603 | . 0063431 | 0.2566 | 50306.2 | 53552.4 | 2 |  |  |  |
| 2002-375 | 2002-375 | 2128 | 20 | 05 | 55.07090460 | -37 | 23 | 41.4782859 | . 00000900 | . 0001870 | 0.0188 | 52305.8 | 56749.7 | 20 |  |  |  |
| 2002-233 | 2002-233 | 2129 | 20 | 05 | 56.59556389 | -23 | 10 | 27.0097427 | . 00002953 | . 0009164 | -0.2645 | 53152.4 | 53152.5 | 1 |  |  |  |
| 2005+642 | 2005+642 | 953 | 20 | 06 | 17.69457911 | +64 | 24 | 45.4180046 | . 00002269 | . 0001677 | 0.1039 | 49422.0 | 53946.6 | 9 | 0.34 |  |  |
| 2004-125 | 2004-125 | 2130 | 20 | 06 | 48.34304263 | -12 | 22 | 55.3044720 | . 00015170 | . 0059183 | 0.6089 | 53561.3 | 53561.4 | 1 |  |  |  |
| 2007+747 | 2007+747 | 3788 | 20 | 07 | 4.38948725 | +74 | 52 | 25.3988957 | . 00171998 | . 0011780 | 0.2404 | 54087.1 | 54087.8 | 1 |  |  |  |
| 2004+064 | 2004+064 | 1163 | 20 | 07 | 11.91530469 | +06 | 36 | 44.5954188 | . 00007933 | . 0018431 | 0.2255 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2007+659 | 2007+659 | 3789 | 20 | 07 | 28.77107245 | +66 | 07 | 22.5356423 | . 00003156 | . 0002331 | 0.3428 | 49826.5 | 56749.4 | 2 | 0.32 |  |  |
| 2005+403 | 2005+403 | 954 | 20 | 07 | 44.94486188 | +40 | 29 | 48.6039733 | . 00009943 | . 0012406 | 0.4647 | 48665.8 | 54643.7 | 4 |  |  | 3.6 |
| 2005+372 | 2005+372 | 3790 | 20 | 07 | 45.39796082 | +37 | 22 | 2.2991823 | . 00054964 | . 0067410 | -0.7887 | 52409.4 | 55112.2 | 2 |  |  |  |
| 2004-447 | 2004-447 | 3791 | 20 | 07 | 55.18447863 | -44 | 34 | 44.2792512 | . 00005903 | . 0017130 | 0.0940 | 52305.8 | 52409.5 | 2 |  |  |  |
| 2005-044 | 2005-044 | 1292 | 20 | 08 | 24.42920093 | -04 | 18 | 29.3024380 | . 00012278 | . 0028831 | 0.4059 | 53767.8 | 53768.7 | 1 |  |  |  |
| 2005-283 | 2005-283 | 3792 | 20 | 09 | 0.73596574 | -28 | 12 | 25.8887120 | . 08411726 | . 3663993 | -0.9998 | 53560.4 | 53560.4 | 1 |  |  |  |
| 2005-489 | P 2005-489 | 955 | 20 | 09 | 25.39069442 | -48 | 49 | 53.7217929 | . 00003448 | . 0002719 | 0.6563 | 47626.2 | 56716.2 | 59 |  |  |  |
| 2010+723 | 2010+723 | 3793 | 20 | 09 | 52.30387604 | +72 | 29 | 19.3511067 | . 00004405 | . 0002953 | 0.2690 | 49826.5 | 49827.4 | 1 |  |  |  |
| 2007+073 | 2007+073 | 4138 | 20 | 09 | 55.50742060 | +07 | 27 | 13.6670377 | . 00001782 | . 0005701 | 0.1340 | 55915.8 | 55916.0 | 1 |  |  |  |
| 2009+611 | 2009+611 | 3794 | 20 | 10 | 49.28859532 | +61 | 16 | 15.1572006 | . 00005280 | . 0006143 | -0.3032 | 49576.2 | 49576.4 | 1 |  |  |  |
| 2008+332 | 2008+332 | 3795 | 20 | 10 | 49.72332019 | +33 | 22 | 13.8100879 | . 00009390 | . 0012893 | 0.0391 | 52409.5 | 52409.6 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2008-068 | OW-015 | 537 | 20 | 11 | 14.21584322 | -06 | 44 | 3.5556674 | . 00000944 | . 0002211 | -0.5312 | 48345.7 | 55545.1 | 38 | 0.07 |  | 4.1 |
| 2008-159 | P 2008-159 | 536 | 20 | 11 | 15.71092967 | -15 | 46 | 40.2537820 | . 00000351 | . 0000545 | -0.0370 | 47254.6 | 56772.7 | 478 | 1.27 | 0.69 | 1.6 |
| 2010+463 | 2010+463 | 3796 | 20 | 12 | 5.63739335 | +46 | 28 | 55.7775360 | . 00010568 | . 0011738 | -0.7200 | 50306.2 | 50306.3 | 1 |  |  |  |
| 2013+508 | 2013+508 | 2131 | 20 | 14 | 28.59024260 | +50 | 59 | 9.5276238 | . 00021715 | . 0017230 | -0.2679 | 50305.3 | 54314.3 | 2 |  |  |  |
| 2014+657 | 2014+657 | 3797 | 20 | 14 | 32.04689699 | +65 | 53 | 55.9492302 | . 00809229 | . 9611577 | 0.2239 | 49827.4 | 49827.4 | 1 |  |  |  |
| 2012-017 | 2012-017 | 3798 | 20 | 15 | 15.15797574 | -01 | 37 | 32.5606169 | . 00001642 | . 0005242 | -0.0449 | 50575.5 | 50575.6 | 1 |  |  |  |
| 2013+527 | 2013+527 | 3799 | 20 | 15 | 19.16832042 | +52 | 53 | 59.7199120 | . 00015722 | . 0015077 | 0.6157 | 49576.2 | 49576.4 | 1 |  |  |  |
| 2013+370 | 2013+370 | 3800 | 20 | 15 | 28.72978853 | +37 | 10 | 59.5147505 | . 00001885 | . 0003274 | -0.0038 | 52305.8 | 52305.9 | 1 |  |  |  |
| 2013+340 | 2013+340 | 3801 | 20 | 15 | 28.83184685 | +34 | 10 | 39.4091923 | . 00006898 | . 0008738 | -0.0262 | 50219.5 | 50219.5 | 1 |  |  |  |
| 2014+463 | 2014+463 | 4112 | 20 | 15 | 39.98585034 | +46 | 28 | 50.8695067 | . 00057250 | . 0121029 | -0.7272 | 56106.2 | 56106.5 | 1 |  |  |  |
| 2015+657 | 2015+657 | 3802 | 20 | 15 | 55.36870143 | +65 | 54 | 52.6591259 | . 00004279 | . 0003630 | 0.4190 | 49826.5 | 49827.4 | 1 |  |  |  |
| 2013+163 | 2013+163 | 1164 | 20 | 16 | 13.86003226 | +16 | 32 | 34.1128898 | . 00000416 | . 0000748 | -0.0088 | 50084.7 | 56770.1 | 113 | 0.34 | 0.32 | 1.4 |
| 2014+358 | 2014+358 | 3803 | 20 | 16 | 45.61882518 | +36 | 00 | 33.3744235 | . 00010531 | . 0017757 | 0.4902 | 52409.4 | 52409.5 | 1 |  |  |  |
| 2013-273 | 2013-273 | 3804 | 20 | 16 | 46.41557032 | -27 | 08 | 48.1884944 | . 00037174 | . 0164332 | 0.3603 | 53561.3 | 53561.4 | 1 |  |  |  |
| 2017+745 | 2017+743 | 956 | 20 | 17 | 13.07934017 | +74 | 40 | 48.0000050 | . 00000895 | . 0000614 | -0.0449 | 48353.1 | 56754.1 | 110 | 0.31 |  | 0.0 |
| 2014-254 | 2014-254 | 2132 | 20 | 17 | 53.00201540 | -25 | 14 | 50.0835382 | . 00010721 | . 0033749 | -0.4296 | 53152.4 | 53152.5 | 1 |  |  |  |
| 2015+083 | J2018+0831 | 1165 | 20 | 18 | 11.31195384 | +08 | 31 | 54.5472123 | . 00001414 | . 0004754 | -0.3223 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2015-113 | 2015-113 | 2133 | 20 | 18 | 28.01424030 | -11 | 09 | 55.4980281 | . 00002347 | . 0007104 | -0.0401 | 53152.4 | 53152.5 | 1 |  |  |  |
| 2018+295 | 2018+295 | 3805 | 20 | 20 | 6.56356373 | +29 | 42 | 14.1494695 | . 00013251 | . 0040067 | -0.2245 | 52409.4 | 52409.6 | 1 |  |  |  |
| 2018+282 | 2018+282 | 3806 | 20 | 20 | 45.87129387 | +28 | 26 | 59.1913055 | . 00059515 | . 0061427 | -0.6096 | 50219.5 | 54314.6 | 2 |  |  |  |
| 2019+050 | 2019+050 | 3807 | 20 | 21 | 35.28121161 | +05 | 15 | 4.7780712 | . 00001702 | . 0005599 | -0.3133 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2021+614 | OW 637 | 539 | 20 | 22 | 6.68172646 | +61 | 36 | 58.8044939 | . 00000866 | . 0000830 | 0.0809 | 46336.9 | 55257.6 | 45 | 0.76 |  | 4.8 |
| 2023+760 | 2023+760 | 3808 | 20 | 22 | 35.57595133 | +76 | 11 | 26.1718537 | . 00014729 | . 0008186 | 0.7304 | 49826.5 | 49827.4 | 1 |  |  |  |
| 2019-408 | 2019-408 | 3809 | 20 | 22 | 52.00367057 | -40 | 38 | 22.0403626 | . 15170460 | . 1197241 | 0.9995 | 53134.5 | 53134.5 | 1 |  |  |  |
| 2020-122 | 2020-122 | 3810 | 20 | 22 | 55.15433473 | -12 | 04 | 4.7531208 | . 00006170 | . 0017100 | 0.6124 | 53561.3 | 56204.2 | 2 |  |  |  |
| 2021+317 | 2021+317 | 957 | 20 | 23 | 19.01734907 | +31 | 53 | 2.3059779 | . 00000554 | . 0000935 | -0.1282 | 48353.4 | 56495.1 | 54 | 0.29 | 0.22 | 3.3 |
| 2021+222 | 2021+222 | 3811 | 20 | 23 | 23.16021462 | +22 | 23 | 52.5256824 | . 00002922 | . 0010263 | -0.5751 | 50084.7 | 50155.7 | 2 | 0.08 | 0.08 |  |
| 2020-015 | 2020-015 | 2134 | 20 | 23 | 32.81638108 | -01 | 23 | 42.1532963 | . 00006108 | . 0016196 | -0.3632 | 53560.3 | 53560.4 | 1 |  |  |  |
| 2022+542 | 2022+542 | 1247 | 20 | 23 | 55.84402125 | +54 | 27 | 35.8290343 | . 00000677 | . 0001449 | 0.1235 | 49576.2 | 56782.2 | 104 | 0.36 |  |  |
| 2021+003 | 2021+003 | 1166 | 20 | 24 | 22.71504908 | +00 | 27 | 53.1013563 | . 00002469 | . 0007478 | -0.3547 | 53561.3 | 53561.4 | 1 | 0.10 |  |  |
| 2021-330 | 2021-330 | 2135 | 20 | 24 | 35.57648835 | -32 | 53 | 35.9125742 | . 00003820 | . 0012794 | 0.3735 | 53125.5 | 53125.5 | 1 |  |  |  |
| 2022+274 | 2022+274 | 1167 | 20 | 24 | 51.23121186 | +27 | 36 | 1.6986053 | . 00003665 | . 0005552 | -0.4374 | 50219.5 | 55776.4 | 2 |  |  |  |
| 2022+171 | J2024+1718 | 1168 | 20 | 24 | 56.56344693 | +17 | 18 | 13.1974607 | . 00000757 | . 0002137 | -0.1135 | 50084.7 | 54481.8 | 12 | 0.35 | 0.28 |  |
| 2022+031 | 2022+031A | 2136 | 20 | 25 | 9.63214688 | +03 | 16 | 44.5045151 | . 00001592 | . 0002826 | 0.0632 | 49914.3 | 54643.2 | 2 |  |  |  |
| 2023+335 | 2023+336 | 703 | 20 | 25 | 10.84210004 | +33 | 43 | 0.2143880 | . 00001186 | . 0001537 | -0.2236 | 49177.1 | 52830.6 | 6 | 0.10 |  | 3.4 |
| 2023+503 | 2023+503 | 3812 | 20 | 25 | 24.97245692 | +50 | 28 | 39.5364351 | . 00005834 | . 0004513 | -0.5973 | 49576.2 | 50305.4 | 2 |  |  |  |
| 2022-077 | 2022-077 | 3813 | 20 | 25 | 40.66040922 | -07 | 35 | 52.6890731 | . 00001022 | . 0003250 | -0.2486 | 50575.5 | 56547.3 | 2 | 0.55 | 0.81 |  |
| 2022-289 | 2022-289 | 2137 | 20 | 25 | 53.61284922 | -28 | 45 | 48.6969674 | . 00001725 | . 0006197 | -0.1639 | 53523.5 | 53560.4 | 2 |  |  |  |
| 2025-086 | 2025-086 | 2138 | 20 | 27 | 52.60106329 | -08 | 31 | 55.8772858 | . 00001641 | . 0005178 | -0.4257 | 53552.3 | 53552.4 | 1 |  |  |  |
| 2027+464 | 2027+464 | 1169 | 20 | 29 | 18.93647737 | +46 | 36 | 2.2501635 | . 00037476 | . 0057029 | -0.2728 | 50305.3 | 50305.4 | 1 |  |  |  |
| 2025-538 | 2025-538 | 3814 | 20 | 29 | 35.05517984 | -53 | 39 | 7.2924827 | . 00010012 | . 0032741 | -0.0687 | 54723.6 | 54723.8 | 1 |  |  |  |
| 2028+492 | 2028+492 | 3815 | 20 | 29 | 39.89763467 | +49 | 26 | 21.9942334 | . 05233860 | . 3250043 | -0.9962 | 53561.4 | 53561.4 | 1 |  |  |  |
| 2027-035 | 2027-035 | 3816 | 20 | 30 | 7.47481196 | -03 | 25 | 12.5479940 | . 00087997 | . 0072261 | 0.9268 | 54439.9 | 54440.0 | 1 |  |  |  |
| 2027-065 | 2027-065 | 3817 | 20 | 30 | 15.13900816 | -06 | 22 | 14.9339994 | . 00001654 | . 0005357 | 0.0813 | 54087.9 | 54088.0 | 1 |  |  |  |
| 2027-052 | 2027-052 | 2139 | 20 | 30 | 22.42836452 | -05 | 03 | 12.7745743 | . 00003197 | . 0009069 | -0.6043 | 53560.3 | 53560.4 | 1 |  |  |  |
| 2028+368 | 2028+368 | 3818 | 20 | 30 | 31.26197354 | +37 | 00 | 36.0700729 | . 00394815 | . 0437112 | -0.8912 | 53572.3 | 53572.4 | 1 |  |  |  |
| 2027-308 | 2027-308 | 3819 | 20 | 30 | 57.93375024 | -30 | 39 | 24.3457007 | . 00035655 | . 0135952 | 0.0321 | 53134.5 | 53134.5 | 1 |  |  |  |
| 2028-264 | 2028-264 | 3820 | 20 | 31 | 4.22838447 | -26 | 15 | 33.4386574 | . 26902418 | . 1991443 | 1.0000 | 53572.3 | 53572.3 | 1 |  |  |  |
| 2029+024 | 2029+022 | 1293 | 20 | 31 | 47.25111710 | +02 | 39 | 37.2838509 | . 00000662 | . 0001846 | -0.1222 | 53767.8 | 56749.6 | 6 | 0.14 | 0.17 | 0.4 |
| 2030+547 | OW 551 | 543 | 20 | 31 | 47.95854902 | +54 | 55 | 3.1395046 | . 00000834 | . 0001158 | -0.1138 | 44203.0 | 55229.7 | 74 | 0.26 |  | 4.1 |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation EpochMJD |  | No. Obs. | Source Flux <br> (Jy) |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2029+121 | P 2029+121 | 542 | 20 | 31 | 54.99426708 | +12 | 19 | 41.3401366 | . 00000378 | . 0000657 | -0.0591 | 44202.8 | 56770.4 | 147 | 0.79 | 0.60 | 2.7 |
| 2031+216 | 2031+216 | 3821 | 20 | 33 | 32.03141111 | +21 | 46 | 22.4096479 | . 00010693 | . 0010413 | 0.0019 | 50084.8 | 50155.7 | 2 |  |  |  |
| 2032+281 | 2032+281 | 2140 | 20 | 34 | 28.28383274 | +28 | 20 | 39.9867966 | . 00022538 | . 0030921 | -0.7231 | 53523.4 | 53523.5 | 1 |  |  |  |
| 2032+117 | 2032+117 | 3822 | 20 | 34 | 37.10983778 | +11 | 54 | 31.3833776 | . 00010628 | . 0015795 | 0.0578 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2032-168 | 2032-168 | 3823 | 20 | 34 | 54.46444831 | -16 | 40 | 26.6113576 | . 00007127 | . 0020511 | -0.0397 | 53503.6 | 53503.6 | 1 |  |  |  |
| 2032+107 | 2032+107 | 3824 | 20 | 35 | 22.33330267 | +10 | 56 | 6.7884120 | . 00000971 | . 0002834 | -0.1087 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2034+581 | 2034+581 | 3825 | 20 | 35 | 23.75213293 | +58 | 21 | 18.7465914 | . 00023524 | . 0015500 | -0.1199 | 49576.2 | 49576.4 | 1 |  |  |  |
| 2033+187 | 2033+187 | 3826 | 20 | 35 | 33.98351696 | +18 | 57 | 5.4582534 | . 00011213 | . 0017715 | 0.1668 | 52306.7 | 56106.5 | 2 |  |  |  |
| 2030-689 | 2030-689 | 3827 | 20 | 35 | 48.87646868 | -68 | 46 | 33.8409136 | . 00004672 | . 0002475 | -0.1659 | 53222.7 | 54578.0 | 8 |  |  |  |
| 2033-286 | 2033-286 | 2141 | 20 | 36 | 37.77490434 | -28 | 30 | 26.5321273 | . 00002294 | . 0007681 | -0.2333 | 55042.2 | 55042.3 | 1 |  |  |  |
| 2034-066 | 2034-066 | 2142 | 20 | 36 | 40.70895341 | -06 | 29 | 3.8474996 | . 00001140 | . 0003648 | -0.2640 | 53523.4 | 53523.5 | 1 |  |  |  |
| 2033-219 | 2033-219 | 2143 | 20 | 36 | 51.17273220 | -21 | 46 | 36.7495519 | . 00001732 | . 0005571 | -0.2561 | 53552.4 | 56498.4 | 2 | 0.17 | 0.15 |  |
| 2034+222 | 2034+222 | 4113 | 20 | 36 | 56.91268901 | +22 | 27 | 59.2904159 | . 00002612 | . 0006667 | -0.1888 | 56393.5 | 56393.7 | 1 |  |  |  |
| 2034-155 | 2034-155 | 2144 | 20 | 37 | 27.93729465 | -15 | 22 | 0.5006077 | . 00015059 | . 0037829 | -0.1221 | 53572.3 | 53572.3 | 1 |  |  |  |
| 2034-248 | 2034-248 | 2145 | 20 | 37 | 56.67496215 | -24 | 38 | 32.5605215 | . 00002823 | . 0009967 | -0.2140 | 53560.4 | 53560.4 | 1 |  |  |  |
| 2037+511 | 3C 418 | 545 | 20 | 38 | 37.03473624 | +51 | 19 | 12.6626609 | . 00000341 | . 0000507 | -0.0054 | 45495.3 | 56776.7 | 1328 | 1.10 |  | 3.3 |
| 2036-034 | 2036-034 | 3828 | 20 | 39 | 9.98488717 | -03 | 17 | 14.4174244 | . 00002454 | . 0007334 | 0.1539 | 53561.3 | 55657.7 | 2 |  |  |  |
| 2037+216 | 2037+216 | 3829 | 20 | 39 | 34.80821857 | +21 | 52 | 9.6851087 | . 00011876 | . 0040181 | -0.6740 | 50084.8 | 50155.7 | 2 |  |  |  |
| 2037-253 | P 2037-253 | 546 | 20 | 40 | 8.77292038 | -25 | 07 | 46.6635239 | . 00001023 | . 0001365 | -0.3193 | 50077.8 | 55728.6 | 35 |  |  | 3.3 |
| 2036-387 | 2036-387 | 3830 | 20 | 40 | 14.16127868 | -38 | 36 | 50.0188470 | . 36812814 | . 5352651 | 1.0000 | 53523.5 | 53523.5 | 1 |  |  |  |
| 2037-172 | 2037-172 | 2146 | 20 | 40 | 27.73356185 | -17 | 07 | 3.1055294 | . 00006307 | . 0019075 | -0.2619 | 53560.4 | 53560.4 | 1 |  |  |  |
| 2039+037 | 2039+037 | 3831 | 20 | 42 | 14.50183370 | +03 | 56 | 13.9389270 | . 00004693 | . 0008960 | -0.0029 | 54087.9 | 55112.2 | 2 |  |  |  |
| 2043+749 | 2043+749 | 4114 | 20 | 42 | 37.30798226 | +75 | 08 | 2.4451560 | . 00017814 | . 0006285 | -0.5569 | 56302.1 | 56302.6 | 1 |  |  |  |
| 2039-231 | 2039-231 | 2147 | 20 | 42 | 54.25407748 | -22 | 55 | 59.9011945 | . 00002278 | . 0006478 | 0.3043 | 53552.4 | 53552.4 | 1 |  |  |  |
| 2040-225 | 2040-225 | 2148 | 20 | 42 | 57.27637355 | -22 | 23 | 26.9148383 | . 00017213 | . 0050840 | 0.4351 | 53572.3 | 53572.4 | 1 |  |  |  |
| 2040+127 | 2040+127 | 3832 | 20 | 43 | 10.20913182 | +12 | 55 | 13.5701720 | . 00004467 | . 0015350 | -0.6640 | 50084.8 | 50155.7 | 2 |  |  |  |
| 2041+342 | 2041+342 | 3833 | 20 | 43 | 34.45323413 | +34 | 23 | 16.9943198 | . 00039097 | . 0040050 | -0.1548 | 53560.3 | 53560.4 | 1 |  |  |  |
| 2042-098 | 2042-098 | 2149 | 20 | 44 | 42.67522345 | -09 | 40 | 38.7247238 | . 00005566 | . 0024266 | -0.4465 | 53152.5 | 53152.5 | 1 |  |  |  |
| 2043+156 | 2043+156 | 2150 | 20 | 45 | 45.49406592 | +15 | 47 | 27.3408081 | . 00001035 | . 0002384 | 0.0208 | 53561.3 | 56701.7 | 5 |  |  |  |
| 2044-027 | 2044-027 | 3834 | 20 | 47 | 10.36659908 | -02 | 36 | 22.1469968 | . 00010793 | . 0033563 | -0.1273 | 52305.9 | 52306.7 | 1 |  |  |  |
| 2044-168 | P 2044-168 | 3835 | 20 | 47 | 19.66702778 | -16 | 39 | 5.8432769 | . 00001906 | . 0006161 | -0.2381 | 50631.3 | 54643.1 | 2 |  |  |  |
| 2044-188 | 2044-188 | 3836 | 20 | 47 | 37.65524542 | -18 | 41 | 41.3519988 | . 00002746 | . 0013163 | 0.2962 | 54111.8 | 54111.9 | 1 |  |  |  |
| 2044-290 | 2044-290 | 3837 | 20 | 47 | 37.73549359 | -28 | 50 | 2.6682085 | . 12375428 | . 8736681 | -0.9997 | 53561.4 | 53561.4 | 1 |  |  |  |
| 2046+535 | 2046+535 | 3838 | 20 | 47 | 53.79592033 | +53 | 43 | 32.3980849 | . 00025214 | . 0017897 | 0.2481 | 49576.2 | 49576.4 | 1 |  |  |  |
| 2046+429 | 2046+429 | 1294 | 20 | 48 | 19.52624970 | +43 | 10 | 42.0630943 | . 00094706 | . 0125774 | -0.2304 | 52409.4 | 56393.5 | , |  |  |  |
| 2045-405 | 2045-405 | 3839 | 20 | 49 | 10.01505167 | -40 | 20 | 31.1360134 | . 00003680 | . 0009233 | -0.3307 | 55167.9 | 55168.0 | 1 |  |  |  |
| 2047+098 | 2047+098 | 3840 | 20 | 49 | 45.86498016 | +10 | 03 | 14.3981038 | . 00001650 | . 0005095 | -0.2467 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2048+361 | 2048+361 | 3841 | 20 | 50 | 2.28437462 | +36 | 19 | 52.5016129 | . 00014681 | . 0020246 | 0.1453 | 50242.4 | 50242.5 | 1 |  |  |  |
| 2047+039 | 2047+039 | 3842 | 20 | 50 | 6.24058947 | +04 | 07 | 48.8897108 | . 00001922 | . 0006079 | -0.4968 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2047-266 | 2047-266 | 2151 | 20 | 50 | 24.69382845 | -26 | 28 | 18.0572231 | . 00001047 | . 0003770 | -0.1096 | 53561.4 | 56701.7 | 2 | 0.25 | 0.28 |  |
| 2048+312 | 2048+312 | 1248 | 20 | 50 | 51.13147247 | +31 | 27 | 27.3739594 | . 00002220 | . 0002441 | 0.0636 | 50219.6 | 55118.4 | 16 | 0.11 | 0.09 | 3.0 |
| 2051+745 | 2051+745 | 958 | 20 | 51 | 33.73458773 | +74 | 41 | 40.4980695 | . 00003241 | . 0001097 | -0.3588 | 48353.1 | 54937.0 | 45 | 0.12 |  |  |
| 2049+175 | 2049+175 | 3843 | 20 | 51 | 35.58292388 | +17 | 43 | 36.9004118 | . 00002122 | . 0004586 | 0.0033 | 50084.8 | 50155.7 | 2 |  |  |  |
| 2050+161 | 2050+161 | 3844 | 20 | 52 | 43.61987495 | +16 | 19 | 48.8278142 | . 00001974 | . 0005581 | 0.1485 | 50084.8 | 50155.7 | 2 |  |  |  |
| 2050+364 | B2 2050+36 | 3845 | 20 | 52 | 52.05497580 | +36 | 35 | 35.3002259 | . 00001219 | . 0003633 | -0.1146 | 50242.4 | 50242.5 | 1 |  |  |  |
| 2051+350 | 2051+350 | 3846 | 20 | 53 | 2.54767793 | +35 | 15 | 21.9280194 | . 00022793 | . 0072218 | -0.3620 | 53560.3 | 53560.4 | 1 |  |  |  |
| 2050+226 | 2050+226 | 1170 | 20 | 53 | 9.36401063 | +22 | 48 | 1.4864352 | . 00002954 | . 0005710 | 0.5165 | 53125.5 | 53133.6 | 2 |  |  |  |
| 2051-204 | 2051-204 | 2152 | 20 | 54 | 22.07243700 | -20 | 16 | 16.8188619 | . 00001351 | . 0004267 | -0.0179 | 53152.4 | 56701.7 | 2 | 0.08 | 0.11 |  |
| 2054+611 | 2054+611 | 1171 | 20 | 55 | 38.83831217 | +61 | 22 | 0.6390974 | . 00007462 | . 0009997 | -0.3131 | 49576.2 | 49826.7 | 2 | 0.30 |  |  |
| 2053-044 | 2053-044 | 3847 | 20 | 55 | 50.25798844 | -04 | 16 | 47.0810215 | . 00001172 | . 0003562 | -0.0393 | 50575.5 | 56463.5 | 4 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch <br> MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{aligned} & \text { Str } \\ & \text { Index } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2053-127 | 2053-127 | 2153 | 20 | 55 | 51.19934239 | -12 | 34 | 44.2388255 | . 00013892 | . 0028267 | 0.5551 | 53152.4 | 53152.6 | 1 |  |  |  |
| 2052-474 | P 2052-47 | 959 | 20 | 56 | 16.35981130 | -47 | 14 | 47.6277889 | . 00000441 | . 0000603 | -0.1715 | 48388.0 | 56763.7 | 462 |  |  |  |
| 2053-323 | 2053-323 | 2154 | 20 | 56 | 25.07023884 | -32 | 08 | 47.8006911 | . 00003403 | . 0012243 | -0.4229 | 53125.5 | 53125.5 | 1 |  |  |  |
| 2054-377 | 2054-377 | 960 | 20 | 57 | 41.60344641 | -37 | 34 | 2.9905368 | . 00001876 | . 0004486 | -0.1458 | 49960.6 | 53770.8 | 9 |  | 0.36 | 3.1 |
| 2056-369 | 2056-369 | 3848 | 20 | 59 | 41.59691028 | -36 | 45 | 54.6108170 | . 00007945 | . 0038370 | -0.4217 | 54601.5 | 54601.6 | 1 |  |  |  |
| 2058+260 | 2058+260 | 2155 | 21 | 00 | 39.10013173 | +26 | 15 | 37.0250523 | . 00016481 | . 0017506 | -0.1912 | 53133.6 | 53134.4 | 1 |  |  |  |
| 2059+560 | 2059+560 | 3849 | 21 | 00 | 54.97394321 | +56 | 12 | 36.6627618 | . 00081065 | . 0121081 | -0.6473 | 54112.0 | 54112.0 | 1 |  |  |  |
| 2058-297 | P 2058-297 | 2156 | 21 | 01 | 1.65998166 | -29 | 33 | 27.8364178 | . 00001191 | . 0002397 | 0.0729 | 50688.1 | 55545.2 | 14 |  |  |  |
| 2059+034 | P 2059+034 | 553 | 21 | 01 | 38.83415978 | +03 | 41 | 31.3207708 | . 00000347 | . 0000539 | 0.0651 | 49914.3 | 56772.7 | 405 | 0.67 | 0.49 | 2.1 |
| 2058-425 | 2058-425 | 961 | 21 | 01 | 59.11389160 | -42 | 19 | 16.1505248 | . 00020154 | . 0087886 | 0.0935 | 49329.4 | 52409.5 | 3 |  |  |  |
| 2100+468 | 2100+468 | 962 | 21 | 02 | 17.05606847 | +47 | 02 | 16.2534489 | . 00003102 | . 0005154 | -0.0152 | 49177.3 | 53666.0 | 6 | 0.13 | 0.10 |  |
| 2101+600 | 2101+600 | 3850 | 21 | 02 | 40.21924002 | +60 | 15 | 9.8361819 | . 00011762 | . 0005686 | -0.1574 | 49576.4 | 54087.8 | 2 |  |  |  |
| 2102+677 | 2102+677 | 3851 | 21 | 02 | 43.78720357 | +67 | 58 | 19.6972397 | . 01357152 | . 0332363 | 0.8658 | 49826.5 | 49826.6 | 1 |  |  |  |
| 2059-334 | 2059-334 | 2157 | 21 | 02 | 45.88598083 | -33 | 13 | 16.1787210 | . 00015583 | . 0074060 | 0.1214 | 53133.5 | 53133.5 | 1 |  |  |  |
| 2102+003 | 2102+003 | 2158 | 21 | 05 | 7.71546442 | +00 | 33 | 25.0071898 | . 00006941 | . 0015107 | 0.2878 | 53560.4 | 53560.4 | 1 |  |  |  |
| 2059-786 | 2059-786 | 963 | 21 | 05 | 44.96143855 | -78 | 25 | 34.5471902 | . 00004562 | . 0001488 | 0.1295 | 47626.3 | 54706.7 | 19 |  |  |  |
| 2103+213 | 2103+213 | 2159 | 21 | 06 | 10.81819474 | +21 | 35 | 35.9967156 | . 00001117 | . 0003308 | -0.2332 | 50084.8 | 53134.5 | 3 | 0.14 | 0.15 |  |
| 2103+023 | 2103+023 | 2160 | 21 | 06 | 28.14881425 | +02 | 31 | 37.8007095 | . 00002609 | . 0008599 | -0.1505 | 53561.3 | 53561.4 | 1 |  |  |  |
| 2102-659 | 2102-659 | 1172 | 21 | 06 | 59.72192082 | -65 | 47 | 43.5857458 | . 00005648 | . 0004987 | 0.0036 | 52860.7 | 55784.4 | 11 |  |  |  |
| 2104-173 | 2104-173 | 2161 | 21 | 07 | 27.02165652 | -17 | 08 | 10.3580094 | . 00006631 | . 0025259 | 0.1291 | 53523.5 | 53523.5 | 1 |  |  |  |
| 2105-293 | 2105-293 | 3852 | 21 | 08 | 7.40051089 | -29 | 11 | 17.1826273 | . 00088705 | . 0413355 | 0.8296 | 53572.3 | 53572.4 | 1 |  |  |  |
| 2105-250 | 2105-250 | 2162 | 21 | 08 | 12.32005464 | -24 | 52 | 33.3222822 | . 00014104 | . 0042724 | 0.2190 | 53152.5 | 53152.5 | 1 |  |  |  |
| 2105-212 | 2105-212 | 3853 | 21 | 08 | 29.39937243 | -21 | 01 | 39.5170506 | . 00201437 | . 0243946 | 0.0936 | 53152.5 | 53152.5 | 1 |  |  |  |
| 2106+143 | J2108+1430 | 964 | 21 | 08 | 41.03214822 | +14 | 30 | 27.0124216 | . 00000516 | . 0001141 | 0.1012 | 50084.8 | 56762.2 | 24 | 0.30 | 0.25 | 2.6 |
| 2111+801 | 2111+801 | 4115 | 21 | 09 | 19.16446871 | +80 | 21 | 11.2279044 | . 00045853 | . 0019733 | -0.0212 | 56301.9 | 56302.4 | 1 |  |  |  |
| 2107+353 | 2107+353 | 3854 | 21 | 09 | 31.87871285 | +35 | 32 | 57.5974498 | . 00000947 | . 0002409 | -0.0882 | 50242.4 | 50242.5 | 1 |  |  |  |
| 2106-413 | P 2106-413 | 554 | 21 | 09 | 33.18859615 | -41 | 10 | 20.6055089 | . 00000726 | . 0000984 | -0.2574 | 47626.2 | 56574.4 | 68 |  | 0.49 |  |
| 2107-105 | 2107-105 | 3855 | 21 | 10 | 0.97900725 | -10 | 20 | 57.3197105 | . 00001626 | . 0004519 | -0.3354 | 50575.5 | 55784.6 | 2 |  |  |  |
| 2107-016 | 2107-016 | 2163 | 21 | 10 | 22.61910656 | -01 | 26 | 58.2421245 | . 00003736 | . 0009406 | 0.1290 | 53152.6 | 53152.6 | 1 |  |  |  |
| 2111+400 | 2111+400 | 2164 | 21 | 13 | 29.48635089 | +40 | 12 | 51.3874795 | . 00007701 | . 0010187 | -0.2747 | 53152.4 | 53152.5 | 1 |  |  |  |
| 2112+283 | 2112+283 | 3856 | 21 | 14 | 58.33363149 | +28 | 32 | 57.1967760 | . 00001069 | . 0002587 | -0.2537 | 50219.6 | 56498.4 | 4 |  |  |  |
| 2112-144 | 2112-144 | 2165 | 21 | 15 | 18.43556974 | -14 | 16 | 43.3718721 | . 00001372 | . 0003911 | -0.0723 | 53552.4 | 56547.3 | 2 | 0.12 | 0.17 |  |
| 2113+293 | B2 2113+29B | 555 | 21 | 15 | 29.41345674 | +29 | 33 | 38.3669623 | . 00000339 | . 0000520 | 0.0054 | 44202.9 | 56776.4 | 922 | 0.48 | 0.28 | 2.8 |
| 2109-811 | 2109-811 | 965 | 21 | 16 | 30.84585375 | -80 | 53 | 55.2231138 | . 00006910 | . 0001360 | -0.0820 | 48756.3 | 54706.7 | 23 |  |  |  |
| 2114+053 | 2114+053 | 3857 | 21 | 16 | 36.63486308 | +05 | 36 | 17.0449650 | . 00001357 | . 0004811 | -0.0292 | 54111.8 | 54111.9 | 1 |  |  |  |
| 2114+048 | 2114+048 | 3858 | 21 | 17 | 20.75708815 | +05 | 03 | 4.1129702 | . 00002131 | . 0007210 | -0.3489 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2116+543 | 2116+543 | 2166 | 21 | 17 | 56.48464143 | +54 | 31 | 32.5045520 | . 00027935 | . 0028030 | 0.3323 | 53572.3 | 53572.5 | 1 |  |  |  |
| 2115-305 | 2115-305 | 1295 | 21 | 18 | 10.59828813 | -30 | 19 | 11.6340828 | . 00084362 | . 0270924 | -0.9048 | 52305.8 | 53642.1 | 2 |  |  |  |
| 2116-068 | 2116-068 | 3859 | 21 | 18 | 43.24215908 | -06 | 36 | 17.9986123 | . 00002688 | . 0007668 | 0.2457 | 53503.5 | 55847.2 | 2 | 0.09 | 0.08 |  |
| 2119+709 | 2119+709 | 1173 | 21 | 19 | 54.16457605 | +71 | 10 | 36.1074682 | . 00069382 | . 0045583 | 0.4141 | 49826.5 | 49826.7 | 1 |  |  |  |
| 2118+443 | 2118+443 | 3860 | 21 | 20 | 31.77394439 | +44 | 34 | 34.2630561 | . 00033471 | . 0020454 | -0.2236 | 50305.3 | 56638.1 | 2 |  |  |  |
| 2118+053 | 2118+053 | 2167 | 21 | 20 | 41.18232800 | +05 | 33 | 45.0079725 | . 00001566 | . 0004787 | -0.1056 | 53133.6 | 53134.5 | 1 |  |  |  |
| 2119+664 | 2119+664 | 3861 | 21 | 20 | 46.20155379 | +66 | 42 | 20.2309189 | . 00052159 | . 0029041 | 0.7400 | 49826.5 | 54112.7 | 2 |  |  |  |
| 2118-037 | 2118-037 | 2168 | 21 | 20 | 48.47359211 | -03 | 30 | 28.9301945 | . 00006153 | . 0016310 | 0.0754 | 53561.4 | 53561.5 | 1 |  |  |  |
| 2118+188 | 2118+188 | 1174 | 21 | 21 | 0.60658252 | +19 | 01 | 28.2814930 | . 00007861 | . 0018841 | -0.6373 | 50084.9 | 50155.8 | 2 |  |  |  |
| 2117-614 | 2117-614 | 1175 | 21 | 21 | 4.07416240 | -61 | 11 | 24.6248182 | . 00003220 | . 0002805 | 0.5188 | 52860.7 | 55784.7 | 14 |  |  |  |
| 2118-372 | 2118-372 | 2169 | 21 | 21 | 13.19381055 | -37 | 03 | 8.9029932 | . 00003084 | . 0009571 | -0.4560 | 53125.6 | 53125.6 | 1 |  |  |  |
| 2117-642 | 2117-642 | 3862 | 21 | 21 | 55.02270876 | -64 | 04 | 30.0410232 | . 00131363 | . 0045621 | -0.2367 | 52886.7 | 53138.7 | 2 |  |  |  |
| 2121+547 | 2121+547 | 1176 | 21 | 23 | 5.31346017 | +55 | 00 | 27.3252837 | . 00002728 | . 0003256 | -0.7297 | 49576.3 | 53133.6 | 3 | 0.18 |  |  |
| 2120+099 | 2120+099 | 2170 | 21 | 23 | 13.35861149 | +10 | 07 | 54.9446448 | . 00003956 | . 0012644 | -0.4542 | 49914.3 | 50700.2 | 2 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA-DecCorr. | Observation EpochMJD |  | No. Obs. | $\begin{gathered} \hline \hline \begin{array}{c} \text { Source Flux } \\ \text { (Jy) } \end{array} \\ \hline \end{gathered}$ |  | Str Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2121+460 | 2121+460 | 1177 | 21 | 23 | 31.82845176 | +46 | 14 | 22.9605045 | . 00002310 | . 0002677 | 0.1849 | 50305.3 | 56498.5 | 4 |  |  |  |
| 2121+053 | OX 036 | 557 | 21 | 23 | 44.51740125 | +05 | 35 | 22.0929769 | . 00000341 | . 0000528 | -0.0362 | 44946.9 | 56692.7 | 961 | 0.47 | 0.62 | 3.0 |
| 2120-309 | 2120-309 | 2171 | 21 | 23 | 48.59956371 | -30 | 46 | 5.4392272 | . 00002196 | . 0006668 | -0.0199 | 54965.5 | 54965.5 | 1 |  |  |  |
| 1438-390 | 2121-199 | 4116 | 21 | 24 | 44.64018778 | -19 | 41 | 43.3749958 | . 00002480 | . 0007265 | 0.1842 | 56036.5 | 56036.7 | 1 |  |  |  |
| 2122-148 | 2122-148 | 2172 | 21 | 24 | 55.34977863 | -14 | 38 | 13.3186575 | . 00015760 | . 0032000 | 0.6754 | 53561.4 | 53561.5 | 1 |  |  |  |
| 2123+244 | 2123+244 | 3863 | 21 | 25 | 26.17040237 | +24 | 42 | 3.5786755 | . 00017306 | . 0052649 | 0.3101 | 53125.5 | 53133.6 | 2 |  |  |  |
| 2124+641 | 2124+641 | 3864 | 21 | 25 | 27.44711722 | +64 | 23 | 39.3538716 | . 00005048 | . 0006516 | -0.2645 | 49826.5 | 49826.7 | 1 |  |  |  |
| 2122+044 | 2122+044 | 3865 | 21 | 25 | 29.25542977 | +04 | 41 | 35.5215032 | . 00001507 | . 0005110 | -0.1453 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2122-238 | 2122-238 | 2173 | 21 | 25 | 52.12226877 | -23 | 38 | 11.7407107 | . 00002172 | . 0007892 | -0.1760 | 54965.5 | 54965.6 | 1 |  |  |  |
| 2123-463 | 2123-463 | 3866 | 21 | 26 | 30.70425283 | -46 | 05 | 47.8921916 | . 00001269 | . 0002156 | 0.1331 | 53222.7 | 56769.9 | 21 |  |  |  |
| 2123-015 | 2123-015 | 3867 | 21 | 26 | 32.75747019 | -01 | 19 | 32.4060110 | . 00002088 | . 0007137 | -0.4056 | 50575.5 | 50575.6 | 1 |  |  |  |
| 2126-158 | P 2126-15 | 559 | 21 | 29 | 12.17589654 | -15 | 38 | 41.0414842 | . 00000355 | . 0000618 | -0.0369 | 48196.1 | 56772.3 | 785 | 0.72 | 0.30 | 2.4 |
| 2126-185 | P 2126-185 | 3868 | 21 | 29 | 21.41910410 | -18 | 21 | 22.7900950 | . 00001398 | . 0004581 | -0.0529 | 50631.3 | 50688.2 | 2 |  |  |  |
| 2127+085 | 2127+085 | 3869 | 21 | 30 | 16.24974599 | +08 | 43 | 55.9274285 | . 00000915 | . 0002733 | 0.0400 | 52409.5 | 52409.6 | 1 |  |  |  |
| 2127-096 | 2127-096 | 2174 | 21 | 30 | 19.08826194 | -09 | 27 | 37.4353399 | . 00000428 | . 0000764 | 0.0420 | 50575.5 | 56733.9 | 88 |  |  |  |
| 2128+048 | P 2127+04 | 562 | 21 | 30 | 32.87739322 | +05 | 02 | 17.4740755 | . 00001747 | . 0004057 | -0.0968 | 48205.9 | 53666.0 | 16 | 0.07 |  |  |
| 2128-123 | P 2128-12 | 563 | 21 | 31 | 35.26174781 | -12 | 07 | 4.7962648 | . 00000366 | . 0000657 | -0.0133 | 47254.7 | 56638.6 | 818 | 0.78 | 0.55 | 4.2 |
| 2136+824 | 2136+824 | 2175 | 21 | 33 | 34.07954968 | +82 | 39 | 6.0535632 | . 00027050 | . 0005641 | -0.7698 | 50687.3 | 54482.6 | 2 |  |  |  |
| 2131+145 | 2131+145 | 4139 | 21 | 33 | 37.38927753 | +14 | 43 | 46.4639682 | . 00003029 | . 0007446 | -0.1537 | 55776.2 | 55776.5 | 1 |  |  |  |
| 2130-425 | 2130-425 | 3870 | 21 | 34 | 1.17273333 | -42 | 18 | 43.2326903 | . 00037020 | . 0257480 | 0.1488 | 53133.6 | 53133.6 | 1 |  |  |  |
| 2131-021 | P 2131-021 | 564 | 21 | 34 | 10.30959767 | -01 | 53 | 17.2388758 | . 00000384 | . 0000665 | -0.3146 | 47254.8 | 56744.8 | 189 | 0.72 | 0.82 | 2.8 |
| 2131-340 | 2131-340 | 3871 | 21 | 34 | 50.82449420 | -33 | 51 | 14.7513553 | . 00002344 | . 0007723 | -0.0869 | 55413.3 | 55413.4 | 1 |  |  |  |
| 2134+428 | 2134+428 | 2176 | 21 | 36 | 24.00630317 | +43 | 01 | 42.4734524 | . 00013955 | . 0012441 | -0.1482 | 53572.3 | 53572.5 | 1 |  |  |  |
| 2134+004 | P 2134+004 | 565 | 21 | 36 | 38.58633278 | +00 | 41 | 54.2131022 | . 00000375 | . 0000676 | -0.2713 | 43809.2 | 56638.5 | 683 | 0.75 | 1.55 | 3.5 |
| 2135+508 | 2135+508 | 1249 | 21 | 37 | 0.98616399 | +51 | 01 | 36.1293481 | . 00002150 | . 0001780 | -0.0973 | 52306.0 | 53679.9 | 7 | 0.24 |  |  |
| 2135+347 | 2135+347 | 2177 | 21 | 37 | 44.10284837 | +34 | 55 | 42.0932912 | . 00013489 | . 0062789 | -0.1062 | 53133.6 | 53134.4 | 1 |  |  |  |
| 2135-209 | 2135-209 | 3872 | 21 | 37 | 50.00792740 | -20 | 42 | 31.6665897 | . 00026164 | . 0046639 | 0.3564 | 52305.8 | 52305.9 | 1 |  |  |  |
| 2135-248 | P 2135-248 | 3873 | 21 | 38 | 37.18110659 | -24 | 39 | 54.4659325 | . 00001685 | . 0005289 | -0.1005 | 50631.3 | 50688.2 | 2 |  |  |  |
| 2135-184 | 2135-184 | 3874 | 21 | 38 | 41.92685842 | -18 | 10 | 44.3757789 | . 00030344 | . 0069489 | -0.3993 | 50631.3 | 56638.0 | 5 |  |  |  |
| 2136-190 | 2136-190 | 2178 | 21 | 38 | 47.44909327 | -18 | 49 | 30.6692300 | . 00021171 | . 0052753 | 0.0941 | 53560.4 | 53560.5 | 1 |  |  |  |
| 2136+141 | OX 161 | 567 | 21 | 39 | 1.30927122 | +14 | 23 | 35.9921463 | . 00000338 | . 0000514 | -0.0785 | 48196.2 | 56679.7 | 847 | 0.61 | 1.09 | 2.8 |
| 2136-251 | OX-260 | 3875 | 21 | 39 | 13.22892061 | -24 | 54 | 15.0662342 | . 00003641 | . 0010765 | 0.0530 | 55371.4 | 55371.5 | 1 |  |  |  |
| 2137+130 | 2137+130 | 2179 | 21 | 39 | 38.14036186 | +13 | 16 | 13.0517419 | . 00012158 | . 0021787 | 0.1382 | 53561.4 | 53561.5 | 1 |  |  |  |
| 2137+011 | 2137+011 | 3876 | 21 | 39 | 42.50889622 | +01 | 22 | 27.1671834 | . 00008021 | . 0017470 | -0.1702 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2138+389 | 2138+389 | 3877 | 21 | 40 | 16.94710495 | +39 | 11 | 44.8548132 | . 00008095 | . 0015242 | -0.0833 | 50242.5 | 50242.5 | 1 |  |  |  |
| 2137-196 | 2137-196 | 2180 | 21 | 40 | 46.86016225 | -19 | 23 | 56.0436177 | . 00011054 | . 0032429 | -0.8192 | 53572.3 | 53572.4 | 1 |  |  |  |
| 2138-283 | 2138-283 | 3878 | 21 | 40 | 56.52484942 | -28 | 04 | 59.9574689 | . 00023081 | . 0084840 | 0.7390 | 53503.6 | 53503.6 | 1 |  |  |  |
| 2138-377 | 2138-377 | 2181 | 21 | 41 | 52.44897948 | -37 | 29 | 12.9913655 | . 00002147 | . 0003363 | 0.0035 | 53125.6 | 54741.6 | 14 |  |  |  |
| 2139-260 | 2139-260 | 3879 | 21 | 42 | 15.92575467 | -25 | 51 | 26.5971154 | . 00045912 | . 0135149 | 0.3306 | 53523.5 | 53523.5 | 1 |  |  |  |
| 2139-249 | 2139-249 | 3880 | 21 | 42 | 30.95903978 | -24 | 44 | 38.8322318 | . 00001047 | . 0003872 | 0.0212 | 54111.9 | 56749.7 | 2 | 0.20 | 0.37 |  |
| 2140-048 | P 2140-048 | 3881 | 21 | 42 | 36.90168862 | -04 | 37 | 43.5123779 | . 00001430 | . 0004395 | -0.2951 | 50575.5 | 56638.1 | 5 |  |  |  |
| 2139-232 | 2139-232 | 2182 | 21 | 42 | 41.94582927 | -23 | 03 | 38.4822460 | . 00022336 | . 0077700 | 0.8522 | 53560.4 | 53560.5 | 1 |  |  |  |
| 2141+175 | 2141+175 | 1250 | 21 | 43 | 35.54456805 | +17 | 43 | 48.7874970 | . 00000355 | . 0000539 | 0.0312 | 53125.5 | 56751.8 | 129 |  |  |  |
| 2141+333 | 2141+333 | 2183 | 21 | 43 | 50.13573247 | +33 | 37 | 10.8167605 | . 00015053 | . 0014094 | 0.1796 | 53561.3 | 53561.5 | 1 |  |  |  |
| 2141-334 | 2141-334 | 2184 | 21 | 44 | 51.18569743 | -33 | 12 | 55.0988090 | . 00002144 | . 0006800 | -0.1478 | 53133.6 | 53133.6 | 1 |  |  |  |
| 2142+110 | 2142+110 | 2185 | 21 | 45 | 18.77506543 | +11 | 15 | 27.3121714 | . 00000576 | . 0001393 | -0.0836 | 49914.3 | 56547.3 | 32 |  | 0.10 | 2.7 |
| 2143-156 | OX-173 | 570 | 21 | 46 | 22.97933052 | -15 | 25 | 43.8856532 | . 00000418 | . 0000716 | -0.1008 | 44202.9 | 56766.5 | 204 | 0.37 | 0.31 | 3.1 |
| 2144+568 | 2144+568 | 3882 | 21 | 46 | 25.93629427 | +57 | 03 | 24.6873395 | . 00129554 | . 0110808 | -0.3497 | 53125.6 | 56638.1 | 3 |  |  |  |
| 2144+042 | 2144+042 | 2186 | 21 | 46 | 55.19199952 | +04 | 27 | 25.4775642 | . 00001477 | . 0004817 | -0.3081 | 53560.4 | 53560.4 | 1 |  |  |  |
| 2144+092 | OX 074 | 571 | 21 | 47 | 10.16297190 | +09 | 29 | 46.6722137 | . 00000396 | . 0000750 | -0.0070 | 48196.2 | 56770.4 | 116 | 0.52 | 0.45 | 3.4 |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2142-758 | 2142-758 | 966 | 21 | 47 | 12.73059350 | -75 | 36 | 13.2249782 | . 00002642 | . 0001089 | 0.1427 | 47626.1 | 56681.7 | 30 |  |  |  |
| 2144-362 | 2144-362 | 3883 | 21 | 47 | 31.12589470 | -36 | 01 | 51.2722644 | . 00009376 | . 0035531 | 0.2742 | 53125.6 | 56301.9 | 2 |  |  |  |
| 2145+082 | 2145+082 | 2187 | 21 | 47 | 55.21939884 | +08 | 30 | 11.8963823 | . 00001856 | . 0007217 | -0.4818 | 49914.3 | 56568.7 | 6 |  |  |  |
| 2145+067 | P 2145+06 | 572 | 21 | 48 | 5.45867299 | +06 | 57 | 38.6041553 | . 00000336 | . 0000515 | -0.0736 | 43809.2 | 56766.5 | 1410 | 1.83 | 2.44 | 2.8 |
| 2146+608 | 2146+608 | 3884 | 21 | 48 | 16.04228434 | +61 | 07 | 5.7936726 | . 00003303 | . 0003580 | 0.3695 | 52409.4 | 52409.5 | 1 |  |  |  |
| 2145-176 | 2145-176 | 3885 | 21 | 48 | 36.80084675 | -17 | 23 | 44.0139979 | . 00001147 | . 0003871 | -0.0753 | 50631.3 | 50631.4 | 1 |  |  |  |
| 2147+077 | 2147+077 | 2188 | 21 | 49 | 35.26384348 | +07 | 56 | 25.3482574 | . 00006210 | . 0015830 | -0.0141 | 49914.3 | 50700.2 | 2 |  |  |  |
| 2147-186 | 2147-186 | 4117 | 21 | 50 | 1.73567920 | -18 | 22 | 26.1618661 | . 00002767 | . 0008870 | 0.1962 | 56036.6 | 56036.7 | 1 |  |  |  |
| 2147+145 | P 2147+14 | 3886 | 21 | 50 | 23.60711566 | +14 | 49 | 47.8946007 | . 00019009 | . 0046453 | -0.2830 | 52409.5 | 52409.6 | 1 |  |  |  |
| 2147-284 | 2147-284 | 3887 | 21 | 50 | 53.08795527 | -28 | 12 | 41.8147100 | . 00002114 | . 0008217 | 0.0320 | 54111.9 | 54111.9 | 1 |  |  |  |
| 2148-279 | 2148-279 | 3888 | 21 | 51 | 21.90509876 | -27 | 42 | 23.0094142 | . 00001701 | . 0006870 | 0.2705 | 54088.0 | 54088.0 | 1 |  |  |  |
| 2149+069 | 2149+069 | 3889 | 21 | 51 | 31.42929823 | +07 | 09 | 26.7834608 | . 00001610 | . 0004140 | -0.1823 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2149+056 | OX 082 | 577 | 21 | 51 | 37.87549377 | +05 | 52 | 12.9544983 | . 00000366 | . 0000641 | -0.2382 | 44202.9 | 56763.4 | 484 | 0.30 | 0.29 | 2.6 |
| 2149-307 | P 2149-306 | 575 | 21 | 51 | 55.52398014 | -30 | 27 | 53.6980771 | . 00000540 | . 0001147 | -0.1967 | 48388.0 | 56638.6 | 29 |  | 0.94 |  |
| 2146-783 | 2146-783 | 967 | 21 | 52 | 3.15458560 | -78 | 07 | 6.6392587 | . 00006098 | . 0002102 | 0.5124 | 47626.3 | 55784.7 | 23 |  |  |  |
| 2150+173 | 2150+173 | 968 | 21 | 52 | 24.81940297 | +17 | 34 | 37.7949995 | . 00000401 | . 0000717 | -0.1282 | 48196.2 | 56758.8 | 75 | 0.30 | 0.36 | 2.8 |
| 2151-118 | 2151-118 | 4140 | 21 | 53 | 50.24224155 | -11 | 36 | 14.1109497 | . 00001589 | . 0005429 | -0.1045 | 55915.9 | 55916.0 | 1 |  |  |  |
| 2151+431 | 2151+431 | 2189 | 21 | 53 | 50.95914539 | +43 | 22 | 54.5009004 | . 00002962 | . 0004049 | -0.1971 | 53133.6 | 53134.4 | 1 |  |  |  |
| 2151-152 | 2151-152 | 2190 | 21 | 54 | 7.43868814 | -15 | 01 | 31.4722414 | . 00006554 | . 0020926 | 0.6966 | 53561.4 | 53561.5 | 1 |  |  |  |
| 2152+172 | 2152+172A | 3890 | 21 | 54 | 40.90047728 | +17 | 27 | 50.7938183 | . 00003329 | . 0007472 | 0.6195 | 50084.8 | 50155.8 | 2 |  |  |  |
| 2152+226 | J2155+2250 | 1178 | 21 | 55 | 6.45851180 | +22 | 50 | 22.2812031 | . 00001292 | . 0002276 | -0.1987 | 50084.8 | 53658.4 | 6 |  | 0.08 | 4.5 |
| 2153+190 | 2153+190 | 2191 | 21 | 55 | 34.43686526 | +19 | 14 | 48.4868209 | . 00009150 | . 0019863 | -0.4433 | 53572.3 | 53572.4 | 1 |  |  |  |
| 2153-119 | 2153-119 | 2192 | 21 | 55 | 50.71846402 | -11 | 39 | 47.9784810 | . 00024128 | . 0040425 | -0.1913 | 53560.4 | 53560.5 | 1 |  |  |  |
| 2153-008 | 2153-008 | 3891 | 21 | 56 | 14.75791824 | -00 | 37 | 4.5943575 | . 00001076 | . 0003471 | -0.1708 | 50575.5 | 50575.7 | 1 |  |  |  |
| 2153-204 | 2153-204 | 3892 | 21 | 56 | 33.75584961 | -20 | 12 | 30.8945010 | . 00002975 | . 0011938 | -0.0610 | 53560.4 | 56463.5 | 2 |  |  |  |
| 2154-037 | 2154-037 | 3893 | 21 | 56 | 50.14547609 | -03 | 33 | 27.7368772 | . 01259666 | . 2189444 | -0.9931 | 53572.4 | 53572.4 | 1 |  |  |  |
| 2159+833 | 2159+833 | 3894 | 21 | 56 | 57.31618500 | +83 | 37 | 14.7226161 | . 00116795 | . 0012262 | -0.7809 | 50687.3 | 50687.4 | 1 |  |  |  |
| 2152-699 | 2152-699 | 969 | 21 | 57 | 5.98062129 | -69 | 41 | 23.6851446 | . 00018102 | . 0011412 | 0.8395 | 48110.0 | 52948.0 | 5 |  |  |  |
| 2154+100 | 2154+100 | 3895 | 21 | 57 | 12.86045058 | +10 | 14 | 24.7982977 | . 00002619 | . 0007488 | -0.1263 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2155+312 | 2155+312 | 1179 | 21 | 57 | 28.82389198 | +31 | 27 | 1.3516791 | . 00000436 | . 0000690 | -0.0165 | 50219.6 | 56770.2 | 67 | 0.29 | 0.29 | 1.3 |
| 2154-183 | 2154-183A | 3896 | 21 | 57 | 29.12375180 | -18 | 07 | 2.8659841 | . 00011624 | . 0028827 | 0.2260 | 50631.3 | 50631.4 | 1 |  |  |  |
| 2155-152 | OX-192 | 579 | 21 | 58 | 6.28190694 | -15 | 01 | 9.3281216 | . 00000542 | . 0001093 | -0.3970 | 43809.2 | 56540.1 | 126 | 0.45 | 0.87 | 3.7 |
| 2155-304 | P 2155-304 | 970 | 21 | 58 | 52.06512115 | -30 | 13 | 32.1182145 | . 00000881 | . 0001259 | -0.1473 | 50210.3 | 56701.7 | 29 |  | 0.12 | 2.1 |
| 2156-013 | 2156-013 | 2193 | 21 | 59 | 34.27573818 | -01 | 05 | 54.8922894 | . 00020307 | . 0029982 | 0.3186 | 53561.4 | 53561.5 | 1 |  |  |  |
| 2157-255 | 2157-255 | 2194 | 21 | 59 | 50.79223992 | -25 | 16 | 52.1760604 | . 00001125 | . 0004075 | -0.0120 | 54852.8 | 54852.9 | 1 |  |  |  |
| 2157+102 | 2157+102 | 3897 | 22 | 00 | 7.93336868 | +10 | 30 | 7.9238608 | . 00108271 | . 0236284 | 0.7704 | 53134.5 | 53134.5 | 1 |  |  |  |
| 2157+213 | 2157+213 | 3898 | 22 | 00 | 14.19773258 | +21 | 37 | 57.0417168 | . 00030456 | . 0035438 | 0.7609 | 50084.9 | 50155.8 | 2 |  |  |  |
| 2157-375 | 2157-375 | 3899 | 22 | 00 | 16.96647406 | -37 | 16 | 57.0517131 | . 00013182 | . 0050431 | -0.6681 | 53503.6 | 56162.3 | 2 |  |  |  |
| 2158-167 | 2158-167 | 2195 | 22 | 00 | 54.87887807 | -16 | 32 | 32.7016901 | . 00006057 | . 0019857 | -0.7795 | 53125.5 | 53125.6 | 1 |  |  |  |
| 2158+029 | 2158+029 | 3900 | 22 | 01 | 27.50871826 | +03 | 12 | 15.1630146 | . 00001949 | . 0005743 | -0.1519 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2159+505 | 2159+505 | 2196 | 22 | 01 | 43.53724885 | +50 | 48 | 56.3891001 | . 00002337 | . 0002522 | -0.5139 | 49576.3 | 54643.5 | 3 |  |  |  |
| 2200+420 | VRO 42.22.01 | 581 | 22 | 02 | 43.29137719 | +42 | 16 | 39.9799745 | . 00000343 | . 0000515 | -0.0865 | 43809.4 | 56766.5 | 859 | 1.69 | 1.04 | 3.5 |
| 2200-238 | 2200-238 | 3901 | 22 | 02 | 55.99949092 | -23 | 35 | 10.2455837 | . 00001412 | . 0004346 | -0.3468 | 50631.3 | 50688.2 | 2 |  |  |  |
| 2201+676 | 2201+676 | 3902 | 22 | 03 | 12.62280193 | +67 | 50 | 47.6731791 | . 00006340 | . 0004042 | -0.5964 | 49826.6 | 54087.8 | 2 |  |  |  |
| 2201+315 | B2 2201+31A | 582 | 22 | 03 | 14.97579439 | +31 | 45 | 38.2700532 | . 00000349 | . 0000528 | 0.0271 | 45491.7 | 56770.4 | 807 | 1.30 | 0.51 | 3.2 |
| 2201+171 | 2201+171 | 1180 | 22 | 03 | 26.89368281 | +17 | 25 | 48.2478651 | . 00000745 | . 0001854 | -0.2007 | 50084.9 | 54482.7 | 9 | 0.81 | 0.52 |  |
| 2202+716 | 2202+716 | 3903 | 22 | 03 | 30.47741130 | +71 | 51 | 8.5573379 | . 04794342 | . 0769455 | 0.9827 | 49826.7 | 49826.7 | 1 |  |  |  |
| 2201+098 | 2201+098 | 3904 | 22 | 03 | 30.95266105 | +10 | 07 | 42.5859185 | . 00027188 | . 0023438 | -0.0249 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2202+363 | 2202+363 | 3905 | 22 | 04 | 21.10047560 | +36 | 32 | 37.0913855 | . 00011029 | . 0015223 | -0.5827 | 50242.5 | 50242.5 | 1 |  |  |  |
| 2203+292 | 2203+292 | 2197 | 22 | 05 | 46.50638398 | +29 | 26 | 55.1324234 | . 00001520 | . 0002891 | 0.1311 | 53561.4 | 56547.4 | 5 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2205+743 | 2205+743 | 2198 | 22 | 05 | 47.39413329 | +74 | 36 | 21.0471960 | . 01337358 | . 0534368 | -0.9651 | 54278.5 | 54278.7 | 1 |  |  |  |
| 2203-188 | P 2203-18 | 3906 | 22 | 06 | 10.41637402 | -18 | 35 | 38.7524779 | . 00030500 | . 0064701 | -0.4462 | 50631.3 | 54187.7 | 3 |  |  |  |
| 2203-215 | 2203-215 | 2199 | 22 | 06 | 41.38227118 | -21 | 19 | 40.5133218 | . 00005337 | . 0014314 | 0.7045 | 53133.6 | 53133.6 | 1 |  |  |  |
| 2204-007 | 2204-007 | 3907 | 22 | 06 | 43.28261799 | -00 | 31 | 2.4959308 | . 00001682 | . 0004549 | 0.3786 | 55371.4 | 55371.5 | 1 |  |  |  |
| 2204-540 | P 2204-54 | 971 | 22 | 07 | 43.73328267 | -53 | 46 | 33.8199226 | . 00000705 | . 0001064 | 0.1841 | 48110.0 | 56653.1 | 56 |  |  |  |
| 2205+166 | 2205+166 | 1181 | 22 | 07 | 52.86569235 | +16 | 52 | 17.8155084 | . 00000780 | . 0002073 | 0.2005 | 50084.8 | 56639.1 | 22 |  |  |  |
| 2206+650 | 2206+650 | 3908 | 22 | 08 | 3.11035565 | +65 | 19 | 38.7905231 | . 00034500 | . 0020018 | 0.5930 | 49826.6 | 54482.7 | 2 |  |  |  |
| 2207+741 | 2207+741 | 2200 | 22 | 08 | 23.95449026 | +74 | 23 | 38.3422403 | . 00043366 | . 0032348 | -0.0294 | 53560.3 | 53560.5 | 1 |  |  |  |
| 2205-636 | 2205-636 | 3909 | 22 | 08 | 47.24158999 | -63 | 25 | 47.4886594 | . 00009313 | . 0011138 | 0.5208 | 52860.8 | 52872.8 | 2 |  |  |  |
| 2207+374 | 2207+374 | 2201 | 22 | 09 | 21.42505541 | +37 | 42 | 18.2267044 | . 00005696 | . 0009880 | 0.1957 | 50242.5 | 54664.7 | 2 |  |  |  |
| 2207+517 | 2207+517 | 1182 | 22 | 09 | 21.48682293 | +51 | 58 | 1.8340166 | . 00016203 | . 0016263 | 0.4814 | 49576.3 | 49576.5 | 1 | 0.07 |  |  |
| 2207+356 | 2207+356 | 3910 | 22 | 09 | 45.33433286 | +35 | 56 | 1.1292504 | . 00001778 | . 0005216 | -0.4156 | 50242.5 | 54482.5 | 2 |  |  |  |
| 2207+087 | 2207+087 | 3911 | 22 | 10 | 6.05026758 | +08 | 57 | 29.5621734 | . 00010565 | . 0023077 | 0.5287 | 54111.9 | 54112.0 | 1 |  |  |  |
| 2208+199 | 2208+199 | 3912 | 22 | 10 | 51.65245230 | +20 | 13 | 24.0558351 | . 00001878 | . 0006894 | 0.0762 | 53561.4 | 56638.2 | 2 |  |  |  |
| 2208-137 | 2208-137 | 2202 | 22 | 11 | 24.09945506 | -13 | 28 | 9.7238963 | . 00000536 | . 0001009 | -0.1076 | 50575.5 | 56639.7 | 51 | 0.25 | 0.15 |  |
| 2208-373 | 2208-373 | 2203 | 22 | 11 | 50.52613937 | -37 | 07 | 4.9842336 | . 00034076 | . 0208625 | -0.1356 | 53152.5 | 53152.5 | , |  |  |  |
| 2209+184 | 2209+184 | 2204 | 22 | 11 | 53.88890178 | +18 | 41 | 49.8622803 | . 00002399 | . 0006022 | 0.0891 | 53572.3 | 53572.5 | 1 |  |  |  |
| 2209+080 | 2209+080 | 2205 | 22 | 12 | 1.58933188 | +08 | 19 | 16.5096740 | . 00003508 | . 0015232 | -0.0880 | 53523.5 | 53523.6 | 1 |  |  |  |
| 2209+236 | P 2209+236 | 588 | 22 | 12 | 5.96631493 | +23 | 55 | 40.5437827 | . 00000343 | . 0000522 | -0.0112 | 49848.0 | 56755.5 | 336 | 0.98 | 0.58 | 1.9 |
| 2209+328 | 2209+328 | 3913 | 22 | 12 | 7.97728562 | +33 | 08 | 34.5193733 | . 00005695 | . 0009114 | -0.0279 | 50219.6 | 50219.7 | 1 |  |  |  |
| 2210+016 | 2210+016 | 3914 | 22 | 12 | 37.96798895 | +01 | 52 | 51.2661012 | . 00278550 | . 0480269 | -0.9843 | 52408.7 | 52408.7 | 1 |  |  |  |
| 2210+277 | 2210+277 | 3915 | 22 | 12 | 39.10337740 | +27 | 59 | 38.4532346 | . 00021454 | . 0047119 | 0.5630 | 54111.9 | 54112.0 | 1 |  |  |  |
| 2210+065 | J2212+0646 | 1183 | 22 | 12 | 50.83928252 | +06 | 46 | 8.7410215 | . 00001761 | . 0005844 | 0.0405 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2211+587 | 2211+587 | 3916 | 22 | 12 | 51.14677526 | +59 | 00 | 47.3931823 | . 01215686 | . 0040616 | -0.0667 | 53552.4 | 53552.4 | 1 |  |  |  |
| 2210-257 | P 2210-25 | 705 | 22 | 13 | 2.49798043 | -25 | 29 | 30.0806931 | . 00000749 | . 0001371 | -0.1727 | 49960.4 | 54362.0 | 25 | 0.27 | 0.24 | 3.1 |
| 2210+361 | 2210+361 | 3917 | 22 | 13 | 10.22238193 | +36 | 23 | 55.1831600 | . 00004596 | . 0008788 | -0.1523 | 53561.4 | 56302.0 | 2 |  |  |  |
| 2211+069 | 2211+069 | 3918 | 22 | 14 | 8.86159160 | +07 | 11 | 42.3935621 | . 00002307 | . 0008186 | -0.3900 | 49914.3 | 49914.4 | 1 |  |  |  |
| 2211-388 | P 2211-388 | 972 | 22 | 14 | 38.56983843 | -38 | 35 | 45.0038052 | . 00016221 | . 0065039 | 0.3509 | 50258.6 | 52409.6 | 4 |  |  |  |
| 2211-256 | 2211-256 | 3919 | 22 | 14 | 46.40221314 | -25 | 21 | 16.0734304 | . 00004651 | . 0021529 | 0.0205 | 53572.4 | 55538.0 | 2 |  |  |  |
| 2212-299 | 2212-299 | 3920 | 22 | 15 | 16.03452032 | -29 | 44 | 23.3335208 | . 00004355 | . 0019248 | 0.6600 | 50688.1 | 54664.0 | 2 |  |  |  |
| 2214+350 | GC 2214+35 | 590 | 22 | 16 | 20.00990428 | +35 | 18 | 14.1800419 | . 00000352 | . 0000532 | 0.0167 | 49749.8 | 56776.5 | 261 | 0.39 | 0.40 | 1.9 |
| 2214+307 | 2214+307 | 3921 | 22 | 16 | 42.71044500 | +31 | 02 | 35.3642795 | . 00002598 | . 0004884 | -0.2704 | 50219.6 | 50219.7 | 1 |  |  |  |
| 2214+241 | 2214+241 | 1184 | 22 | 17 | 0.82118362 | +24 | 21 | 45.9581299 | . 00000975 | . 0002353 | -0.3225 | 50219.6 | 53946.1 | 7 | 0.56 | 0.30 |  |
| 2214-192 | 2214-192 | 2206 | 22 | 17 | 2.16572500 | -19 | 02 | 3.8246222 | . 00002537 | . 0007659 | -0.1868 | 53133.5 | 53133.6 | 1 |  |  |  |
| 2215+316 | 2215+316 | 3922 | 22 | 17 | 17.57637449 | +31 | 56 | 49.9950718 | . 00001635 | . 0004112 | -0.3255 | 50219.6 | 50219.7 | 1 |  |  |  |
| 2215+020 | 2215+020 | 2207 | 22 | 17 | 48.23793733 | +02 | 20 | 10.7121967 | . 00000866 | . 0002300 | -0.1435 | 49914.4 | 56498.4 | 16 |  |  |  |
| 2215+150 | 2215+150 | 2208 | 22 | 18 | 10.91390506 | +15 | 20 | 35.7173824 | . 00000365 | . 0000573 | 0.0105 | 53560.4 | 56776.7 | 77 |  |  |  |
| 2215-508 | 2215-508 | 3923 | 22 | 18 | 19.02527711 | -50 | 38 | 41.7310225 | . 00056414 | . 0024428 | -0.0855 | 52886.7 | 53138.7 | 3 |  |  |  |
| 2216-007 | 2216-007 | 4118 | 22 | 18 | 36.68208049 | -00 | 28 | 53.0561263 | . 01232676 | . 2074584 | -0.9909 | 56267.1 | 56267.1 | 1 |  |  |  |
| 2216-038 | P 2216-03 | 592 | 22 | 18 | 52.03772804 | -03 | 35 | 36.8794111 | . 00000367 | . 0000661 | -0.0722 | 45139.2 | 56766.5 | 418 | 0.70 | 0.81 | 3.3 |
| 2216+178 | J2219+1806 | 1185 | 22 | 19 | 14.09248991 | +18 | 06 | 35.5806032 | . 00000803 | . 0002184 | 0.0858 | 50084.9 | 56638.2 | 17 |  |  |  |
| 2216-275 | 2216-275 | 3924 | 22 | 19 | 35.32031727 | -27 | 19 | 3.2935981 | . 00030438 | . 0060037 | 0.1648 | 54088.0 | 54088.0 | 1 |  |  |  |
| 2217+214 | 2217+214 | 3925 | 22 | 19 | 38.52160726 | +21 | 41 | 12.5601604 | . 00002000 | . 0004090 | -0.0012 | 53572.3 | 55657.6 | 2 |  |  |  |
| 2217+210 | 2217+210 | 3926 | 22 | 19 | 44.17524451 | +21 | 20 | 53.2043298 | . 00035771 | . 0188864 | 0.3978 | 53561.5 | 53561.5 | 1 |  |  |  |
| 2217-011 | 2217-011 | 3927 | 22 | 19 | 47.28245375 | -00 | 51 | 32.5560557 | . 00003254 | . 0011946 | -0.4612 | 54111.9 | 54112.0 | 1 |  |  |  |
| 2217+259 | 2217+259 | 3928 | 22 | 19 | 49.74112673 | +26 | 13 | 27.9445226 | . 00010946 | . 0045538 | -0.0282 | 50219.6 | 50219.7 | 1 |  |  |  |
| 2220+134 | 2220+134 | 2209 | 22 | 22 | 45.16318376 | +13 | 44 | 54.4485773 | . 00002726 | . 0008283 | -0.0568 | 53560.4 | 53560.5 | 1 |  |  |  |
| 2220+119 | 2220+119 | 3929 | 22 | 22 | 52.98900423 | +12 | 13 | 49.8086336 | . 00004847 | . 0010647 | -0.3138 | 49914.4 | 49914.5 | 1 |  |  |  |
| 2220-119 | 2220-119 | 3930 | 22 | 22 | 56.00532282 | -11 | 44 | 26.3704788 | . 00033248 | . 0084517 | 0.6197 | 53503.6 | 53503.7 | 1 |  |  |  |
| 2220-351 | 2220-351 | 2210 | 22 | 23 | 5.93057166 | -34 | 55 | 47.1776125 | . 00001099 | . 0002609 | 0.1680 | 53222.8 | 56734.1 | 24 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation EpochMJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2221+625 | 2221+625 | 1186 | 22 | 23 | 18.09661696 | +62 | 49 | 33.8055160 | . 00013695 | . 0013410 | -0.0445 | 53133.6 | 54087.9 | 2 |  |  |  |
| 2220-318 | 2220-318 | 2211 | 22 | 23 | 21.63166079 | -31 | 37 | 2.1098896 | . 00002237 | . 0007205 | 0.1293 | 54852.8 | 54852.9 | 1 |  |  |  |
| 2221-116 | 2221-116 | 3931 | 22 | 24 | 7.96268094 | -11 | 26 | 21.1060741 | . 00001588 | . 0004863 | -0.0327 | 50575.5 | 50575.7 | 1 |  |  |  |
| 2222+600 | 2222+600 | 3932 | 22 | 24 | 37.02469530 | +60 | 16 | 15.5988318 | . 00041533 | . 0037749 | -0.1665 | 52409.4 | 55776.5 | 2 |  |  |  |
| 2221-387 | 2221-387 | 3933 | 22 | 24 | 43.96136260 | -38 | 31 | 33.0311589 | . 00003247 | . 0010554 | -0.5105 | 55168.0 | 55168.1 | 1 |  |  |  |
| 2223+210 | 2223+210 | 1187 | 22 | 25 | 38.04713256 | +21 | 18 | 6.4151098 | . 00000760 | . 0001493 | 0.0122 | 50084.9 | 53771.1 | 5 | 0.51 | 0.38 |  |
| 2223-114 | 2223-114 | 3934 | 22 | 25 | 43.71839280 | -11 | 13 | 40.6973114 | . 00001182 | . 0003948 | -0.1413 | 50575.5 | 56749.6 | 2 | 0.08 | 0.08 |  |
| 2223-052 | 3C 446 | 594 | 22 | 25 | 47.25929425 | -04 | 57 | 1.3908513 | . 00000338 | . 0000519 | -0.0516 | 45151.6 | 56766.5 | 1005 | 1.70 | 1.93 | 2.3 |
| 2224+006 | J2226+0052 | 1188 | 22 | 26 | 46.53702147 | +00 | 52 | 11.3312855 | . 00001469 | . 0004520 | -0.4139 | 49914.4 | 53771.0 | 2 | 0.27 | 0.22 |  |
| 2226+772 | 2226+772 | 3935 | 22 | 27 | 21.66389035 | +77 | 33 | 19.0318975 | . 04185194 | . 1733541 | -0.9796 | 53152.5 | 53152.6 | 1 |  |  |  |
| 2225+247 | 2225+247 | 4119 | 22 | 28 | 1.54173308 | +25 | 03 | 3.0404910 | . 00006719 | . 0013350 | 0.3241 | 55965.8 | 55966.0 | 1 |  |  |  |
| 2226+440 | 2226+440 | 3936 | 22 | 28 | 50.46307813 | +44 | 19 | 8.4435187 | . 00018705 | . 0015359 | -0.5325 | 50305.4 | 50305.5 | 1 |  |  |  |
| 2226-081 | 2226-081 | 3937 | 22 | 28 | 52.63380219 | -07 | 53 | 46.3583709 | . 07150604 | . 8081661 | 0.9998 | 53572.5 | 53572.5 | 1 |  |  |  |
| 2227-088 | P 2227-08 | 596 | 22 | 29 | 40.08433882 | -08 | 32 | 54.4355965 | . 00000351 | . 0000542 | -0.0766 | 47254.8 | 56776.4 | 314 | 1.33 | 1.10 | 1.6 |
| 2227+009 | 2227+009 | 2212 | 22 | 29 | 51.80193944 | +01 | 14 | 56.7230708 | . 00006220 | . 0011165 | 0.2264 | 53125.6 | 53125.7 | 1 |  |  |  |
| 2227-136 | 2227-136 | 2213 | 22 | 30 | 15.30603013 | -13 | 25 | 42.9010912 | . 00003266 | . 0011615 | -0.4472 | 53560.4 | 53560.4 | 1 |  |  |  |
| 2229+695 | 2229+695 | 694 | 22 | 30 | 36.46975647 | +69 | 46 | 28.0769169 | . 00000366 | . 0000507 | -0.0234 | 46337.1 | 56782.1 | 416 | 0.51 |  | 2.6 |
| 2227-399 | P 2227-399 | 597 | 22 | 30 | 40.27857028 | -39 | 42 | 52.0666263 | . 00001962 | . 0005834 | -0.0259 | 49790.1 | 53658.3 | 5 |  | 0.11 | 3.8 |
| 2227-445 | 2227-445 | 3938 | 22 | 30 | 56.44293117 | -44 | 16 | 29.8924229 | . 00003542 | . 0010398 | -0.2326 | 55371.4 | 55371.5 | 1 |  |  |  |
| 2228-146 | 2228-146 | 2214 | 22 | 31 | 39.62620900 | -14 | 22 | 22.9724828 | . 00005298 | . 0020159 | 0.2884 | 53561.4 | 53561.5 | 1 |  |  |  |
| 2229-172 | 2229-172 | 2215 | 22 | 32 | 22.56457164 | -16 | 59 | 1.8917017 | . 00003017 | . 0003837 | -0.0179 | 50631.3 | 54643.2 | 2 |  |  |  |
| 2230+114 | CTA 102 | 599 | 22 | 32 | 36.40890501 | +11 | 43 | 50.9040054 | . 00000433 | . 0000791 | -0.1780 | 43809.4 | 56638.5 | 230 | 1.46 | 1.89 | 4.2 |
| 2231+425 | 2231+425 | 3939 | 22 | 33 | 32.40650879 | +42 | 45 | 39.9246507 | . 00004278 | . 0008168 | 0.1383 | 50242.5 | 50242.5 | 1 |  |  |  |
| 2231+098 | 2231+098 | 3940 | 22 | 33 | 58.45032803 | +10 | 08 | 52.1155593 | . 00010066 | . 0018577 | -0.0760 | 49914.4 | 49914.5 | 1 |  |  |  |
| 2232-211 | 2232-211 | 3941 | 22 | 34 | 57.44032431 | -20 | 55 | 3.2378767 | . 00006529 | . 0016469 | -0.7039 | 50631.3 | 50688.2 | 2 |  |  |  |
| 2232-488 | P 2232-488 | 973 | 22 | 35 | 13.23658072 | -48 | 35 | 58.7944349 | . 00000887 | . 0001279 | 0.0364 | 48757.0 | 56776.2 | 49 |  |  |  |
| 2233-186 | 2233-186 | 2216 | 22 | 35 | 56.17042141 | -18 | 26 | 12.5558404 | . 00005493 | . 0022131 | -0.6178 | 54088.0 | 55042.4 | 2 |  |  |  |
| 2233-173 | 2233-173 | 3942 | 22 | 36 | 9.52275453 | -17 | 06 | 21.9728449 | . 00001510 | . 0004887 | -0.1808 | 50631.3 | 50631.4 | 1 |  |  |  |
| 2234+282 | GC 2234+28 | 601 | 22 | 36 | 22.47085070 | +28 | 28 | 57.4132191 | . 00000338 | . 0000512 | 0.0437 | 44202.9 | 56770.4 | 1538 | 0.53 | 0.56 | 2.4 |
| 2233-234 | 2233-234 | 2217 | 22 | 36 | 26.23868698 | -23 | 09 | 26.5975260 | . 00001878 | . 0006795 | -0.2113 | 53572.4 | 56463.5 | 2 | 0.07 | 0.13 |  |
| 2233-148 | P 2233-148 | 600 | 22 | 36 | 34.08714864 | -14 | 33 | 22.1894593 | . 00000999 | . 0001658 | -0.7847 | 48196.2 | 54184.9 | 62 | 0.22 | 0.33 | 3.3 |
| 2235+731 | 2235+731 | 974 | 22 | 36 | 38.59703156 | +73 | 22 | 52.6623671 | . 00001241 | . 0000738 | 0.2136 | 49826.6 | 55342.6 | 107 | 0.07 |  | 3.2 |
| 2234+420 | J2237+42 | 3943 | 22 | 37 | 4.20975126 | +42 | 16 | 48.2622930 | . 00002524 | . 0004657 | 0.0389 | 54111.8 | 54112.0 | 1 |  |  |  |
| 2234-253 | 2234-253 | 2218 | 22 | 37 | 18.35536246 | -25 | 06 | 32.5177780 | . 00023068 | . 0071034 | 0.4150 | 53560.4 | 53560.4 | 1 |  |  |  |
| 2235+071 | 2235+071 | 2219 | 22 | 38 | 10.39570496 | +07 | 24 | 13.9857579 | . 00001408 | . 0004181 | -0.1859 | 53561.4 | 53561.5 | 1 |  |  |  |
| 2235+275 | 2235+275 | 2220 | 22 | 38 | 12.87362478 | +27 | 49 | 52.7736434 | . 00002349 | . 0004589 | -0.2510 | 53572.3 | 53572.5 | 1 |  |  |  |
| 2236+678 | 2236+678 | 2221 | 22 | 38 | 15.02922593 | +68 | 04 | 59.7623959 | . 00004663 | . 0002124 | -0.2023 | 49826.7 | 56701.6 | 7 |  |  |  |
| 2236+124 | 2236+124 | 3944 | 22 | 38 | 34.60485132 | +12 | 42 | 50.7819998 | . 00002575 | . 0007476 | -0.4405 | 50084.9 | 50155.8 | 2 |  |  |  |
| 2236-572 | 2236-572 | 3945 | 22 | 39 | 12.07589915 | -57 | 01 | 0.8393661 | . 00001455 | . 0001674 | 0.1492 | 53222.8 | 56636.7 | 21 |  |  |  |
| 2236-221 | 2236-221 | 3946 | 22 | 39 | 23.71688937 | -21 | 53 | 15.4387796 | . 00003051 | . 0009970 | 0.0232 | 53560.4 | 55916.0 | 2 |  |  |  |
| 2238+512 | 2238+512 | 3947 | 22 | 40 | 19.87840368 | +51 | 33 | 11.7964252 | . 00006412 | . 0007177 | -0.5088 | 49576.3 | 50305.5 | 2 |  |  |  |
| 2238+410 | 2238+410 | 1189 | 22 | 41 | 7.20523419 | +41 | 20 | 11.6185113 | . 00002260 | . 0006285 | -0.1403 | 50242.5 | 50242.5 | 1 |  | 0.07 |  |
| 2238-362 | 2238-362 | 2222 | 22 | 41 | 48.31140233 | -35 | 59 | 47.7795785 | . 00003263 | . 0012518 | 0.0390 | 54942.8 | 54943.7 | 1 |  |  |  |
| 2239+096 | 2239+096 | 1296 | 22 | 41 | 49.71730865 | +09 | 53 | 52.4447444 | . 00001016 | . 0001482 | 0.2075 | 49914.4 | 56568.7 | 9 | 0.28 | 0.23 |  |
| 2239-631 | 2239-631 | 3948 | 22 | 43 | 7.83927682 | -62 | 50 | 57.3227325 | . 00003807 | . 0004188 | 0.3210 | 53222.8 | 54578.2 | 9 |  |  |  |
| 2240-064 | 2240-064 | 4120 | 22 | 43 | 8.76078313 | -06 | 09 | 2.5679618 | . 00002793 | . 0009137 | -0.3029 | 56463.4 | 56463.6 | 1 |  |  |  |
| 2240-260 | 2240-260 | 3949 | 22 | 43 | 26.40878302 | -25 | 44 | 30.6875067 | . 00001750 | . 0005269 | -0.3774 | 50631.3 | 50688.2 | 2 |  |  |  |
| 2241+406 | 2241+406 | 3950 | 22 | 44 | 12.73110362 | +40 | 57 | 13.6213411 | . 00004132 | . 0007187 | -0.3601 | 50242.5 | 50242.5 | 1 |  |  |  |
| 2242+257 | 2242+257 | 2223 | 22 | 44 | 35.14735434 | +26 | 00 | 20.7027995 | . 00009540 | . 0010993 | -0.6027 | 53572.4 | 53572.5 | 1 |  |  |  |
| 2242+031 | 2242+031 | 3951 | 22 | 45 | 28.28473917 | +03 | 24 | 8.8637141 | . 00001444 | . 0004340 | 0.0199 | 49914.4 | 49914.5 | 1 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | $\begin{gathered} \hline \begin{array}{c} \text { Observation Epoch } \\ \text { MJD } \end{array} \\ \hline \end{gathered}$ |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2243-081 | 2243-081 | 2224 | 22 | 45 | 49.00380237 | -07 | 55 | 19.3816406 | . 00002656 | . 0008547 | -0.4155 | 53560.4 | 53560.5 | 1 |  |  |  |
| 2243+047 | 2243+047 | 2225 | 22 | 45 | 53.65411825 | +05 | 00 | 56.9621457 | . 00000518 | . 0001023 | 0.0785 | 49914.4 | 56770.0 | 47 |  |  |  |
| 2243-123 | OY-172.6 | 605 | 22 | 46 | 18.23197408 | -12 | 06 | 51.2777289 | . 00000342 | . 0000557 | -0.0823 | 43809.2 | 56638.5 | 1066 | 1.09 | 0.74 | 3.8 |
| 2244-372 | 2244-372 | 1190 | 22 | 47 | 3.91732235 | -36 | 57 | 46.3039807 | . 00000922 | . 0001185 | -0.2512 | 52676.0 | 56706.1 | 34 |  | 0.52 |  |
| 2244-002 | 2244-002 | 3952 | 22 | 47 | 30.19597841 | +00 | 00 | 6.4629261 | . 00001019 | . 0003376 | -0.3385 | 50575.6 | 50575.7 | 1 |  |  |  |
| 2245+471 | 2245+471 | 2226 | 22 | 47 | 51.81694466 | +47 | 23 | 7.7688623 | . 00020524 | . 0029578 | 0.3631 | 53133.5 | 53133.6 | 1 |  |  |  |
| 2245-091 | 2245-091 | 2227 | 22 | 47 | 52.19292084 | -08 | 50 | 22.0818500 | . 00014827 | . 0040929 | 0.2299 | 53561.4 | 53561.5 | 1 |  |  |  |
| 2245-128 | 2245-128 | 3953 | 22 | 47 | 52.64103639 | -12 | 37 | 19.7214906 | . 00001794 | . 0005771 | 0.0507 | 50575.6 | 55847.3 | 2 | 0.36 | 0.58 |  |
| 2245+029 | P 2245+029 | 3954 | 22 | 47 | 58.68207040 | +03 | 10 | 42.3533802 | . 00002052 | . 0005870 | -0.0720 | 49914.4 | 49914.5 | 1 |  |  |  |
| 2245-059 | 2245-059 | 3955 | 22 | 48 | 0.08053663 | -05 | 41 | 18.2181735 | . 00003624 | . 0012490 | -0.7622 | 50575.6 | 50575.7 | 1 |  |  |  |
| 2246+370 | 2246+370 | 1191 | 22 | 48 | 37.91047437 | +37 | 18 | 12.4621339 | . 00001896 | . 0005262 | -0.1408 | 50242.5 | 50242.5 | 1 |  |  |  |
| 2245-328 | P 2245-328 | 608 | 22 | 48 | 38.68573220 | -32 | 35 | 52.1881266 | . 00000872 | . 0001064 | -0.5477 | 43809.2 | 56615.4 | 76 |  | 0.52 | 2.8 |
| 2246+208 | 2246+208 | 1192 | 22 | 49 | 0.56672854 | +21 | 07 | 2.8357232 | . 000009992 | . 0002674 | 0.2260 | 50084.9 | 52975.3 | 4 |  |  |  |
| 2246-309 | 2246-309 | 2228 | 22 | 49 | 19.04183199 | -30 | 39 | 12.6317427 | . 00003190 | . 0009351 | -0.6630 | 53125.6 | 53125.6 | 1 |  |  |  |
| 2247+132 | 2247+132 | 3956 | 22 | 49 | 44.94685740 | +13 | 31 | 9.4793714 | . 00033450 | . 0043867 | -0.4249 | 50084.9 | 50155.8 | 2 |  |  |  |
| 2247+113 | 2247+113 | 3957 | 22 | 49 | 54.58600266 | +11 | 36 | 30.8457520 | . 00008729 | . 0016981 | 0.1711 | 52408.7 | 52409.4 | 1 |  |  |  |
| 2247-131 | 2247-131 | 3958 | 22 | 49 | 59.61250900 | -12 | 51 | 16.8250345 | . 00007672 | . 0037016 | -0.5685 | 50575.6 | 50575.7 | 1 |  |  |  |
| 2248+555 | J2250+5550 | 1193 | 22 | 50 | 42.85102658 | +55 | 50 | 14.5814190 | . 00004734 | . 0006081 | -0.2023 | 49576.3 | 49576.5 | 1 |  |  |  |
| 2247-283 | 2247-283 | 3959 | 22 | 50 | 44.49237688 | -28 | 06 | 39.3301993 | . 00001601 | . 0007228 | 0.1627 | 54088.0 | 54088.0 | 1 |  |  |  |
| 2249-210 | 2249-210 | 2229 | 22 | 52 | 28.68049540 | -20 | 47 | 31.5380780 | . 00009546 | . 0034141 | -0.0654 | 53560.4 | 53560.5 | 1 |  |  |  |
| 2251+704 | 2251+704 | 3960 | 22 | 52 | 48.16028284 | +70 | 43 | 15.8241457 | . 00122261 | . 0019980 | 0.3300 | 49826.6 | 49826.6 | 1 |  |  |  |
| 2250+190 | 2250+190 | 975 | 22 | 53 | 7.36917494 | +19 | 42 | 34.6286484 | . 00000380 | . 0000650 | -0.0352 | 50084.9 | 56701.7 | 87 | 0.47 | 0.33 | 2.3 |
| 2250+323 | 2250+323 | 2230 | 22 | 53 | 12.49981545 | +32 | 36 | 4.3260868 | . 00002995 | . 0006562 | -0.2721 | 53561.5 | 53561.6 | 1 |  |  |  |
| 2250+023 | 2250+023 | 2231 | 22 | 53 | 21.10447752 | +02 | 36 | 13.0411457 | . 00009600 | . 0020917 | 0.0470 | 53560.4 | 53560.5 | 1 |  |  |  |
| 2251+158 | 3C 454.3 | 611 | 22 | 53 | 57.74794281 | +16 | 08 | 53.5609052 | . 00000358 | . 0000589 | -0.1969 | 43809.3 | 56686.5 | 561 | 1.23 | 1.47 | 3.7 |
| 2251+006 | 2251+006 | 3961 | 22 | 54 | 4.40615363 | +00 | 54 | 20.9528680 | . 00004589 | . 0011012 | -0.3381 | 49914.4 | 49914.5 | 1 |  |  |  |
| 2251+244 | 2251+244 | 3962 | 22 | 54 | 9.34191035 | +24 | 45 | 23.4222240 | . 00001760 | . 0005377 | -0.1928 | 50219.6 | 50219.7 | 1 |  |  |  |
| 2251+134 | 2251+134 | 2232 | 22 | 54 | 21.01622476 | +13 | 41 | 48.6756904 | . 00000939 | . 0002721 | -0.1575 | 53133.7 | 53134.5 | 1 |  |  |  |
| 2252+618 | 2252+618 | 3963 | 22 | 54 | 25.29278955 | +62 | 09 | 38.7188297 | . 00050272 | . 0029872 | -0.2884 | 52409.4 | 55538.2 | 2 |  |  |  |
| 2252-090 | P 2252-089 | 614 | 22 | 55 | 4.23979881 | -08 | 44 | 4.0216485 | . 00000624 | . 0001133 | -0.4439 | 47393.4 | 55545.3 | 56 | 0.16 | 0.20 |  |
| 2253+417 | GC 2253+41 | 615 | 22 | 55 | 36.70784840 | +42 | 02 | 52.5326411 | . 00000548 | . 0000880 | -0.1238 | 44263.8 | 56770.4 | 127 | 0.62 | 0.46 | 3.6 |
| 2253-278 | 2253-278 | 3964 | 22 | 56 | 0.15574151 | -27 | 35 | 56.1196566 | . 00004604 | . 0017721 | 0.5742 | 50631.3 | 50688.2 | 2 |  |  |  |
| 2253+227 | 2253+227 | 3965 | 22 | 56 | 10.67515600 | +23 | 01 | 45.1811637 | . 00006327 | . 0013317 | 0.2521 | 54111.9 | 55966.0 | 2 |  |  |  |
| 2254-204 | 2254-204 | 3966 | 22 | 56 | 41.20771211 | -20 | 11 | 40.5092416 | . 00001375 | . 0004349 | -0.1972 | 50631.3 | 50688.2 | 2 |  |  |  |
| 2254-367 | 2254-367 | 3967 | 22 | 57 | 10.60678007 | -36 | 27 | 43.9966692 | . 00011532 | . 0026070 | -0.4408 | 52305.9 | 53138.1 | 4 |  |  |  |
| 2254+074 | GC 2254+07 | 617 | 22 | 57 | 17.30312167 | +07 | 43 | 12.3024116 | . 00000416 | . 0000836 | -0.0793 | 47409.2 | 56653.6 | 92 | 0.33 | 0.23 | 2.2 |
| 2254+024 | P 2254+024 | 616 | 22 | 57 | 17.56309679 | +02 | 43 | 17.5116545 | . 00000496 | . 0001053 | -0.4182 | 47254.8 | 56192.1 | 69 | 0.31 | 0.32 | 1.0 |
| 2255+570 | 2255+570 | 3968 | 22 | 57 | 22.04596021 | +57 | 20 | 30.1938324 | . 00026159 | . 0049536 | -0.4602 | 52409.4 | 52409.5 | 1 |  |  |  |
| 2255+416 | 2255+416 | 3969 | 22 | 57 | 22.07287343 | +41 | 54 | 16.5302119 | . 00003012 | . 0009471 | -0.3867 | 50242.5 | 50242.5 | 1 |  |  |  |
| 2255-282 | P 2255-282 | 619 | 22 | 58 | 5.96288162 | -27 | 58 | 21.2568638 | . 00000349 | . 0000550 | 0.2311 | 47415.3 | 56776.2 | 1421 |  | 1.59 | 1.9 |
| 2256+017 | 2256+017 | 3970 | 22 | 58 | 57.75255375 | +02 | 03 | 42.2896029 | . 00015521 | . 0032684 | -0.7594 | 49914.4 | 49914.5 | 1 |  |  |  |
| 2256+570 | 2256+570 | 2233 | 22 | 58 | 57.94117903 | +57 | 19 | 6.4636323 | . 00006005 | . 0004082 | 0.2970 | 53125.5 | 53125.7 | 1 |  |  |  |
| 2256-084 | 2256-084 | 2234 | 22 | 59 | 0.68884827 | -08 | 11 | 3.0457700 | . 00001847 | . 0006640 | -0.3358 | 53572.4 | 56204.3 | 2 |  | 0.08 |  |
| 2256-296 | 2256-296 | 3971 | 22 | 59 | 29.93350558 | -29 | 20 | 43.7989476 | . 00002226 | . 0007002 | 0.0514 | 52409.6 | 52409.6 | 1 |  |  |  |
| 2257+103 | 2257+103 | 2235 | 23 | 00 | 18.31253972 | +10 | 37 | 54.0833829 | . 00002429 | . 0008315 | -0.5121 | 53560.5 | 53560.5 | 1 |  |  |  |
| 2257-270 | 2257-270 | 3972 | 23 | 00 | 25.50071910 | -26 | 44 | 22.7807173 | . 00002729 | . 0009841 | -0.3038 | 50631.3 | 50688.2 | 2 |  |  |  |
| 2258+033 | 2258+033 | 3973 | 23 | 00 | 40.88577763 | +03 | 37 | 10.8391250 | . 00003863 | . 0011059 | 0.1615 | 49914.4 | 49914.5 | 1 |  |  |  |
| 2258+166 | 2258+166 | 1194 | 23 | 00 | 42.99114198 | +16 | 55 | 14.3913172 | . 00001564 | . 0002640 | -0.0002 | 52408.7 | 52765.6 | 3 |  |  |  |
| 2258-022 | 2258-022 | 3974 | 23 | 01 | 7.97846401 | -01 | 58 | 4.5859412 | . 00000939 | . 0002982 | -0.2225 | 50575.6 | 50575.7 | 1 |  |  |  |
| 2259+568 | 2259+568 | 3975 | 23 | 01 | 26.62694384 | +57 | 06 | 25.5091007 | . 00047313 | . 0034300 | -0.0480 | 49826.6 | 49826.7 | 1 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2259+371 | 2259+371 | 3976 | 23 | 01 | 27.73737546 | +37 | 26 | 49.2424161 | . 00001962 | . 0006680 | -0.2234 | 50242.6 | 50242.6 | 1 |  |  |  |
| 2259+058 | 2259+058 | 2236 | 23 | 01 | 53.46117734 | +06 | 09 | 12.8210432 | . 00002071 | . 0004887 | -0.2946 | 49914.4 | 54643.6 | 2 |  |  |  |
| 2259-375 | 2259-375 | 3977 | 23 | 02 | 23.88887698 | -37 | 18 | 6.8318259 | . 00053395 | . 0094240 | -0.1343 | 49329.4 | 56638.0 | 4 |  |  |  |
| 2300+638 | 2300+638 | 1195 | 23 | 02 | 41.31501281 | +64 | 05 | 52.8490038 | . 00002740 | . 0003015 | 0.0188 | 49826.6 | 54087.9 | 3 |  |  |  |
| 2300-189 | 2300-189 | 3978 | 23 | 03 | 2.97599011 | -18 | 41 | 25.8222455 | . 00001927 | . 0006849 | 0.4802 | 50631.3 | 50688.3 | 2 |  |  |  |
| 2300+386 | 2300+386 | 3979 | 23 | 03 | 4.06581357 | +38 | 53 | 48.3657633 | . 00002266 | . 0006712 | -0.2820 | 50242.6 | 50242.6 | 1 |  |  |  |
| 2300-307 | P 2300-307 | 3980 | 23 | 03 | 5.82080139 | -30 | 30 | 11.4712803 | . 00015205 | . 0038717 | 0.3653 | 48110.5 | 52305.9 | 2 |  |  |  |
| 2300+142 | 2300+142 | 3981 | 23 | 03 | 9.95278570 | +14 | 31 | 41.3538705 | . 00002420 | . 0006713 | 0.0379 | 54111.9 | 54112.0 | 1 |  |  |  |
| 2300-683 | 2300-683 | 3982 | 23 | 03 | 43.56460707 | -68 | 07 | 37.4432453 | . 00000857 | . 0000724 | -0.0341 | 52970.6 | 56687.7 | 103 |  |  |  |
| 2301-103 | 2301-103 | 3983 | 23 | 03 | 57.91951514 | -10 | 02 | 19.2152456 | . 00006752 | . 0026906 | 0.3416 | 53561.5 | 56638.1 | 2 |  |  |  |
| 2301+060 | 2301+060 | 3984 | 23 | 04 | 28.29128908 | +06 | 20 | 8.3076219 | . 00002811 | . 0010686 | -0.4633 | 49914.4 | 54482.5 | 2 |  |  |  |
| 2302+232 | 2302+232 | 1196 | 23 | 04 | 36.43640354 | +23 | 31 | 7.6109163 | . 00000840 | . 0002201 | -0.2433 | 50084.9 | 53362.1 | 21 |  |  |  |
| 2304+824 | 2304+824 | 2237 | 23 | 05 | 17.53967683 | +82 | 42 | 49.1563789 | . 00026428 | . 0009682 | 0.1087 | 53560.3 | 53560.5 | 1 |  |  |  |
| 2303-052 | 2303-052 | 3985 | 23 | 06 | 15.31708964 | -04 | 59 | 48.2850598 | . 00001953 | . 0006124 | -0.2223 | 50575.6 | 50575.7 | 1 |  |  |  |
| 2304+377 | 2304+377 | 3986 | 23 | 07 | 0.99503844 | +38 | 02 | 42.2302389 | . 00030707 | . 0038472 | -0.1683 | 50242.6 | 54314.4 | 2 |  |  |  |
| 2304+322 | 2304+322 | 3987 | 23 | 07 | 15.91256847 | +32 | 30 | 31.9365948 | . 00002196 | . 0004377 | -0.4856 | 50219.6 | 50219.7 | 1 |  |  |  |
| 2305+145 | 2305+145 | 3988 | 23 | 07 | 34.00170736 | +14 | 50 | 17.9759618 | . 00012606 | . 0018635 | 0.6282 | 50084.9 | 56302.0 | 2 |  |  |  |
| 2304-230 | 2304-230 | 3989 | 23 | 07 | 38.65483961 | -22 | 47 | 52.9949686 | . 00001872 | . 0005753 | 0.0149 | 50631.3 | 50688.3 | 2 |  |  |  |
| 2305+198 | 2305+198 | 3990 | 23 | 08 | 11.63648906 | +20 | 08 | 42.1946947 | . 00005343 | . 0009541 | 0.0088 | 50084.9 | 50155.9 | 2 |  |  |  |
| 2306+095 | 2306+095 | 2238 | 23 | 08 | 44.17162252 | +09 | 46 | 26.1112292 | . 00001446 | . 0004726 | 0.0008 | 53125.6 | 53125.6 | 1 | 0.22 | 0.19 |  |
| 2306-312 | 2306-312 | 2239 | 23 | 09 | 14.33140087 | -30 | 59 | 12.5842244 | . 00001490 | . 0003339 | -0.0895 | 53125.6 | 54362.1 | 11 |  |  |  |
| 2307+680 | 2307+680 | 3991 | 23 | 09 | 26.66606015 | +68 | 20 | 10.7564582 | . 00006682 | . 0003635 | -0.0403 | 49826.6 | 54087.9 | 2 |  |  |  |
| 2307+106 | 2307+106 | 2240 | 23 | 10 | 28.51773727 | +10 | 55 | 30.6966614 | . 00000398 | . 0000715 | -0.0298 | 49914.4 | 56758.4 | 104 |  |  |  |
| 2308+341 | 2308+341 | 3992 | 23 | 11 | 5.32879976 | +34 | 25 | 10.9050844 | . 00001185 | . 0002640 | -0.2326 | 52408.7 | 52409.6 | 1 |  |  |  |
| 2309+454 | J2311+4543 | 1197 | 23 | 11 | 47.40897236 | +45 | 43 | 56.0166395 | . 00000418 | . 0000620 | -0.0705 | 50305.4 | 56776.3 | 181 | 0.36 | 0.42 |  |
| 2310+724 | 2310+724 | 3993 | 23 | 12 | 19.69785983 | +72 | 41 | 26.9172874 | . 00007394 | . 0005351 | 0.0711 | 49826.6 | 49826.7 | 1 |  |  |  |
| 2310+385 | 2310+385 | 3994 | 23 | 12 | 58.79401910 | +38 | 47 | 42.6604176 | . 00006023 | . 0008267 | 0.3658 | 50242.6 | 50242.6 | 1 |  |  |  |
| 2311-477 | 2311-477 | 3995 | 23 | 13 | 51.89993145 | -47 | 29 | 11.7222722 | . 00059708 | . 0027228 | 0.2509 | 52886.8 | 53138.7 | 2 |  |  |  |
| 2311-373 | 2311-373 | 3996 | 23 | 13 | 59.70823318 | -37 | 04 | 46.2181120 | . 00003636 | . 0016047 | 0.3772 | 55112.1 | 55112.2 | 1 |  |  |  |
| 2311-452 | P 2311-452 | 625 | 23 | 14 | 9.38274628 | -44 | 55 | 49.2375201 | . 00005563 | . 0012486 | -0.3678 | 49329.4 | 52948.4 | 5 |  | 0.09 |  |
| 2312-319 | P 2312-319 | 626 | 23 | 14 | 48.50057920 | -31 | 38 | 39.5265103 | . 00000819 | . 0001455 | -0.2103 | 48110.5 | 55728.7 | 29 |  | 0.39 | 3.1 |
| 2313-182 | 2313-182 | 3997 | 23 | 15 | 48.13584562 | -18 | 00 | 40.2217667 | . 00358598 | . 0603360 | 0.8505 | 50631.3 | 50631.4 | , |  |  |  |
| 2316+862 | 2316+862 | 1198 | 23 | 15 | 49.81955563 | +86 | 31 | 43.5958204 | . 00091166 | . 0006978 | 0.3109 | 53560.3 | 53560.5 | 1 |  |  |  |
| 2313-439 | 2313-439 | 3998 | 23 | 16 | 21.09979715 | -43 | 37 | 46.9041614 | . 00023722 | . 0152852 | 0.2411 | 52305.9 | 52409.6 | 2 |  |  |  |
| 2314-340 | 2314-340 | 1297 | 23 | 16 | 43.38634689 | -33 | 49 | 12.4854166 | . 00003187 | . 0003502 | -0.2443 | 52305.9 | 55545.5 | 14 |  |  |  |
| 2314-409 | 2314-409 | 3999 | 23 | 16 | 46.91988351 | -40 | 41 | 21.0865826 | . 00003133 | . 0004571 | -0.2847 | 54601.6 | 56568.7 | 5 |  |  |  |
| 2314-182 | 2314-182 | 4000 | 23 | 17 | 25.25229728 | -17 | 56 | 18.0705125 | . 00267168 | . 5909523 | 0.9379 | 54111.9 | 54111.9 | 1 |  |  |  |
| 2315+287 | 2315+287 | 2241 | 23 | 17 | 41.56200961 | +29 | 02 | 22.7694552 | . 00007561 | . 0009054 | -0.4365 | 53561.5 | 53561.6 | 1 |  |  |  |
| 2315-404 | 2315-404 | 4001 | 23 | 18 | 6.86207077 | -40 | 10 | 6.2199981 | . 00013353 | . 0066974 | -0.8335 | 53503.7 | 53503.7 | 1 |  |  |  |
| 2315-172 | 2315-172 | 2242 | 23 | 18 | 11.36140877 | -16 | 59 | 29.1878822 | . 00001922 | . 0006537 | -0.0291 | 53552.5 | 53572.5 | 2 | 0.09 | 0.08 |  |
| 2316+238 | 2316+238 | 4002 | 23 | 18 | 33.96785154 | +24 | 04 | 39.7494620 | . 00001060 | . 0002543 | 0.0002 | 54111.9 | 56638.2 | 5 | 0.08 | 0.10 |  |
| 2318+049 | GC 2318+04 | 627 | 23 | 20 | 44.85659791 | +05 | 13 | 49.9524444 | . 00000343 | . 0000528 | -0.1085 | 47254.8 | 56776.5 | 938 | 0.65 | 0.64 | 2.6 |
| 2318+182 | 2318+182 | 2243 | 23 | 20 | 46.77597532 | +18 | 29 | 25.7753524 | . 00002975 | . 0008255 | 0.2565 | 53560.5 | 53560.5 | 1 |  |  |  |
| 2318-087 | 2318-087 | 4003 | 23 | 21 | 18.25023763 | -08 | 27 | 21.5215877 | . 00002206 | . 0006683 | 0.1282 | 50575.6 | 55784.6 | 2 |  |  |  |
| 2319+317 | 2319+317 | 2244 | 23 | 21 | 54.95599199 | +32 | 04 | 7.6225488 | . 00000369 | . 0000569 | 0.0295 | 53125.6 | 56776.5 | 158 |  |  |  |
| 2319+272 | B2 2319+27 | 629 | 23 | 21 | 59.86222881 | +27 | 32 | 46.4436192 | . 00000451 | . 0000809 | -0.0728 | 48103.2 | 56638.6 | 75 | 0.46 | 0.30 | 3.1 |
| 2320+689 | 2320+689 | 2245 | 23 | 22 | 9.04525615 | +69 | 11 | 3.4168589 | . 00006778 | . 0004774 | -0.1409 | 53125.6 | 53133.7 | 2 |  |  |  |
| 2319+444 | J2322+4445 | 1199 | 23 | 22 | 20.35808728 | +44 | 45 | 42.3536082 | . 00000467 | . 0000732 | 0.0408 | 50305.4 | 56749.7 | 53 |  |  |  |
| 2320+506 | 2320+506 | 977 | 23 | 22 | 25.98218648 | +50 | 57 | 51.9636971 | . 00000484 | . 0000725 | 0.0862 | 48719.9 | 56691.3 | 134 | 0.37 |  | 3.6 |
| 2319+184 | 2319+184 | 1200 | 23 | 22 | 28.56882765 | +18 | 43 | 24.8986574 | . 00002808 | . 0005728 | 0.4446 | 50084.9 | 50155.9 | 2 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA-Dec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2320+079 | 2320+079 | 4004 | 23 | 22 | 36.08941313 | +08 | 12 | 1.5916409 | . 00003687 | . 0008247 | -0.2946 | 49914.5 | 49914.5 | 1 |  |  |  |
| 2320-021 | 2320-021 | 4005 | 23 | 23 | 4.62986976 | -01 | 50 | 48.1130463 | . 00004094 | . 0009544 | 0.2256 | 50575.6 | 50575.7 | 1 |  |  |  |
| 2320-035 | P 2320-035 | 633 | 23 | 23 | 31.95375897 | -03 | 17 | 5.0239760 | . 00000467 | . 0000928 | -0.5209 | 44202.9 | 56633.0 | 186 | 0.69 | 0.68 | 3.2 |
| 2321-065 | 2321-065 | 2246 | 23 | 23 | 39.11375721 | -06 | 17 | 59.2401473 | . 00002209 | . 0007621 | 0.2908 | 53561.5 | 55784.6 | 2 |  |  |  |
| 2321-164 | 2321-164 | 2247 | 23 | 23 | 44.63149040 | -16 | 12 | 52.1250390 | . 00010831 | . 0024023 | 0.2169 | 53572.4 | 53572.5 | 1 |  |  |  |
| 2321-375 | 2321-375 | 1201 | 23 | 24 | 7.11180488 | -37 | 14 | 22.4556708 | . 00001367 | . 0001925 | -0.0441 | 52305.9 | 54362.0 | 14 |  |  |  |
| 2321-215 | 2321-215 | 4006 | 23 | 24 | 28.05632534 | -21 | 19 | 0.4959749 | . 00005788 | . 0016299 | 0.2120 | 53560.5 | 55615.9 | 2 |  |  |  |
| 2322-411 | 2322-411 | 4007 | 23 | 25 | 3.37941644 | -40 | 51 | 30.0988516 | . 00064445 | . 0157412 | 0.4337 | 52409.6 | 55168.1 | 2 |  |  |  |
| 2322+396 | 2322+396 | 2248 | 23 | 25 | 17.86983881 | +39 | 57 | 36.5078890 | . 00004922 | . 0006739 | -0.3359 | 55042.3 | 55042.6 | 1 |  |  |  |
| 2323+478 | 2323+478 | 4008 | 23 | 25 | 44.91239811 | +48 | 06 | 25.2877307 | . 00053170 | . 0033622 | -0.8213 | 50305.4 | 50305.5 | 1 |  |  |  |
| 2323+009 | 2323+009 | 4009 | 23 | 26 | 25.64383360 | +01 | 12 | 8.6894346 | . 00025313 | . 0056537 | -0.8319 | 49914.4 | 49914.5 | 1 |  |  |  |
| 2324-023 | 2324-023 | 1298 | 23 | 26 | 53.77684191 | -02 | 02 | 13.7817186 | . 00027956 | . 0017028 | 0.4676 | 53767.8 | 53768.6 | 1 |  |  |  |
| 2325+799 | 2325+799 | 2249 | 23 | 27 | 6.42551007 | +80 | 12 | 58.9346226 | . 00011268 | . 0004377 | -0.4392 | 53572.4 | 53572.6 | 1 |  |  |  |
| 2324+151 | 2324+151 | 4010 | 23 | 27 | 21.96605716 | +15 | 24 | 37.3110662 | . 00001296 | . 0003566 | -0.1178 | 50084.9 | 56498.5 | 5 |  |  |  |
| 2325+093 | 2325+093 | 1299 | 23 | 27 | 33.58056003 | +09 | 40 | 9.4627834 | . 00000628 | . 0001086 | -0.0448 | 49914.4 | 56749.7 | 13 | 0.81 | 0.72 |  |
| 2325+152 | 2325+152 | 2250 | 23 | 27 | 35.98491514 | +15 | 33 | 9.5745498 | . 00003126 | . 0007918 | -0.1772 | 53561.5 | 53561.6 | 1 |  |  |  |
| 2325-150 | P 2325-150 | 634 | 23 | 27 | 47.96426637 | -14 | 47 | 55.7514615 | . 00000614 | . 0001506 | -0.1307 | 49960.4 | 54362.1 | 16 | 0.24 | 0.21 | 2.5 |
| 2325+764 | 2325+764 | 2251 | 23 | 27 | 52.82253226 | +76 | 43 | 8.6432965 | . 00030314 | . 0018946 | 0.3019 | 53523.5 | 53523.6 | 1 |  |  |  |
| 2325+192 | 2325+192 | 2252 | 23 | 28 | 24.87479464 | +19 | 29 | 58.0298355 | . 00018787 | . 0022663 | 0.6162 | 53560.4 | 53560.5 | 1 |  |  |  |
| 2326+082 | 2326+082 | 4011 | 23 | 29 | 5.78674864 | +08 | 34 | 15.8536787 | . 00003583 | . 0012349 | -0.4208 | 49914.4 | 49914.6 | 1 |  |  |  |
| 2326-477 | P 2326-477 | 978 | 23 | 29 | 17.70434850 | -47 | 30 | 19.1149287 | . 00000840 | . 0001315 | 0.2258 | 47304.8 | 56713.5 | 46 |  |  |  |
| 2327+335 | J2330+3348 | 1202 | 23 | 30 | 13.73766843 | +33 | 48 | 36.4712422 | . 00001158 | . 0002911 | -0.2781 | 50219.6 | 50219.7 | 1 |  |  |  |
| 2327-376 | 2327-376 | 4012 | 23 | 30 | 35.79573641 | -37 | 24 | 37.9620566 | . 00002398 | . 0008800 | -0.4136 | 55168.0 | 55168.1 | 1 |  |  |  |
| 2327-459 | 2327-459 | 4013 | 23 | 30 | 37.68051717 | -45 | 39 | 58.1043306 | . 00026365 | . 0093522 | 0.7084 | 52305.9 | 52305.9 | 1 |  |  |  |
| 2328+107 | P 2328+10 | 636 | 23 | 30 | 40.85226428 | +11 | 00 | 18.7095193 | . 00000881 | . 0001786 | -0.5956 | 48196.3 | 54184.9 | 34 | 0.45 | 0.43 | 3.9 |
| 2328+316 | 2328+316 | 4014 | 23 | 30 | 46.15998116 | +31 | 55 | 33.5073742 | . 00002157 | . 0005448 | -0.1896 | 50219.6 | 50219.7 | 1 |  |  |  |
| 2329-162 | P 2329-16 | 638 | 23 | 31 | 38.65244356 | -15 | 56 | 57.0097822 | . 00000510 | . 0001056 | -0.1041 | 50258.6 | 56638.6 | 34 | 0.13 | 0.12 | 3.7 |
| 2329+451 | 2329+451 | 4015 | 23 | 31 | 48.97150087 | +45 | 22 | 48.9390204 | . 05707382 | . 2402795 | -0.9844 | 50305.5 | 50305.5 | 1 |  |  |  |
| 2329-384 | P 2329-384 | 639 | 23 | 31 | 59.47615375 | -38 | 11 | 47.6505976 | . 00000916 | . 0001574 | -0.1299 | 48110.5 | 56749.7 | 25 |  |  |  |
| 2329-415 | 2329-415 | 4016 | 23 | 32 | 19.04827020 | -41 | 18 | 37.5826867 | . 00002981 | . 0005015 | -0.0449 | 54601.6 | 56568.7 | 5 |  |  |  |
| 2330+083 | P 2330+083 | 4017 | 23 | 32 | 57.59623862 | +08 | 38 | 10.4264614 | . 00004864 | . 0009396 | -0.1683 | 49914.4 | 49914.6 | 1 |  |  |  |
| 2330+387 | 2330+387 | 4018 | 23 | 33 | 2.53340766 | +39 | 01 | 12.0488441 | . 00003638 | . 0008496 | -0.0875 | 50242.6 | 50242.7 | 1 |  |  |  |
| 2330-017 | 2330-017 | 4019 | 23 | 33 | 16.68837152 | -01 | 31 | 7.3867095 | . 00002263 | . 0007160 | 0.2374 | 50575.6 | 50575.7 | 1 |  |  |  |
| 2331-240 | 2331-240 | 979 | 23 | 33 | 55.23781705 | -23 | 43 | 40.6581273 | . 00000808 | . 0001361 | -0.6331 | 48196.2 | 54184.9 | 54 | 0.22 | 0.59 | 3.5 |
| 2331+073 | 2331+073 | 4020 | 23 | 34 | 12.82815701 | +07 | 36 | 27.5511448 | . 00000706 | . 0002036 | 0.0956 | 49914.4 | 54111.9 | 3 |  |  |  |
| 2332-293 | 2332-293 | 4021 | 23 | 35 | 18.72710805 | -29 | 07 | 16.6104663 | . 00006972 | . 0036030 | 0.2978 | 50688.3 | 50688.3 | 1 |  |  |  |
| 2332-017 | 2332-017 | 4022 | 23 | 35 | 20.41206246 | -01 | 31 | 9.5919434 | . 00002682 | . 0006185 | 0.2797 | 50575.6 | 50575.7 | 1 |  |  |  |
| 2333-528 | P 2333-528 | 980 | 23 | 36 | 12.14453892 | -52 | 36 | 21.9507710 | . 00010621 | . 0012635 | 0.2996 | 48110.3 | 56111.7 | 5 |  |  |  |
| 2333-415 | 2333-415 | 1300 | 23 | 36 | 33.98507218 | -41 | 15 | 21.9842041 | . 00001060 | . 0001813 | -0.1140 | 53222.8 | 56574.5 | 31 |  |  |  |
| 2335-181 | 2335-181 | 4023 | 23 | 37 | 56.62777216 | -17 | 52 | 20.4108810 | . 00002941 | . 0011396 | -0.0768 | 50631.3 | 54482.7 | 2 |  |  |  |
| 2335-027 | P 2335-027 | 644 | 23 | 37 | 57.33907120 | -02 | 30 | 57.6293280 | . 00000388 | . 0000670 | -0.0602 | 47381.3 | 56763.3 | 217 | 0.38 | 0.31 | 3.0 |
| 2335+267 | NGC 7720 | 2253 | 23 | 38 | 29.38323148 | +27 | 01 | 53.2583208 | . 00005386 | . 0007210 | -0.3004 | 53067.8 | 53068.7 | 1 |  |  |  |
| 2336+598 | 2336+598 | 4024 | 23 | 39 | 21.12520398 | +60 | 10 | 11.8493657 | . 00002430 | . 0001952 | -0.1548 | 52408.7 | 56393.6 | 4 |  |  |  |
| 2336+024 | 2336+024 | 2254 | 23 | 39 | 29.71054951 | +02 | 44 | 5.3553842 | . 00015697 | . 0055087 | -0.5524 | 53152.5 | 53152.6 | 1 |  |  |  |
| 2337-234 | 2337-234 | 2255 | 23 | 39 | 53.57723949 | -23 | 10 | 39.2257847 | . 00019443 | . 0071880 | 0.6175 | 53561.5 | 53561.5 | 1 |  |  |  |
| 2337-334 | P 2337-334 | 4025 | 23 | 39 | 54.53520918 | -33 | 10 | 16.8819843 | . 00005264 | . 0018073 | -0.7219 | 52305.9 | 52306.0 | 1 |  |  |  |
| 2337-011 | 2337-011 | 2256 | 23 | 40 | 23.67011794 | -00 | 53 | 26.9998955 | . 00019701 | . 0035942 | 0.4697 | 53572.4 | 53572.5 | 1 |  |  |  |
| 2337+264 | GC 2337+26 | 647 | 23 | 40 | 29.02947938 | +26 | 41 | 56.8045337 | . 00001544 | . 0302907 | -0.0235 | 49177.2 | 51927.3 | 9 |  |  |  |
| 2338+330 | 2338+330 | 2257 | 23 | 40 | 57.29949275 | +33 | 19 | 2.6216592 | . 00001903 | . 0003488 | 0.2361 | 53133.6 | 53133.7 | 1 |  |  |  |
| 2338+000 | 2338+000 | 4026 | 23 | 41 | 6.90983412 | +00 | 18 | 33.3371826 | . 00005064 | . 0011459 | 0.2038 | 49914.6 | 55847.3 | 2 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | $\begin{aligned} & \text { RA-Dec } \\ & \text { Corr. } \end{aligned}$ | Observation Epoch MJD |  | No. Obs. | Source Flux <br> (Jy) |  | $\begin{gathered} \text { Str } \\ \text { Index } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2338+191 | 2338+191 | 2258 | 23 | 41 | 18.79617648 | +19 | 28 | 5.4863825 | . 00003766 | . 0005992 | -0.4268 | 50084.9 | 54643.5 | 3 |  |  |  |
| 2338-295 | 2338-295 | 4141 | 23 | 41 | 29.76237351 | -29 | 19 | 15.0387299 | . 00003279 | . 0011853 | 0.0053 | 55916.0 | 55916.0 | 1 |  |  |  |
| 2340-226 | 2340-226 | 2259 | 23 | 42 | 47.98368755 | -22 | 23 | 40.2021841 | . 00017241 | . 0053189 | 0.0902 | 53561.5 | 53561.5 | 1 |  |  |  |
| 2340+233 | J2343+2339 | 1203 | 23 | 43 | 12.38702736 | +23 | 39 | 45.6476146 | . 00001534 | . 0003462 | -0.0604 | 50084.9 | 53020.0 | 4 |  |  |  |
| 2341+154 | 2341+154 | 4027 | 23 | 43 | 42.74911590 | +15 | 43 | 2.9786728 | . 00004927 | . 0015881 | -0.2667 | 53502.7 | 53572.4 | 2 |  |  |  |
| 2341+697 | 2341+697 | 2260 | 23 | 43 | 43.73432037 | +70 | 03 | 19.4068558 | . 00009729 | . 0008415 | -0.5794 | 53560.3 | 54087.9 | 2 |  |  |  |
| 2342+821 | 2342+821 | 4028 | 23 | 44 | 3.77160301 | +82 | 26 | 40.4005368 | . 00275156 | . 0034186 | 0.0285 | 52408.9 | 52409.4 | 1 |  |  |  |
| 2341+295 | 2341+295 | 4029 | 23 | 44 | 22.55207126 | +29 | 52 | 20.6990589 | . 00065572 | . 0041959 | 0.1638 | 53523.5 | 53523.6 | 1 |  |  |  |
| 2342-161 | 2342-161 | 2261 | 23 | 45 | 12.46231348 | -15 | 55 | 7.8344572 | . 00001286 | . 0004416 | -0.2313 | 53552.5 | 53552.5 | 1 |  |  |  |
| 2344+092 | P 2344+09 | 649 | 23 | 46 | 36.83854829 | +09 | 30 | 45.5147403 | . 00000572 | . 0001177 | -0.2427 | 48196.3 | 56633.0 | 43 | 0.31 | 0.27 | 3.4 |
| 2344+068 | 2344+068 | 4030 | 23 | 46 | 39.93322129 | +07 | 05 | 6.8451039 | . 00060199 | . 0044250 | -0.1748 | 49914.4 | 49914.6 | 1 |  |  |  |
| 2344+299 | 2344+299 | 1204 | 23 | 46 | 46.25077571 | +30 | 11 | 59.2494000 | . 00007455 | . 0014608 | -0.4747 | 53502.7 | 53503.6 | 1 |  |  |  |
| 2344+514 | 2344+514 | 4031 | 23 | 47 | 4.83675832 | +51 | 42 | 17.8811935 | . 00011786 | . 0011104 | -0.5896 | 53572.5 | 54112.1 | 2 |  |  |  |
| 2344-192 | 2344-192 | 4032 | 23 | 47 | 8.62669350 | -18 | 56 | 18.8578765 | . 00004800 | . 0014310 | 0.1139 | 50631.3 | 50688.3 | 2 |  |  |  |
| 2344-514 | 2344-514 | 4033 | 23 | 47 | 19.86409093 | -51 | 10 | 36.0652857 | . 00001399 | . 0002224 | 0.3757 | 53222.9 | 56504.0 | 15 |  |  |  |
| 2344+429 | 2344+429 | 2262 | 23 | 47 | 22.87425064 | +43 | 10 | 53.2189502 | . 00003029 | . 0004115 | -0.3508 | 50242.6 | 54643.1 | 2 |  |  |  |
| 2345+270 | 2345+270 | 2263 | 23 | 47 | 35.17488456 | +27 | 19 | 1.4936367 | . 00001903 | . 0005035 | -0.3653 | 53561.5 | 53561.6 | 1 |  |  |  |
| 2345-167 | P 2345-16 | 651 | 23 | 48 | 2.60852123 | -16 | 31 | 12.0223367 | . 00000546 | . 0000998 | -0.5754 | 43809.2 | 56600.7 | 201 | 0.61 | 1.02 | 3.8 |
| 2345-047 | 2345-047 | 2264 | 23 | 48 | 11.75773504 | -04 | 25 | 56.3818956 | . 00001130 | . 0003758 | -0.0953 | 53523.6 | 53560.5 | 2 |  |  |  |
| 2346+385 | 2346+385 | 4034 | 23 | 49 | 20.82653491 | +38 | 49 | 17.5584776 | . 00001018 | . 0001955 | -0.0847 | 50242.6 | 56749.7 | 2 | 0.41 | 0.35 |  |
| 2346+052 | J2349+0534 | 1205 | 23 | 49 | 21.05151068 | +05 | 34 | 39.8724477 | . 00001286 | . 0004069 | -0.0082 | 49914.4 | 53152.6 | 2 |  |  |  |
| 2347+108 | 2347+108 | 4035 | 23 | 50 | 2.03086978 | +11 | 06 | 36.7040108 | . 00007455 | . 0018442 | 0.1280 | 49914.4 | 49914.6 | 1 |  |  |  |
| 2347+079 | 2347+079 | 2265 | 23 | 50 | 10.07933604 | +08 | 12 | 55.2782439 | . 00018065 | . 0027035 | 0.0429 | 53561.5 | 53561.6 | 1 |  |  |  |
| 2348-432 | 2348-432 | 4036 | 23 | 51 | 34.94588184 | -42 | 59 | 33.4877845 | . 00005497 | . 0016271 | 0.1977 | 55112.2 | 55112.2 | 1 |  |  |  |
| 2349-223 | 2349-223 | 2266 | 23 | 51 | 46.00682256 | -22 | 03 | 9.6597887 | . 00002923 | . 0009806 | -0.0475 | 53572.5 | 53572.5 | 1 |  |  |  |
| 2349-014 | 2349-014 | 2267 | 23 | 51 | 56.12274772 | -01 | 09 | 13.3159743 | . 00057679 | . 0122823 | -0.2322 | 54292.4 | 54292.6 | 1 |  |  |  |
| 2350+395 | 2350+395 | 2268 | 23 | 52 | 48.90729309 | +39 | 47 | 56.2237419 | . 00002622 | . 0006082 | -0.1983 | 53560.5 | 53560.5 | 1 |  |  |  |
| 2350+704 | 2350+704 | 4037 | 23 | 52 | 52.85422711 | +70 | 44 | 48.3267107 | . 00072575 | . 0046354 | 0.8206 | 49826.6 | 49826.7 | 1 |  |  |  |
| 2350-280 | 2350-280 | 2269 | 23 | 53 | 11.45916792 | -27 | 43 | 25.6208396 | . 00492756 | . 1937187 | 0.6592 | 54818.0 | 54818.0 | 1 |  |  |  |
| 2351+550 | J2353+5518 | 1206 | 23 | 53 | 42.29977491 | +55 | 18 | 40.6673792 | . 00004993 | . 0007042 | 0.0405 | 49826.6 | 49826.7 | 1 |  |  |  |
| 2351-309 | 2351-309 | 4038 | 23 | 53 | 47.45885761 | -30 | 37 | 48.5031507 | . 00001364 | . 0002207 | -0.1875 | 53125.7 | 55545.4 | 14 |  |  |  |
| 2351-006 | 2351-006 | 4039 | 23 | 54 | 9.17589247 | -00 | 19 | 47.9557586 | . 00001733 | . 0005099 | 0.2874 | 50575.6 | 50575.7 | 1 |  |  |  |
| 2351+456 | 2351+456 | 981 | 23 | 54 | 21.68023119 | +45 | 53 | 4.2365438 | . 00000464 | . 0000689 | 0.0549 | 47941.2 | 56347.2 | 66 | 0.26 | 0.30 | 3.4 |
| 2351-154 | 2351-154 | 695 | 23 | 54 | 30.19517627 | -15 | 13 | 11.2130421 | . 00000460 | . 0000903 | -0.3491 | 47381.3 | 56763.5 | 118 | 0.39 | 0.50 | 2.5 |
| 2352-217 | 2352-217 | 2270 | 23 | 55 | 2.14654143 | -21 | 25 | 36.7823215 | . 00004533 | . 0013685 | 0.5651 | 53552.5 | 53552.6 | 1 |  |  |  |
| 2352+495 | DA 611 | 656 | 23 | 55 | 9.45816096 | +49 | 50 | 8.3391482 | . 00002203 | . 0002449 | -0.3218 | 44203.0 | 51246.5 | 3 |  |  |  |
| 2353-686 | P 2353-68 | 982 | 23 | 56 | 0.68141439 | -68 | 20 | 3.4718329 | . 00001501 | . 0001032 | 0.0720 | 48387.5 | 56763.7 | 41 |  |  |  |
| 2353+816 | 2353+816 | 1252 | 23 | 56 | 22.79382009 | +81 | 52 | 52.2552541 | . 00003955 | . 0000993 | -0.1413 | 50687.3 | 56568.6 | 11 | 0.46 |  | 2.7 |
| 2354-251 | 2354-251 | 2271 | 23 | 57 | 23.85097053 | -24 | 51 | 3.1640626 | . 00013991 | . 0047430 | 0.5827 | 53561.5 | 53561.5 | 1 |  |  |  |
| 2354-021 | 2354-021 | 4040 | 23 | 57 | 25.13794350 | -01 | 52 | 15.5092773 | . 00000883 | . 0002600 | -0.1289 | 50575.6 | 56701.0 | 2 | 0.15 | 0.09 |  |
| 2354-117 | 2354-117 | 4041 | 23 | 57 | 31.19756205 | -11 | 25 | 39.1764171 | . 00000989 | . 0003421 | -0.0957 | 50575.6 | 50575.7 | 1 |  |  |  |
| 2355-534 | P 2355-534 | 983 | 23 | 57 | 53.26606012 | -53 | 11 | 13.6897268 | . 00001607 | . 0001984 | 0.1806 | 47626.2 | 56611.8 | 26 |  |  |  |
| 2355-106 | P 2355-106 | 658 | 23 | 58 | 10.88240351 | -10 | 20 | 8.6114568 | . 00000354 | . 0000559 | -0.1007 | 46337.1 | 56772.7 | 480 | 0.51 | 0.60 | 0.7 |
| 2355-291 | 2355-291 | 4042 | 23 | 58 | 16.97160320 | -28 | 53 | 34.1044979 | . 00003047 | . 0009827 | -0.1605 | 53560.5 | 56463.6 | 2 |  |  |  |
| 2355+042 | 2355+042 | 2272 | 23 | 58 | 28.84694651 | +04 | 30 | 24.8345154 | . 00003379 | . 0010696 | 0.3332 | 53572.4 | 53572.5 | 1 |  |  |  |
| 2356+196 | P 2356+196 | 4043 | 23 | 58 | 46.08513412 | +19 | 55 | 20.3021633 | . 00001335 | . 0003728 | 0.1099 | 50084.9 | 54482.5 | 3 |  |  |  |
| 2356+390 | 2356+390 | 4044 | 23 | 58 | 59.85518922 | +39 | 22 | 28.3057732 | . 00002368 | . 0004717 | -0.2596 | 50242.6 | 50242.7 | 1 |  |  |  |
| 2356+385 | GC 2356+38 | 660 | 23 | 59 | 33.18080185 | +38 | 50 | 42.3182891 | . 00000346 | . 0000525 | -0.0403 | 50242.6 | 56751.7 | 939 | 0.57 |  | 1.9 |
| 2357-318 | 2357-318 | 2273 | 23 | 59 | 35.49153947 | -31 | 33 | 43.8246598 | . 00000504 | . 0000978 | -0.1617 | 52408.7 | 56734.5 | 113 |  | 0.29 |  |

## 3 References

1. Sovers, O. J., J. L. Fanselow, and C. S. Jacobs, "Astrometry and Geodesy with Radio Inteferometry: Experiments, Models, Results," Reviews of Modern Physics, Vol. 70, No. 4, The American Physical Society, October, 1998. http://link.aps.org/doi/10.1103/RevModPhys.70.1393
2. Ma, C., E.F. Arias, G. Bianco, D. A. Boboltz, S.L. Bolotin, P. Charlot, G. Engelhardt, A.L. Fey, R.A. Gaume, A.-M. Gontier, R. Heinkelmann, C.S. Jacobs, S. Kurdubov, S.B. Lambert, Z.M. Malkin, A. Nothnagel, L. Petrov, E. Skurikhina, J. Sokolova, J. Souchay, O.J. Sovers, V. Tesmer, O.A. Titov, G. Wang, V. Zharov C. Barache, S. Boeckmann, A. Collioud, J.M. Gipson, D. Gordon, S.O. Lytvyn, D.S. MacMillan, R. Ojha, "IERS Technical Note No. 35: The Second Realization of the ICRF by VLBI," IERS, Bundesamt fur Kartographie und Geodasie, BKG, Frankfurt am Main, A. Fey, D. Gordon, and C.S. Jacobs, Eds. Germany, Oct. 2009. http://www.iers.org/nn_11216/IERS/EN/Publications/TechnicalNotes/tn35.html
3. Altamimi, Z., X. Collileux, and L. Metivier (2011). ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy, doi: 10.1007/s00190-011-0444-4. https://link.springer.com/article/10.1007/s00190-011-0444-4
4. Boehm, J., B. Werl, H. Schuh, "Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data", J. Geophys. Res., 111, B02406, Feb. 2006. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JB003629
5. Steigenberger, P, V. Tessmer, J. Boehm, "A priori gradients in the analysis of GPS and VLBI observations", IERS Workshop on Conventions, Paris, September 20-21 2007.http://www.bipm.org/utils/en/events/iers/Steigenberger.pdf
6. Ratcliff, J.T. and R.S. Gross, "Combinations of Earth Orientation Measurements: SPACE2010, COMB2010, and POLE2010," JPL Publication 11-15, Jet Propulsion Laboratory, Pasadena, CA, 2010.
7. Matthews, P.M., T.A. Herring, and B.A. Buffet, "Modeling of Nutation and Precession: New nutation series for Nonrigid Earth and Insights into the Earth's Interior," J. Geophys. Res. 107, no. B4, 10.1029/2001JB000390, Apr. 2002. www.agu.org/journals/jb/jb0204/2001JB000390/
8. IAU General Assembly XXVII, Resolution B3, Rio de Janeiro, Brazil, 13 August 2009. http://www.iau.org/static/resolutions/IAU2009_English.pdf
9. Kesteven, M. J. L. and A. H. Bridle, "Index of extragalactic radio-source catalogues", J. Royal Astronomical Society of Canada, Vol. 71, Feb. 1977, p. 21-39. http://articles.adsabs.harvard.edu//full/1977JRASC..71...21K/0000027.000.html
10. W. Schlüter, D. Behrend, "The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects", Journal of Geodesy, Vol. 81, Nos. 6-8, pp. 379-387, June 2007. doi: 10.1007/s00190-006-0131-z.

## 4 Acknowledgements

Production of the radio source catalog requires the efforts and cooperation of a large number of people. This includes the support staffs at the DSN and the antennas of the International VLBI Service [10] who ensure that the data are collected, the correlation and fringe fitting staffs, and the analysts who have developed the models and software to convert the delay and delay rate observations to produce final estimates of the source positions, and finally the authors of this document. Among these we would like to particularly acknowledge JPL employees Christine Chang, Christopher Jacobs, Christina King, Peter Kroger, Gabor Lanyi, Charles Naudet, Andrew Romero-Wolf, Ojars Sovers, and Alan Steppe.

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

Deep Space Network

## 108

## Ka-Band Radio Source Catalog

| Document Owner: |  |
| :--- | ---: |
| Signature Provided |  |
| Christopher S. Jacobs |  |
| DSN Reference Frame Calibration Task <br> Lead <br> Califronia Institute of Technology, <br> Jet Propulsion Laboratory |  |

Approved by:

Prepared by:
Released by:

| Signature Provided | $10 / 21 / 2020$ | Signature Provided | $11 / 12 / 2020$ |
| :--- | :---: | :--- | ---: |
| Christopher S. Jacobs | Date | DSN Release Authority | Date |
| DSN Reference Frame Calibration Task | Christine Chang |  |  |

DSN No. 810-005, 108
Issue Date: November 12, 2020
JPL D-19379; CL\#20-5791
Jet Propulsion Laboratory
California Institute of Technology

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | $10 / 19 / 2020$ |  | Signature Provided | 10/21/2020 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\left.\begin{array}{llll}\text { Jeff Berner } & \text { Date } & & \text { Alina Bedrossian } \\ \text { SSN Project Chief Engineer } & & & \end{array}\right)$ |  |  |  |  |


| Signature Provided | $10 / 21 / 2020$ |
| :--- | :--- |
| Peter Kroger | Date |
| DeltaDOR team |  |

## Document Change Log

| Rev | Issue Date | Prepared By | Paragraphs <br> Affected | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| initial | $11 / 12 / 2020$ | Christopher S. <br> Jacobs, <br> Peter Kroger, <br> Christopher <br> Volk | All <br> (formatting) <br> (Fluxes) | Initial Release of Ka-band catalog 810- <br> 005 module 108 was modeled after the <br> X-band catalog document 810-005 <br> module 107 |

## Table of Contents

1 Introduction ..... 5
1.1 Purpose ..... 5
1.2 Scope. ..... 5
2 General Information ..... 5
2.1 Desired Accuracy ..... 5
2.2 Catalog Observations and Estimation Strategy ..... 6
2.3 Results ..... 7
2.4 Systematic Errors ..... 9
2.5 Galactic acceleration ..... 10
2.6 Catalog Format ..... 10
2.6.1 B1950 Name (characters 2 through 9) ..... 10
2.6.2 Common Name (characters 11 through 22) ..... 10
2.6.3 ID Number (characters 24 through 27) ..... 11
2.6.4 Angular Positions (characters 29 through 65) ..... 11
2.6.4.1 Right Ascension (characters 29 through 47) ..... 12
2.6.4.2 Declination (characters 49 through 65) ..... 12
2.6.5 Right Ascension Error (characters 66 through 76) ..... 12
2.6.6 Declination Error (characters 77 through 86) ..... 12
2.6.7 Correlation of Right Ascension and Declination (characters 87 through 94) ..... 13
2.6.8 Observation Epochs (characters 95 through 110) ..... 13
2.6.8.1 Initial (characters 95 through 102) ..... 13
2.6.8.2 Last (characters 103 through 110) ..... 13
2.6.9 Number of Sessions (characters 111 through 116) ..... 13
2.6.10 Correlated Flux Density (characters 117 through 128). ..... 13
2.6.10.1 Correlated Flux Density Madrid Baseline (characters 117 through 122) ..... 14
2.6.10.2 Correlated Flux Density Canberra Baseline (characters 123 through 128). ..... 14
2.6.11 Structure Index (characters 129 through 133) ..... 15
3 References ..... 30
4 Acknowledgements ..... 33
Illustrations
Figure Page
Figure 1. Ka-band radio source distribution in Right Ascension \& Declination ..... 8
Tables
Table
Page
Table 1. Rotational Alignment Between DDOR-2020a-Ka and ICRF3-SX Catalogues ..... 8
Table 2. Differenced Positions Between DDOR-2020a-Ka and ICRF3-SX Catalogues ..... 8

## 1 Introduction

### 1.1 Purpose

This module provides a Ka-band ( 32 GHz ) catalog of the angular positions of naturally occurring extra-galactic radio sources which establish a celestial reference frame to be used for interplanetary spacecraft navigation using Delta-Differential One-way Ranging ( $\Delta \mathrm{DOR}$, Border, 2006) at Kaband. The catalog is also useful for other applications requiring the precise location of radio sources most notably station locations as well as antenna pointing calibration, antenna arraying, and imaging.

This initial formal release of the Ka-band catalog is driven by the maturing of $\triangle \mathrm{DOR}$ operations at Ka-band. Ka-band $\triangle$ DOR was first demonstrated in 2005 (Shambayati et al, 2006) with the Mars Reconaissance Orbiter (MRO). Today all three space agencies that are engaged in $\triangle$ DOR cross-support have Ka-band missions: the National Aeronautics and Space Administration's (NASA) Parker Solar Probe, the European Space Agency's (ESA) Bepi-Columbo, and Japanese Aerospace Exploration Agency's (JAXA) Hayabusa-2. All three of these missions are leveraging Ka-band's superior performance very close to the Sun where Ka-band cuts through solar plasma better than X-band or S-band. Ka-band $\triangle$ DOR has come of age.

### 1.2 Scope

The discussion in this module is limited to describing the contents of the Ka-band source catalog, assessing the accuracy of the positions, and providing a listing of that catalog both within the module and with a link to computer readable versions. The equipment used to collect the data from which the catalog is derived is discussed in module 211 of this handbook. The capabilities of the Deep Space Network (DSN) for performing $\triangle$ DOR are contained in module 210.

## 2 General Information

The angular positions of a set of extragalactic radio sources serve as fiducial points for $\triangle D O R$ observations performed by the DSN. This set of point positions is commonly referred to as a catalog. The catalog described in this module consists of 680 sources which have been observed in a frequency range that includes the Ka-band deep space allocation specified by the International Telecommunications Union of $31,800-32,300 \mathrm{MHz}$ (Hunter, 1979; de Groot 1987). The angular distribution of the radio sources in the catalog is illustrated in Figure 1.

### 2.1 Desired Accuracy

The DSN goal for Ka-band calls for 0.5 nanoradian (100 $\mu \mathrm{as}$ ) accuracy including both random and systematic errors. A stability of $0.05 \mathrm{nrad} /$ year ( $10 \mu \mathrm{as} / \mathrm{yr}$ ) is an implied goal in order to give the
catalog a reasonable lifetime. Note that in the field of astrometry typical units are microarcseconds ( $\mu$ as) where 1.0 nrad $=206 \mu \mathrm{as}$. The required spatial density is a source within 6 degrees.

### 2.2 Catalog Observations and Estimation Strategy

The data used to develop the source catalog were obtained from Ka-band Very Long Baseline Interferometry (VLBI) data with complementary X-band data used to calbrate the Earth's ionosphere and solar plasma. The data were first acquired with the DSN VLBI Subsystem's Mark4 Data Acquisition Terminal recording at 112 Mbps , then from about 2008, the Mark5A at 112 to 448 Mbps and since about 2013 with the DSN VLBI Processor (DVP) at 2048 Mbps. Starting in late 2012, ESA's Deep Space Antenna 3 (DSA 03) located at Malargüe, Argentina was added to the program using the Portable Radio Science Receiver (PRSR) which was upgraded to the Portable Open Loop Receiver (POLR) in 2019. The addition of DSA 03 enabled, for the first time, full sky coverage at Ka-band and in particular coverage of the southern polar cap from declination -45 to -90 degrees.

The angular positions of the radio sources are estimated by a monolithic least-squares fit to the VLBI observables: group delay and phase delay rate. A total of 110,551 delay and delay rate observations were collected in 206 single baseline observing sessions from April 2005 to March 2020 and then correlated. Of these processed observations, 88,173 were used in the final solution to estimate the final source positions. The weighted RMS (wRMS) delay scatter was 43.58 psec; phase delay rate wRMS scatter was $103.85 \mathrm{fsec} / \mathrm{sec}$. About 11,300 parameters were adjusted most of which were to calibrate troposphere changes and instrumental delays. The majority of the 20.2\% of the obserations that were not used were deleted because no signal was detected (SNR <6.5) due to poor pointing at Ka-band and to a lesser extent due to antenna mechanical problems, recorder problems or inherently weak sources. Because the radio catalog monitors about 730 targets per observing day, one must use blind pointing. Time limitations prevent the use of conscan or monopulse techniques for real time pointing refinement. Accordingly, pointing errors due to thermal distortions of the DSN antennas and beamwaveguide mirror misalignments are not corrected. As a result, more than half the data are either not detected or are SNR limited.

Details of the physical modeling required by this procedure are given in (Sovers, Fanselow, \& Jacobs, 1998). Estimated parameters included radio source positions, station locations \& velocities, station clocks, wet troposphere delays, and troposphere gradients.
NNR: A 3-dimensional "No-Net-Rotation" constraint (Jacobs et al, 2010) was placed on the radio source positions relative to International Celestial Reference Frame 3 (ICRF3) (Charlot, Jacobs, et al, 2020) using a subset of 173 of the 303 defining sources.

TRF: The terrestrial Reference Frame (TRF) estimated station locations for DSS 34, DSS 54, DSS 55 , and DSA 03 as linear functions over the time range of the data set with the Goldstone stations DSS 25 and 26 fixed from 2005 until July 2019 in order to provide a No-Net-Translation (NNT) constraint on the terrestrial reference frame. After the July 2019 Ridgecrest earthquake, the positions of DSS 25 and DSS 26 had to be estimated relative to the overseas stations. A priori
station locations and velocities were expressed in the ITRF-1993 system. Similarly, the velocities of the Goldstone stations DSS 25 and DSS 26 were fixed to their apriori ITRF-1993 values in order to provide a No-Net-Velocity (NNV) constraint.
EOP: A No-Net-Rotation constraint was enforced by fixing the earth orientation (UT1-UTC and Polar Motion) to JPL's "Space" series as determined by the JPL Kalman Earth Orientation Function (KEOF) (Ratclif \& Gross, 2019). Earth precession and nutation models are taken from MHB-2000 (Mathews, Herring \& Buffet, 2002). Time linear corrections to nutations in ecliptic longitude \& obliquity, plus a 4 parameter correction to the Free Core Nutation (FCN) with period 431 days were estimated using the MODEST software package (Sovers, Fanselow, Jacobs, 1998).

Station clocks were estimated using a time linear model (offset and rate parameters). Hydrostatic a.k.a. "dry" troposphere delays were fixed to an apriori model based on measured surface pressures (Davis et al, 1985). Wet zenith troposphere delays were estimated at intervals of approximately once per 20 scans ( $\sim 40$ minutes) and then mapped to the elevation of the observation using the Vienna Mapping Function 1 (VMF1) mapping function (Boehm et al, 2006). A mean troposphere gradient was estimated once per station.

### 2.3 Results

The Ka-band celestial reference frame ("radio catalog") that resulted from the above described data and parameter estimation strategy is listed in Table 3. We are calling this catalog DDOR-2020a-Ka to indicate that it is the first Ka-band catalog constructed for DDOR users in 2020. Figure 1 shows the distribution of sources over the sky using a Hammer-Aitoff equal area plot. There are 680 sources total with fairly uniform spatial density. Median precison is < 100 as ( 0.5 nrad). The ecliptic plane is marked as a blue-grey dashed line. The galactic plane is marked by a light yellow-orange line. We note that the southern most part of the ecliptic plane crosses the galactic plane very near the galactic center ( $\alpha=17 \mathrm{~h} 45 \mathrm{~m}, \delta=-29$ ). This is the most difficult part of the sky to observe because of the scattering by the inter-stellar media (ISM).

Figure 1. Ka-band radio source distribution in Right Ascension \& Declination


We compare the rotational alignments and position differences to the ICRF3-SX catalog. Limiting comparison to our 173 (of 303) ICRF3-SX defining sources yields rotational alignments with ~15 $\mu$ as uncertainty and weighted Root Mean Square (wRMS) differences of 172 as in Right Ascension (RA or $\alpha \cos \delta$ ) and $149 \mu$ as in declination ( $\delta$ ). The differences are dominated by spatially correlated systematic errors (zonal errors).

Table 1. Rotational Alignment Between DDOR-2020a-Ka and ICRF3-SX Catalogues

|  | 173 ICRF3-SX Defining |  | 550 ICRF3-SX Overlapping |  |
| :---: | :---: | :---: | :---: | :---: |
| Rotation Axis | Rotation Value <br> $(\mu \mathrm{as})$ | Rotation Error <br> $(\mu \mathrm{as})$ | Rotation Value <br> $(\mu \mathrm{as})$ | Rotation Error <br> $(\mu \mathrm{as})$ |
| X | -20.5 | 9.7 | 11.0 | 9.4 |
| Y | -7.9 | 10.2 | -5.4 | 10.4 |
| Z | -1.1 | 7.9 | 27.8 | 5.5 |

Table 2. Differenced Positions Between DDOR-2020a-Ka and ICRF3-SX Catalogues

|  | 173 ICRF3 Defining |  | 550 ICRF3- Overlapping |  |
| :---: | :---: | :---: | :---: | :---: |
| Differenced Data | Weighted Mean <br> $(\mu \mathrm{as})$ | Weighted RMS <br> $(\mu \mathrm{as})$ | Weighted Mean <br> $(\mu \mathrm{as})$ | Weighted RMS <br> $(\mu \mathrm{as})$ |
| RA $\cos ($ Dec $)$ | 28 | 172 | -4 | 152 |
| Dec | -132 | 149 | -137 | 162 |

Broadening the comparison to include all common sources and after removing 60 outliers of more than 5 -sigma, we have 550 common sources. The rotational alignment is better than $30 \mu$ as and wRMS differences about the mean of $152 \mu$ as in RA $\cos$ (dec) and $162 \mu$ as in declination (Dec). The Z-rotation is likely biased by the zonal defomations and in particular the quarupole 2,0 term that effects RA.

Source positions were extracted from the MODEST binary output file, "xka.srf," using the "catout" utility and the resulting file, xka.cat_iers, is available from JPL’s Service Preparation Subsystem (SPS) portal.

### 2.4 Systematic Errors

The celestial frame presented in this document has precision (random measurement error) within the 0.5 nrad goal. However at present, systematic errors consume the entire near term error budget of 1.0 nrad and twice the long term goal of 0.5 nrad leaving the accuracy considerably worse than the precision.

Specifically, the fact that about 85\% of the data comes from just two DSN baselines (Goldstone to Tidbinbilla and Goldstone to Madrid) means that the solution is very susceptible to systematic distortion. For example, the solution has difficulty separating tropospheric effects such as average tropospheric gradients from the celestial frame. Because the Goldstone to Tidbinbilla baseline with $10,400 \mathrm{~km}$ length is close to an earth diameter, it has anti-correlated elevation angles, that is, on average, high elevation at Goldstone implies low elevation at Tidbinbilla and vice-versa. This prevents the solution from cleanly separating the celestial frame from tropsophere effects. As a result, we see a large quadrupole error in RA:
quadrupole 2, 0 term: $\quad \Delta \alpha \cos (\delta)=(197+-21) \mu$ as $\sin (2 \delta)$
The $\sin (2 \delta)$ dependence means that northern RAs and southern RAs are based in opposite directions.

The lack of a direct north-south baseline means that declination depend largely on the angled Goldstone-Tidbinbilla baseline which is observed more than 10 times more often than the nearly orthogonal Goldstone-Malargüe baseline which is needed to determine balanced declinations. The resulting geometric weakness is reflected in the uncertainties when estimating a 3-D dipole difference between catalogs: Dipole X and Y have $\sim 15$ as uncertainties whereas dipole-Z has almost 60 uas uncertainty. While the estimated diole-X is not statistically significant, the factor of four (4) larger uncertainty quantifies how weak the declinations are.

Dipole-Z: $\quad \Delta \delta=(-46+-57) \mu$ as $\cos (\delta)$
The process for correcting these errors has been demonstrated. We have Goldstone to Malargüe data. All that is needed is to get more observations on Goldstone to Malargüe to correct the order of magntiude imbalance in observations. In the near future, there may be help from JAXA's new 54-meter Misasa, Japan station via the Japan to Tidbinbilla, Australia baseline.

### 2.5 Galactic acceleration

The Solar system orbits the galactic center with roughly a 200 million year period. Just as with the Earth's orbit about the Sun, our orbit around the galactic center creates an aberration effect. Because our orbit is so slow, we absorb most of this nearly constant aberration effect into the reported source positions. However, our acceleration towards the galactic center creates a small, but measureable, change in aberration amounting to $5 \mu \mathrm{as} /$ year times a projection factor depending on the RA and Dec of the source. The latest International Astronmical Union (IAU) standard (ICRF3, Charlot, Jacobs, et al, 2020) models this drift relative to epoch J2015.0.

For applications with epochs either far from 2015.0 or requiring the highest accuracies, this effect must be considered. For more detailed discussion we refer the reader to MacMillan et al (2019).

### 2.6 Catalog Format

The catalog uses the J2000 reference epoch and is rotationally aligned with the ICRF3-SX (Charlot, Jacobs et al, 2020) at the $\sim 20 \mu$ as level in all components. In addition to the presentation in Table 1, the catalog is available for download as a fixed-width file at:

## https://deepspace.jpl.nasa.gov/dsndocs/810-005/108/Ka-catalog-fixed.txt

Lines of the fixed-width file are terminated with ASCII Character 10 (Unix convention). The fixed-width file may be read with the following FORTRAN format statement,
FORMAT (1X, A8, 1X, A12, 1X, I4, 1X, 2(1X,I2), 2X, F11.8, 1X, A1, I2, 1X, I2, 1X, F10.7, Fll.8, F10.7, F8.4, 2F8.1, I6, 2F6.2, F5.1).

### 2.6.1 B1950 Name (characters 2 through 9)

This is the source name based on its position at the Besselian epoch B1950.0 which is one of the two standard epochs that have been used in the last 40 years for reporting source positions (the other being the Julian epoch J2000.0). The name is related to the position of the source, but is most useful for searching historical databases for information about the source. The name is constructed as follows. The first two digits represent hours of right RA, the next two digits minutes of RA, the fifth place is used to specify the sign of the declination, places 6-7 give degrees of declination, and the last digit gives the first digit of the fractional part of degrees of declination. Thus the first entry in the catalog, 0002-478, is interpreted as a right ascension of zero hours and 2 minutes (of time) and a declination of negative 48.8 degrees at the B1950.0 epoch.

### 2.6.2 Common Name (characters 11 through 22)

This is the name most commonly used in the literature for the source and is also the name used by the DSN for Delta-DOR measurement scheduling. Often, there is a short prefix that indicates the organization or radio observatory that first documented the source in a survey. The remainder of the name may be related to the source position or an arbitrary sequence number. Some of the prefixes and naming conventions include (Kesteven \& Bridle, 1977):

- 3C nnn - From the Third Cambridge Catalog. The nnn is the numerical designation assigned by the catalog. This survey, originally conducted at 159 MHz , identified many
of the stronger sources used in VLBI. Unfortunately, many of these stronger sources are also less point-like making them less desirable for the highest accuracy astrometric measurements.
- 4C zz.nn - From the Fourth Cambridge Catalog. The zz corresponds to the declination "zone." The $n n$ is a sequential number within the zone. There are no sequential numbers greater than 99.
- B2 RRrrSDDa - Most likely from the Second Bologna Survey. The RRrr is hours and minutes of right ascension, $S$ is the sign of declination and $D D$ is degrees of declination. The meaning of a (an alpha character) is unknown.
- CTA $n n$ and CTD $n n$ - From the California Institute of Technology "A" or "D" surveys where $n n$ is the numerical designation assigned by the catalog.
- DW RRrrSDDd - From the Dwingelo Radio Observatory (Netherlands) catalog. The RRrr is hours and minutes of right ascension, $S$ is the sign of declination, $D D$ is degrees of declination, and $d$ (if present) is the first digit of the fractional part of declination.
- GC RRrrSDDd - Most likely names taken from the "General Catalog of 33342 (optical) Stars." The RRrrSDDd are as described before.
- HR nnnn - Most likely names taken from the "Harvard Revised (optical) Catalog" where $n n n$ is the numerical designation assigned by the catalog.
- M nn - Most likely names taken from the "Messier Catalog of Galaxies" where nn is the numerical designation assigned by the catalog.
- NRAO nnn - From the National Radio Observatory catalog where nnn is the numerical designation assigned by the catalog.
- O_nnn- From the Ohio State Survey where the second letter indicates the hour of right ascension (two letters are skipped from the alphabet) and nnn is a numerical designation assigned by the catalog.
- P RRrrSDDd - From the Parkes Radio Observatory (southern Australia) survey. The $R R r r S D D d$ are as described before.
- VRO DD.RR.rr - From the Vermillion River Observatory (University of Illinois) catalog. The $D D$ is degrees declination and $R R$ is hours right ascension. The $r r$ is unknown but may be either minutes or fractional hours of right ascension.


### 2.6.3 ID Number (characters 24 through 27)

A unique number, presently in the range of 1 to 4272, is assigned to each radio source for use by programs that identify sources by number instead of name. The correspondence between source name and number will not change when the catalog is updated---except to correct errors. This catalog can be used to establish a unique correspondence between the B1950 or Common Name and ID number. If a source in this catalog is deleted from future revisions of the catalog delivery, its number will be retired. When new sources are added, they will be assigned unique numbers starting with 4273.

### 2.6.4 Angular Positions (characters 29 through 65)

Background: When the IAU's fundamental reference frame transitioned from the optically based catalog of galactic stars, FK5 (Fricke et al, 1988), to the catalog of extragalactic Active Galactic

Nuclei (AGNs) on 1 January 1998 (IAU, 1998; Ma et al 1998), right ascension, and most importantly the origin of RA, transitioned by conventional agreement to values based on the RA of the extragalactic radio sources. In practice at the time of this documents prepration, this means that the axes implicitly defined by a set of source positions must agree with the ICRF3-SX (Charlot, Jacobs et al, 2020) to within the formal uncertainty of the ICRF3-SX axes or approximately 10 uas ( 1 standard deviation). Thus, the orientation of the celestial frame axes may vary in future realizations by roughly that amount.
Angular positions are specified by a pair of angular coordinates: RA and DEC. Note that while in the pre-ICRF era (pre-1998) right ascension used to be defined as the angular distance along the celestial equator from the intersection of the equator and the ecliptic, since 01 Jan 1998 this is no longer strictly true. The ICRF-1 (Ma et al, 1998) was aligned to the FK5 optical frame within the errors of the FK5 to better than 100 milli-arcseconds. Thus, once one becomes concerned with accuracy levels $<100$ milliarcseconds ( 500 nrad ) as we are in this document, the differences between the old equator and ecliptic system and the new extra-glactic system are significant and must be accounted for.
The Ka-band coordinates reported in this module 108 are consistent with the new extagalactic ICRF-1 system (Ma et al, 1998) defined by the IAU as of 01 Jan 1998 (IAU, 1997) and refined with the release of the ICRF-2 (IAU, 2009; Ma et al, 2009) and ICRF-3 (IAU, 2018; Charlot, Jacobs et al, 2020).

### 2.6.4.1 Right Ascension (characters 29 through 47)

Right ascension is presented in the form " hh mm SS.ssssssss" where the first sub field gives hours of RA, followed by (time) minutes of RA, and (time) seconds of RA to eight decimal places.

### 2.6.4.2 Declination (characters 49 through 65)

Declination is presented in the form "Sdd mm SS.sssssss" where first sub-field, S or column 49, gives the sign of declination (a blank is allowed and should be interpreted as a positive declination). The remaining subfields give angular declination in degrees, minutes, and seconds to seven decimal places.
Warning regarding sign convention: Note that a minus sign applies to the whole declination (dd mm SS.sssssss). For example, a declination of -000000 .sssssss should be read as minus $0 . s s s s s s s$ arcseconds of declination. This means that users desiring decimal representations of declination must first convert from degrees, minutes, seconds format to decimal format before applying the relevant sign. To simplify this conversion, the sign is in a fixed position in the fixed-width file.

### 2.6.5 Right Ascension Error (characters 66 through 76)

This field provides the formal one standard deviation right ascension uncertainty in units of seconds of time.

### 2.6.6 Declination Error (characters 77 through 86)

This field provides the formal one standard deviation declination uncertainty in units of arcseconds of angle.

### 2.6.7 Correlation of Right Ascension and Declination (characters 87 through 94)

This field provides the formal correlation of right ascension and declination. The quantity may range from -1.0 to +1.0 and a blank in front of the value should be interpreted as indicating a positive correlation. Values near zero indicate that the principal axes of the error ellipse are close to the RA-Dec axes. The large number of negative correlations is, in part, due to the large influence of the California to Australia baseline (typically between DSS-25,26 and DSS-34) on determination of declination.

### 2.6.8 Observation Epochs (characters 95 through 110)

Epochs are referred to Modified Julian Day (MJD) and are typically on the order of 50000 days.
The relation with Julian Date is given by

$$
\begin{gathered}
\text { MJD }=2400000.5-\mathrm{JD} \\
\quad \text { or }
\end{gathered}
$$

$$
\operatorname{MJD}(\mathrm{t}=\mathrm{J} 2000)=51543
$$

### 2.6.8.1 Initial (characters 95 through 102)

The earliest epoch of the first observation.

### 2.6.8.2 Last (characters 103 through 110)

The termination epoch of the most recent observation.

### 2.6.9 Number of Sessions (characters 111 through 116)

The number of sessions, where a session is defined as a continuous data collection period, may be used as a rough indicator of the robustness of the position determination. Any position based on less than 3 sessions should be considered provisional.

### 2.6.10 Correlated Flux Density (characters 117 through 128)

The correlated flux density reported is an estimate of the median correlated flux density for observations of the radio source using DSN baselines Goldstone-Madrid and Goldstone-Canberra. These median correlated flux density values are reported for each baseline when available. This value, in Janskys ( $\mathrm{Jy}=1 . \mathrm{e}-26$ watts $/ \mathrm{m} \wedge 2 / \mathrm{Hz}$ ), is computed from the measured signal-to-noise ratio (SNR) ouput by the quasar fringe fitting program using the following formula.

$$
\text { Flux }=S N R * \frac{1}{K_{l}} * \frac{2 k}{10^{-26}} * \frac{4 \pi}{\lambda^{2}} * \frac{1}{\sqrt{\left(\frac{G}{T}\right)_{1}\left(\frac{G}{T}\right)_{2}}} * \frac{1}{\sqrt{D T_{Q U}}}
$$

Where $K_{L}$ is the system loss factor (1.0), $k$ is the Stefan-Boltzman constant $\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right), \lambda$ is the wavelength of the signal, $G / T$ is the antenna gain over system temperature parameter for antenna 1 and $2, D$ is the total sampling rate, and $T_{Q U}$ is the quasar integration time. Most of these parameters are recording in the output of the Cfit fringe fitting program, but the G/T values for
each antenna are estimated using the elevation angles and the appropriate equations from the 810005 module 101-G for the 70m antennas (Slobin, 2019), module 103-C for the 34m HEF antennas (Slobin, 2014), and module 104-L 34m BWG antennas (Slobin, 2019).
Loss factor, $K_{L}$, is for the moment set to unity. As a result various losses are absorbed into the report flux densities in Table 3. Of particular concern is the loss from pointing errors which may be in the range of 5 to 10 milli-degrees or 1 to 4 dB (Slobin, module 104-L, fig. 49). The beam waveguide antenna design and calibration does not account for antenna deformation due to thermal changes in the structure. These may be as large a 1 milli-degree per deg C. Given that pointing calibrations are done at night, one might expect up to 10 milli-deg pointing errors ( 4 dB ) during the heat of the day. Mirror mislaignment is another concern. For example, in the first half of 2017, DSS 55 had large mirror misalignments that greatly reduced the Ka-band signal levels.

The fluxe densities presented here are intended to guide DDOR source selection by providing meaningful realtive fluxes. However, the absolute flux scale has not been determined and may be in error by a factor of 2 to 4 . The absolute scale could be determined to about $20 \%$ if needed and if sufficent resources were to be allocated to the task.

The SNR is determined during the cross-correlation and fringe fitting of actual radio source observations. Only DDOR, TEMPO, and CAT M\&E observations from the last 5 years (20152020) were used in computing the median SNR which went into the flux calculation. If no observations of a radio source on DSN baselines since 2015 are available, no value is provided for correlated flux. Note that only 3 sources, all of which are near the galactic center ( $\alpha=17 \mathrm{~h} 45 \mathrm{~m}, \delta=$ -29 deg), have not been detected since 2015.0.
Independent values for the correlated flux density are reported for the California-Madrid and the California-Canberra DSN baselines. These columns necessarily represent only a subset of the sources since each baseline can access only about $2 / 3$ of the sky. Also note that the format defined for this document does not include baselines to the ESA antennas at Malargüe, Argentina. As a result, sources below declination -45 deg which are observable only on the Tidbinbilla, Australia to Argentina baseline are not tabulated, but these fluxes do exist and can be provided upon request.

As an example, a typical DSN observation may use the following parameter values: G/T = 64.5 dB-K (typical 34m BWG performance), D = 704 Msamples/sec ( 11 channels of 32 MHz complex bandwidth), and $\mathrm{T}=60$ seconds. If the minimum accceptable detection is for SNR $>6.5$, the weakest quasars that can be detected in these observations are on the order of 5 mJy .

### 2.6.10.1 Correlated Flux Density Madrid Baseline (characters 117 through 122)

This is the realtive correlated flux density for quasars observed on the Goldstone-Madrid (10-60) baseline. Flux densities on this baseline are available for 438 of 680 of the sources in Table 1. The absolute flux density scale is likely uncertain by a factor of 2 to 4 .

### 2.6.10.2 Correlated Flux Density Canberra Baseline (characters 123 through 128)

This is the relative correlated flux density for quasars observed using the Goldstone-Canberra (1040) baseline. Flux densities on this baseline are available for 462 of 680 of the sources in Table 1. The absolute flux density scale is likely uncertain by a factor of 2 to 4 .

### 2.6.11 Structure Index (characters 129 through 133)

The structure index is determined through the following relationship between the radio source structure index and the median value of the VLBI structure group delay corrections (Ma et al, 2009):

$$
\mathrm{SI}=1+2 \log \left(\tau_{\text {median }}\right)
$$

where SI is the structure index, and $\tau_{\text {median }}$ is the median value of the structure delay corrections in picoseconds (ps). A value for $\tau_{\text {median }}$ in the range of 0 to 40 ps is typical for a source that is point-like. A value in the range of 40 to 60 ps is typical for a source that has significant structure. The source structure itself may contribute an error of this magnitude to the delay error budget. Values of the delay scatter greater than 60 ps are typical for sources with large, extended, and possibly variable structure.

Table 3 presents K-band ( 24 GHz )---not Ka-band ( 32 GHz )---estimates of the structure index for a fraction of the sources because no maps at Ka-band exist with which to make Ka-band structure index estimates.

The actual Ka-band $\tau_{\text {median }}$ values are likely a factor of 1.5 smaller (better) than the K-band proxy measurements of $\tau_{\text {median }}$ tablualted below. In fact, one of the key benefits of observing at Ka-band should be the reduction in source structure.

The K-band ( 24 GHz ) estimates of the structure index for a few hundred sources are from Charlot et al (2010). De Witt et al (2020, in prep.) are preparing to publish K-band images of over 700 sources which should enable better proxy structure indices to be calculated for the next release of this module.

Table 3. Ka-Band Radio Source Catalog: DDOR_2020a-Ka

| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RA- <br> Dec <br> Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | KStructInde |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0002-478 | 0002-478 | 706 | 00 | 04 | 35.65546157 | -47 | 36 | 19.6046298 | 0.00001248 | 0.0001342 | -0.4744 | 56297.6 | 58810.2 | 29 |  | 0.09 |  |
| 0002+541 | 0002+541 | 2284 | 00 | 05 | 4.36335936 | +54 | 28 | 24.9241233 | 0.00000740 | 0.0000990 | 0.2360 | 55304.5 | 58874.6 | 43 | 0.04 |  |  |
| 0003+380 | GC 0003+38 | 1 | 00 | 05 | 57.17539933 | +38 | 20 | 15.1489523 | 0.00000430 | 0.0000719 | -0.2596 | 53561.7 | 58937.1 | 114 | 0.09 | 0.11 |  |
| 0003-066 | 0003-066 | 696 | 00 | 06 | 13.89286699 | -06 | 23 | 35.3350922 | 0.00000547 | 0.0001147 | -0.5643 | 53561.6 | 58937.0 | 120 | 0.38 | 0.27 |  |
| 0006+061 | 0006+061 | 2296 | 00 | 09 | 3.93183234 | +06 | 28 | 21.2400466 | 0.00000547 | 0.0001068 | -0.6119 | 53651.5 | 58938.0 | 105 | 0.02 | 0.03 | 1.51 |
| 0007+106 | III ZW 2 | 986 | 00 | 10 | 31.00589912 | +10 | 58 | 29.5044219 | 0.00000346 | 0.0000798 | -0.4790 | 53694.3 | 58938.0 | 144 | 0.07 | 0.12 | 1.15 |
| 0008-264 | P 0008-264 | 7 | 00 | 11 | 1.24672037 | -26 | 12 | 33.3773903 | 0.00000757 | 0.0001089 | -0.6807 | 53561.7 | 58937.9 | 83 | 0.15 | 0.10 |  |
| 0009+081 | 0009+081 | 1253 | 00 | 11 | 35.26959838 | +08 | 23 | 55.5861777 | 0.00000447 | 0.0000944 | -0.5484 | 53694.3 | 58938.0 | 98 | 0.04 | 0.06 | 2.14 |
| 0010-401 | 0010-401 | 2305 | 00 | 12 | 59.90980804 | -39 | 54 | 26.0560627 | 0.00000912 | 0.0001020 | -0.5356 | 55451.4 | 58937.9 | 71 |  | 0.07 |  |
| 0013-184 | 0013-184 | 2312 | 00 | 15 | 34.32452131 | -18 | 07 | 25.5852007 | 0.00006340 | 0.0008559 | -0.9802 | 56746.9 | 58839.2 | 28 |  | 0.02 |  |
| 0013-005 | P 0013-00 | 666 | 00 | 16 | 11.08854117 | -00 | 15 | 12.4453015 | 0.00000474 | 0.0001032 | -0.6470 | 53561.7 | 58937.9 | 96 | 0.07 | 0.06 |  |
| 0017+200 | 0017+200 | 987 | 00 | 19 | 37.85450011 | +20 | 21 | 45.6444550 | 0.00000371 | 0.0000769 | -0.4231 | 53609.5 | 58937.9 | 130 | 0.13 | 0.15 | 2.1 |
| 0017+257 | 0017+257 | 988 | 00 | 19 | 39.78060744 | +26 | 02 | 52.2769820 | 0.00000414 | 0.0000857 | -0.4483 | 55304.6 | 58937.9 | 99 | 0.09 | 0.05 |  |
| 0016+731 | 0016+731 | 710 | 00 | 19 | 45.78639981 | +73 | 27 | 30.0175400 | 0.00001099 | 0.0000461 | 0.0930 | 53568.0 | 58874.5 | 81 | 0.37 |  | 0.87 |
| 0019+058 | P 0019+058 | 11 | 00 | 22 | 32.44120798 | +06 | 08 | 4.2687902 | 0.00000359 | 0.0000823 | -0.4987 | 53561.7 | 58895.2 | 139 | 0.08 | 0.10 | 1.4 |
| 0021-686 | 0021-686 | 4144 | 00 | 24 | 6.72292449 | -68 | 20 | 54.5874650 | 0.00002821 | 0.0001563 | -0.1121 | 56297.6 | 58643.9 | 15 |  |  |  |
| 0038-020 | 0038-020 | 2347 | 00 | 40 | 57.61155924 | -01 | 46 | 32.0258365 | 0.00000446 | 0.0000934 | -0.6069 | 53609.6 | 58937.0 | 111 | 0.06 | 0.11 | 1.68 |
| 0044-846 | 0044-846 | 4145 | 00 | 44 | 26.68913098 | -84 | 22 | 39.9875867 | 0.00007451 | 0.0001279 | 0.1249 | 56297.5 | 58643.9 | 15 |  |  |  |
| 0044+030 | 0044+030 | 4146 | 00 | 47 | 5.91872592 | +03 | 19 | 54.7856439 | 0.00000401 | 0.0000941 | -0.5622 | 56892.5 | 58895.2 | 72 | 0.10 | 0.08 |  |
| 0046+316 | NGC 0262 | 996 | 00 | 48 | 47.14149773 | +31 | 57 | 25.0847844 | 0.00000399 | 0.0000795 | -0.3363 | 53687.1 | 58937.1 | 125 | 0.10 | 0.04 | 1.65 |
| 0047+023 | J0049+0237 | 997 | 00 | 49 | 43.23593371 | +02 | 37 | 3.7785348 | 0.00000366 | 0.0000851 | -0.5161 | 55262.7 | 58895.2 | 110 | 0.10 | 0.10 |  |
| 0047-579 | P 0047-579 | 714 | 00 | 49 | 59.47303069 | -57 | 38 | 27.3400805 | 0.00001634 | 0.0001934 | -0.0647 | 56275.6 | 58643.9 | 15 |  |  |  |
| 0048-097 | P 0048-09 | 19 | 00 | 50 | 41.31735959 | -09 | 29 | 5.2104361 | 0.00000392 | 0.0000855 | -0.5018 | 53561.6 | 58937.0 | 148 | 0.07 | 0.08 |  |
| 0054+161 | 0054+161 | 1254 | 00 | 56 | 55.29433059 | +16 | 25 | 13.3408701 | 0.00000345 | 0.0000783 | -0.4116 | 53609.5 | 58937.9 | 134 | 0.11 | 0.09 | 0.81 |
| 0055+060 | 0055+060 | 1340 | 00 | 58 | 33.80456871 | +06 | 20 | 6.0734535 | 0.00000362 | 0.0000844 | -0.4926 | 55262.7 | 58937.0 | 114 | 0.11 | 0.06 |  |
| 0056-572 | 0056-572 | 715 | 00 | 58 | 46.58113436 | -56 | 59 | 11.4702457 | 0.00001190 | 0.0002116 | -0.2485 | 56297.7 | 58643.8 | 15 |  |  |  |
| 0101-804 | 0101-804 | 4147 | 01 | 02 | 14.91173561 | -80 | 12 | 39.4310762 | 0.00005570 | 0.0001185 | 0.0571 | 56297.5 | 58643.9 | 13 |  |  |  |
| 0100-760 | 0100-760 | 4148 | 01 | 02 | 18.66007412 | -75 | 46 | 51.7307496 | 0.00002630 | 0.0001168 | -0.1375 | 56275.7 | 58643.8 | 17 |  |  |  |
| 0059+581 | 0059+581 | 716 | 01 | 02 | 45.76240562 | +58 | 24 | 11.1364321 | 0.00000579 | 0.0000549 | 0.1539 | 53568.0 | 58874.7 | 83 | 0.56 |  | 0.55 |
| 0104-408 | P 0104-408 | 25 | 01 | 06 | 45.10794604 | -40 | 34 | 19.9608603 | 0.00000746 | 0.0000914 | -0.4630 | 53561.5 | 58937.9 | 100 |  | 0.38 | 1.86 |
| 0106+013 | P 0106+01 | 27 | 01 | 08 | 38.77110178 | +01 | 35 | 0.3170942 | 0.00000298 | 0.0000756 | -0.3721 | 53561.6 | 58938.0 | 139 | 0.44 | 0.39 |  |
| 0107-610 | 0107-610 | 1255 | 01 | 09 | 15.47517783 | -60 | 49 | 48.4598105 | 0.00002119 | 0.0003656 | -0.2775 | 56394.8 | 58643.9 | 10 |  |  |  |
| 0106+315 | 0106+315 | 4049 | 01 | 09 | 27.88718695 | +31 | 49 | 56.0492429 | 0.00000564 | 0.0001366 | -0.3573 | 56892.7 | 58937.1 | 63 | 0.04 | 0.02 |  |
| 0109+224 | GC 0109+22 | 30 | 01 | 12 | 5.82471996 | +22 | 44 | 38.7862866 | 0.00000356 | 0.0000754 | -0.3891 | 53644.3 | 58937.1 | 136 | 0.14 | 0.14 | 1.29 |
| 0109+200 | 0109+200 | 4149 | 01 | 12 | 10.19081418 | +20 | 20 | 21.7640844 | 0.00000751 | 0.0001551 | -0.6120 | 56738.7 | 58895.1 | 53 | 0.02 | 0.02 |  |
| 0109+351 | 0109+351 | 2383 | 01 | 12 | 12.94440756 | +35 | 22 | 19.3362535 | 0.00000438 | 0.0000822 | -0.3458 | 55304.6 | 58937.1 | 103 | 0.07 | 0.05 |  |
| 0110+495 | 0110+495 | 717 | 01 | 13 | 27.00682390 | +49 | 48 | 24.0431670 | 0.00000495 | 0.0000757 | 0.1689 | 53568.4 | 58874.7 | 71 | 0.16 |  | 1.85 |
| 0111+021 | P 0111+021 | 32 | 01 | 13 | 43.14494010 | +02 | 22 | 17.3161839 | 0.00000436 | 0.0000897 | -0.6254 | 53561.6 | 58937.9 | 132 | 0.05 | 0.12 | 2.34 |
| 0112-017 | P 0112-017 | 33 | 01 | 15 | 17.09989768 | -01 | 27 | 4.5771740 | 0.00000391 | 0.0000847 | -0.5519 | 53561.7 | 58938.0 | 117 | 0.10 | 0.14 |  |
| 0113-118 | P 0113-118 | 34 | 01 | 16 | 12.52200868 | -11 | 36 | 15.4347745 | 0.00000378 | 0.0000836 | -0.4812 | 53561.6 | 58937.9 | 123 | 0.27 | 0.31 |  |
| 0115-214 | 0115-214 | 1352 | 01 | 17 | 48.78010739 | -21 | 11 | 6.6333271 | 0.00000521 | 0.0000912 | -0.5281 | 55178.2 | 58937.9 | 90 | 0.05 | 0.12 |  |
| 0119+115 | P 0119+11 | 38 | 01 | 21 | 41.59504004 | +11 | 49 | 50.4127543 | 0.00000330 | 0.0000778 | -0.4311 | 53561.7 | 58937.9 | 140 | 0.13 | 0.09 |  |
| 0119+041 | GC 0119+04 | 667 | 01 | 21 | 56.86169306 | +04 | 22 | 24.7340819 | 0.00000359 | 0.0000802 | -0.5089 | 53561.7 | 58937.1 | 139 | 0.08 | 0.16 | 2.63 |
| 0119+247 | 0119+247 | 1210 | 01 | 22 | 38.81598971 | +25 | 02 | 31.7924487 | 0.00000451 | 0.0000908 | -0.4798 | 53644.2 | 58937.1 | 97 | 0.05 | 0.03 | 2.41 |
| 0122-003 | 0122-003 | 1256 | 01 | 25 | 28.84383312 | -00 | 05 | 55.9315212 | 0.00000405 | 0.0000931 | -0.5816 | 53609.6 | 58937.0 | 114 | 0.09 | 0.09 | 2.85 |
| 0123+257 | P 0123+25 | 40 | 01 | 26 | 42.79264315 | +25 | 59 | 1.3000968 | 0.00000367 | 0.0000773 | -0.3691 | 53644.3 | 58937.1 | 122 | 0.21 | 0.12 |  |
| 0127+084 | 0127+084 | 719 | 01 | 30 | 27.63443257 | +08 | 42 | 46.1717540 | 0.00000392 | 0.0000867 | -0.5307 | 55262.7 | 58937.1 | 98 | 0.08 | 0.06 | 0.9 |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RADec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | K <br> Struct <br> Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0131-795 | 0131-795 | 4150 | 01 | 31 | 48.82274948 | -79 | 16 | 17.4854900 | 0.00005351 | 0.0001736 | 0.1760 | 56275.7 | 58643.4 | 17 |  |  |  |
| 0133+476 | DA 55 | 44 | 01 | 36 | 58.59483132 | +47 | 51 | 29.1000041 | 0.00000435 | 0.0000701 | 0.1115 | 53568.3 | 58874.1 | 82 | 0.47 |  |  |
| 0138-097 | 0138-097 | 722 | 01 | 41 | 25.83215062 | -09 | 28 | 43.6743122 | 0.00000353 | 0.0000801 | -0.4249 | 53644.2 | 58937.0 | 143 | 0.19 | 0.14 | 2.38 |
| 0139-097 | J0141-0930 | 4151 | 01 | 41 | 37.93973951 | -09 | 30 | 1.7863903 | 0.00001005 | 0.0001676 | -0.7714 | 56510.4 | 58937.0 | 61 | 0.02 | 0.02 |  |
| 0146+056 | 0146+056 | 668 | 01 | 49 | 22.37095332 | +05 | 55 | 53.5680378 | 0.00000453 | 0.0000956 | -0.5273 | 54967.6 | 58937.1 | 93 | 0.03 | 0.03 |  |
| 0148-177 | 0148-177 | 2427 | 01 | 51 | 6.08334334 | -17 | 32 | 44.7184790 | 0.00000486 | 0.0000938 | -0.5371 | 55178.2 | 58937.9 | 100 | 0.05 | 0.06 |  |
| 0149+218 | P 0149+21 | 53 | 01 | 52 | 18.05904450 | +22 | 07 | 7.6997027 | 0.00000329 | 0.0000706 | -0.3513 | 53561.7 | 58937.1 | 150 | 0.27 | 0.25 |  |
| 0152-513 | 0152-513 | 4152 | 01 | 54 | 19.69616630 | -51 | 07 | 51.7280163 | 0.00001717 | 0.0003015 | -0.0171 | 56394.7 | 58643.8 | 13 |  |  |  |
| 0159-668 | 0159-668 | 4153 | 02 | 01 | 7.74395563 | -66 | 38 | 12.6666527 | 0.00002179 | 0.0001610 | 0.1276 | 56275.7 | 58643.4 | 15 |  |  |  |
| 0201+113 | P 0201+113 | 57 | 02 | 03 | 46.65705136 | +11 | 34 | 45.4093512 | 0.00000421 | 0.0000919 | -0.5261 | 53561.7 | 58937.1 | 112 | 0.07 | 0.05 |  |
| 0202+149 | P 0202+14 | 58 | 02 | 04 | 50.41390675 | +15 | 14 | 11.0431089 | 0.00000350 | 0.0000758 | -0.4462 | 53561.8 | 58937.1 | 143 | 0.15 | 0.13 |  |
| 0202+319 | DW 0202+31 | 59 | 02 | 05 | 4.92537742 | +32 | 12 | 30.0952957 | 0.00000347 | 0.0000677 | -0.2369 | 53561.8 | 58937.1 | 154 | 0.28 | 0.18 | 0.39 |
| 0203-120 | 0203-120 | 2451 | 02 | 06 | 26.08472159 | -11 | 50 | 39.7249360 | 0.00000410 | 0.0000868 | -0.4852 | 55262.8 | 58937.0 | 111 | 0.08 | 0.09 |  |
| 0206-625 | 0206-625 | 4154 | 02 | 08 | 1.17102399 | -62 | 16 | 35.5342662 | 0.00006099 | 0.0003218 | 0.1139 | 56395.6 | 58643.8 | 11 |  |  |  |
| 0212-620 | 0212-620 | 4053 | 02 | 14 | 16.20425795 | -61 | 49 | 33.6595753 | 0.00001384 | 0.0001526 | -0.1765 | 56297.7 | 58643.9 | 16 |  |  |  |
| 0213-026 | 0213-026 | 2468 | 02 | 15 | 42.01728995 | -02 | 22 | 56.7527618 | 0.00000427 | 0.0000989 | -0.4763 | 53728.0 | 58937.0 | 103 | 0.05 | 0.03 | 2.45 |
| 0219+428 | 0219+428 | 728 | 02 | 22 | 39.61151114 | +43 | 02 | 7.7986790 | 0.00000453 | 0.0000699 | -0.1266 | 53561.8 | 58937.1 | 117 | 0.10 | 0.10 |  |
| 0220-349 | P 0220-349 | 729 | 02 | 22 | 56.40162145 | -34 | 41 | 28.7306175 | 0.00001075 | 0.0001127 | -0.6682 | 53609.5 | 58937.9 | 76 |  | 0.06 | 3.1 |
| 0221-540 | 0221-540 | 4155 | 02 | 23 | 30.87476807 | -53 | 47 | 39.9013463 | 0.00001459 | 0.0002073 | -0.0014 | 56394.8 | 58643.7 | 14 |  |  |  |
| 0221+067 | GC 0221+06 | 67 | 02 | 24 | 28.42819762 | +06 | 59 | 23.3413928 | 0.00000324 | 0.0000728 | -0.4247 | 53561.8 | 58937.1 | 144 | 0.15 | 0.33 | 2.14 |
| 0224+671 | DW 0224+67 | 68 | 02 | 28 | 50.05151036 | +67 | 21 | 3.0292481 | 0.00000846 | 0.0000535 | 0.1705 | 53568.3 | 58874.5 | 77 | 0.21 |  | 2.61 |
| 0227-542 | 0227-542 | 4156 | 02 | 29 | 12.78529469 | -54 | 03 | 24.0349468 | 0.00001729 | 0.0002177 | 0.1841 | 56394.8 | 58643.9 | 14 |  |  |  |
| 0229-479 | 0229-479 | 4157 | 02 | 31 | 11.80401034 | -47 | 46 | 11.5836076 | 0.00001038 | 0.0002676 | 0.1677 | 56394.8 | 58643.9 | 13 |  |  |  |
| 0229+131 | P 0229+13 | 69 | 02 | 31 | 45.89404008 | +13 | 22 | 54.7159992 | 0.00000318 | 0.0000718 | -0.4139 | 53561.7 | 58937.1 | 151 | 0.16 | 0.13 |  |
| 0229-398 | 0229-398 | 2492 | 02 | 31 | 51.81628107 | -39 | 35 | 47.2635768 | 0.00001172 | 0.0001319 | -0.5216 | 56313.1 | 58860.2 | 58 |  | 0.03 |  |
| 0235-618 | 0235-618 | 1011 | 02 | 36 | 53.24571052 | -61 | 36 | 15.1835695 | 0.00001452 | 0.0001482 | 0.1734 | 56275.6 | 58643.5 | 17 |  |  |  |
| 0234+285 | CTD 20 | 71 | 02 | 37 | 52.40568769 | +28 | 48 | 8.9897831 | 0.00000321 | 0.0000664 | -0.2777 | 53561.8 | 58937.1 | 162 | 0.58 | 0.18 | 2.56 |
| 0235+164 | GC 0235+16 | 72 | 02 | 38 | 38.93011197 | +16 | 36 | 59.2744350 | 0.00000310 | 0.0000701 | -0.3831 | 53561.7 | 58937.1 | 153 | 0.41 | 0.30 | 1.13 |
| 0237-027 | P 0237-027 | 73 | 02 | 39 | 45.47227286 | -02 | 34 | 40.9146904 | 0.00000378 | 0.0000842 | -0.5383 | 53561.7 | 58937.0 | 152 | 0.05 | 0.19 | 1.7 |
| 0237+040 | GC 0237+04 | 74 | 02 | 39 | 51.26304639 | +04 | 16 | 21.4115438 | 0.00000335 | 0.0000768 | -0.4834 | 53561.7 | 58937.1 | 143 | 0.12 | 0.17 |  |
| 0239+108 | OD 166 | 77 | 02 | 42 | 29.17084955 | +11 | 01 | 0.7277746 | 0.00000355 | 0.0000781 | -0.4742 | 53561.8 | 58937.1 | 135 | 0.07 | 0.08 | 1.94 |
| 0244-470 | 0244-470 | 4158 | 02 | 46 | 0.11793730 | -46 | 51 | 17.2333144 | 0.00000821 | 0.0000978 | -0.2424 | 56297.7 | 58860.2 | 47 |  | 0.13 |  |
| 0245-167 | 0245-167 | 2506 | 02 | 48 | 7.73221893 | -16 | 31 | 46.3860237 | 0.00000481 | 0.0000972 | -0.5579 | 55451.5 | 58937.0 | 103 | 0.08 | 0.06 |  |
| 0248-266 | 0248-266 | 1426 | 02 | 50 | 35.56918112 | -26 | 27 | 42.5159663 | 0.00000815 | 0.0001185 | -0.6546 | 56031.9 | 58937.0 | 70 |  | 0.03 |  |
| 0252-549 | P 0252-549 | 734 | 02 | 53 | 29.18037592 | -54 | 41 | 51.4363733 | 0.00000980 | 0.0001341 | 0.2872 | 56275.7 | 58643.9 | 17 |  |  |  |
| 0250+320 | 0250+320 | 1427 | 02 | 53 | 33.65015652 | +32 | 17 | 20.8919645 | 0.00000392 | 0.0000747 | -0.3159 | 53644.3 | 58937.1 | 136 | 0.13 | 0.08 | 0.56 |
| 0256-005 | 0256-005 | 2520 | 02 | 59 | 28.51616314 | -00 | 19 | 59.9756957 | 0.00000431 | 0.0000989 | -0.6063 | 55304.7 | 58937.1 | 96 | 0.07 | 0.04 |  |
| 0256+192 | 0256+192 | 1432 | 02 | 59 | 29.65594699 | +19 | 25 | 44.3274980 | 0.00000404 | 0.0000812 | -0.4885 | 53603.5 | 58937.1 | 121 | 0.07 | 0.08 | 1.46 |
| 0301-721 | 0301-721 | 4159 | 03 | 01 | 38.44578198 | -71 | 56 | 34.3997007 | 0.00002594 | 0.0001069 | -0.0594 | 56297.7 | 58643.9 | 16 |  |  |  |
| 0300+470 | OE 400 | 82 | 03 | 03 | 35.24224138 | +47 | 16 | 16.2754615 | 0.00000451 | 0.0000650 | 0.0404 | 53644.2 | 58895.3 | 103 | 0.33 | 0.37 | 1.86 |
| 0302-623 | P 0302-623 | 735 | 03 | 03 | 50.63134990 | -62 | 11 | 25.5506006 | 0.00002171 | 0.0001798 | 0.2632 | 56275.6 | 58643.4 | 14 |  |  |  |
| 0303+051 | 0303+051 | 2527 | 03 | 05 | 48.19160066 | +05 | 23 | 31.5268616 | 0.00002371 | 0.0005002 | -0.7418 | 56802.0 | 58873.9 | 20 | 0.01 | 0.01 |  |
| 0306+102 | 0306+102 | 671 | 03 | 09 | 3.62350034 | +10 | 29 | 16.3407275 | 0.00000308 | 0.0000713 | -0.4167 | 53561.7 | 58937.1 | 149 | 0.42 | 0.37 | 1.92 |
| 0309+411 | 0309+411 | 672 | 03 | 13 | 1.96214453 | +41 | 20 | 1.1832126 | 0.00000446 | 0.0000658 | -0.2370 | 54001.6 | 58937.1 | 129 | 0.08 | 0.28 | 2.24 |
| 0322-294 | 0322-294 | 2546 | 03 | 24 | 44.29538825 | -29 | 18 | 21.2181531 | 0.00002392 | 0.0002707 | -0.9356 | 57985.5 | 58937.0 | 16 |  | 0.08 |  |
| 0322+222 | 0322+222 | 1017 | 03 | 25 | 36.81436155 | +22 | 24 | 0.3654321 | 0.00000351 | 0.0000716 | -0.4130 | 53561.8 | 58937.1 | 135 | 0.29 | 0.29 | 1.01 |
| 0326+277 | 0326+277 | 673 | 03 | 29 | 57.66940239 | +27 | 56 | 15.4993466 | 0.00000495 | 0.0000868 | -0.5233 | 54450.0 | 58937.1 | 94 | 0.04 | 0.07 |  |
| 0332-403 | P 0332-403 | 93 | 03 | 34 | 13.65446339 | -40 | 08 | 25.3983950 | 0.00000642 | 0.0000856 | -0.3573 | 53561.6 | 58937.9 | 87 |  | 0.22 |  |
| 0332+078 | 0332+078 | 1449 | 03 | 34 | 53.31669458 | +08 | 00 | 14.4188573 | 0.00000419 | 0.0000843 | -0.5548 | 55304.8 | 58937.2 | 113 | 0.05 | 0.06 |  |
| 0334-546 | 0334-546 | 740 | 03 | 35 | 53.92481667 | -54 | 30 | 25.1151007 | 0.00004777 | 0.0009482 | 0.2741 | 57272.7 | 58643.9 | 5 |  |  |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RADec Corr. | Observation EpochMJD |  | No. Obs. | Source Flux (Jy) |  | KStruct Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0333+321 | NRAO 140 | 94 | 03 | 36 | 30.10761408 | +32 | 18 | 29.3420263 | 0.00000393 | 0.0000699 | -0.3629 | 53644.2 | 58937.1 | 136 | 0.23 | 0.26 | 1.85 |
| 0334-131 | 0334-131 | 2559 | 03 | 36 | 35.03580596 | -13 | 02 | 4.6599907 | 0.00000488 | 0.0000937 | -0.5318 | 55227.9 | 58937.0 | 102 | 0.05 | 0.05 |  |
| 0336-019 | CTA 26 | 95 | 03 | 39 | 30.93778443 | -01 | 46 | 35.8043042 | 0.00000309 | 0.0000725 | -0.4068 | 53561.7 | 58937.1 | 161 | 0.31 | 0.33 | 2.67 |
| 0340+362 | J0343+3622 | 1019 | 03 | 43 | 28.95242002 | +36 | 22 | 12.4295319 | 0.00000535 | 0.0000932 | -0.2874 | 53644.2 | 58937.1 | 97 | 0.03 | 0.03 | 1.19 |
| 0339+683 | 0339+683 | 1452 | 03 | 44 | 41.44123389 | +68 | 27 | 47.8100967 | 0.00001322 | 0.0000632 | -0.0756 | 56053.3 | 58874.2 | 43 | 0.04 |  |  |
| 0342+147 | 0342+147 | 674 | 03 | 45 | 6.41652851 | +14 | 53 | 49.5580505 | 0.00000412 | 0.0000797 | -0.5408 | 53561.8 | 58937.1 | 121 | 0.04 | 0.08 |  |
| 0344+199 | 0344+199 | 2570 | 03 | 47 | 29.63783493 | +20 | 04 | 52.0964605 | 0.00367871 | 0.0414527 | -0.9981 | 58895.3 | 58895.3 | 1 |  | 0.02 |  |
| 0346-279 | 0346-279 | 1259 | 03 | 48 | 38.14454707 | -27 | 49 | 13.5660595 | 0.00000513 | 0.0000862 | -0.4419 | 53609.7 | 58937.0 | 98 |  | 0.38 | 2.15 |
| 0345+460 | 0345+460 | 1213 | 03 | 49 | 18.74159454 | +46 | 09 | 59.6577441 | 0.00000539 | 0.0000741 | -0.1659 | 53644.3 | 58874.2 | 102 | 0.06 | 0.09 | 1.96 |
| 0350+465 | 0350+465 | 1260 | 03 | 54 | 30.01167679 | +46 | 43 | 18.7497920 | 0.00000505 | 0.0000769 | 0.0800 | 53644.2 | 58874.2 | 102 | 0.06 | 0.06 | 1.75 |
| 0346+800 | $0346+800 \mathrm{~A}$ | 1214 | 03 | 54 | 46.12605518 | +80 | 09 | 28.8473450 | 0.00002266 | 0.0000620 | -0.0507 | 55304.7 | 58874.5 | 51 | 0.04 |  |  |
| 0354+231 | 0354+231 | 1022 | 03 | 57 | 21.60989896 | +23 | 19 | 53.8251776 | 0.00000365 | 0.0000735 | -0.4235 | 53644.3 | 58937.1 | 132 | 0.15 | 0.16 | 0.87 |
| 0358+040 | 0358+040 | 1262 | 04 | 01 | 19.91297328 | +04 | 13 | 34.4069431 | 0.00000317 | 0.0000731 | -0.4315 | 53609.6 | 58937.2 | 150 | 0.19 | 0.17 | 0.56 |
| 0358+210 | J0401+2110 | 1024 | 04 | 01 | 45.16609103 | +21 | 10 | 28.5867176 | 0.00000445 | 0.0000905 | -0.5147 | 53561.8 | 58937.1 | 115 | 0.05 | 0.04 | 1.07 |
| 0400+258 | CTD 26 | 100 | 04 | 03 | 5.58609368 | +26 | 00 | 1.5025808 | 0.00000467 | 0.0000888 | -0.4374 | 53644.3 | 58937.1 | 117 | 0.04 | 0.04 | 1.96 |
| 0402-362 | P 0402-362 | 102 | 04 | 03 | 53.74987985 | -36 | 05 | 1.9135850 | 0.00000517 | 0.0000833 | -0.3267 | 53561.7 | 58937.0 | 95 |  | 0.46 | 0 |
| 0403-132 | P 0403-13 | 103 | 04 | 05 | 34.00337938 | -13 | 08 | 13.6910559 | 0.00000382 | 0.0000825 | -0.4492 | 53561.7 | 58937.0 | 110 | 0.19 | 0.13 |  |
| 0405-385 | P 0405-385 | 104 | 04 | 06 | 59.03532675 | -38 | 26 | 28.0425146 | 0.00000612 | 0.0000857 | -0.3420 | 53609.6 | 58937.0 | 92 |  | 0.19 | 2.2 |
| 0405-331 | 0405-331 | 2592 | 04 | 07 | 33.91371201 | -33 | 03 | 46.3583648 | 0.00000756 | 0.0001022 | -0.5652 | 53609.6 | 58937.0 | 81 |  | 0.06 | 1.16 |
| 0405-123 | P 0405-12 | 105 | 04 | 07 | 48.43097367 | -12 | 11 | 36.6595566 | 0.00000398 | 0.0000857 | -0.4601 | 54966.7 | 58937.2 | 106 | 0.13 | 0.06 |  |
| 0406-127 | 0406-127 | 749 | 04 | 09 | 5.76971491 | -12 | 38 | 48.1439350 | 0.00000674 | 0.0001273 | -0.5816 | 53561.9 | 58937.2 | 84 | 0.04 | 0.03 |  |
| 0406+121 | GC 0406+12 | 107 | 04 | 09 | 22.00870493 | +12 | 17 | 39.8476878 | 0.00000572 | 0.0001040 | -0.6497 | 53561.8 | 58937.2 | 111 | 0.02 | 0.03 | 1.98 |
| 0409+229 | P 0409+22 | 109 | 04 | 12 | 43.66688534 | +23 | 05 | 5.4522237 | 0.00000490 | 0.0000890 | -0.5791 | 55304.7 | 58895.3 | 102 | 0.04 | 0.06 |  |
| 0414-189 | P 0414-189 | 112 | 04 | 16 | 36.54443575 | -18 | 51 | 8.3403888 | 0.00000458 | 0.0000858 | -0.4704 | 55228.0 | 58937.0 | 95 | 0.06 | 0.09 |  |
| 0415+398 | 0415+398 | 1465 | 04 | 19 | 22.54953709 | +39 | 55 | 28.9775296 | 0.00000488 | 0.0000756 | -0.3520 | 53644.3 | 58937.3 | 111 | 0.06 | 0.09 | 2.08 |
| 0420+022 | 0420+022 | 1263 | 04 | 22 | 52.21465201 | +02 | 19 | 26.9305986 | 0.00000382 | 0.0000809 | -0.5278 | 53609.7 | 58937.1 | 142 | 0.04 | 0.06 |  |
| 0420-014 | P 0420-01 | 116 | 04 | 23 | 15.80071895 | -01 | 20 | 33.0658128 | 0.00000289 | 0.0000699 | -0.3688 | 53561.8 | 58937.0 | 168 | 0.76 | 0.49 |  |
| 0420+417 | VRO 41.04.01 | 115 | 04 | 23 | 56.00981742 | +41 | 50 | 2.7129955 | 0.00000437 | 0.0000640 | -0.1466 | 53561.0 | 58937.3 | 119 | 0.21 | 0.20 |  |
| 0422-380 | 0422-380 | 750 | 04 | 24 | 42.24368116 | -37 | 56 | 20.7848082 | 0.00000577 | 0.0000848 | -0.3461 | 53609.6 | 58937.0 | 93 |  | 0.17 | 2.88 |
| 0422+004 | P 0422+00 | 118 | 04 | 24 | 46.84205557 | +00 | 36 | 6.3292229 | 0.00000344 | 0.0000856 | -0.4382 | 53568.6 | 58937.2 | 151 | 0.10 | 0.04 |  |
| 0425+048 | P 0425+048 | 121 | 04 | 27 | 47.57053896 | +04 | 57 | 8.3252206 | 0.00000364 | 0.0000790 | -0.4761 | 53561.9 | 58937.1 | 134 | 0.08 | 0.07 | 1.72 |
| 0426-380 | P 0426-380 | 122 | 04 | 28 | 40.42424822 | -37 | 56 | 19.5811386 | 0.00000502 | 0.0000824 | -0.3016 | 53609.5 | 58937.0 | 94 |  | 0.73 | 1.64 |
| 0427-502 | 0427-502 | 4160 | 04 | 28 | 42.63217427 | -50 | 05 | 34.2949475 | 0.00001501 | 0.0003999 | 0.1059 | 56394.5 | 58643.9 | 12 |  |  |  |
| 0426+273 | 0426+273 | 751 | 04 | 29 | 52.96078156 | +27 | 24 | 37.8762080 | 0.00000570 | 0.0001318 | -0.4551 | 53561.8 | 58937.3 | 91 | 0.02 | 0.02 | 0.92 |
| 0430-332 | 0430-332 | 2627 | 04 | 32 | 44.56421102 | -33 | 09 | 11.9313408 | 0.00001066 | 0.0001315 | -0.6546 | 55451.5 | 58937.0 | 61 |  | 0.03 |  |
| 0430+052 | 3C 120 | 125 | 04 | 33 | 11.09557155 | +05 | 21 | 15.6194398 | 0.00000326 | 0.0000723 | -0.4380 | 53609.7 | 58937.2 | 146 | 0.21 | 0.20 | 2.89 |
| 0432-606 | 0432-606 | 2628 | 04 | 33 | 34.10841962 | -60 | 30 | 13.7695448 | 0.00001424 | 0.0001506 | -0.0653 | 56394.8 | 58643.4 | 15 |  |  |  |
| 0434-188 | P 0434-188 | 126 | 04 | 37 | 1.48273814 | -18 | 44 | 48.6141068 | 0.00000623 | 0.0001090 | -0.6432 | 55738.9 | 58895.3 | 81 | 0.05 | 0.07 |  |
| 0437-719 | 0437-719 | 4161 | 04 | 37 | 4.37834517 | -71 | 48 | 20.1650852 | 0.00003091 | 0.0001350 | 0.3329 | 56297.7 | 58644.0 | 13 |  |  |  |
| 0436-129 | 0436-129 | 1477 | 04 | 38 | 35.02099607 | -12 | 51 | 3.3592429 | 0.00000392 | 0.0000836 | -0.4527 | 55228.0 | 58937.2 | 112 | 0.12 | 0.08 |  |
| 0438-436 | P 0438-43 | 127 | 04 | 40 | 17.17997229 | -43 | 33 | 8.6049246 | 0.00000662 | 0.0000855 | -0.2835 | 55793.7 | 58937.0 | 76 |  | 0.17 |  |
| 0441-699 | 0441-699 | 4162 | 04 | 40 | 47.75740634 | -69 | 52 | 18.0867053 | 0.00001986 | 0.0001189 | 0.0237 | 56297.7 | 58643.8 | 15 |  |  |  |
| 0440-520 | 0440-520 | 4163 | 04 | 41 | 58.27715876 | -51 | 54 | 54.1695433 | 0.00002849 | 0.0007127 | -0.1993 | 56394.5 | 58643.8 | 9 |  |  |  |
| 0442+389 | 0442+389 | 1481 | 04 | 46 | 11.49405138 | +39 | 00 | 17.0997751 | 0.00000712 | 0.0001836 | 0.0207 | 55304.7 | 58937.3 | 53 | 0.03 | 0.02 |  |
| 0446+112 | P 0446+11 | 131 | 04 | 49 | 7.67110701 | +11 | 21 | 28.5961527 | 0.00000312 | 0.0000688 | -0.4075 | 53561.8 | 58937.2 | 150 | 0.22 | 0.23 |  |
| 0454-810 | P 0454-81 | 756 | 04 | 50 | 5.44016698 | -81 | 01 | 2.2315987 | 0.00003158 | 0.0000705 | -0.0223 | 56275.6 | 58644.0 | 17 |  |  |  |
| 0447+227 | 0447+227 | 1486 | 04 | 50 | 51.94468297 | +22 | 49 | 5.8984514 | 0.00000881 | 0.0001404 | -0.7566 | 56087.9 | 58895.4 | 75 | 0.02 | 0.03 |  |
| 0446+595 | 0446+595 | 1264 | 04 | 51 | 18.72181723 | +59 | 35 | 32.1834655 | 0.00000906 | 0.0000899 | 0.1556 | 55227.1 | 58874.2 | 44 | 0.04 |  |  |
| 0450+013 | 0450+013 | 1487 | 04 | 53 | 2.23860934 | +01 | 28 | 35.6286456 | 0.00000388 | 0.0000872 | -0.4886 | 53644.3 | 58937.2 | 133 | 0.05 | 0.04 | 0.81 |
| 0454-234 | 0454-234 | 758 | 04 | 57 | 3.17920754 | -23 | 24 | 52.0205323 | 0.00000398 | 0.0000800 | -0.3853 | 53561.8 | 58937.2 | 119 | 0.19 | 0.51 | 1.88 |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RADec Corr. | $\begin{gathered} \hline \hline \text { Observation Epoch } \\ \text { MJD } \end{gathered}$ |  | No. Obs. | Source Flux (Jy) |  | K Struct Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0458-020 | P 0458-02 | 137 | 05 | 01 | 12.80988523 | -01 | 59 | 14.2566604 | 0.00000307 | 0.0000716 | -0.3883 | 53687.2 | 58937.1 | 158 | 0.48 | 0.42 |  |
| 0459+135 | P 0459+135 | 1031 | 05 | 02 | 33.21952678 | +13 | 38 | 10.9588467 | 0.00000431 | 0.0000819 | -0.5430 | 53852.1 | 58937.2 | 92 | 0.04 | 0.05 | 1.83 |
| 0459+252 | 0459+252 | 1493 | 05 | 02 | 58.47477521 | +25 | 16 | 25.2755639 | 0.00000391 | 0.0000748 | -0.4317 | 55262.8 | 58937.3 | 107 | 0.11 | 0.10 |  |
| 0502+049 | P 0502+049 | 142 | 05 | 05 | 23.18472173 | +04 | 59 | 42.7243673 | 0.00000325 | 0.0000729 | -0.4388 | 53561.9 | 58937.2 | 146 | 0.19 | 0.25 | 2.11 |
| 0507-611 | 0507-611 | 4164 | 05 | 07 | 54.67067741 | -61 | 04 | 43.1159066 | 0.00001519 | 0.0001918 | 0.0128 | 56395.6 | 58643.9 | 15 |  |  |  |
| 0506+056 | 0506+056 | 1265 | 05 | 09 | 25.96446844 | +05 | 41 | 35.3335855 | 0.00000355 | 0.0000812 | -0.4526 | 53603.5 | 58937.2 | 132 | 0.13 | 0.05 | 1.96 |
| 0506+101 | P 0506+101 | 677 | 05 | 09 | 27.45706800 | +10 | 11 | 44.6000129 | 0.00000377 | 0.0000781 | -0.5350 | 53560.9 | 58937.2 | 127 | 0.08 | 0.07 |  |
| 0507+179 | P 0507+17 | 678 | 05 | 10 | 2.36913236 | +18 | 00 | 41.5814660 | 0.00000312 | 0.0000666 | -0.3788 | 53561.9 | 58937.3 | 156 | 0.64 | 0.55 |  |
| 0508+138 | 0508+138 | 1033 | 05 | 11 | 38.31966670 | +13 | 57 | 19.1933279 | 0.00000515 | 0.0001007 | -0.5477 | 53561.8 | 58937.3 | 108 | 0.03 | 0.02 |  |
| 0511-220 | P 0511-220 | 143 | 05 | 13 | 49.11430386 | -21 | 59 | 16.0922671 | 0.00000488 | 0.0000893 | -0.5362 | 53561.8 | 58937.2 | 105 | 0.07 | 0.16 | 1.8 |
| 0510+559 | 0510+559 | 2677 | 05 | 14 | 18.69963124 | +56 | 02 | 11.0528688 | 0.00000692 | 0.0000831 | 0.1136 | 55304.7 | 58874.2 | 50 | 0.05 |  |  |
| 0517-726 | 0517-726 | 761 | 05 | 16 | 37.71908671 | -72 | 37 | 7.4657055 | 0.00002647 | 0.0001215 | 0.0162 | 56297.7 | 58643.8 | 14 |  |  |  |
| 0516-621 | 0516-621 | 762 | 05 | 16 | 44.92613213 | -62 | 07 | 5.3897019 | 0.00001623 | 0.0001345 | -0.1087 | 56297.7 | 58643.9 | 16 |  |  |  |
| 0515+208 | 0515+208 | 1034 | 05 | 18 | 3.82452152 | +20 | 54 | 52.4972850 | 0.00000488 | 0.0001035 | -0.5389 | 55304.7 | 58937.3 | 89 | 0.03 | 0.04 |  |
| 0520-165 | 0520-165 | 1506 | 05 | 22 | 44.65492859 | -16 | 27 | 52.4062292 | 0.00000896 | 0.0001734 | -0.6597 | 56801.9 | 58937.2 | 51 | 0.04 | 0.02 |  |
| 0524+034 | J0527+0331 | 1037 | 05 | 27 | 32.70543972 | +03 | 31 | 31.5164182 | 0.00000307 | 0.0000718 | -0.4273 | 53609.7 | 58937.2 | 150 | 0.21 | 0.18 | 0.82 |
| 0530-727 | P 0530-728 | 765 | 05 | 29 | 30.04215887 | -72 | 45 | 28.5076270 | 0.00001831 | 0.0001047 | -0.0849 | 56297.5 | 58643.9 | 16 |  |  |  |
| 0527-053 | 0527-053 | 1511 | 05 | 29 | 53.53350128 | -05 | 19 | 41.6175937 | 0.00000389 | 0.0000864 | -0.4965 | 55263.0 | 58937.2 | 116 | 0.07 | 0.05 |  |
| 0528+134 | P 0528+134 | 148 | 05 | 30 | 56.41674390 | +13 | 31 | 55.1493189 | 0.00000307 | 0.0000675 | -0.4045 | 53561.0 | 58937.2 | 157 | 0.24 | 0.23 | 2.37 |
| 0529+483 | J0533+4822 | 1038 | 05 | 33 | 15.86580235 | +48 | 22 | 52.8076765 | 0.00000508 | 0.0000867 | 0.0930 | 55059.0 | 58874.5 | 54 | 0.14 |  |  |
| 0534-611 | 0534-611 | 767 | 05 | 34 | 35.77245528 | -61 | 06 | 7.0732952 | 0.00001795 | 0.0001533 | 0.1729 | 56394.5 | 58643.8 | 13 |  |  |  |
| 0534-340 | 0534-340 | 1040 | 05 | 36 | 28.43234428 | -34 | 01 | 11.4687862 | 0.00000598 | 0.0000887 | -0.4616 | 53609.6 | 58937.0 | 93 |  | 0.11 | 1.41 |
| 0537-441 | P 0537-441 | 149 | 05 | 38 | 50.36154162 | -44 | 05 | 8.9396960 | 0.00001017 | 0.0001025 | -0.4571 | 53561.8 | 58937.0 | 93 |  | 0.21 | 2.33 |
| 0536+145 | 0536+145 | 679 | 05 | 39 | 42.36599636 | +14 | 33 | 45.5614785 | 0.00000336 | 0.0000722 | -0.4257 | 53561.8 | 58937.1 | 124 | 0.13 | 0.10 |  |
| 0539-543 | 0539-543 | 4165 | 05 | 40 | 45.84804042 | -54 | 18 | 22.0959566 | 0.00001032 | 0.0001927 | 0.2472 | 56394.5 | 58643.8 | 14 |  |  |  |
| 0544+273 | 0544+273 | 680 | 05 | 47 | 34.14893436 | +27 | 21 | 56.8424973 | 0.00000373 | 0.0000785 | -0.4056 | 53603.4 | 58937.3 | 133 | 0.10 | 0.07 | 0.79 |
| 0549-575 | 0549-575 | 2713 | 05 | 50 | 9.58017993 | -57 | 32 | 24.3965970 | 0.00001351 | 0.0001488 | -0.0314 | 56394.7 | 58643.8 | 14 |  |  |  |
| 0547+234 | 0547+234 | 1041 | 05 | 50 | 47.39090549 | +23 | 26 | 48.1770327 | 0.00000440 | 0.0001000 | -0.3742 | 53840.9 | 58937.3 | 96 | 0.03 | 0.03 | 1.88 |
| 0548+084 | 0548+084 | 1521 | 05 | 51 | 11.22934396 | +08 | 29 | 11.2218705 | 0.00000480 | 0.0001151 | -0.5626 | 55304.8 | 58937.2 | 92 | 0.05 | 0.02 |  |
| 0552+398 | DA 193 | 152 | 05 | 55 | 30.80562048 | +39 | 48 | 49.1650602 | 0.00000370 | 0.0000588 | -0.1748 | 53561.0 | 58937.3 | 151 | 0.28 | 0.28 | 2.29 |
| 0556+238 | 0556+238 | 681 | 05 | 59 | 32.03313591 | +23 | 53 | 53.9264309 | 0.00000419 | 0.0000927 | -0.3862 | 53644.3 | 58937.3 | 112 | 0.06 | 0.04 | 1.21 |
| 0601-706 | 0601-706 | 4166 | 06 | 01 | 11.24774293 | -70 | 36 | 8.7923992 | 0.00001927 | 0.0001134 | 0.1291 | 56297.7 | 58643.5 | 15 |  |  |  |
| 0600+177 | 0600+177 | 682 | 06 | 03 | 9.13027111 | +17 | 42 | 16.8103247 | 0.00000516 | 0.0000946 | -0.6343 | 55227.0 | 58937.3 | 100 | 0.03 | 0.04 |  |
| 0602-424 | 0602-424 | 2729 | 06 | 04 | 25.17463789 | -42 | 25 | 30.0936994 | 0.00000657 | 0.0000896 | -0.3787 | 55451.7 | 58937.0 | 81 |  | 0.12 |  |
| 0601+245 | 0601+245 | 1045 | 06 | 04 | 55.12143805 | +24 | 29 | 55.0365991 | 0.00000481 | 0.0000893 | -0.4300 | 53840.9 | 58937.3 | 100 | 0.04 | 0.04 | 2.46 |
| 0607-605 | 0607-605 | 4167 | 06 | 07 | 55.08668929 | -60 | 31 | 51.9927606 | 0.00001741 | 0.0001587 | 0.1623 | 56275.6 | 58643.9 | 14 |  |  |  |
| 0605-085 | P 0605-08 | 158 | 06 | 07 | 59.69922681 | -08 | 34 | 49.9784757 | 0.00000320 | 0.0000736 | -0.4054 | 53561.0 | 58937.2 | 136 | 0.29 | 0.41 |  |
| 0607-549 | 0607-549 | 4168 | 06 | 08 | 49.05958489 | -54 | 56 | 42.8838536 | 0.00001220 | 0.0001811 | -0.0052 | 56394.5 | 58643.8 | 15 |  |  |  |
| 0606-223 | P 0606-223 | 1526 | 06 | 08 | 59.68683046 | -22 | 20 | 20.9569149 | 0.00000502 | 0.0000862 | -0.4434 | 55451.7 | 58937.2 | 87 | 0.12 | 0.06 |  |
| 0607-157 | P 0607-15 | 160 | 06 | 09 | 40.94951614 | -15 | 42 | 40.6727999 | 0.00000352 | 0.0000766 | -0.4090 | 53560.9 | 58937.2 | 138 | 0.29 | 0.21 |  |
| 0611+131 | 0611+131 | 683 | 06 | 13 | 57.69275716 | +13 | 06 | 45.4006454 | 0.00000355 | 0.0000824 | -0.4826 | 53840.9 | 58937.2 | 117 | 0.19 | 0.06 | 1.7 |
| 0621-787 | 0621-787 | 2749 | 06 | 18 | 30.15877938 | -78 | 43 | 2.1412304 | 0.00004301 | 0.0001076 | 0.0525 | 56275.7 | 58643.9 | 17 |  |  |  |
| 0622-645 | 0622-645 | 4169 | 06 | 23 | 7.69631013 | -64 | 36 | 20.7229722 | 0.00003388 | 0.0003080 | 0.7751 | 56297.5 | 58643.4 | 14 |  |  |  |
| 0621+446 | 0621+446 | 2761 | 06 | 25 | 18.26539467 | +44 | 40 | 1.6261319 | 0.00000509 | 0.0000702 | -0.1682 | 55451.8 | 58937.3 | 100 | 0.08 | 0.07 | 1.64 |
| 0624-603 | 0624-603 | 4170 | 06 | 25 | 24.28948454 | -60 | 20 | 29.5081297 | 0.00006950 | 0.0008616 | -0.1781 | 56522.0 | 57229.8 | 2 |  |  |  |
| 0624-546 | 0624-546 | 4171 | 06 | 25 | 52.23068757 | -54 | 38 | 50.7070077 | 0.00002037 | 0.0004579 | -0.0079 | 56395.6 | 58643.9 | 13 |  |  |  |
| 0628+203 | 0628+203 | 2768 | 06 | 31 | 1.06256675 | +20 | 20 | 59.2108162 | 0.00000388 | 0.0000799 | -0.3956 | 55304.8 | 58937.3 | 98 | 0.08 | 0.06 |  |
| 0629-418 | 0629-418 | 778 | 06 | 31 | 11.99804887 | -41 | 54 | 26.9478713 | 0.00000776 | 0.0000933 | -0.4858 | 55451.7 | 58937.0 | 81 |  | 0.14 |  |
| 0633+595 | 0633+596 | 2780 | 06 | 38 | 2.87196343 | +59 | 33 | 22.2139094 | 0.00000764 | 0.0000816 | 0.2297 | 54820.1 | 58874.1 | 57 | 0.05 |  |  |
| 0639-032 | 0639-032 | 1267 | 06 | 41 | 51.13293821 | -03 | 20 | 48.5824774 | 0.00000322 | 0.0000729 | -0.4125 | 53609.7 | 58937.2 | 141 | 0.22 | 0.28 | 1.78 |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RADec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | KStructIndex |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0603+882 | 0603+882 | 1556 | 06 | 42 | 6.13545060 | +88 | 11 | 55.0155390 | 0.00011856 | 0.0000583 | -0.1127 | 56053.3 | 58874.2 | 48 | 0.04 |  |  |
| 0639+352 | 0639+352 | 1558 | 06 | 42 | 58.13962236 | +35 | 09 | 18.3788290 | 0.00000452 | 0.0000870 | -0.3590 | 55304.8 | 58937.3 | 100 | 0.05 | 0.04 | 2.83 |
| 0644-671 | 0644-671 | 4172 | 06 | 44 | 28.04404943 | -67 | 12 | 57.3585977 | 0.00002384 | 0.0001462 | -0.0607 | 56275.7 | 58643.4 | 14 |  |  |  |
| 0641+392 | 0641+393 | 1560 | 06 | 44 | 53.70958702 | +39 | 14 | 47.5334910 | 0.00000782 | 0.0001574 | -0.0527 | 55059.5 | 58937.3 | 64 | 0.02 | 0.02 |  |
| 0642+449 | OH 471 | 171 | 06 | 46 | 32.02600956 | +44 | 51 | 16.5900166 | 0.00000423 | 0.0000582 | -0.1094 | 53561.1 | 58937.3 | 140 | 0.23 | 0.25 | 2.34 |
| 0646-306 | P 0646-306 | 173 | 06 | 48 | 14.09644774 | -30 | 44 | 19.6601968 | 0.00000525 | 0.0000842 | -0.4139 | 53609.7 | 58937.2 | 91 |  | 0.13 | 2.82 |
| 0648-165 | 0648-165 | 782 | 06 | 50 | 24.58183574 | -16 | 37 | 39.7255212 | 0.00000360 | 0.0000767 | -0.3545 | 53560.9 | 58937.2 | 137 | 0.27 | 0.09 | 2.06 |
| 0654+244 | 0654+244 | 1053 | 06 | 57 | 5.67552605 | +24 | 23 | 55.3938278 | 0.00000396 | 0.0000758 | -0.4521 | 53840.8 | 58937.3 | 121 | 0.07 | 0.09 | 1.89 |
| 0656+082 | 0656+082 | 785 | 06 | 59 | 17.99601620 | +08 | 13 | 30.9536034 | 0.00001310 | 0.0002223 | -0.7917 | 55647.9 | 58937.3 | 46 | 0.02 | 0.02 |  |
| 0657+172 | 0657+172 | 684 | 07 | 00 | 1.52554597 | +17 | 09 | 21.7012162 | 0.00000336 | 0.0000715 | -0.4480 | 53561.1 | 58937.3 | 129 | 0.12 | 0.12 |  |
| 0700-465 | 0700-465 | 4069 | 07 | 01 | 34.54670729 | -46 | 34 | 36.6271659 | 0.00000786 | 0.0000955 | -0.4132 | 56297.5 | 58860.3 | 49 |  | 0.18 |  |
| 0700-197 | 0700-197 | 1576 | 07 | 02 | 42.90065693 | -19 | 51 | 22.0357288 | 0.00000382 | 0.0000780 | -0.3725 | 55451.7 | 58937.2 | 106 | 0.28 | 0.30 |  |
| 0707+476 | 0707+476 | 786 | 07 | 10 | 46.10489799 | +47 | 32 | 11.1424823 | 0.00000493 | 0.0000754 | 0.0323 | 53644.3 | 58874.3 | 86 | 0.10 | 0.09 | 1.9 |
| 0708+506 | 0708+506 | 1583 | 07 | 12 | 43.68361156 | +50 | 33 | 22.7070623 | 0.00000555 | 0.0000813 | 0.0397 | 55304.8 | 58874.0 | 49 | 0.11 |  |  |
| 0716+332 | 0716+332 | 1587 | 07 | 19 | 19.41969306 | +33 | 07 | 9.7083317 | 0.00000394 | 0.0000715 | -0.3358 | 55304.8 | 58937.3 | 111 | 0.12 | 0.09 |  |
| 0716+477 | 0716+477 | 1269 | 07 | 20 | 21.49777656 | +47 | 37 | 44.1248476 | 0.00000634 | 0.0001009 | -0.0289 | 54170.1 | 58874.0 | 61 | 0.04 | 0.06 | 1.63 |
| 0716+714 | 0716+714 | 788 | 07 | 21 | 53.44847989 | +71 | 20 | 36.3633665 | 0.00000909 | 0.0000461 | 0.0738 | 55059.0 | 58874.5 | 57 | 0.65 |  |  |
| 0721-071 | 0721-071 | 1270 | 07 | 24 | 17.29262901 | -07 | 15 | 20.3522496 | 0.00000332 | 0.0000761 | -0.3714 | 53609.8 | 58937.2 | 149 | 0.15 | 0.09 | 1.36 |
| 0722+145 | P 0722+145 | 685 | 07 | 25 | 16.80777438 | +14 | 25 | 13.7463996 | 0.00000343 | 0.0000692 | -0.4631 | 53560.9 | 58937.3 | 141 | 0.14 | 0.18 | 1.29 |
| 0723-008 | DW 0723-00 | 180 | 07 | 25 | 50.63997929 | -00 | 54 | 56.5448559 | 0.00000343 | 0.0000785 | -0.5624 | 53560.9 | 58937.3 | 122 | 0.25 | 0.69 |  |
| 0725+219 | 0725+219 | 1056 | 07 | 28 | 20.60830323 | +21 | 53 | 6.3901602 | 0.00000364 | 0.0000748 | -0.4332 | 54128.1 | 58937.3 | 119 | 0.12 | 0.11 | 1.97 |
| 0727-115 | P 0727-11 | 182 | 07 | 30 | 19.11246609 | -11 | 41 | 12.6007203 | 0.00000307 | 0.0000717 | -0.3310 | 53560.9 | 58937.2 | 161 | 0.50 | 0.20 |  |
| 0731+050 | J0733+0456 | 1058 | 07 | 33 | 57.45990075 | +04 | 56 | 14.4963945 | 0.00000322 | 0.0000706 | -0.4086 | 55263.0 | 58937.3 | 123 | 0.20 | 0.14 |  |
| 0736-770 | 0736-770 | 4173 | 07 | 34 | 43.41984545 | -77 | 11 | 13.4847663 | 0.00004831 | 0.0001402 | 0.0119 | 56297.6 | 58643.9 | 14 |  |  |  |
| 0735+178 | P 0735+17 | 190 | 07 | 38 | 7.39375852 | +17 | 42 | 18.9980402 | 0.00000413 | 0.0000777 | -0.5548 | 53561.0 | 58937.3 | 138 | 0.04 | 0.07 |  |
| 0738-674 | 0738-674 | 791 | 07 | 38 | 56.49623648 | -67 | 35 | 50.8263534 | 0.00003064 | 0.0002753 | 0.3393 | 56395.7 | 58643.1 | 11 |  |  |  |
| 0736+017 | P 0736+01 | 192 | 07 | 39 | 18.03390252 | +01 | 37 | 4.6175804 | 0.00000302 | 0.0000683 | -0.3840 | 53561.0 | 58937.3 | 156 | 0.32 | 0.46 |  |
| 0742-562 | 0742-562 | 4174 | 07 | 43 | 20.48510848 | -56 | 19 | 32.9585716 | 0.00001424 | 0.0002938 | 0.4012 | 56394.5 | 58644.0 | 13 |  |  |  |
| 0743-673 | 0743-673 | 2850 | 07 | 43 | 31.61176276 | -67 | 26 | 25.5468353 | 0.00004590 | 0.0001962 | 0.1833 | 56297.6 | 58643.3 | 10 |  |  |  |
| 0742+263 | 0742+263 | 4175 | 07 | 45 | 5.92252073 | +26 | 14 | 9.7707426 | 0.00000450 | 0.0001001 | -0.5524 | 56746.4 | 58937.3 | 69 | 0.06 | 0.05 |  |
| 0743-006 | P 0743-006 | 197 | 07 | 45 | 54.08227779 | -00 | 44 | 17.5407371 | 0.00000378 | 0.0000945 | -0.5349 | 53852.1 | 58937.3 | 110 | 0.10 | 0.05 | 3.16 |
| 0743+259 | GC 0743+25 | 198 | 07 | 46 | 25.87418727 | +25 | 49 | 2.1345976 | 0.00000387 | 0.0000774 | -0.4642 | 53561.0 | 58937.3 | 120 | 0.07 | 0.08 |  |
| 0745+241 | B2 0745+24 | 200 | 07 | 48 | 36.10929137 | +24 | 00 | 24.1098615 | 0.00000339 | 0.0000684 | -0.3826 | 53561.0 | 58937.3 | 147 | 0.16 | 0.16 | 1.97 |
| 0746+483 | 0746+483 | 1223 | 07 | 50 | 20.43636079 | +48 | 14 | 53.5566477 | 0.00000529 | 0.0000948 | 0.0631 | 53644.5 | 58874.3 | 72 | 0.07 |  | 2.31 |
| 0748+126 | P 0748+126 | 202 | 07 | 50 | 52.04573859 | +12 | 31 | 4.8280995 | 0.00000306 | 0.0000666 | -0.3836 | 53561.1 | 58937.3 | 150 | 0.23 | 0.23 | 1.69 |
| 0749+540 | 0749+540 | 793 | 07 | 53 | 1.38459321 | +53 | 52 | 59.6368411 | 0.00000543 | 0.0000788 | 0.0418 | 53568.2 | 58874.7 | 74 | 0.11 |  | 1.92 |
| 0752+258 | 0752+258 | 4176 | 07 | 55 | 37.03268889 | +25 | 42 | 39.0230548 | 0.00003675 | 0.0007897 | -0.7450 | 56892.9 | 57440.2 | 7 | 0.01 | 0.02 |  |
| 0754+100 | P 0754+100 | 206 | 07 | 57 | 6.64296009 | +09 | 56 | 34.8520925 | 0.00000310 | 0.0000723 | -0.4297 | 53561.0 | 58937.4 | 152 | 0.27 | 0.11 | 2.41 |
| 0759+183 | J0802+1809 | 1060 | 08 | 02 | 48.03197892 | +18 | 09 | 49.2492534 | 0.00000576 | 0.0001216 | -0.5268 | 53561.1 | 58937.2 | 94 | 0.03 | 0.03 | 1.72 |
| 0805-077 | P 0805-07 | 210 | 08 | 08 | 15.53602770 | -07 | 51 | 9.8865962 | 0.00000304 | 0.0000699 | -0.3151 | 53561.0 | 58937.2 | 159 | 0.40 | 0.29 |  |
| 0804+499 | OJ 508 | 795 | 08 | 08 | 39.66631454 | +49 | 50 | 36.5302304 | 0.00000488 | 0.0000791 | 0.0377 | 53603.4 | 58874.7 | 79 | 0.12 |  | 0.7 |
| 0805+410 | 0805+410 | 796 | 08 | 08 | 56.65206466 | +40 | 52 | 44.8889782 | 0.00000404 | 0.0000616 | -0.1974 | 53561.1 | 58937.3 | 134 | 0.20 | 0.30 | 1.18 |
| 0808+019 | P 0808+019 | 211 | 08 | 11 | 26.70731122 | +01 | 46 | 52.2200262 | 0.00000304 | 0.0000683 | -0.4150 | 53560.9 | 58937.3 | 158 | 0.32 | 0.36 | 0.95 |
| 0812+367 | 0812+367 | 797 | 08 | 15 | 25.94487377 | +36 | 35 | 15.1486716 | 0.00000425 | 0.0000734 | -0.3626 | 53644.5 | 58937.3 | 119 | 0.10 | 0.09 | 2.74 |
| 0814+425 | OJ 425 | 214 | 08 | 18 | 15.99962599 | +42 | 22 | 45.4149473 | 0.00000412 | 0.0000630 | -0.2022 | 53561.1 | 58895.5 | 138 | 0.11 | 0.14 | 1.49 |
| 0820+560 | 0820+560 | 702 | 08 | 24 | 47.23635929 | +55 | 52 | 42.6694233 | 0.00000605 | 0.0000721 | 0.0504 | 53644.5 | 58874.7 | 69 | 0.08 |  | 2.31 |
| 0821+394 | 0821+394 | 798 | 08 | 24 | 55.48386982 | +39 | 16 | 41.9040084 | 0.00000410 | 0.0000646 | -0.3032 | 53799.0 | 58937.3 | 134 | 0.13 | 0.14 | 0.92 |
| 0823+033 | P 0823+033 | 221 | 08 | 25 | 50.33835744 | +03 | 09 | 24.5199121 | 0.00000291 | 0.0000662 | -0.3642 | 53561.0 | 58937.3 | 168 | 0.31 | 0.23 | 1.59 |
| 0827+243 | B2 0827+24 | 224 | 08 | 30 | 52.08619864 | +24 | 10 | 59.8202812 | 0.00000335 | 0.0000673 | -0.3982 | 53561.0 | 58937.3 | 151 | 0.15 | 0.23 | 1.76 |
| 0834-201 | P 0834-20 | 804 | 08 | 36 | 39.21524080 | -20 | 16 | 59.5045304 | 0.00000408 | 0.0000781 | -0.3816 | 53609.8 | 58937.2 | 118 | 0.12 | 0.12 |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA- <br> Dec <br> Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | K Struct Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 0834+250 | OJ 259 | 1063 | 08 | 37 | 40.24569386 | +24 | 54 | 23.1215303 | 0.00000422 | 0.0000797 | -0.5325 | 53561.1 | 58937.3 | 123 | 0.06 | 0.11 | 1.95 |
| 0838+133 | 0838+133A | 1272 | 08 | 40 | 47.58841961 | +13 | 12 | 23.5637669 | 0.00000321 | 0.0000681 | -0.3859 | 53609.9 | 58937.2 | 144 | 0.12 | 0.15 |  |
| 0839+187 | GC 0839+18 | 234 | 08 | 42 | 5.09416288 | +18 | 35 | 40.9896135 | 0.00000411 | 0.0000977 | -0.4627 | 54449.3 | 58937.3 | 111 | 0.05 | 0.03 | 1.48 |
| 0838+456 | 0838+456 | 4177 | 08 | 42 | 15.35179180 | +45 | 25 | 44.1818261 | 0.00003659 | 0.0020294 | 0.5489 | 56907.5 | 57600.7 | 8 | 0.01 |  |  |
| 0841-607 | 0841-607 | 4178 | 08 | 42 | 26.56107452 | -60 | 53 | 50.4019259 | 0.00001330 | 0.0001321 | 0.2696 | 56297.7 | 58643.4 | 14 |  |  |  |
| 0843-547 | 0843-547 | 4179 | 08 | 45 | 2.48269838 | -54 | 58 | 8.5400453 | 0.00001517 | 0.0003558 | -0.0529 | 56275.6 | 58643.5 | 14 |  |  |  |
| 0844-652 | 0844-652 | 4180 | 08 | 45 | 11.33502254 | -65 | 27 | 23.1624951 | 0.00005056 | 0.0003704 | 0.0070 | 56521.9 | 57851.2 | 6 |  |  |  |
| 0844-557 | 0844-557 | 4181 | 08 | 45 | 49.67977079 | -55 | 55 | 26.7419664 | 0.00001498 | 0.0003097 | -0.2472 | 56394.7 | 58643.6 | 15 |  |  |  |
| 0845-051 | 0845-051 | 1651 | 08 | 47 | 58.72492092 | -05 | 20 | 33.9002583 | 0.00000453 | 0.0000900 | -0.5460 | 55451.9 | 58937.4 | 109 | 0.05 | 0.05 |  |
| 0847-354 | 0847-354 | 2944 | 08 | 49 | 45.62346954 | -35 | 41 | 1.2788264 | 0.00000646 | 0.0000881 | -0.4638 | 55178.5 | 58937.2 | 86 |  | 0.13 |  |
| 0847-120 | 0847-120 | 1653 | 08 | 50 | 9.63562793 | -12 | 13 | 35.3762550 | 0.00000349 | 0.0000738 | -0.3492 | 55304.9 | 58937.4 | 118 | 0.17 | 0.19 |  |
| 0850-522 | 0850-522 | 4182 | 08 | 51 | 55.84912168 | -52 | 28 | 12.7798495 | 0.00001415 | 0.0002719 | -0.5504 | 56275.6 | 58643.9 | 15 |  |  |  |
| 0851-577 | 0851-577 | 4183 | 08 | 52 | 38.72588107 | -57 | 55 | 29.8092825 | 0.00001269 | 0.0001412 | -0.1963 | 56297.7 | 58643.9 | 15 |  |  |  |
| 0850+284 | 0850+284 | 4184 | 08 | 53 | 17.82844821 | +28 | 13 | 49.9975767 | 0.00000587 | 0.0001395 | -0.5621 | 56313.3 | 58874.2 | 63 | 0.03 | 0.03 |  |
| 0850+581 | 0850+581 | 808 | 08 | 54 | 41.99638768 | +57 | 57 | 29.9396821 | 0.00000819 | 0.0001180 | -0.0761 | 54128.1 | 58874.6 | 49 | 0.03 |  | 1.83 |
| 0851+202 | OJ 287 | 236 | 08 | 54 | 48.87493101 | +20 | 06 | 30.6407604 | 0.00000289 | 0.0000609 | -0.3420 | 53561.0 | 58937.3 | 162 | 0.76 | 1.31 |  |
| 0854-108 | 0854-108 | 1657 | 08 | 56 | 41.80415039 | -11 | 05 | 14.4305041 | 0.00000423 | 0.0000802 | -0.4166 | 55451.8 | 58937.4 | 106 | 0.07 | 0.09 |  |
| 0859-140 | P 0859-14 | 240 | 09 | 02 | 16.83090700 | -14 | 15 | 30.8758256 | 0.00000507 | 0.0000894 | -0.6064 | 54961.2 | 58937.4 | 114 | 0.03 | 0.12 |  |
| 0859+470 | OJ 499 | 239 | 09 | 03 | 3.99011560 | +46 | 51 | 4.1373099 | 0.00000455 | 0.0000699 | -0.0407 | 53561.2 | 58895.5 | 98 | 0.14 | 0.13 |  |
| 0901+697 | J0906+6930 | 4185 | 09 | 06 | 30.74875309 | +69 | 30 | 30.8285274 | 0.00002912 | 0.0001485 | 0.1147 | 56234.4 | 58453.2 | 18 | 0.01 |  |  |
| 0906+163 | 0906+163 | 1068 | 09 | 08 | 55.92534899 | +16 | 09 | 54.7636540 | 0.00000451 | 0.0000976 | -0.4991 | 55227.2 | 58937.3 | 111 | 0.03 | 0.03 | 1.15 |
| 0906+015 | P 0906+01 | 244 | 09 | 09 | 10.09160391 | +01 | 21 | 35.6173241 | 0.00000320 | 0.0000714 | -0.3837 | 53561.0 | 58937.2 | 136 | 0.13 | 0.13 |  |
| 0912+029 | P 0912+029 | 245 | 09 | 14 | 37.91343922 | +02 | 45 | 59.2460503 | 0.00000328 | 0.0000726 | -0.4197 | 53561.0 | 58937.2 | 144 | 0.10 | 0.11 | 1.6 |
| 0916+336 | 0916+336 | 2985 | 09 | 19 | 8.78715344 | +33 | 24 | 41.9433106 | 0.00000570 | 0.0001030 | -0.5429 | 55304.9 | 58874.3 | 95 | 0.03 | 0.04 |  |
| 0918-534 | 0918-534 | 4186 | 09 | 19 | 44.03956485 | -53 | 40 | 6.4466981 | 0.00004149 | 0.0004304 | 0.3196 | 56297.5 | 58643.5 | 7 |  |  |  |
| 0917+449 | 0917+449 | 810 | 09 | 20 | 58.45851157 | +44 | 41 | 53.9848165 | 0.00000436 | 0.0000580 | -0.1521 | 53561.2 | 58874.3 | 117 | 0.62 | 0.69 |  |
| 0917+624 | 0917+624 | 698 | 09 | 21 | 36.23112250 | +62 | 15 | 52.1801529 | 0.00000677 | 0.0000535 | -0.0288 | 53568.3 | 58874.5 | 80 | 0.19 |  | 2.14 |
| 0925-203 | P 0925-203 | 686 | 09 | 27 | 51.82431771 | -20 | 34 | 51.2329211 | 0.00000436 | 0.0000822 | -0.4468 | 54855.5 | 58937.4 | 109 | 0.15 | 0.12 |  |
| 0928+144 | 0928+144 | 3006 | 09 | 31 | 5.34243108 | +14 | 14 | 16.5185188 | 0.00000435 | 0.0000900 | -0.5913 | 55262.1 | 58937.3 | 107 | 0.04 | 0.06 |  |
| 0933+503 | J0937+5008 | 1072 | 09 | 37 | 12.32736210 | +50 | 08 | 52.0975630 | 0.00000517 | 0.0000786 | 0.0844 | 55262.2 | 58874.7 | 48 | 0.21 |  |  |
| 0936-069 | 0936-069 | 1696 | 09 | 38 | 56.10426864 | -07 | 08 | 0.6189234 | 0.00000452 | 0.0000879 | -0.5291 | 54820.3 | 58937.4 | 116 | 0.04 | 0.06 |  |
| 0938-133 | 0938-133 | 1698 | 09 | 41 | 2.54946903 | -13 | 35 | 50.9852200 | 0.00000496 | 0.0000928 | -0.5679 | 54820.3 | 58937.4 | 112 | 0.05 | 0.06 |  |
| 0941+522 | 0941+522 | 3022 | 09 | 44 | 52.15529725 | +52 | 02 | 34.2170769 | 0.00000549 | 0.0000778 | 0.1230 | 55227.1 | 58874.0 | 52 | 0.12 |  |  |
| 0944-469 | 0944-469 | 4187 | 09 | 46 | 51.33623580 | -47 | 07 | 59.2357933 | 0.00015605 | 0.0008969 | -0.7248 | 56899.8 | 57110.2 | 3 |  | 0.02 |  |
| 0945+408 | 0945+408 | 814 | 09 | 48 | 55.33815486 | +40 | 39 | 44.5869750 | 0.00000442 | 0.0000668 | -0.2332 | 54016.5 | 58895.5 | 128 | 0.07 | 0.09 | 2.81 |
| 0950+326 | 0950+326 | 4188 | 09 | 53 | 27.95659898 | +32 | 25 | 51.5207581 | 0.00000701 | 0.0001815 | -0.2219 | 56102.3 | 58895.5 | 52 | 0.02 | 0.02 |  |
| 0953+254 | OK 290 | 256 | 09 | 56 | 49.87540177 | +25 | 15 | 16.0499244 | 0.00000321 | 0.0000639 | -0.3454 | 53561.1 | 58937.3 | 155 | 0.24 | 0.17 | 2.23 |
| 0955+476 | 0955+476 | 820 | 09 | 58 | 19.67168001 | +47 | 25 | 7.8423257 | 0.00000497 | 0.0000690 | -0.0486 | 53603.5 | 58874.1 | 103 | 0.08 | 0.16 | 2.45 |
| 0955+326 | 3C 232 | 259 | 09 | 58 | 20.94964872 | +32 | 24 | 2.2094729 | 0.00000392 | 0.0000697 | -0.4288 | 53840.9 | 58874.3 | 134 | 0.09 | 0.13 | 2.13 |
| 1005-333 | 1005-333 | 1714 | 10 | 07 | 31.38742668 | -33 | 33 | 6.7167908 | 0.00000610 | 0.0000895 | -0.4765 | 55451.8 | 58937.2 | 85 |  | 0.11 |  |
| 1004+141 | GC 1004+14 | 261 | 10 | 07 | 41.49809242 | +13 | 56 | 29.6007489 | 0.00000429 | 0.0000856 | -0.5952 | 53561.1 | 58937.3 | 113 | 0.04 | 0.08 |  |
| 1005+066 | 1005+066 | 1273 | 10 | 08 | 0.81616011 | +06 | 21 | 21.2157291 | 0.00000364 | 0.0000817 | -0.5328 | 53609.9 | 58937.3 | 145 | 0.04 | 0.05 | 1.82 |
| 1012+232 | 1012+232 | 264 | 10 | 14 | 47.06547400 | +23 | 01 | 16.5705826 | 0.00000355 | 0.0000692 | -0.4202 | 53644.5 | 58895.4 | 141 | 0.07 | 0.09 | 2.66 |
| 1013+127 | 1013+127 | 2 | 10 | 15 | 44.02339435 | +12 | 27 | 7.0700754 | 0.00000382 | 0.0000808 | -0.5058 | 55262.1 | 58937.5 | 109 | 0.06 | 0.08 |  |
| 1015+057 | J1018+0530 | 1077 | 10 | 18 | 27.84829502 | +05 | 30 | 29.9617313 | 0.00000444 | 0.0000931 | -0.4763 | 55262.1 | 58937.3 | 100 | 0.04 | 0.03 |  |
| 1016-311 | 1016-311 | 1078 | 10 | 18 | 28.75347485 | -31 | 23 | 53.8500909 | 0.00000548 | 0.0000866 | -0.4515 | 53651.7 | 58937.2 | 91 |  | 0.20 | 2.3 |
| 1019+416 | 1019+416 | 1724 | 10 | 22 | 2.02352731 | +41 | 26 | 5.3725545 | 0.00000704 | 0.0001464 | -0.0349 | 53686.5 | 58874.2 | 79 | 0.02 | 0.02 |  |
| 1020+400 | 1020+400 | 826 | 10 | 23 | 11.56569813 | +39 | 48 | 15.3852333 | 0.00000436 | 0.0000677 | -0.3748 | 53610.1 | 58895.6 | 132 | 0.07 | 0.15 | 2.33 |
| 1020+292 | 1020+292 | 4189 | 10 | 23 | 24.04615855 | +28 | 56 | 50.9881034 | 0.00000442 | 0.0000854 | -0.4141 | 56031.5 | 58895.6 | 98 | 0.04 | 0.04 |  |
| 1022-665 | 1022-665 | 1274 | 10 | 23 | 43.53317742 | -66 | 46 | 48.7175915 | 0.00002015 | 0.0001725 | 0.0685 | 56297.5 | 58643.5 | 15 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RADec Corr. | Observation EpochMJD |  | No. Obs. | Source Flux (Jy) |  | KStructIndex |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1022+194 | GC 1022+19 | 274 | 10 | 24 | 44.80960390 | +19 | 12 | 20.4156724 | 0.00000494 | 0.0001119 | -0.3181 | 54121.3 | 58895.4 | 96 | 0.02 | 0.02 | 1.31 |
| 1022+237 | 1022+237 | 1727 | 10 | 24 | 53.63729478 | +23 | 32 | 33.9635114 | 0.00000406 | 0.0000821 | -0.4169 | 53644.6 | 58874.4 | 130 | 0.05 | 0.04 | 1.64 |
| 1023+131 | 1023+131 | 1079 | 10 | 25 | 56.28538095 | +12 | 53 | 49.0217291 | 0.00000388 | 0.0000796 | -0.5475 | 55262.1 | 58937.5 | 110 | 0.08 | 0.11 |  |
| 1026-084 | 1026-084 | 1731 | 10 | 28 | 38.79646237 | -08 | 44 | 38.5360731 | 0.00001146 | 0.0001906 | -0.7627 | 56312.4 | 58810.6 | 48 | 0.02 | 0.02 |  |
| 1032-199 | P 1032-199 | 829 | 10 | 35 | 2.15532268 | -20 | 11 | 34.3595921 | 0.00000467 | 0.0000892 | -0.4487 | 53651.8 | 58937.4 | 110 | 0.09 | 0.05 | 2.44 |
| 1034-293 | P 1034-293 | 278 | 10 | 37 | 16.07973569 | -29 | 34 | 2.8138398 | 0.00000495 | 0.0000827 | -0.4340 | 53561.0 | 58937.4 | 99 |  | 0.39 | 1.96 |
| 1036-529 | 1036-529 | 4080 | 10 | 38 | 40.65715595 | -53 | 11 | 43.2704976 | 0.00001089 | 0.0001654 | -0.2872 | 56275.6 | 58643.6 | 16 |  |  |  |
| 1038+064 | OL 064.5 | 279 | 10 | 41 | 17.16249977 | +06 | 10 | 16.9237409 | 0.00000313 | 0.0000722 | -0.4349 | 53561.1 | 58937.3 | 130 | 0.28 | 0.17 |  |
| 1039+811 | 1039+811 | 832 | 10 | 44 | 23.06262524 | +80 | 54 | 39.4430796 | 0.00001892 | 0.0000457 | 0.0850 | 53568.7 | 58874.7 | 78 | 0.21 |  | 2.04 |
| 1042+071 | P 1042+071 | 687 | 10 | 44 | 55.91124942 | +06 | 55 | 38.2624505 | 0.00000374 | 0.0000835 | -0.5240 | 53561.1 | 58937.5 | 126 | 0.05 | 0.07 |  |
| 1045-188 | 1045-188 | 833 | 10 | 48 | 6.62060415 | -19 | 09 | 35.7273154 | 0.00000405 | 0.0000795 | -0.4184 | 53561.1 | 58895.5 | 133 | 0.14 | 0.17 | 1.95 |
| 1046-409 | 1046-409 | 3084 | 10 | 48 | 38.27112537 | -41 | 14 | 0.1158896 | 0.00001052 | 0.0001046 | -0.5733 | 55793.9 | 58937.2 | 71 |  | 0.07 |  |
| 1048-313 | P 1048-313 | 284 | 10 | 51 | 4.77751368 | -31 | 38 | 14.3080398 | 0.00001664 | 0.0001764 | -0.8775 | 53609.9 | 58937.4 | 62 |  | 0.04 | 3.06 |
| 1049-534 | 1049-534 | 4190 | 10 | 51 | 9.09986194 | -53 | 44 | 46.5437738 | 0.00002024 | 0.0003815 | -0.3463 | 56297.5 | 58643.6 | 12 |  |  |  |
| 1049+215 | P 1049+21 | 834 | 10 | 51 | 48.78908756 | +21 | 19 | 52.3136242 | 0.00000379 | 0.0000762 | -0.4010 | 53561.1 | 58895.6 | 127 | 0.06 | 0.03 |  |
| 1052+023 | 1052+023 | 4191 | 10 | 55 | 17.27242382 | +02 | 05 | 44.9020046 | 0.00001015 | 0.0002314 | -0.6801 | 56893.1 | 58937.3 | 49 | 0.02 | 0.02 |  |
| 1053+704 | 1053+704 | 835 | 10 | 56 | 53.61753325 | +70 | 11 | 45.9156616 | 0.00000989 | 0.0000531 | 0.1305 | 55262.2 | 58874.5 | 48 | 0.19 |  |  |
| 1053+815 | 1053+815 | 836 | 10 | 58 | 11.53538221 | +81 | 14 | 32.6751566 | 0.00001944 | 0.0000453 | 0.0461 | 53567.8 | 58874.5 | 84 | 0.18 |  | 0.93 |
| 1055+018 | P 1055+01 | 287 | 10 | 58 | 29.60521402 | +01 | 33 | 58.8234582 | 0.00000283 | 0.0000655 | -0.3829 | 53561.0 | 58937.5 | 164 | 0.58 | 1.45 |  |
| 1059-631 | 1059-631 | 4192 | 11 | 01 | 54.37844990 | -63 | 25 | 22.5999300 | 0.00001764 | 0.0001351 | 0.0801 | 56275.7 | 58644.0 | 16 |  |  |  |
| 1101+384 | B2 1101+38 | 291 | 11 | 04 | 27.31396496 | +38 | 12 | 31.7988551 | 0.00000412 | 0.0000694 | -0.3058 | 53561.1 | 58937.6 | 140 | 0.08 | 0.08 | 1.53 |
| 1102-242 | 1102-242 | 3103 | 11 | 04 | 46.17642332 | -24 | 31 | 25.7999514 | 0.00000643 | 0.0000980 | -0.6048 | 55451.8 | 58895.4 | 80 | 0.06 | 0.09 |  |
| 1109+076 | 1109+076 | 1756 | 11 | 12 | 9.55849234 | +07 | 24 | 49.1176843 | 0.00004466 | 0.0007336 | -0.9125 | 56417.9 | 58362.9 | 13 |  | 0.01 |  |
| 1111+149 | GC 1111+14 | 296 | 11 | 13 | 58.69509206 | +14 | 42 | 26.9525368 | 0.00000415 | 0.0000898 | -0.5505 | 53561.1 | 58937.4 | 119 | 0.04 | 0.03 |  |
| 1115-122 | 1115-122 | 3120 | 11 | 18 | 17.14137356 | -12 | 32 | 54.2621379 | 0.00000430 | 0.0000857 | -0.5572 | 55178.6 | 58937.4 | 106 | 0.11 | 0.22 |  |
| 1116+128 | P 1116+12 | 297 | 11 | 18 | 57.30144103 | +12 | 34 | 41.7178680 | 0.00000310 | 0.0000707 | -0.3943 | 53561.1 | 58937.5 | 133 | 0.18 | 0.12 |  |
| 1119-069 | 1119-069 | 1758 | 11 | 21 | 42.12293529 | -07 | 11 | 6.3420238 | 0.00000507 | 0.0001029 | -0.6405 | 55262.2 | 58937.5 | 104 | 0.04 | 0.05 |  |
| 1123+264 | P 1123+26 | 299 | 11 | 25 | 53.71193584 | +26 | 10 | 19.9785717 | 0.00000384 | 0.0000744 | -0.3767 | 53561.2 | 58895.6 | 118 | 0.06 | 0.05 |  |
| 1124-186 | P 1124-186 | 300 | 11 | 27 | 4.39244026 | -18 | 57 | 17.4420248 | 0.00000377 | 0.0000801 | -0.4178 | 53561.0 | 58937.4 | 136 | 0.38 | 0.25 | 1.32 |
| 1128+385 | GC 1128+38 | 302 | 11 | 30 | 53.28262847 | +38 | 15 | 18.5467876 | 0.00000398 | 0.0000649 | -0.2896 | 53561.3 | 58874.2 | 139 | 0.19 | 0.21 | 1.93 |
| 1129-580 | 1129-580 | 1088 | 11 | 31 | 43.28807033 | -58 | 18 | 53.4427688 | 0.00001676 | 0.0001566 | -0.2260 | 56275.6 | 58643.1 | 14 |  |  |  |
| 1129-558 | 1129-558 | 4193 | 11 | 32 | 16.41468682 | -56 | 06 | 44.7350040 | 0.00001614 | 0.0001732 | 0.0348 | 56297.5 | 58643.6 | 14 |  |  |  |
| 1130+106 | 1130+106 | 4194 | 11 | 32 | 59.48879894 | +10 | 23 | 42.2133421 | 0.00000464 | 0.0000982 | -0.6337 | 56738.1 | 58937.5 | 75 | 0.03 | 0.05 |  |
| 1130+009 | P 1130+009 | 304 | 11 | 33 | 20.05579428 | +00 | 40 | 52.8369852 | 0.00000361 | 0.0000852 | -0.4581 | 53561.2 | 58937.5 | 120 | 0.06 | 0.06 |  |
| 1133-681 | 1133-681 | 4195 | 11 | 36 | 2.09814996 | -68 | 27 | 5.8226896 | 0.00002736 | 0.0001557 | 0.1588 | 56275.7 | 58643.4 | 16 |  |  |  |
| 1136-466 | 1136-466 | 4196 | 11 | 38 | 55.55906798 | -46 | 53 | 42.2605515 | 0.00001650 | 0.0001390 | -0.5226 | 56297.5 | 58810.6 | 38 |  | 0.03 |  |
| 1140+668 | 1140+668 | 3157 | 11 | 43 | 41.60336679 | +66 | 33 | 31.2295985 | 0.00001553 | 0.0001221 | 0.0550 | 56738.2 | 58874.7 | 39 | 0.02 |  |  |
| 1143-696 | 1143-696 | 3160 | 11 | 45 | 53.62413627 | -69 | 54 | 1.7977602 | 0.00002422 | 0.0001335 | 0.0927 | 56275.7 | 58643.4 | 15 |  |  |  |
| 1143-287 | 1143-287 | 1774 | 11 | 46 | 26.18858243 | -28 | 59 | 18.5052819 | 0.00000586 | 0.0000914 | -0.5199 | 55793.9 | 58937.4 | 81 |  | 0.13 |  |
| 1143-332 | 1143-332 | 1776 | 11 | 46 | 28.45175757 | -33 | 28 | 42.6327697 | 0.00000838 | 0.0001099 | -0.6077 | 55863.7 | 58937.4 | 71 |  | 0.04 |  |
| 1144+402 | 1144+402 | 699 | 11 | 46 | 58.29792943 | +39 | 58 | 34.3044651 | 0.00000373 | 0.0000580 | -0.2024 | 53561.3 | 58937.6 | 147 | 0.37 | 0.43 | 1.09 |
| 1144-379 | P 1144-379 | 309 | 11 | 47 | 1.37069746 | -38 | 12 | 11.0240215 | 0.00000645 | 0.0000872 | -0.4200 | 53561.0 | 58937.4 | 90 |  | 0.17 | 2.06 |
| 1145-676 | 1145-676 | 4197 | 11 | 47 | 33.39950224 | -67 | 53 | 41.7699127 | 0.00001895 | 0.0001134 | -0.1604 | 56297.5 | 58643.5 | 15 |  |  |  |
| 1145-071 | 1145-071 | 689 | 11 | 47 | 51.55403930 | -07 | 24 | 41.1414232 | 0.00000374 | 0.0000778 | -0.4801 | 53561.1 | 58937.3 | 126 | 0.08 | 0.17 |  |
| 1147+245 | B2 1147+24 | 845 | 11 | 50 | 19.21219084 | +24 | 17 | 53.8350408 | 0.00000354 | 0.0000735 | -0.4144 | 53561.2 | 58937.6 | 137 | 0.10 | 0.09 | 2.18 |
| 1150-834 | 1150-834 | 4198 | 11 | 52 | 53.22191394 | -83 | 44 | 9.4406240 | 0.00008792 | 0.0001433 | 0.0087 | 56275.7 | 58643.8 | 17 |  |  |  |
| 1150+812 | 1150+812 | 847 | 11 | 53 | 12.49926436 | +80 | 58 | 29.1545534 | 0.00002041 | 0.0000458 | 0.1411 | 53798.7 | 58874.2 | 70 | 0.20 |  | 3.18 |
| 1150+497 | 4C 49.22 | 848 | 11 | 53 | 24.46666203 | +49 | 31 | 8.8301105 | 0.00000483 | 0.0000705 | -0.0010 | 53568.1 | 58874.5 | 74 | 0.20 |  | 2.33 |
| 1156-215 | J1159-2150 | 4199 | 11 | 59 | 10.78555162 | -21 | 50 | 4.6767294 | 0.00020901 | 0.0025205 | -0.9854 | 56893.0 | 58601.3 | 7 |  | 0.01 |  |
| 1156-214 | 1156-214 | 1784 | 11 | 59 | 21.43252539 | -21 | 42 | 44.9134664 | 0.00000859 | 0.0001260 | -0.6490 | 56711.3 | 58839.6 | 37 | 0.09 | 0.11 |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA- <br> Dec <br> Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | K Struct Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1156+295 | GC 1156+29 | 319 | 11 | 59 | 31.83392619 | +29 | 14 | 43.8266450 | 0.00000341 | 0.0000645 | -0.3750 | 53561.1 | 58937.6 | 157 | 0.47 | 0.48 | 1.23 |
| 1157+014 | 1157+014 | 4200 | 11 | 59 | 44.82785329 | +01 | 12 | 6.9836639 | 0.00001639 | 0.0003072 | -0.8150 | 56746.4 | 58937.4 | 29 | 0.02 | 0.02 |  |
| 1157-215 | 1157-215 | 4201 | 11 | 59 | 51.90595020 | -21 | 48 | 53.7055380 | 0.00001659 | 0.0002110 | -0.8798 | 56088.2 | 58839.6 | 41 | 0.05 | 0.05 |  |
| 1158+007 | 1158+007 | 1786 | 12 | 01 | 23.25078139 | +00 | 28 | 28.3155375 | 0.00000614 | 0.0001178 | -0.7147 | 55738.2 | 58937.5 | 92 | 0.02 | 0.03 |  |
| 1204-613 | 1204-613 | 4202 | 12 | 06 | 51.49646456 | -61 | 38 | 56.7597746 | 0.00002409 | 0.0001989 | 0.0010 | 56297.5 | 58643.6 | 13 |  |  |  |
| 1205-008 | 1205-008 | 1792 | 12 | 07 | 41.67761640 | -01 | 06 | 36.6902877 | 0.00000336 | 0.0000747 | -0.4186 | 55262.2 | 58937.5 | 116 | 0.07 | 0.11 |  |
| 1207-319 | 1207-319 | 1276 | 12 | 09 | 40.04460968 | -32 | 14 | 53.1078795 | 0.00001020 | 0.0001318 | -0.7366 | 53651.9 | 58937.4 | 69 |  | 0.05 | 2.01 |
| 1213-172 | P 1213-17 | 326 | 12 | 15 | 46.75175379 | -17 | 31 | 45.4034061 | 0.00000480 | 0.0000858 | -0.5405 | 53693.8 | 58937.4 | 110 | 0.08 | 0.14 |  |
| 1215+303 | B2 1215+30 | 328 | 12 | 17 | 52.08198330 | +30 | 07 | 0.6358474 | 0.00000391 | 0.0000737 | -0.4047 | 54961.3 | 58937.6 | 115 | 0.09 | 0.09 |  |
| 1215-002 | 1215-002 | 3210 | 12 | 17 | 58.72904472 | -00 | 29 | 46.2999746 | 0.00000366 | 0.0000858 | -0.5599 | 55262.2 | 58937.4 | 99 | 0.12 | 0.17 |  |
| 1219+044 | P 1219+04 | 336 | 12 | 22 | 22.54962749 | +04 | 13 | 15.7758755 | 0.00000296 | 0.0000682 | -0.4084 | 53561.2 | 58937.5 | 136 | 0.28 | 0.31 |  |
| 1222+037 | P 1222+037 | 337 | 12 | 24 | 52.42194493 | +03 | 30 | 50.2924528 | 0.00000309 | 0.0000705 | -0.4061 | 53561.1 | 58937.5 | 129 | 0.34 | 0.34 |  |
| 1221-829 | 1221-829 | 4203 | 12 | 24 | 54.38254141 | -83 | 13 | 10.1017829 | 0.00007179 | 0.0001502 | -0.1781 | 56275.7 | 58644.0 | 17 |  |  |  |
| 1222+216 | P 1222+21 | 1230 | 12 | 24 | 54.45842212 | +21 | 22 | 46.3884149 | 0.00000358 | 0.0000717 | -0.3326 | 55304.2 | 58937.6 | 109 | 0.06 | 0.05 |  |
| 1226-028 | 1226-028 | 855 | 12 | 28 | 36.91729095 | -03 | 04 | 39.3122446 | 0.00001885 | 0.0004632 | -0.6555 | 55227.3 | 57565.3 | 17 | 0.02 | 0.01 |  |
| 1227+255 | 1227+255 | 1097 | 12 | 30 | 14.08935918 | +25 | 18 | 7.1361482 | 0.00000368 | 0.0000705 | -0.3737 | 55304.2 | 58937.6 | 105 | 0.09 | 0.10 |  |
| $1236+077$ | P 1236+077 | 344 | 12 | 39 | 24.58833091 | +07 | 30 | 17.1888965 | 0.00000326 | 0.0000723 | -0.4549 | 53610.0 | 58937.6 | 150 | 0.06 | 0.17 |  |
| 1240-679 | 1240-679 | 4204 | 12 | 43 | 45.22001917 | -68 | 11 | 3.4326828 | 0.00003738 | 0.0002371 | -0.3710 | 56297.5 | 58643.4 | 12 |  |  |  |
| 1243-072 | 1243-072 | 690 | 12 | 46 | 4.23210470 | -07 | 30 | 46.5748428 | 0.00000307 | 0.0000724 | -0.3417 | 53610.0 | 58937.5 | 148 | 0.20 | 0.10 | 1.33 |
| 1244-255 | P 1244-255 | 350 | 12 | 46 | 46.80202077 | -25 | 47 | 49.2892318 | 0.00000493 | 0.0000838 | -0.4609 | 53561.1 | 58937.4 | 89 | 0.71 | 0.58 |  |
| 1245-062 | 1245-062 | 1308 | 12 | 48 | 22.97565941 | -06 | 32 | 9.8183809 | 0.00000374 | 0.0000864 | -0.4361 | 55730.9 | 58937.5 | 114 | 0.06 | 0.06 |  |
| 1249-673 | 1249-673 | 4205 | 12 | 52 | 43.21203096 | -67 | 37 | 38.7467002 | 0.00002248 | 0.0001452 | 0.2948 | 56275.7 | 58643.4 | 16 |  |  |  |
| 1252+119 | P 1252+11 | 351 | 12 | 54 | 38.25562808 | +11 | 41 | 5.8947804 | 0.00000323 | 0.0000705 | -0.3937 | 54961.3 | 58937.6 | 118 | 0.10 | 0.12 |  |
| 1251-713 | P 1251-71 | 862 | 12 | 54 | 59.92151948 | -71 | 38 | 18.4365884 | 0.00002119 | 0.0001020 | 0.0663 | 56275.7 | 58643.4 | 17 |  |  |  |
| 1253-055 | 3C 279 | 352 | 12 | 56 | 11.16657619 | -05 | 47 | 21.5253673 | 0.00000290 | 0.0000680 | -0.3001 | 55969.6 | 58937.5 | 113 | 3.25 | 1.01 |  |
| 1256-220 | 1256-220 | 1278 | 12 | 58 | 54.47876769 | -22 | 19 | 31.1252263 | 0.00000435 | 0.0000848 | -0.4161 | 53757.4 | 58937.5 | 100 | 0.22 | 0.16 | 1.92 |
| 1300+485 | 1300+485 | 3281 | 13 | 02 | 17.19609192 | +48 | 19 | 17.5745006 | 0.00000589 | 0.0001000 | -0.1053 | 55227.2 | 58874.5 | 55 | 0.05 |  |  |
| 1300-554 | 1300-554 | 4206 | 13 | 03 | 49.21590529 | -55 | 40 | 31.6080979 | 0.00001469 | 0.0001551 | -0.2486 | 56297.5 | 58643.1 | 13 |  |  |  |
| 1302-102 | P 1302-102 | 359 | 13 | 05 | 33.01501339 | -10 | 33 | 19.4285690 | 0.00000325 | 0.0000739 | -0.3375 | 53610.0 | 58937.5 | 146 | 0.32 | 0.19 | 2.34 |
| 1304-668 | 1304-668 | 4207 | 13 | 08 | 17.37545732 | -67 | 07 | 5.2305267 | 0.00002183 | 0.0001643 | -0.0168 | 56297.5 | 58643.9 | 15 |  |  |  |
| 1306+360 | 1306+360 | 1823 | 13 | 08 | 23.70914970 | +35 | 46 | 37.1639757 | 0.00000396 | 0.0000663 | -0.3213 | 55262.2 | 58937.6 | 103 | 0.34 | 0.22 |  |
| 1306-395 | 1306-395 | 1824 | 13 | 09 | 48.48831043 | -39 | 48 | 33.0862503 | 0.00000901 | 0.0001021 | -0.5730 | 55738.2 | 58937.4 | 76 |  | 0.08 |  |
| 1308+326 | B2 1308+32 | 361 | 13 | 10 | 28.66387494 | +32 | 20 | 43.7826827 | 0.00000343 | 0.0000620 | -0.3644 | 53561.2 | 58937.6 | 152 | 0.18 | 0.19 | 1.85 |
| 1307-556 | 1307-556 | 4208 | 13 | 10 | 43.35556974 | -55 | 52 | 11.5295797 | 0.00001229 | 0.0002169 | -0.2832 | 56395.5 | 58643.8 | 13 |  |  |  |
| 1308+554 | 1308+554 | 1279 | 13 | 11 | 3.21082395 | +55 | 13 | 54.3223296 | 0.00000751 | 0.0000966 | 0.0599 | 53727.5 | 58874.5 | 63 | 0.03 |  | 0.8 |
| 1310-041 | 1310-041 | 3300 | 13 | 12 | 50.90122621 | -04 | 24 | 49.8922013 | 0.00000342 | 0.0000767 | -0.4223 | 55647.2 | 58937.6 | 115 | 0.09 | 0.10 |  |
| 1312-533 | 1312-533 | 4209 | 13 | 15 | 4.18111785 | -53 | 34 | 35.8746196 | 0.00001261 | 0.0001995 | -0.4383 | 56297.5 | 58643.4 | 14 |  |  |  |
| 1313-333 | OP-322 | 363 | 13 | 16 | 7.98592592 | -33 | 38 | 59.1730621 | 0.00000561 | 0.0000852 | -0.4369 | 53561.1 | 58937.4 | 91 |  | 0.42 | 2.36 |
| 1315+346 | OP 326 | 364 | 13 | 17 | 36.49419533 | +34 | 25 | 15.9324645 | 0.00000385 | 0.0000717 | -0.2919 | 53561.2 | 58937.6 | 119 | 0.16 | 0.08 |  |
| 1315-058 | J1318-0607 | 4210 | 13 | 18 | 33.70947739 | -06 | 07 | 23.8211019 | 0.00002599 | 0.0004022 | -0.9535 | 58069.8 | 58937.5 | 21 | 0.01 | 0.04 |  |
| 1319-093 | 1319-093 | 3316 | 13 | 22 | 36.91262504 | -09 | 37 | 37.8005024 | 0.00000333 | 0.0000769 | -0.4102 | 55647.2 | 58937.5 | 117 | 0.08 | 0.07 |  |
| 1319-652 | 1319-652 | 4211 | 13 | 22 | 53.88803002 | -65 | 32 | 19.8920392 | 0.00003073 | 0.0004079 | -0.2393 | 56297.6 | 58643.4 | 10 |  |  |  |
| 1321-105 | 1321-105 | 3320 | 13 | 24 | 25.79310443 | -10 | 49 | 23.1345797 | 0.00000339 | 0.0000767 | -0.3802 | 55730.9 | 58937.6 | 116 | 0.20 | 0.19 |  |
| 1324+224 | 1324+224 | 704 | 13 | 27 | 0.86132674 | +22 | 10 | 50.1626199 | 0.00000315 | 0.0000667 | -0.4124 | 53561.2 | 58937.6 | 151 | 0.17 | 0.16 | 1.36 |
| 1346-109 | J1327-1336 | 4212 | 13 | 27 | 42.02367394 | -13 | 36 | 0.1604279 | 0.00002239 | 0.0003156 | -0.9280 | 57299.9 | 58937.5 | 32 | 0.02 | 0.03 |  |
| 1325+126 | 1325+126 | 1837 | 13 | 27 | 54.68300867 | +12 | 23 | 9.1779725 | 0.00000406 | 0.0000835 | -0.5041 | 55304.2 | 58937.6 | 103 | 0.05 | 0.05 |  |
| 1325-558 | 1325-558 | 1102 | 13 | 29 | 1.14488877 | -56 | 08 | 2.6659143 | 0.00001294 | 0.0001660 | -0.2785 | 56297.5 | 58643.5 | 13 |  |  |  |
| 1329-049 | 1329-049 | 3334 | 13 | 32 | 4.46468206 | -05 | 09 | 43.3062569 | 0.00000318 | 0.0000753 | -0.3967 | 55730.9 | 58937.6 | 117 | 0.16 | 0.14 |  |
| 1333-082 | 1333-082 | 3345 | 13 | 36 | 8.25982593 | -08 | 29 | 51.7983426 | 0.00000344 | 0.0000968 | -0.4147 | 55647.3 | 58937.5 | 108 | 0.14 | 0.04 |  |
| 1334-127 | DW 1335-12 | 376 | 13 | 37 | 39.78277100 | -12 | 57 | 24.6935739 | 0.00000301 | 0.0000714 | -0.3072 | 53561.2 | 58937.5 | 164 | 1.40 | 0.65 | 1.27 |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RADec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | K Struct Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1342+663 | GC 1342+663 | 382 | 13 | 44 | 8.67960510 | +66 | 06 | 11.6436553 | 0.00000929 | 0.0000582 | 0.0728 | 55227.2 | 58874.0 | 52 | 0.06 |  |  |
| 1341-171 | 1341-171 | 1851 | 13 | 44 | 14.40244615 | -17 | 23 | 40.3961315 | 0.00000588 | 0.0001080 | -0.6063 | 55738.3 | 58937.5 | 97 | 0.06 | 0.04 |  |
| 1345+289 | 1345+289 | 4089 | 13 | 48 | 4.34910484 | +28 | 40 | 25.3666186 | 0.00000953 | 0.0002494 | -0.4447 | 56907.7 | 58937.6 | 38 | 0.02 | 0.02 |  |
| 1346-109 | J1349-1110 | 4213 | 13 | 49 | 3.19303911 | -11 | 10 | 0.8193133 | 0.00000622 | 0.0001496 | -0.5567 | 57299.9 | 58937.5 | 52 | 0.04 | 0.02 |  |
| 1348+087 | 1348+087 | 1858 | 13 | 51 | 16.91906782 | +08 | 30 | 39.9032157 | 0.00000343 | 0.0001042 | -0.4029 | 55227.3 | 58895.6 | 104 | 0.12 | 0.03 |  |
| 1349-439 | P 1349-439 | 387 | 13 | 52 | 56.53493649 | -44 | 12 | 40.3881547 | 0.00001004 | 0.0001083 | -0.5304 | 55738.2 | 58810.8 | 67 |  | 0.04 |  |
| 1351-018 | P 1351-018 | 388 | 13 | 54 | 6.89532485 | -02 | 06 | 3.1906720 | 0.00000373 | 0.0000879 | -0.4452 | 53561.3 | 58937.6 | 129 | 0.04 | 0.03 |  |
| 1354+195 | P 1354+19 | 392 | 13 | 57 | 4.43665493 | +19 | 19 | 7.3724099 | 0.00000314 | 0.0000677 | -0.3775 | 53561.2 | 58937.6 | 132 | 0.23 | 0.24 |  |
| 1354-152 | OP-192 | 391 | 13 | 57 | 11.24498085 | -15 | 27 | 28.7871711 | 0.00000372 | 0.0000811 | -0.4061 | 53686.6 | 58895.5 | 135 | 0.13 | 0.10 | 0.91 |
| 1357+769 | 1357+769 | 874 | 13 | 57 | 55.37155018 | +76 | 43 | 21.0510322 | 0.00001563 | 0.0000502 | 0.1102 | 53567.8 | 58874.5 | 81 | 0.05 |  | 0.34 |
| 1402-144 | 1402-144 | 3385 | 14 | 05 | 32.86733364 | -14 | 40 | 18.2965890 | 0.00000902 | 0.0001769 | -0.7122 | 56088.3 | 58874.4 | 67 | 0.03 | 0.02 |  |
| 1404+286 | OQ 208 | 400 | 14 | 07 | 0.39436770 | +28 | 27 | 14.6885017 | 0.00002778 | 0.0004437 | -0.5404 | 56102.4 | 57327.5 | 9 | 0.02 | 0.03 |  |
| 1406-076 | P 1406-076 | 402 | 14 | 08 | 56.48119812 | -07 | 52 | 26.6668125 | 0.00000315 | 0.0000750 | -0.3876 | 53561.2 | 58937.6 | 144 | 0.17 | 0.26 | 1.64 |
| 1406-267 | 1406-267 | 1871 | 14 | 09 | 50.16976168 | -26 | 57 | 36.9811890 | 0.00000983 | 0.0001292 | -0.7137 | 53652.0 | 58937.5 | 64 |  | 0.04 | 2.33 |
| 1413+135 | P 1413+135 | 404 | 14 | 15 | 58.81752124 | +13 | 20 | 23.7127842 | 0.00000356 | 0.0000732 | -0.4972 | 53561.2 | 58937.6 | 125 | 0.09 | 0.21 |  |
| 1414-596 | 1414-596 | 4214 | 14 | 17 | 41.63601507 | -59 | 50 | 37.6089177 | 0.00002683 | 0.0002102 | -0.5782 | 56297.5 | 58643.5 | 14 |  |  |  |
| 1416-516 | 1416-516 | 4215 | 14 | 19 | 35.24524852 | -51 | 54 | 58.5700877 | 0.00001455 | 0.0003406 | -0.1062 | 56297.6 | 58643.4 | 12 |  |  |  |
| 1418+546 | GC 1418+54 | 408 | 14 | 19 | 46.59742332 | +54 | 23 | 14.7871478 | 0.00000563 | 0.0000657 | -0.1697 | 53841.1 | 58874.5 | 72 | 0.07 |  | 2.6 |
| 1418-481 | 1418-481 | 4216 | 14 | 21 | 38.64649250 | -48 | 20 | 22.7969691 | 0.00001135 | 0.0002936 | -0.5147 | 56297.6 | 58643.4 | 13 |  |  |  |
| 1419-229 | 1419-229 | 4091 | 14 | 22 | 37.10634788 | -23 | 08 | 30.1362250 | 0.00001095 | 0.0001511 | -0.8024 | 57299.9 | 58937.5 | 37 | 0.06 | 0.09 |  |
| $1424+240$ | $1424+240$ | 881 | 14 | 27 | 0.39179028 | +23 | 48 | 0.0374014 | 0.00000388 | 0.0000858 | -0.4443 | 55227.4 | 58937.6 | 103 | 0.07 | 0.04 |  |
| 1424-418 | P 1424-41 | 409 | 14 | 27 | 56.29753776 | -42 | 06 | 19.4380426 | 0.00000690 | 0.0000876 | -0.3932 | 54855.5 | 58937.4 | 75 |  | 0.61 |  |
| 1428+422 | $1428+422$ | 883 | 14 | 30 | 23.74165309 | +42 | 04 | 36.4914028 | 0.00000844 | 0.0001361 | -0.1836 | 57985.2 | 58937.6 | 28 | 0.04 | 0.03 |  |
| 1429+249 | 1429+249 | 4217 | 14 | 31 | 25.88471993 | +24 | 42 | 20.7047784 | 0.00000918 | 0.0001755 | -0.6539 | 57300.1 | 58937.6 | 42 | 0.02 | 0.02 |  |
| 1424-834 | 1424-834 | 4218 | 14 | 33 | 28.43284145 | -83 | 41 | 8.7106584 | 0.00007077 | 0.0001095 | 0.1202 | 56275.7 | 58643.9 | 18 |  |  |  |
| 1435-218 | P 1435-218 | 887 | 14 | 38 | 9.46939162 | -22 | 04 | 54.7488370 | 0.00000563 | 0.0000931 | -0.5312 | 53652.0 | 58895.7 | 97 | 0.10 | 0.10 | 1.72 |
| 1437+374 | 1437+374 | 4219 | 14 | 39 | 20.57787304 | +37 | 12 | 2.8362129 | 0.00001964 | 0.0003989 | -0.7150 | 56893.2 | 58846.6 | 29 | 0.01 | 0.02 |  |
| 1437-153 | 1437-153 | 3423 | 14 | 39 | 56.87205401 | -15 | 31 | 50.5552553 | 0.00000489 | 0.0000985 | -0.5431 | 53610.1 | 58895.7 | 119 | 0.06 | 0.05 | 1.32 |
| 1438-151 | J1441-1523 | 4220 | 14 | 41 | 45.41724893 | -15 | 23 | 36.2656586 | 0.00000732 | 0.0001309 | -0.7305 | 56053.1 | 58895.7 | 78 | 0.03 | 0.03 |  |
| 1445-161 | P 1445-16 | 421 | 14 | 48 | 15.05414025 | -16 | 20 | 24.5492923 | 0.00000487 | 0.0000964 | -0.5636 | 54961.4 | 58895.7 | 103 | 0.04 | 0.08 |  |
| 1448+762 | 1448+762 | 888 | 14 | 48 | 28.77914823 | +76 | 01 | 11.5973585 | 0.00001398 | 0.0000494 | -0.0669 | 55227.3 | 58874.6 | 53 | 0.17 |  |  |
| 1451+270 | 1451+270B | 4221 | 14 | 53 | 53.60066004 | +26 | 48 | 33.4096306 | 0.00000399 | 0.0000816 | -0.4796 | 55304.2 | 58937.6 | 104 | 0.07 | 0.04 |  |
| 1451-375 | P 1451-375 | 423 | 14 | 54 | 27.40974214 | -37 | 47 | 33.1449766 | 0.00000800 | 0.0000943 | -0.4847 | 53651.9 | 58937.4 | 78 |  | 0.12 | 1.83 |
| 1454-060 | 1454-060 | 4222 | 14 | 56 | 41.39253448 | -06 | 17 | 43.2022419 | 0.00004352 | 0.0008376 | -0.8095 | 56893.1 | 58741.1 | 7 | 0.01 | 0.01 |  |
| 1458+718 | 3C 309.1 | 426 | 14 | 59 | 7.58397559 | +71 | 40 | 19.8667587 | 0.00005499 | 0.0003938 | -0.2018 | 56011.3 | 56234.7 | 4 |  |  |  |
| 1456-179 | J1459-1810 | 4223 | 14 | 59 | 28.76315543 | -18 | 10 | 45.1865241 | 0.00005415 | 0.0008326 | -0.9665 | 57299.9 | 58741.1 | 17 | 0.02 | 0.02 |  |
| 1459+480 | 1459+480 | 890 | 15 | 00 | 48.65424547 | +47 | 51 | 15.5381126 | 0.00000544 | 0.0000972 | 0.1097 | 53727.5 | 58874.6 | 72 | 0.04 |  | 1.94 |
| 1459-149 | 1459-149 | 1907 | 15 | 02 | 25.01742416 | -15 | 08 | 52.5197354 | 0.00001104 | 0.0002059 | -0.7093 | 58028.0 | 58937.5 | 26 | 0.03 | 0.03 |  |
| 1502+106 | OR 103 | 428 | 15 | 04 | 24.97978723 | +10 | 29 | 39.1983334 | 0.00000292 | 0.0000685 | -0.4214 | 53561.2 | 58937.5 | 153 | 0.68 | 0.67 | 2.15 |
| 1502+036 | P 1502+036 | 429 | 15 | 05 | 6.47717001 | +03 | 26 | 30.8123155 | 0.00000338 | 0.0000771 | -0.5032 | 53610.1 | 58937.6 | 144 | 0.12 | 0.14 | 1.54 |
| 1504+377 | 1504+377 | 891 | 15 | 06 | 9.52998982 | +37 | 30 | 51.1323966 | 0.00000400 | 0.0000686 | -0.2844 | 53644.6 | 58937.6 | 129 | 0.18 | 0.08 | 2.34 |
| 1505+428 | 1505+428 | 1236 | 15 | 06 | 53.04186528 | +42 | 39 | 23.0354951 | 0.00000423 | 0.0000631 | -0.2417 | 53609.3 | 58937.6 | 139 | 0.17 | 0.12 | 2.22 |
| 1505-156 | 1505-156 | 1911 | 15 | 08 | 35.70161221 | -15 | 48 | 31.5322747 | 0.00001260 | 0.0001979 | -0.8404 | 55969.6 | 58937.5 | 62 | 0.03 | 0.02 |  |
| 1510-089 | P 1510-08 | 433 | 15 | 12 | 50.53293360 | -09 | 05 | 59.8300866 | 0.00000317 | 0.0000753 | -0.3940 | 53561.2 | 58937.5 | 136 | 0.75 | 0.70 |  |
| 1509-564 | 1509-564 | 4224 | 15 | 12 | 55.81934038 | -56 | 40 | 30.6429789 | 0.00001875 | 0.0002233 | -0.4363 | 56297.6 | 58643.5 | 13 |  |  |  |
| 1511-100 | P 1511-100 | 434 | 15 | 13 | 44.89343105 | -10 | 12 | 0.2652560 | 0.00000350 | 0.0000795 | -0.4481 | 53610.1 | 58937.5 | 146 | 0.17 | 0.16 | 2.08 |
| 1511-210 | P 1511-210 | 3463 | 15 | 13 | 56.97011435 | -21 | 14 | 57.5073585 | 0.00000822 | 0.0001284 | -0.7179 | 55738.3 | 58895.6 | 67 | 0.07 | 0.05 |  |
| 1511-558 | 1511-558 | 4095 | 15 | 15 | 12.67285338 | -55 | 59 | 32.8384635 | 0.00001707 | 0.0002134 | -0.5688 | 56297.6 | 58643.8 | 12 |  |  |  |
| 1514+004 | 1514+004 | 1283 | 15 | 16 | 40.21906259 | +00 | 15 | 1.9088003 | 0.00000339 | 0.0000783 | -0.4986 | 53610.1 | 58937.5 | 143 | 0.15 | 0.20 | 2.35 |
| 1514+197 | GC 1514+19 | 437 | 15 | 16 | 56.79617471 | +19 | 32 | 12.9918514 | 0.00000319 | 0.0000705 | -0.4351 | 53610.3 | 58937.6 | 141 | 0.14 | 0.13 | 1.62 |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RADec Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | K Struct Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1514-241 | P 1514-24 | 438 | 15 | 17 | 41.81312602 | -24 | 22 | 19.4764120 | 0.00000487 | 0.0000873 | -0.4551 | 53610.0 | 58937.4 | 107 | 0.35 | 0.41 |  |
| 1519-273 | P 1519-273 | 440 | 15 | 22 | 37.67597488 | -27 | 30 | 10.7857944 | 0.00000677 | 0.0001044 | -0.6277 | 53651.9 | 58937.5 | 84 |  | 0.09 | 1.11 |
| 1528-684 | 1528-684 | 4225 | 15 | 33 | 34.48846258 | -68 | 37 | 19.6523296 | 0.00003770 | 0.0002233 | -0.0147 | 56297.5 | 58643.5 | 14 |  |  |  |
| 1530-536 | 1530-536 | 4226 | 15 | 34 | 20.66067823 | -53 | 51 | 13.4230095 | 0.00001445 | 0.0002291 | -0.6018 | 56297.6 | 58643.5 | 13 |  |  |  |
| 1532+016 | P 1532+01 | 442 | 15 | 34 | 52.45367735 | +01 | 31 | 4.2062956 | 0.00000365 | 0.0000809 | -0.5189 | 53561.3 | 58937.7 | 128 | 0.06 | 0.09 |  |
| 1532-473 | 1532-473 | 4227 | 15 | 35 | 52.24146806 | -47 | 30 | 22.9775736 | 0.00001273 | 0.0001464 | -0.5867 | 56394.5 | 58810.8 | 26 |  | 0.18 |  |
| 1535+231 | 1535+231 | 4228 | 15 | 37 | 14.50087138 | +23 | 00 | 40.5110923 | 0.00000467 | 0.0001143 | -0.4409 | 56738.2 | 58874.6 | 70 | 0.04 | 0.02 |  |
| 1534-152 | 1534-152 | 1931 | 15 | 37 | 41.57308823 | -15 | 27 | 12.4989274 | 0.00001454 | 0.0002540 | -0.8156 | 56102.3 | 58874.5 | 40 | 0.03 | 0.02 |  |
| 1538+477 | 1538+477 | 4229 | 15 | 39 | 34.81039161 | +47 | 35 | 31.2641596 | 0.00000544 | 0.0000972 | -0.1154 | 56907.8 | 58874.6 | 43 | 0.08 | 0.06 |  |
| 1538+149 | GC 1538+14 | 444 | 15 | 40 | 49.49153116 | +14 | 47 | 45.8845451 | 0.00000344 | 0.0000769 | -0.5034 | 53561.3 | 58937.7 | 119 | 0.10 | 0.12 |  |
| 1544-638 | 1544-638 | 4230 | 15 | 48 | 30.39620045 | -64 | 01 | 34.8004002 | 0.00001846 | 0.0001670 | -0.0095 | 56297.6 | 58643.4 | 16 |  |  |  |
| 1546+027 | P 1546+027 | 446 | 15 | 49 | 29.43685171 | +02 | 37 | 1.1631412 | 0.00000300 | 0.0000733 | -0.4229 | 53561.3 | 58937.6 | 150 | 0.60 | 0.66 | 1.64 |
| 1548+056 | DW 1548+05 | 448 | 15 | 50 | 35.26924885 | +05 | 27 | 10.4478522 | 0.00000307 | 0.0000739 | -0.4555 | 53603.9 | 58937.7 | 147 | 0.30 | 0.19 | 2.95 |
| 1550-242 | 1550-242 | 3496 | 15 | 53 | 31.62780619 | -24 | 22 | 6.0363232 | 0.00000502 | 0.0000910 | -0.4507 | 55451.1 | 58937.5 | 92 | 0.20 | 0.36 |  |
| 1555+001 | DW 1555+00 | 452 | 15 | 57 | 51.43398771 | -00 | 01 | 50.4141951 | 0.00000361 | 0.0000841 | -0.5621 | 53561.3 | 58937.5 | 120 | 0.06 | 0.11 |  |
| 1556+335 | 1556+335 | 4231 | 15 | 58 | 55.18629467 | +33 | 23 | 18.6064088 | 0.00000890 | 0.0004240 | -0.1204 | 56738.2 | 58874.6 | 32 | 0.02 | 0.01 |  |
| 1556-580 | 1556-580 | 4232 | 16 | 00 | 12.37742984 | -58 | 11 | 2.9688013 | 0.00002253 | 0.0002330 | -0.5603 | 56297.6 | 58643.8 | 16 |  |  |  |
| 1600+335 | B2 1600+33 | 455 | 16 | 02 | 7.26352144 | +33 | 26 | 53.0741145 | 0.00000498 | 0.0001055 | -0.3668 | 54961.6 | 58937.7 | 93 | 0.04 | 0.03 |  |
| 1602-115 | 1602-115 | 1955 | 16 | 05 | 17.53165208 | -11 | 39 | 26.8313458 | 0.00000378 | 0.0000859 | -0.4897 | 55059.0 | 58937.6 | 116 | 0.19 | 0.14 |  |
| 1604-333 | P 1604-333 | 457 | 16 | 07 | 34.76231577 | -33 | 31 | 8.9136991 | 0.00000961 | 0.0001149 | -0.6861 | 54855.7 | 58937.5 | 71 |  | 0.10 |  |
| 1606+106 | P 1606+10 | 458 | 16 | 08 | 46.20319262 | +10 | 29 | 7.7755675 | 0.00000311 | 0.0000739 | -0.4351 | 53561.3 | 58937.7 | 140 | 0.20 | 0.14 |  |
| 1606-398 | 1606-398 | 1121 | 16 | 10 | 21.87908286 | -39 | 58 | 58.3294698 | 0.00000847 | 0.0001001 | -0.5444 | 55738.3 | 58937.5 | 69 |  | 0.15 |  |
| 1606-742 | 1606-742 | 4233 | 16 | 12 | 33.88503185 | -74 | 23 | 40.1432986 | 0.00003729 | 0.0002156 | 0.2242 | 56297.7 | 58643.4 | 14 |  |  |  |
| 1611+343 | DA 406 | 460 | 16 | 13 | 41.06425811 | +34 | 12 | 47.9086730 | 0.00000348 | 0.0000658 | -0.3046 | 53561.4 | 58937.6 | 152 | 0.30 | 0.15 | 2.29 |
| 1611-710 | 1611-710 | 3523 | 16 | 16 | 30.64151245 | -71 | 08 | 31.4541112 | 0.00003394 | 0.0001803 | -0.3787 | 56297.7 | 58643.8 | 15 |  |  |  |
| 1614+051 | P 1614+051 | 461 | 16 | 16 | 37.55681921 | +04 | 59 | 32.7361754 | 0.00000559 | 0.0001099 | -0.6754 | 53561.3 | 58937.6 | 95 | 0.02 | 0.03 |  |
| 1614-195 | 1614-195 | 1962 | 16 | 17 | 27.09307145 | -19 | 41 | 32.0150324 | 0.00001364 | 0.0001892 | -0.8757 | 55738.3 | 58937.5 | 65 | 0.03 | 0.03 |  |
| 1617+229 | 1617+229 | 1123 | 16 | 19 | 14.82460569 | +22 | 47 | 47.8510618 | 0.00000400 | 0.0000830 | -0.5246 | 53644.8 | 58937.7 | 136 | 0.05 | 0.06 | 2.13 |
| 1619-680 | P 1619-680 | 901 | 16 | 24 | 18.43699315 | -68 | 09 | 12.4966056 | 0.00004437 | 0.0002736 | -0.2922 | 56297.5 | 58643.5 | 12 |  |  |  |
| 1622-253 | P 1622-253 | 465 | 16 | 25 | 46.89163384 | -25 | 27 | 38.3271599 | 0.00000584 | 0.0000956 | -0.5517 | 53610.1 | 58937.6 | 96 | 0.13 | 0.15 | 1.26 |
| 1622-297 | P 1622-29 | 466 | 16 | 26 | 6.02082830 | -29 | 51 | 26.9716330 | 0.00000678 | 0.0000995 | -0.5871 | 53610.1 | 58937.6 | 81 |  | 0.29 |  |
| 1624-617 | 1624-617 | 1126 | 16 | 28 | 54.68976426 | -61 | 52 | 36.3979771 | 0.00001828 | 0.0001358 | -0.2636 | 56297.6 | 58643.4 | 16 |  |  |  |
| 1636+473 | 1636+473 | 904 | 16 | 37 | 45.13057986 | +47 | 17 | 33.8310366 | 0.00000437 | 0.0000638 | -0.1809 | 53561.5 | 58895.9 | 102 | 0.22 | 0.17 |  |
| 1637+574 | P 1637+574 | 905 | 16 | 38 | 13.45632957 | +57 | 20 | 23.9789056 | 0.00000548 | 0.0000588 | -0.0911 | 53568.0 | 58874.6 | 81 | 0.22 |  | 1.96 |
| 1638+398 | NRAO 512 | 472 | 16 | 40 | 29.63279676 | +39 | 46 | 46.0282645 | 0.00000400 | 0.0000669 | -0.3362 | 53561.4 | 58937.7 | 138 | 0.09 | 0.13 | 1.88 |
| 1639-062 | 1639-062 | 1982 | 16 | 42 | 2.17771542 | -06 | 21 | 23.6952503 | 0.00000332 | 0.0000796 | -0.3993 | 55227.5 | 58937.7 | 119 | 0.16 | 0.19 |  |
| 1639-200 | 1639-200 | 1983 | 16 | 42 | 5.29085688 | -20 | 07 | 24.8494646 | 0.00001737 | 0.0002570 | -0.8747 | 56340.6 | 58852.6 | 39 | 0.03 | 0.02 |  |
| 1642+690 | 1642+690 | 907 | 16 | 42 | 7.84856536 | +68 | 56 | 39.7561745 | 0.00000885 | 0.0000536 | -0.0454 | 55227.2 | 58874.6 | 55 | 0.21 |  |  |
| 1642-645 | 1642-645 | 4234 | 16 | 47 | 37.74138361 | -64 | 38 | 0.2692176 | 0.00001699 | 0.0001328 | 0.0088 | 56297.7 | 58643.9 | 16 |  |  |  |
| 1647-296 | P 1647-296 | 477 | 16 | 50 | 39.54409355 | -29 | 43 | 46.9548846 | 0.00000650 | 0.0000983 | -0.5280 | 53561.3 | 58937.7 | 84 |  | 0.17 |  |
| 1650-157 | 1650-157 | 1989 | 16 | 53 | 34.20640734 | -15 | 51 | 29.8880012 | 0.00000964 | 0.0001745 | -0.7822 | 57299.2 | 58937.7 | 49 | 0.03 | 0.03 |  |
| 1652+398 | DA 426 | 479 | 16 | 53 | 52.21671218 | +39 | 45 | 36.6086180 | 0.00000436 | 0.0000767 | -0.3164 | 53561.5 | 58937.7 | 120 | 0.05 | 0.06 | 2.55 |
| 1655+077 | OS 092 | 480 | 16 | 58 | 9.01146467 | +07 | 41 | 27.5403815 | 0.00000300 | 0.0000721 | -0.4721 | 53561.3 | 58937.7 | 134 | 0.23 | 0.37 |  |
| 1657+265 | B2 1657+26 | 1133 | 16 | 59 | 24.14946945 | +26 | 29 | 36.9428996 | 0.00000393 | 0.0000816 | -0.4309 | 55304.2 | 58937.7 | 105 | 0.06 | 0.05 |  |
| 1657-261 | P 1657-261 | 484 | 17 | 00 | 53.15404312 | -26 | 10 | 51.7256238 | 0.00000564 | 0.0000943 | -0.5249 | 53610.1 | 58937.5 | 89 |  | 0.30 | 1.48 |
| 1657-562 | 1657-562 | 1287 | 17 | 01 | 44.85806370 | -56 | 21 | 55.9010007 | 0.00001813 | 0.0003055 | -0.4079 | 56297.8 | 58643.5 | 14 |  |  |  |
| 1659-621 | 1659-621 | 3579 | 17 | 03 | 36.54116485 | -62 | 12 | 40.0085649 | 0.00001226 | 0.0001110 | -0.1264 | 56297.6 | 58643.5 | 16 |  |  |  |
| 1705+018 | P 1705+018 | 485 | 17 | 07 | 34.41527327 | +01 | 48 | 45.6990832 | 0.00000325 | 0.0000805 | -0.4382 | 53644.8 | 58937.7 | 139 | 0.08 | 0.09 | 1.15 |
| 1708-250 | J1711-2509 | 4235 | 17 | 11 | 23.10222922 | -25 | 09 | 1.5628517 | 0.00001477 | 0.0002167 | -0.8542 | 58027.1 | 58937.7 | 20 | 0.08 | 0.10 |  |
| 1710-269 | 1710-269 | 3588 | 17 | 13 | 31.27558310 | -26 | 58 | 52.5268450 | 0.00001163 | 0.0001505 | -0.7661 | 54526.6 | 58937.6 | 50 |  | 0.08 | 3.34 |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA- <br> Dec <br> Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | K Struct Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1711-208 | 1711-208 | 2006 | 17 | 14 | 32.51319684 | -20 | 53 | 54.2929473 | 0.00029076 | 0.0039601 | -0.9852 | 56697.8 | 58601.5 | 4 |  | 0.01 |  |
| 1717+178 | GC 1717+17 | 489 | 17 | 19 | 13.04849600 | +17 | 45 | 6.4370987 | 0.00000333 | 0.0000758 | -0.4688 | 53561.4 | 58937.6 | 137 | 0.18 | 0.13 | 2.22 |
| 1717-618 | 1717-618 | 4236 | 17 | 21 | 39.01655460 | -61 | 54 | 43.0182873 | 0.00002137 | 0.0001661 | -0.1672 | 56297.6 | 58643.5 | 14 |  |  |  |
| 1718-259 | 1718-259 | 3600 | 17 | 21 | 55.97912834 | -25 | 58 | 40.6932977 | 0.00001077 | 0.0001460 | -0.7611 | 55451.2 | 58895.8 | 54 | 0.16 | 0.09 |  |
| 1722+119 | 1722+119 | 4237 | 17 | 25 | 4.34090070 | +11 | 52 | 15.4714874 | 0.00000575 | 0.0001283 | -0.6362 | 56738.4 | 58937.6 | 72 | 0.02 | 0.02 |  |
| 1719-729 | 1719-729 | 4238 | 17 | 26 | 1.11240885 | -72 | 59 | 59.9921357 | 0.00003807 | 0.0001093 | -0.0239 | 56297.7 | 58643.5 | 15 |  |  |  |
| 1726+455 | 1726+455 | 912 | 17 | 27 | 27.65083800 | +45 | 30 | 39.7312059 | 0.00000427 | 0.0000603 | -0.1536 | 53561.5 | 58896.0 | 131 | 0.13 | 0.12 | 1.09 |
| 1726-269 | 1726-269 | 3611 | 17 | 29 | 8.22389661 | -26 | 57 | 50.6797367 | 0.00334888 | 0.0283390 | 0.9988 | 56710.6 | 56710.6 | 1 |  | 0.01 |  |
| 1730-130 | NRAO 530 | 495 | 17 | 33 | 2.70578367 | -13 | 04 | 49.5484608 | 0.00000327 | 0.0000789 | -0.3751 | 53561.3 | 58937.7 | 157 | 0.71 | 0.44 | 2.11 |
| 1732+389 | 1732+389 | 700 | 17 | 34 | 20.57856452 | +38 | 57 | 51.4429543 | 0.00000361 | 0.0000616 | -0.2701 | 53561.4 | 58937.8 | 154 | 0.38 | 0.30 | 1.87 |
| 1732-593 | 1732-593 | 4239 | 17 | 37 | 19.67254214 | -59 | 21 | 41.8919394 | 0.00001981 | 0.0002597 | 0.2112 | 56394.7 | 58643.6 | 12 |  |  |  |
| 1738+476 | OT 465 | 498 | 17 | 39 | 57.12910302 | +47 | 37 | 58.3614588 | 0.00000482 | 0.0000846 | 0.1665 | 53568.1 | 58874.7 | 73 | 0.07 |  | 1.97 |
| 1739-152 | 1739-152 | 2032 | 17 | 42 | 11.66283863 | -15 | 17 | 29.1586747 | 0.00000487 | 0.0000990 | -0.5655 | 55304.3 | 58937.7 | 98 | 0.10 | 0.07 |  |
| 1741-038 | P 1741-038 | 500 | 17 | 43 | 58.85613443 | -03 | 50 | 4.6170282 | 0.00000305 | 0.0000750 | -0.4257 | 53561.3 | 58937.7 | 159 | 0.86 | 0.39 | 2.11 |
| 1742-078 | 1742-078 | 1288 | 17 | 45 | 27.10494418 | -07 | 53 | 3.9483709 | 0.00000395 | 0.0000909 | -0.5107 | 53609.3 | 58937.7 | 132 | 0.07 | 0.06 | 2.48 |
| 1743+173 | GC 1743+17 | 501 | 17 | 45 | 35.20818972 | +17 | 20 | 1.4234151 | 0.00000361 | 0.0000841 | -0.4933 | 54961.6 | 58937.7 | 100 | 0.08 | 0.06 |  |
| 1745+624 | 1745+624 | 920 | 17 | 46 | 14.03414507 | +62 | 26 | 54.7382116 | 0.00001045 | 0.0000945 | -0.0218 | 55227.4 | 58853.1 | 48 | 0.02 |  |  |
| 1743-548 | 1743-548 | 4240 | 17 | 47 | 24.43509750 | -54 | 50 | 21.5766901 | 0.00002050 | 0.0003223 | 0.0824 | 56395.5 | 58643.9 | 13 |  |  |  |
| 1746+469 | 1746+470 | 921 | 17 | 47 | 26.64730530 | +46 | 58 | 50.9261572 | 0.00000468 | 0.0000691 | -0.0761 | 53727.6 | 58937.8 | 111 | 0.07 | 0.08 |  |
| 1749+701 | 1749+701 | 502 | 17 | 48 | 32.84037463 | +70 | 05 | 50.7687776 | 0.00000932 | 0.0000536 | -0.1144 | 54016.0 | 58874.7 | 64 | 0.15 |  | 3.27 |
| 1749+096 | OT 081 | 503 | 17 | 51 | 32.81858263 | +09 | 39 | 0.7281517 | 0.00000274 | 0.0000676 | -0.3974 | 53561.4 | 58937.6 | 165 | 1.15 | 0.94 | 1.11 |
| 1749-299 | 1749-299 | 3636 | 17 | 52 | 33.10597696 | -29 | 56 | 44.8816295 | 0.00446013 | 0.0735474 | -0.9998 | 56956.1 | 56956.1 | 1 |  | 0.02 |  |
| 1750-187 | 1750-187 | 3639 | 17 | 53 | 9.08862061 | -18 | 43 | 38.5232143 | 0.00000811 | 0.0001492 | -0.7069 | 56340.7 | 58937.7 | 61 | 0.05 | 0.03 |  |
| 1751+288 | GC 1751+28 | 504 | 17 | 53 | 42.47366093 | +28 | 48 | 4.9387656 | 0.00000335 | 0.0000720 | -0.3564 | 53604.1 | 58937.8 | 152 | 0.23 | 0.06 | 0.83 |
| 1754+155 | 1754+155 | 1141 | 17 | 56 | 53.10214792 | +15 | 35 | 20.8261824 | 0.00000328 | 0.0000754 | -0.4544 | 53609.3 | 58937.7 | 148 | 0.10 | 0.09 | 1.58 |
| 1803+784 | 1803+784 | 693 | 18 | 00 | 45.68395493 | +78 | 28 | 4.0184731 | 0.00001423 | 0.0000431 | -0.0187 | 53568.0 | 58874.6 | 82 | 0.55 |  | 2.16 |
| 1800+440 | 1800+440 | 925 | 18 | 01 | 32.31484485 | +44 | 04 | 21.9002097 | 0.00000406 | 0.0000597 | -0.1570 | 53561.5 | 58937.9 | 146 | 0.22 | 0.15 | 0.64 |
| 1759-396 | 1759-396 | 2044 | 18 | 02 | 42.68000019 | -39 | 40 | 7.9084829 | 0.00000838 | 0.0000997 | -0.5196 | 54366.1 | 58937.5 | 75 |  | 0.15 |  |
| 1802-381 | J1805-3805 | 4241 | 18 | 05 | 41.64819960 | -38 | 05 | 44.5250755 | 0.00004406 | 0.0003709 | -0.9548 | 57300.0 | 58937.5 | 23 |  | 0.05 |  |
| 1803-642 | 1803-642 | 4242 | 18 | 07 | 54.03268179 | -64 | 13 | 50.1143306 | 0.00001937 | 0.0001369 | 0.0697 | 56297.7 | 58643.9 | 17 |  |  |  |
| 1804-502 | 1804-502 | 4243 | 18 | 08 | 13.83555296 | -50 | 11 | 53.6119975 | 0.00001541 | 0.0002746 | -0.0603 | 56394.6 | 58643.9 | 12 |  |  |  |
| 1810-700 | 1810-700 | 4244 | 18 | 15 | 51.79964898 | -70 | 01 | 38.6430011 | 0.00004074 | 0.0001649 | -0.3006 | 56297.7 | 58644.0 | 14 |  |  |  |
| 1810-745 | 1810-745 | 4245 | 18 | 16 | 40.07817538 | -74 | 29 | 7.3459017 | 0.00020576 | 0.0016510 | -0.6774 | 57823.2 | 58643.9 | 3 |  |  |  |
| 1817+387 | 1817+387 | 2050 | 18 | 19 | 26.54738150 | +38 | 45 | 1.7860543 | 0.00000438 | 0.0000837 | -0.1693 | 53757.5 | 58896.0 | 102 | 0.04 | 0.04 | 1.66 |
| 1815-553 | P 1815-554 | 929 | 18 | 19 | 45.39951119 | -55 | 21 | 20.7462153 | 0.00001582 | 0.0003338 | 0.0249 | 56394.8 | 58643.9 | 11 |  |  |  |
| 1817-254 | 1817-254 | 664 | 18 | 20 | 57.84862648 | -25 | 28 | 12.5837330 | 0.00007830 | 0.0010649 | -0.9786 | 56381.7 | 56697.9 | 4 |  |  | 1.83 |
| 1821+107 | P 1821+10 | 513 | 18 | 24 | 2.85526449 | +10 | 44 | 23.7739869 | 0.00000412 | 0.0000963 | -0.5459 | 53561.4 | 58937.8 | 118 | 0.04 | 0.03 |  |
| 1822+012 | 1822+012 | 1145 | 18 | 24 | 48.14343720 | +01 | 19 | 34.2014233 | 0.00000440 | 0.0000956 | -0.6066 | 55304.3 | 58937.8 | 104 | 0.05 | 0.05 |  |
| 1825-214 | 1825-214 | 2059 | 18 | 28 | 19.48871533 | -21 | 23 | 38.7870662 | 0.00244697 | 0.0247348 | -0.9997 | 56956.0 | 56956.0 | 1 |  | 0.01 |  |
| 1824-582 | 1824-582 | 3679 | 18 | 29 | 12.40233266 | -58 | 13 | 55.1619342 | 0.00001244 | 0.0001454 | -0.1629 | 56297.8 | 58643.5 | 17 |  |  |  |
| 1827-481 | 1827-481 | 4246 | 18 | 31 | 41.45663237 | -48 | 05 | 21.0091830 | 0.00001598 | 0.0003215 | -0.0569 | 56394.6 | 58643.6 | 9 |  |  |  |
| 1829-207 | 1829-207 | 1241 | 18 | 32 | 11.04654566 | -20 | 39 | 48.2024561 | 0.00000696 | 0.0001194 | -0.5365 | 54526.7 | 58895.7 | 51 | 0.07 | 0.07 | 2.7 |
| 1830-589 | 1830-589 | 4247 | 18 | 34 | 27.47227333 | -58 | 56 | 36.2741508 | 0.00002658 | 0.0002606 | 0.0861 | 56297.7 | 58643.9 | 14 |  |  |  |
| 1831-711 | P 1831-711 | 934 | 18 | 37 | 28.71493233 | -71 | 08 | 43.5546443 | 0.00001836 | 0.0001167 | -0.0097 | 56275.6 | 58643.9 | 17 |  |  |  |
| 1839+548 | 1839+548 | 3696 | 18 | 40 | 57.37673372 | +54 | 52 | 15.9105136 | 0.00000664 | 0.0000930 | 0.2654 | 55304.3 | 58874.0 | 49 | 0.04 |  |  |
| 1842-289 | 1842-289 | 2069 | 18 | 45 | 51.36825137 | -28 | 52 | 40.2761717 | 0.00001480 | 0.0001889 | -0.8416 | 54366.1 | 58937.7 | 53 |  | 0.04 |  |
| 1845-273 | 1845-273 | 2072 | 18 | 48 | 47.50414952 | -27 | 18 | 18.0725152 | 0.00001059 | 0.0001416 | -0.7694 | 55451.2 | 58937.7 | 63 |  | 0.05 |  |
| 1849+670 | 1849+670 | 697 | 18 | 49 | 16.07232727 | +67 | 05 | 41.6803295 | 0.00000725 | 0.0000488 | -0.0676 | 53568.1 | 58874.6 | 82 | 0.40 |  | 0.96 |
| 1851+488 | J1852+4855 | 1151 | 18 | 52 | 28.54784423 | +48 | 55 | 47.4812814 | 0.00000500 | 0.0000856 | 0.2228 | 55058.9 | 58874.5 | 55 | 0.09 |  |  |
| 1901+319 | 3C 395 | 521 | 19 | 02 | 55.93889528 | +31 | 59 | 41.7017520 | 0.00000409 | 0.0000773 | -0.4076 | 53727.7 | 58937.8 | 121 | 0.07 | 0.09 |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RA- <br> Dec <br> Corr. | Observation Epoch MJD |  | No. Obs. | Source Flux (Jy) |  | K Struct Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 1903+196 | 1903+196 | 2080 | 19 | 05 | 36.47211123 | +19 | 43 | 8.0448259 | 0.00000664 | 0.0001314 | -0.6422 | 56417.3 | 58937.8 | 64 | 0.03 | 0.03 |  |
| 1908-201 | OV-213 | 522 | 19 | 11 | 9.65286762 | -20 | 06 | 55.1091874 | 0.00000429 | 0.0000867 | -0.4724 | 53561.3 | 58937.7 | 115 | 0.37 | 0.35 |  |
| 1903-802 | P 1904-80 | 937 | 19 | 12 | 40.01909254 | -80 | 10 | 5.9467359 | 0.00003851 | 0.0000997 | -0.0054 | 56275.6 | 58643.8 | 17 |  |  |  |
| 1910-466 | 1910-466 | 4248 | 19 | 14 | 13.81402681 | -46 | 31 | 31.9385498 | 0.00001751 | 0.0001381 | -0.6503 | 56394.6 | 58643.6 | 34 |  | 0.08 |  |
| 1914-154 | 1914-154 | 2092 | 19 | 16 | 52.51098550 | -15 | 19 | 0.0717597 | 0.00000544 | 0.0001027 | -0.6253 | 55304.4 | 58937.7 | 103 | 0.06 | 0.07 |  |
| 1920-211 | OV-235 | 665 | 19 | 23 | 32.18979107 | -21 | 04 | 33.3332038 | 0.00000432 | 0.0000864 | -0.4700 | 53561.3 | 58937.8 | 113 | 0.10 | 0.25 |  |
| 1921-293 | OV-236 | 524 | 19 | 24 | 51.05592879 | -29 | 14 | 30.1212075 | 0.00000518 | 0.0000891 | -0.4722 | 53561.3 | 58937.8 | 94 |  | 0.92 | 1.43 |
| 1922-224 | 1922-224 | 2099 | 19 | 25 | 39.79017868 | -22 | 19 | 35.1130617 | 0.00001329 | 0.0002025 | -0.8231 | 58027.1 | 58937.7 | 26 | 0.03 | 0.04 |  |
| 1925-610 | 1925-610 | 939 | 19 | 30 | 6.16006350 | -60 | 56 | 9.1849377 | 0.00002826 | 0.0002815 | -0.5202 | 56394.5 | 58643.9 | 12 |  |  |  |
| 1928+154 | 1928+154 | 1159 | 19 | 30 | 52.76699357 | +15 | 32 | 34.4271886 | 0.00000332 | 0.0000786 | -0.4489 | 53609.3 | 58937.8 | 144 | 0.15 | 0.07 | 1.45 |
| 1929+226 | 1929+226 | 940 | 19 | 31 | 24.91679294 | +22 | 43 | 31.2583166 | 0.00000388 | 0.0000828 | -0.4756 | 53561.5 | 58937.8 | 116 | 0.06 | 0.06 |  |
| 1910-872 | 1910-872 | 4249 | 19 | 34 | 25.97427379 | -87 | 11 | 59.4775694 | 0.00040991 | 0.0002785 | -0.3800 | 56394.5 | 58643.8 | 9 |  |  |  |
| 1933-400 | P 1933-400 | 528 | 19 | 37 | 16.21732581 | -39 | 58 | 1.5535358 | 0.00000771 | 0.0000962 | -0.4414 | 53561.3 | 58937.7 | 75 |  | 0.13 |  |
| 1935+360 | 1935+360 | 2109 | 19 | 37 | 31.43663720 | +36 | 07 | 35.8418279 | 0.00000740 | 0.0001689 | -0.3560 | 55451.3 | 58874.7 | 62 | 0.02 | 0.02 |  |
| 1936+046 | 1936+046 | 3758 | 19 | 38 | 30.66955024 | +04 | 48 | 11.6143164 | 0.00000391 | 0.0000868 | -0.5773 | 55304.4 | 58937.8 | 109 | 0.06 | 0.10 |  |
| 1936-155 | P 1936-15 | 529 | 19 | 39 | 26.65773982 | -15 | 25 | 43.0587136 | 0.00000444 | 0.0000918 | -0.5429 | 53561.4 | 58937.8 | 131 | 0.07 | 0.14 |  |
| 1935-692 | 1935-692 | 944 | 19 | 40 | 25.52826500 | -69 | 07 | 56.9687210 | 0.00099362 | 0.0131147 | 0.9709 | 58643.6 | 58643.6 | 1 |  |  |  |
| 1946-200 | 1946-200 | 3771 | 19 | 49 | 53.42018195 | -19 | 57 | 13.3302302 | 0.00000514 | 0.0000993 | -0.5294 | 53609.3 | 58937.8 | 94 | 0.11 | 0.06 | 2.78 |
| 1949-052 | 1949-052 | 2121 | 19 | 51 | 47.46845054 | -05 | 09 | 43.9626997 | 0.00000355 | 0.0000847 | -0.5062 | 54820.7 | 58937.8 | 120 | 0.19 | 0.15 |  |
| 1953-325 | P 1953-325 | 3776 | 19 | 56 | 59.45525551 | -32 | 25 | 46.0073949 | 0.00000789 | 0.0001072 | -0.6248 | 55451.2 | 58937.7 | 71 |  | 0.12 |  |
| 1954-388 | P 1954-388 | 533 | 19 | 57 | 59.81924860 | -38 | 45 | 6.3564215 | 0.00000670 | 0.0000930 | -0.4280 | 53609.3 | 58937.7 | 87 |  | 0.38 |  |
| 1958-179 | OV-198 | 534 | 20 | 00 | 57.09042320 | -17 | 48 | 57.6728265 | 0.00000350 | 0.0000811 | -0.3799 | 53561.4 | 58937.8 | 149 | 0.48 | 0.61 | 0.2 |
| 2000+472 | 2000+472 | 1246 | 20 | 02 | 10.41824687 | +47 | 25 | 28.7738385 | 0.00000537 | 0.0000789 | 0.0071 | 53694.3 | 58874.7 | 88 | 0.05 | 0.08 | 2.04 |
| 1959-639 | 1959-639 | 4250 | 20 | 04 | 29.47801882 | -63 | 47 | 23.3099534 | 0.00004365 | 0.0002944 | 0.0354 | 56394.5 | 58643.8 | 10 |  |  |  |
| 2007+659 | 2007+659 | 3789 | 20 | 07 | 28.77113273 | +66 | 07 | 22.5355323 | 0.00000827 | 0.0000605 | 0.0932 | 55304.4 | 58874.5 | 52 | 0.11 |  |  |
| 2008-159 | P 2008-159 | 536 | 20 | 11 | 15.71091507 | -15 | 46 | 40.2538901 | 0.00000349 | 0.0000829 | -0.3817 | 53561.4 | 58937.8 | 144 | 0.36 | 0.27 |  |
| 2013+163 | 2013+163 | 1164 | 20 | 16 | 13.86003773 | +16 | 32 | 34.1128647 | 0.00000346 | 0.0000784 | -0.4519 | 53652.2 | 58937.9 | 139 | 0.08 | 0.10 | 1.18 |
| 2021+317 | 2021+317 | 957 | 20 | 23 | 19.01735840 | +31 | 53 | 2.3061626 | 0.00000387 | 0.0000753 | -0.3735 | 53609.5 | 58937.9 | 125 | 0.10 | 0.08 | 2.73 |
| 2021+222 | 2021+222 | 3811 | 20 | 23 | 23.16023380 | +22 | 23 | 52.5253326 | 0.00000968 | 0.0001785 | -0.6937 | 56102.6 | 58937.8 | 63 | 0.02 | 0.02 |  |
| 2022-077 | 2022-077 | 3813 | 20 | 25 | 40.66039702 | -07 | 35 | 52.6890508 | 0.00000345 | 0.0000840 | -0.4674 | 55059.1 | 58937.8 | 123 | 0.26 | 0.28 |  |
| 2029+024 | 2029+022 | 1293 | 20 | 31 | 47.25111255 | +02 | 39 | 37.2834088 | 0.00000444 | 0.0000969 | -0.6040 | 55262.5 | 58937.8 | 109 | 0.04 | 0.04 |  |
| 2029+121 | P 2029+121 | 542 | 20 | 31 | 54.99427374 | +12 | 19 | 41.3398465 | 0.00000338 | 0.0000813 | -0.4777 | 53561.5 | 58895.9 | 149 | 0.07 | 0.06 |  |
| 2030-689 | 2030-689 | 3827 | 20 | 35 | 48.87638142 | -68 | 46 | 33.8408302 | 0.00002575 | 0.0001488 | 0.1227 | 56275.7 | 58643.9 | 16 |  |  |  |
| 2031-662 | 2031-662 | 4251 | 20 | 35 | 51.52201650 | -66 | 02 | 7.5333088 | 0.00004867 | 0.0006633 | -0.1723 | 56394.7 | 57957.3 | 6 |  |  |  |
| 2033-219 | 2033-219 | 2143 | 20 | 36 | 51.17271190 | -21 | 46 | 36.7508070 | 0.00001532 | 0.0002335 | -0.8654 | 55178.0 | 58937.8 | 51 | 0.03 | 0.02 |  |
| 2037+511 | 3C 418 | 545 | 20 | 38 | 37.03476564 | +51 | 19 | 12.6625288 | 0.00000494 | 0.0000702 | 0.2416 | 53644.5 | 58874.6 | 78 | 0.46 |  |  |
| 2036-109 | J2039-1046 | 4252 | 20 | 39 | 0.71041333 | -10 | 46 | 41.8630912 | 0.00000567 | 0.0001175 | -0.6804 | 57299.2 | 58937.8 | 64 | 0.05 | 0.06 |  |
| 2047-266 | 2047-266 | 2151 | 20 | 50 | 24.69382874 | -26 | 28 | 18.0580303 | 0.00000743 | 0.0001124 | -0.6363 | 55451.3 | 58937.8 | 71 |  | 0.04 |  |
| 2048+312 | 2048+312 | 1248 | 20 | 50 | 51.13148389 | +31 | 27 | 27.3737005 | 0.00000439 | 0.0001005 | -0.3215 | 53798.6 | 58937.0 | 100 | 0.05 | 0.03 | 2.19 |
| 2051-204 | 2051-204 | 2152 | 20 | 54 | 22.07243970 | -20 | 16 | 16.8197634 | 0.00000748 | 0.0001231 | -0.7036 | 55451.3 | 58895.9 | 69 | 0.05 | 0.06 |  |
| 2052+239 | 2052+239 | 4253 | 20 | 54 | 29.53309346 | +24 | 07 | 33.7650371 | 0.00000944 | 0.0001819 | -0.6777 | 56892.4 | 58937.8 | 57 | 0.02 | 0.02 |  |
| 2054-377 | 2054-377 | 960 | 20 | 57 | 41.60345838 | -37 | 34 | 2.9908249 | 0.00000857 | 0.0001007 | -0.5470 | 53652.2 | 58937.7 | 82 |  | 0.14 | 1.16 |
| 2059+034 | P 2059+034 | 553 | 21 | 01 | 38.83415350 | +03 | 41 | 31.3206882 | 0.00000318 | 0.0000785 | -0.4566 | 54961.6 | 58937.9 | 129 | 0.44 | 0.59 |  |
| 2059-786 | 2059-786 | 963 | 21 | 05 | 44.96131770 | -78 | 25 | 34.5472160 | 0.00004162 | 0.0001349 | 0.0084 | 56275.7 | 58643.4 | 14 |  |  |  |
| 2103+213 | 2103+213 | 2159 | 21 | 06 | 10.81818648 | +21 | 35 | 35.9963345 | 0.00000498 | 0.0001004 | -0.5803 | 55451.3 | 58937.9 | 96 | 0.04 | 0.04 |  |
| 2106+143 | J2108+1430 | 964 | 21 | 08 | 41.03215250 | +14 | 30 | 27.0124657 | 0.00000384 | 0.0000857 | -0.5373 | 55227.6 | 58937.9 | 112 | 0.06 | 0.06 |  |
| 2106-413 | P 2106-413 | 554 | 21 | 09 | 33.18854223 | -41 | 10 | 20.6059924 | 0.00001238 | 0.0001187 | -0.6689 | 53609.3 | 58895.8 | 82 |  | 0.07 |  |
| 2112-144 | 2112-144 | 2165 | 21 | 15 | 18.43554407 | -14 | 16 | 43.3724098 | 0.00000621 | 0.0001144 | -0.7198 | 55451.3 | 58937.8 | 89 | 0.05 | 0.06 |  |
| 2113+293 | B2 2113+29B | 555 | 21 | 15 | 29.41346427 | +29 | 33 | 38.3668083 | 0.00000348 | 0.0000783 | -0.2951 | 53561.6 | 58937.9 | 140 | 0.22 | 0.09 |  |
| 2112-556 | 2112-556 | 4254 | 21 | 16 | 29.81615564 | -55 | 27 | 20.4449362 | 0.00003710 | 0.0005628 | 0.4282 | 56394.8 | 58643.5 | 11 |  |  |  |


| Source Name |  | $\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$ | Right Ascension |  |  | Declination |  |  | RA Error <br> (s) | Dec. Error (arcsec) | RADec Corr. | Observation EpochMJD |  | No. Obs. | Source Flux (Jy) |  | KStructIndex |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2109-811 | 2109-811 | 965 | 21 | 16 | 30.84562902 | -80 | 53 | 55.2232464 | 0.00004454 | 0.0000957 | -0.0106 | 56297.5 | 58643.9 | 17 |  |  |  |
| 2116-068 | 2116-068 | 3859 | 21 | 18 | 43.24215325 | -06 | 36 | 17.9992887 | 0.00000530 | 0.0001445 | -0.5196 | 55451.3 | 58895.9 | 70 | 0.04 | 0.03 |  |
| 2117-614 | 2117-614 | 1175 | 21 | 21 | 4.07416923 | -61 | 11 | 24.6249797 | 0.00003741 | 0.0003017 | 0.5773 | 56394.8 | 58643.4 | 11 |  |  |  |
| 2121+547 | 2121+547 | 1176 | 21 | 23 | 5.31346940 | +55 | 00 | 27.3252703 | 0.00000643 | 0.0000767 | -0.0151 | 55227.5 | 58874.5 | 53 | 0.06 |  |  |
| 2121+053 | OX 036 | 557 | 21 | 23 | 44.51741022 | +05 | 35 | 22.0928134 | 0.00000338 | 0.0000785 | -0.4958 | 53652.2 | 58937.9 | 142 | 0.18 | 0.32 |  |
| 2120-309 | 2120-309 | 2171 | 21 | 23 | 48.59955140 | -30 | 46 | 5.4396534 | 0.00002742 | 0.0003051 | -0.9391 | 57299.2 | 58895.9 | 29 |  | 0.04 |  |
| 2123-463 | 2123-463 | 3866 | 21 | 26 | 30.70421563 | -46 | 05 | 47.8926864 | 0.00001389 | 0.0001166 | -0.5246 | 56395.6 | 58810.1 | 45 |  | 0.07 |  |
| 2126-158 | P 2126-15 | 559 | 21 | 29 | 12.17586970 | -15 | 38 | 41.0416476 | 0.00000459 | 0.0000947 | -0.5269 | 53609.3 | 58937.8 | 101 | 0.12 | 0.11 |  |
| 2128-123 | P 2128-12 | 563 | 21 | 31 | 35.26176510 | -12 | 07 | 4.7957463 | 0.00000362 | 0.0000846 | -0.4351 | 53609.4 | 58937.8 | 139 | 0.18 | 0.13 |  |
| 2131-021 | P 2131-021 | 564 | 21 | 34 | 10.30959016 | -01 | 53 | 17.2390258 | 0.00000318 | 0.0000773 | -0.4501 | 53561.5 | 58937.9 | 154 | 0.25 | 0.23 |  |
| 2132-638 | 2132-638 | 4255 | 21 | 36 | 22.07471572 | -63 | 35 | 51.0381211 | 0.00002531 | 0.0002434 | 0.1345 | 56297.7 | 58643.8 | 14 |  |  |  |
| 2134+004 | P 2134+004 | 565 | 21 | 36 | 38.58638776 | +00 | 41 | 54.2119641 | 0.00000328 | 0.0000794 | -0.4720 | 53561.5 | 58937.9 | 128 | 0.18 | 0.22 |  |
| 2136+141 | OX 161 | 567 | 21 | 39 | 1.30926663 | +14 | 23 | 35.9921069 | 0.00000354 | 0.0000812 | -0.4983 | 53561.5 | 58937.9 | 143 | 0.10 | 0.11 |  |
| 2139-249 | 2139-249 | 3880 | 21 | 42 | 30.95903663 | -24 | 44 | 38.8325027 | 0.00001565 | 0.0001873 | -0.8943 | 55451.3 | 58937.7 | 66 | 0.03 | 0.04 |  |
| 2143-298 | J2146-2935 | 4256 | 21 | 46 | 5.75216739 | -29 | 35 | 11.4116760 | 0.00002383 | 0.0002661 | -0.9268 | 57299.2 | 58895.9 | 31 |  | 0.04 |  |
| 2143-156 | OX-173 | 570 | 21 | 46 | 22.97931828 | -15 | 25 | 43.8859234 | 0.00000390 | 0.0000859 | -0.4609 | 54016.0 | 58937.9 | 122 | 0.15 | 0.22 | 1.63 |
| 2141-784 | 2141-784 | 4257 | 21 | 47 | 5.84077664 | -78 | 12 | 21.9119352 | 0.00003261 | 0.0001159 | -0.0831 | 56275.7 | 58643.8 | 18 |  |  |  |
| 2144+092 | OX 074 | 571 | 21 | 47 | 10.16296730 | +09 | 29 | 46.6721472 | 0.00000337 | 0.0000800 | -0.4885 | 53561.5 | 58937.8 | 132 | 0.09 | 0.11 |  |
| 2145+067 | P 2145+06 | 572 | 21 | 48 | 5.45866639 | +06 | 57 | 38.6038989 | 0.00000290 | 0.0000727 | -0.4128 | 53561.5 | 58937.8 | 161 | 0.48 | 0.41 |  |
| 2146-682 | 2146-682 | 4258 | 21 | 50 | 13.39072567 | -68 | 02 | 50.4079366 | 0.00006073 | 0.0002305 | 0.2441 | 56522.7 | 58643.9 | 8 |  |  |  |
| 2150+173 | 2150+173 | 968 | 21 | 52 | 24.81939936 | +17 | 34 | 37.7949995 | 0.00000388 | 0.0000987 | -0.4225 | 53561.6 | 58938.0 | 119 | 0.08 | 0.03 | 2.37 |
| 2153-760 | 2153-760 | 4259 | 21 | 57 | 59.22497355 | -75 | 49 | 53.6076279 | 0.00003389 | 0.0001435 | -0.1792 | 56297.5 | 58643.9 | 15 |  |  |  |
| 2154-838 | 2154-838 | 4260 | 22 | 02 | 19.23761238 | -83 | 38 | 11.8286166 | 0.00006109 | 0.0001016 | 0.0652 | 56275.7 | 58643.8 | 17 |  |  |  |
| 2200+420 | VRO 42.22.01 | 581 | 22 | 02 | 43.29139307 | +42 | 16 | 39.9798639 | 0.00000391 | 0.0000616 | -0.0663 | 53561.6 | 58937.9 | 152 | 0.40 | 0.25 |  |
| 2201+171 | 2201+171 | 1180 | 22 | 03 | 26.89368976 | +17 | 25 | 48.2476240 | 0.00000323 | 0.0000782 | -0.4146 | 53604.1 | 58937.9 | 150 | 0.30 | 0.22 | 1.73 |
| 2200-617 | 2200-617 | 4261 | 22 | 03 | 59.63793318 | -61 | 30 | 22.0108200 | 0.00004875 | 0.0002848 | -0.1701 | 56395.6 | 58643.9 | 10 |  |  |  |
| 2204-007 | 2204-007 | 3907 | 22 | 06 | 43.28260069 | -00 | 31 | 2.4952562 | 0.00000393 | 0.0000921 | -0.5809 | 56088.6 | 58937.9 | 86 | 0.09 | 0.14 |  |
| 2204-540 | P 2204-54 | 971 | 22 | 07 | 43.73325587 | -53 | 46 | 33.8206721 | 0.00001285 | 0.0002627 | 0.1270 | 56275.6 | 58643.6 | 15 |  |  |  |
| 2205-002 | J2207-0002 | 4262 | 22 | 07 | 55.24706766 | -00 | 02 | 15.0858807 | 0.00004714 | 0.0009818 | -0.7556 | 57299.3 | 58874.7 | 7 | 0.01 | 0.01 |  |
| 2208-137 | 2208-137 | 2202 | 22 | 11 | 24.09943451 | -13 | 28 | 9.7239788 | 0.00000394 | 0.0000912 | -0.4836 | 55304.5 | 58937.9 | 107 | 0.13 | 0.08 |  |
| 2209+236 | P 2209+236 | 588 | 22 | 12 | 5.96632865 | +23 | 55 | 40.5434846 | 0.00000380 | 0.0000801 | -0.4161 | 53561.6 | 58937.9 | 139 | 0.07 | 0.08 |  |
| 2214+350 | GC 2214+35 | 590 | 22 | 16 | 20.00991906 | +35 | 18 | 14.1800418 | 0.00000475 | 0.0000881 | -0.3865 | 53757.7 | 58937.9 | 107 | 0.05 | 0.03 |  |
| 2223-114 | 2223-114 | 3934 | 22 | 25 | 43.71841352 | -11 | 13 | 40.6988831 | 0.00003818 | 0.0005912 | -0.9372 | 55451.4 | 58839.1 | 26 |  | 0.01 |  |
| 2223-052 | 3C 446 | 594 | 22 | 25 | 47.25929348 | -04 | 57 | 1.3909492 | 0.00000340 | 0.0000786 | -0.4458 | 53561.5 | 58937.9 | 133 | 0.09 | 0.31 |  |
| 2227-088 | P 2227-08 | 596 | 22 | 29 | 40.08432769 | -08 | 32 | 54.4357664 | 0.00000327 | 0.0000795 | -0.4337 | 53561.5 | 58937.9 | 155 | 0.59 | 0.68 |  |
| 2229+695 | 2229+695 | 694 | 22 | 30 | 36.46972772 | +69 | 46 | 28.0768275 | 0.00001138 | 0.0000575 | 0.0021 | 55059.0 | 58874.0 | 53 | 0.06 |  |  |
| 2227-399 | P 2227-399 | 597 | 22 | 30 | 40.27855670 | -39 | 42 | 52.0673084 | 0.00000885 | 0.0001026 | -0.5327 | 55451.3 | 58937.8 | 76 |  | 0.08 |  |
| 2227-627 | 2227-627 | 4263 | 22 | 31 | 7.91977930 | -62 | 31 | 19.3443230 | 0.00004933 | 0.0002856 | 0.2396 | 56394.5 | 58643.9 | 11 |  |  |  |
| 2232-488 | P 2232-488 | 973 | 22 | 35 | 13.23655417 | -48 | 35 | 58.7951144 | 0.00001190 | 0.0002921 | 0.0389 | 56275.6 | 58643.7 | 13 |  |  |  |
| 2234+282 | GC 2234+28 | 601 | 22 | 36 | 22.47084283 | +28 | 28 | 57.4128675 | 0.00000352 | 0.0000720 | -0.3313 | 53561.7 | 58937.9 | 124 | 0.36 | 0.40 |  |
| 2233-234 | 2233-234 | 2217 | 22 | 36 | 26.23869530 | -23 | 09 | 26.5975768 | 0.00000596 | 0.0001011 | -0.5653 | 55451.3 | 58937.8 | 80 | 0.12 | 0.06 |  |
| 2233-148 | P 2233-148 | 600 | 22 | 36 | 34.08713961 | -14 | 33 | 22.1898091 | 0.00000377 | 0.0000830 | -0.4300 | 53561.6 | 58937.9 | 118 | 0.13 | 0.26 |  |
| 2236-572 | 2236-572 | 3945 | 22 | 39 | 12.07588172 | -57 | 01 | 0.8399155 | 0.00001256 | 0.0001916 | 0.0044 | 56394.8 | 58643.8 | 15 |  |  |  |
| 2239+096 | 2239+096 | 1296 | 22 | 41 | 49.71731197 | +09 | 53 | 52.4448215 | 0.00000387 | 0.0000885 | -0.4807 | 53694.2 | 58874.7 | 126 | 0.02 | 0.03 | 1.54 |
| 2243-563 | 2243-563 | 4264 | 22 | 46 | 16.79256365 | -56 | 07 | 46.0053441 | 0.00001764 | 0.0002596 | 0.1220 | 56394.8 | 58643.8 | 13 |  |  |  |
| 2244-372 | 2244-372 | 1190 | 22 | 47 | 3.91729449 | -36 | 57 | 46.3043712 | 0.00000805 | 0.0000991 | -0.5378 | 55451.3 | 58937.8 | 81 |  | 0.10 |  |
| 2245-128 | 2245-128 | 3953 | 22 | 47 | 52.64102386 | -12 | 37 | 19.7218069 | 0.00000780 | 0.0001255 | -0.7699 | 55451.3 | 58937.9 | 81 | 0.02 | 0.05 |  |
| 2245-328 | P 2245-328 | 608 | 22 | 48 | 38.68571583 | -32 | 35 | 52.1885678 | 0.00000638 | 0.0000947 | -0.4969 | 53561.5 | 58937.8 | 80 |  | 0.13 |  |
| 2251+158 | 3C 454.3 | 611 | 22 | 53 | 57.74796298 | +16 | 08 | 53.5609751 | 0.00000604 | 0.0001182 | -0.5920 | 54282.6 | 58937.9 | 105 | 1.24 | 0.92 |  |
| 2251-419 | J2254-4139 | 4265 | 22 | 54 | 36.69753852 | -41 | 39 | 40.2553257 | 0.00003492 | 0.0002587 | -0.9125 | 57299.3 | 58895.9 | 29 |  | 0.05 |  |


| Source Name |  | $\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$ | Right Ascension |  |  | Declination |  |  | RA Error (s) | Dec. Error (arcsec) | RADec Corr. | Observation EpochMJD |  | No. Obs. | Source Flux (Jy) |  | K Struct Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1950 | Common |  | H | M | S | D | M | S |  |  |  | First | Last |  | 10-60 | 10-40 |  |
| 2251-597 | 2251-597 | 4266 | 22 | 54 | 56.82957982 | -59 | 26 | 0.6878488 | 0.00001859 | 0.0002066 | -0.0048 | 56394.8 | 58643.8 | 15 |  |  |  |
| 2252-090 | P 2252-089 | 614 | 22 | 55 | 4.23979582 | -08 | 44 | 4.0218946 | 0.00000604 | 0.0001184 | -0.6042 | 55793.4 | 58937.9 | 80 | 0.02 | 0.03 |  |
| 2253+417 | GC 2253+41 | 615 | 22 | 55 | 36.70786474 | +42 | 02 | 52.5325443 | 0.00000445 | 0.0000772 | -0.0093 | 54960.9 | 58937.1 | 102 | 0.07 | 0.05 |  |
| 2254+074 | GC 2254+07 | 617 | 22 | 57 | 17.30312069 | +07 | 43 | 12.3024039 | 0.00000374 | 0.0000843 | -0.4621 | 53561.6 | 58937.0 | 121 | 0.05 | 0.05 |  |
| 2254+024 | P 2254+024 | 616 | 22 | 57 | 17.56308871 | +02 | 43 | 17.5115753 | 0.00000375 | 0.0000892 | -0.5136 | 53561.6 | 58938.0 | 125 | 0.08 | 0.07 |  |
| 2255-282 | P 2255-282 | 619 | 22 | 58 | 5.96286216 | -27 | 58 | 21.2570742 | 0.00000536 | 0.0000898 | -0.4813 | 53561.5 | 58937.9 | 96 |  | 0.61 |  |
| 2256-084 | 2256-084 | 2234 | 22 | 59 | 0.68883879 | -08 | 11 | 3.0461387 | 0.00002323 | 0.0003426 | -0.9448 | 55451.4 | 58895.9 | 53 | 0.01 | 0.02 |  |
| 2309+454 | J2311+4543 | 1197 | 23 | 11 | 47.40899434 | +45 | 43 | 56.0163557 | 0.00000474 | 0.0000734 | 0.0134 | 53694.4 | 58895.1 | 109 | 0.07 | 0.09 | 1.61 |
| 2312-505 | 2312-505 | 4267 | 23 | 15 | 44.33031897 | -50 | 18 | 39.7045271 | 0.00001043 | 0.0002238 | -0.0956 | 56297.6 | 58643.8 | 14 |  |  |  |
| 2315-172 | 2315-172 | 2242 | 23 | 18 | 11.36137372 | -16 | 59 | 29.1888746 | 0.00000808 | 0.0001334 | -0.7464 | 56341.0 | 58937.9 | 76 | 0.03 | 0.04 |  |
| 2316+238 | 2316+238 | 4002 | 23 | 18 | 33.96785970 | +24 | 04 | 39.7491727 | 0.00000534 | 0.0001091 | -0.5632 | 55451.5 | 58937.9 | 94 | 0.04 | 0.03 |  |
| 2318+049 | GC 2318+04 | 627 | 23 | 20 | 44.85659844 | +05 | 13 | 49.9523636 | 0.00000353 | 0.0000803 | -0.4882 | 53561.6 | 58937.0 | 146 | 0.10 | 0.14 |  |
| 2319+272 | B2 2319+27 | 629 | 23 | 21 | 59.86224084 | +27 | 32 | 46.4436598 | 0.00000367 | 0.0000768 | -0.3553 | 53561.6 | 58937.9 | 123 | 0.17 | 0.18 |  |
| 2320-035 | P 2320-035 | 633 | 23 | 23 | 31.95374643 | -03 | 17 | 5.0240063 | 0.00000322 | 0.0000790 | -0.4139 | 53561.5 | 58937.0 | 133 | 0.34 | 0.46 |  |
| 2325+093 | 2325+093 | 1299 | 23 | 27 | 33.58055357 | +09 | 40 | 9.4625456 | 0.00000313 | 0.0000752 | -0.4070 | 53568.3 | 58938.0 | 156 | 0.30 | 0.36 | 0.73 |
| 2326-502 | 2326-502 | 4268 | 23 | 29 | 20.88174171 | -49 | 55 | 40.6548922 | 0.00001317 | 0.0002665 | 0.1699 | 56297.6 | 58643.7 | 13 |  |  |  |
| 2328+107 | P 2328+10 | 636 | 23 | 30 | 40.85225639 | +11 | 00 | 18.7094150 | 0.00000381 | 0.0000846 | -0.5248 | 53561.6 | 58937.9 | 125 | 0.09 | 0.07 |  |
| 2331-240 | 2331-240 | 979 | 23 | 33 | 55.23781892 | -23 | 43 | 40.6585923 | 0.00000469 | 0.0000892 | -0.4885 | 53561.5 | 58937.9 | 104 | 0.17 | 0.39 |  |
| 2332-531 | 2332-531 | 4269 | 23 | 34 | 44.91671985 | -52 | 51 | 19.6329323 | 0.00002230 | 0.0004769 | -0.5271 | 56297.6 | 57851.3 | 11 |  |  |  |
| 2335-027 | P 2335-027 | 644 | 23 | 37 | 57.33906640 | -02 | 30 | 57.6293962 | 0.00000338 | 0.0000798 | -0.4428 | 53609.5 | 58937.0 | 148 | 0.13 | 0.10 |  |
| 2344+092 | P 2344+09 | 649 | 23 | 46 | 36.83855166 | +09 | 30 | 45.5149488 | 0.00000365 | 0.0000832 | -0.4920 | 53561.6 | 58938.0 | 131 | 0.18 | 0.14 |  |
| 2344-514 | 2344-514 | 4033 | 23 | 47 | 19.86408080 | -51 | 10 | 36.0652680 | 0.00001440 | 0.0002896 | 0.1883 | 56297.6 | 58643.7 | 15 |  |  |  |
| 2345-500 | 2345-500 | 4270 | 23 | 47 | 43.68518995 | -49 | 46 | 27.8752562 | 0.00001644 | 0.0003892 | -0.2556 | 56297.6 | 58643.7 | 12 |  |  |  |
| 2345+061 | 2345+061 | 4271 | 23 | 48 | 31.77065620 | +06 | 24 | 59.7822213 | 0.00000847 | 0.0003321 | -0.4698 | 56892.5 | 58847.0 | 39 | 0.02 | 0.01 |  |
| 2346+385 | 2346+385 | 4034 | 23 | 49 | 20.82655619 | +38 | 49 | 17.5583423 | 0.00000421 | 0.0000726 | -0.2488 | 53609.6 | 58937.1 | 140 | 0.09 | 0.12 | 2.11 |
| 2346-498 | 2346-498 | 4272 | 23 | 49 | 25.37887558 | -49 | 32 | 26.5482643 | 0.00002016 | 0.0003852 | 0.4085 | 56395.8 | 58643.8 | 11 |  |  |  |
| 2351+456 | 2351+456 | 981 | 23 | 54 | 21.68026577 | +45 | 53 | 4.2364760 | 0.00000545 | 0.0000747 | -0.0694 | 54933.5 | 58937.1 | 99 | 0.04 | 0.07 |  |
| 2351-154 | 2351-154 | 695 | 23 | 54 | 30.19515533 | -15 | 13 | 11.2131458 | 0.00000525 | 0.0000972 | -0.6087 | 53561.6 | 58937.9 | 111 | 0.05 | 0.10 |  |
| 2353+816 | 2353+816 | 1252 | 23 | 56 | 22.79395035 | +81 | 52 | 52.2552071 | 0.00002122 | 0.0000452 | 0.0199 | 53568.0 | 58874.5 | 80 | 0.12 |  | 1.34 |
| 2354-021 | 2354-021 | 4040 | 23 | 57 | 25.13792907 | -01 | 52 | 15.5095807 | 0.00000605 | 0.0001222 | -0.5733 | 55451.5 | 58937.0 | 80 | 0.03 | 0.03 |  |
| 2355-534 | P 2355-534 | 983 | 23 | 57 | 53.26603257 | -53 | 11 | 13.6895950 | 0.00001280 | 0.0002267 | -0.0222 | 56275.6 | 58643.8 | 15 |  |  |  |
| 2355-106 | P 2355-106 | 658 | 23 | 58 | 10.88237737 | -10 | 20 | 8.6115608 | 0.00000362 | 0.0000822 | -0.4353 | 53561.6 | 58937.0 | 144 | 0.08 | 0.15 |  |
| 2357-318 | 2357-318 | 2273 | 23 | 59 | 35.49152971 | -31 | 33 | 43.8248220 | 0.00000993 | 0.0001217 | -0.7096 | 54366.3 | 58937.9 | 78 |  | 0.05 |  |

## 3 References

1. Altamimi, et al, ITRF2014: a new Release of the Interantional Celestail Reference Frame modeling non-linear station locations. improved solution of the international terrestrial reference frame. JGR: Solid Earth, 2016. https://doi.org/10.1002/2016JB013098 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JB013098
2. Boehm, J., B. Werl, H. Schuh, "Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data", J. Geophys. Res., 111, B02406, Feb. 2006. http://www.hg.tuwien.ac.at/~ecmwf1/boehm_etal_3rd.pdf
3. Border, J.S., A Global Approach to Delta Differenced One-way Range, Proc. $25^{\text {th }}$ ISTS and $19^{\text {th }}$ ISSFD, Kakzawa, Japan, 4-11 June 2006. https://issfd.org/ISSFD_2009/OrbitDeterminationI/Border.pdf
4. CCSDS, `DeltaDOR Technical Characteristics and Performance', "GreenBook", CCSDS 500.1-G-2, Nov 2019. https://public.ccsds.org/Pubs/500x1g2.pdf
5. Charlot et al, The Celestial Reference Frame at 24 and 43 GHz. II. Imaging, AJ, 139, 2010. https://iopscience.iop.org/article/10.1088/0004-6256/139/5/1713
6. Charlot, P., Jacobs, C.S., et al, The Third Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry, A\&A, accepted July 2020.
7. Davis, et al, Geodesy by Radio Interferometry: Effects of Atmospheric Modelling Errors on Estimates of Baseline Length, Radio Science 20, 6, 1593, 1985. https://ui.adsabs.harvard.edu/abs/1985RaSc...20.1593D/abstract
8. deGroot, N. F., `Ka-Band (32 GHz) Allocations for Deep Space,' NASA JPL TDA Progress Report, 42-88, pp. 104--109, 15 Feb. 1987. https://ipnpr.jpl.nasa.gov/progress report/42-88/88N.PDF
9. de Witt, A., Jacobs, C.S, et al, `K-band Celestial Frame: Imaging Results,' AJ, 2021, in preparation.
10. Fricke, W.; Schwan, H.; Lederle, T.; Bastian, U.; Bien, R.; Burkhardt, G.; Du Mont, B.; Hering, R.; Jährling, R.; Jahreiß, H.; Röser, S.; Schwerdtfeger, H.-M.; Walter, H. G., `Fifth fundamental catalogue (FK5). Part 1: The basic fundamental stars,’ Veröffentlichungen Astronomisches Rechen-Institut Heidelberg, Verlag G. Braun, Karlsruhe, No. 32, p. 1-106,1988. https://ui.adsabs.harvard.edu/abs/1988VeARI..32....1F/abstract
11. Hunter, J.A. et al, Orbiting Deep Space Relay Station Study: Final Report, JPL Publication 79-30, vol. III, Jet Propulsion Laboratory, Pasadena CA, 15 June 1979. http://hdl.handle.net/2060/19790020039
12. IAU General Assembly XXIII, Resolution B2-d, Kyoto, Japan, August 1997. http://iau.org/static/resolutions/IAU1997_French.pdf
13. IAU General Assembly XXVII, Resolution B3, on the Second Realization of the International Celestial Reference Fame, Rio de Janeiro, Brazil, 13 August 2009. https://www.iau.org/static/resolutions/IAU2009_English.pdf
14. IAU General Assembly XXX, Resolution B2, on the Third Realization of the International Celestial Reference Frame, Vienna, Austria, August 2018, https://www.iau.org/static/resolutions/IAU2018_ResolB2_English.pdf
15. Jacobs, C.S., M.B. Heflin, G.E. Lanyi, O.J. Sovers, and J.A. Steppe, `Rotational Alignment Altered by Source Position Correlations,' Proc. of IVS 2010 General Meeting, Hobart, Tasmania Australia, 8--11 Feb 2010, eds. D. Behrend and K. D. Baver, NASA/CP-2010-215864, Dec 2010. https://ui.adsabs.harvard.edu/abs/2010ivs..conf..305J/abstract
16. Kesteven, M.J.L. and A. H. Bridle, "Index of extragalactic radio-source catalogues", J. Royal Astronomical Society of Canada, Vol. 71, Feb. 1977, p. 21-39. http://articles.adsabs.harvard.edu/full/1977JRASC..71...21K
17. Ma, Arias, Eubanks, Fey, Gontier, Jacobs, Sovers, Archinal, Charlot, The [First] International Celestial Reference Frame as Realized by VLBI, AJ, 116, 1, 516, 1998. https://ui.adsabs.harvard.edu/abs/1998AJ....116..516M/abstract
18. Ma, C., E.F. Arias, G. Bianco, D. A. Boboltz, S.L. Bolotin, P. Charlot, G. Engelhardt, A.L. Fey, R.A. Gaume, A.-M. Gontier, R. Heinkelmann, C.S. Jacobs, S. Kurdubov, S.B. Lambert, Z.M. Malkin, A. Nothnagel, L. Petrov, E. Skurikhina, J. Sokolova, J. Souchay, O.J. Sovers, V. Tesmer, O.A. Titov, G. Wang, V. Zharov C. Barache, S. Boeckmann, A. Collioud, J.M. Gipson, D. Gordon, S.O. Lytvyn, D.S. MacMillan, R. Ojha, "IERS Technical Note No. 35: The Second Realization of the ICRF by VLBI," IERS, Bundesamt fur Kartographie und Geodasie, BKG, Frankfurt am Main, A. Fey, D. Gordon, and C.S. Jacobs, Eds. Germany, Oct. 2009. http://www.iers.org/nn_11216/IERS/EN/Publications/TechnicalNotes/tn35.html
19. MacMillan, D., et al, Galacto-centric Acceleration in VLBI Analysis: Findings of IVS working group 8, A\&A, 630, 2019.
https://doi.org/10.1051/0004-6361/201935379
20. Matthews, P.M., T.A. Herring, and B.A. Buffet, "Modeling of Nutation and Precession: New nutation series for Nonrigid Earth and Insights into the Earth's Interior," J. Geophys. Res. 107, no. B4, 10.1029/2001JB000390, Apr. 2002. https://ui.adsabs.harvard.edu/abs/2002JGRB..107.2068M/abstract
21. Ratcliff, J.T. and R.S. Gross, "Combinations of Earth Orientation Measurements: SPACE2018, COMB2018, and POLE2018," JPL Publication 19-7, Jet Propulsion Laboratory, Pasadena, CA, October 2019.
https://keof.jpl.nasa.gov/combinations/SpaceCombPole_latest.pdf
22. Shambayati, Morabito, Border, Davarian, Lee, Mendoza, Britcliffe, Weinreb, Mars Reconaissance Orbiter Ka-band ( 32 GHz ) Demonstration: Cruise Phase Operations, AIAA 2006-5786, Space Ops 2006 Conference, Rome, Italy, 19-23 June 2006. https://doi.org/10.2514/6.2006-5786 https://arc.aiaa.org/doi/pdfplus/10.2514/6.2006-5786
23. Slobin, S.D., DSN 810-005 module 101-G, 70-m Subnet Telecommunications Interfaces, 2019 Sep 04.
https://deepspace.jpl.nasa.gov/dsndocs/810-005/101/101G.pdf
24. Slobin, S.D., DSN 810-005 module 103-C, 34-m HEF subnet Telecommunications Interfaces, 2014 Aug 01. https://deepspace.jpl.nasa.gov/dsndocs/810-005/103/103C.pdf
25. Slobin, S.D., DSN 810-005 module 104-L, 34-m BWG Stations Telecommunications Interfaces, 2019 Oct 16.
https://deepspace.jpl.nasa.gov/dsndocs/810-005/104/104L.pdf
26. Sovers, O. J., J. L. Fanselow, and C. S. Jacobs, "Astrometry and Geodesy with Radio Inteferometry: Experiments, Models, Results," Reviews of Modern Physics, 70, 4, October, 1998.
http://link.aps.org/doi/10.1103/RevModPhys.70.1393

## 4 Acknowledgements

Production of the radio source catalog requires the efforts and cooperation of a large number of people. This includes the support staffs at the Deep Space Network who ensure that the data are collected especially Cristina Garcia-Miro, Shinji Horiuchi, and Larry Snedeker. Steve Lowe wrote the core of the VLBI scheduling and processing software: the S scheduler, SOFTC correlator, and FIT/CFIT fringe fitting. We also thank the correlation operators, and the analysts who have developed the models and software to convert the delay and delay rate observations to produce final estimates of the source positions, and finally the authors of this document. Among these we would like to particularly acknowledge Peter Kroger, Christopher Volk, Christine Chang, Christopher Jacobs, Gabor Lanyi, Charles Naudet, Ojars Sovers, and Alina Bedrossian.

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

Deep Space Network

## 201

Frequency and Channel Assignments

| Document Owner: |  |
| :--- | :--- |
| Signature Provided | $04 / 19 / 2022$ |
| Dong K. Shin | Date |
| DSN System Engineer |  |

Prepared by:

| Signature Provided | $04 / 19 / 2022$ |
| :--- | :--- |
| Dong K. Shin | Date |
| DSN System Engineer |  |

Approved by:

| Signature Provided | 04/19/2022 |
| :--- | :--- |
| Timothy Pham | Date |
| Communications Systems Chief |  |
| Engineer |  |

Released by:

| Signature Provided | $05 / 04 / 2022$ |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 201, Rev. F
Issue Date: May 04, 2022
JPL D-19379; CL\#22-2078
Jet Propulsion Laboratory
California Institute of Technology

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | $03 / 24 / 2022$ |
| :--- | :--- |
| Jeff Berner | Date |
| DSN Project Chief Engineer |  |


| Signature Provided | $03 / 22 / 2022$ |
| :--- | :--- |
| Andrew O'Dea | Date |
| DSN TTC System Engineer |  |


| Signature Provided | 03/23/2022 | Signature Provided | 04/19/2022 |
| :---: | :---: | :---: | :---: |
| Alina Bedrossian | Date | Harvey Soldan | Date |
| DSN OBD System Engineer |  | Supervisor, DSN Systems |  |

810-005
201, Rev. F

## Document Change Log

| Rev | Issue Date | Prepared By | Affected <br> Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: | :--- |
| Initial | $11 / 30 / 2000$ | Robert Sniffin | All | All |
| A | $9 / 19 / 2008$ | Robert Sniffin | 2.4, Tables <br> $1 \& 2$ | Adds 26 GHz assignment. Removes suggested <br> turn-around ratios in Ka-band |
| B | $12 / 15 / 2009$ | Andrew Kwok | Page 4 | Removed references of the 26-m subnet stations <br> for they have been decommissioned. |
| C | $12 / 15 / 2014$ | Dong Shin | Page 6 | Add a footnote for Deep Space S-band uplink <br> restriction at Madrid tracking stations. |
| D | $09 / 04 / 2020$ | Dong Shin | $2,2.2,2.4$, <br> Table 1, 2, 3, <br> $4,6-1,6-2,6-3$ | Added K-band, updated Table 3 \& 4 per SFCG <br> recommendations, added Ka-band channels <br> (Table 6-1, 6-2, 6-3) per SFCG <br> recommendations |
| E | $02 / 05 / 2021$ | Dong Shin | Table 1 | Corrected K-band transponder turnaround ratio |
| F | $05 / 4 / 2022$ | Dong Shin | 2 | Added SFCG recommended publication for <br> channel assignments. <br> Updated K-band Doppler and range capability <br> and implementation schedule |
|  |  | Table 1 |  |  |

## Contents

Paragraph Page
1 Introduction ..... 5
1.1 Purpose and Scope ..... 5
2 General Information ..... 5
2.1 Tracking Modes of Operation ..... 6
2.1.1 One-way ..... 6
2.1.2 Two-way ..... 6
2.1.3 Three-way ..... 6
2.1.4 Coherent Three-way ..... 6
2.2 Spacecraft Transponder Turnaround Ratios ..... 6
2.3 Frequency Bands Allocated by the International Telecommunication Union (ITU) ..... 7
2.4 Deep Space Frequency Channels ..... 8

## Tables

Table Page
Table 1. Spacecraft Transponder Turnaround Ratios ..... 7
Table 2. Allocated Frequency Bands ..... 7
Table 3. Frequency and Channel Assignments for S-band Uplink and S/X-bands Downlink. ..... 10
Table 4. Frequency and Channel Assignments for X-band Uplink and S-/X-bands Downlink ..... 11
Table 5. Frequency and Channel Assignments for X-band Uplink and Ka-band Downlink ..... 12
Table 6-1. Frequency and Channel Assignments for Ka-band Uplink and Ka-band Downlink (Channel L1 to L50). ..... 13
Table 6-2. Frequency and Channel Assignments for Ka-band Uplink and Ka-band Downlink (Channel 1 to 42) ..... 14
Table 6-3. Frequency and Channel Assignments for Ka-band Uplink and Ka-band Downlink (Channel H1 to H34) ..... 15

## 1 Introduction

### 1.1 Purpose and Scope

This module provides basic information about the frequencies that are available in the Deep Space Network (DSN) and presents the way certain of the DSN frequency allocations have been divided into channels. It does not specify which stations can or will support assigned frequencies. That information is contained in the appropriate Telecommunications Interfaces modules (101, 70-m Antenna Subnet Telecommunications Interfaces; 103, 34-m HEF Antenna Subnet Telecommunications Interfaces; or 104, $34-\mathrm{m}$ BWG Stations Telecommunications Interfaces) of this handbook. It also does not include propagation characteristics of the frequencies. This information is provided in module 105 (Atmospheric and Environmental Effects) and module 106 (Solar Corona and Solar Wind Effects) of this handbook.

## 2 General Information

The DSN has developed channel plans to provide for orderly selection and assignment of frequencies for deep-space missions (Category B, greater than 2 million km from Earth) for the S-, X-, and Ka-bands in compliance with Space Frequency Coordination Group (SFCG) recommendations (SFCG Recommendation SFCG 7-1R6). These deep space channel plans are based on bandwidth and transponder turnaround-ratio considerations. The plans allow simultaneous phase coherent uplink (Earth-to-space) and downlink (space-to-Earth) transmissions where the uplink and downlinks are in the same or different bands. In accordance with SFCG Recommendation SFCG 13-3R3, there are no designated channel number/frequency assignments for K-Band.

Through international agreements, the International Telecommunications Union (ITU) allocates and regulates portions of the frequency spectrum for both commercial and government use. The primary objective of the ITU is to establish regulatory procedures for the coordinated use of frequencies by those agencies permitted to operate in the allocated bands. The ITU has allocated certain bands to deep space (Category B) research. In some cases, the deep space missions may be required to conditionally share a frequency band between multiple users in the same band.

The Consultative Committee for Space Data Systems (CCSDS) is an international organization for space agencies interested in mutually developing standard transmission and data handling techniques to support space research, including space science and applications. As a member of the CCSDS, NASA has submitted recommendations for various space systems applications.

The National Telecommunications and Information Administration (NTIA), an agency of the U.S. Department of Commerce, is the Executive Branch's principal authority on domestic and international telecommunications and information technology issues. During the planning phase of all missions using the DSN, the proposed operating frequencies and other operating parameters are reviewed by the NTIA for approval through the System Review process. The NTIA evaluations are based upon the technical and regulatory criteria for the efficient and coordinated use of the frequency spectrum by NASA missions.

### 2.1 Tracking Modes of Operation

The following paragraphs describe the various ways in which the telecommunications link can be configured for radio tracking. The source of the uplink signal and the choice of references for measuring the received frequency determine the mode of operation.

### 2.1.1 One-way

The spacecraft generates the downlink signal(s) from an onboard oscillator. The DSN compares the received frequency against a locally generated frequency.

### 2.1.2 Two-way

The DSN transmits a signal to the spacecraft. The spacecraft tracks the phase of the uplink signal and generates a phase coherent downlink signal. The DSN compares the received frequency with the same reference frequency from which the uplink was generated.

### 2.1.3 Three-way

The spacecraft is tracked by two stations-the uplink is transmitted from one antenna and the downlink is received at a different antenna. The most common application of this mode is during the handover between stations at two different Deep Space Communication Complexes (DSCCs). When three-way tracking is done within one DSCC, both uplink and downlink equipment share a common frequency reference. When three-way tracking is done across two DSCCs, higher noise performance is expected due to the use of two different frequency references.

### 2.1.4 Coherent Three-way

Coherent three-way tracking is three-way tracking when the transmitting and receiving stations share a common frequency reference. This is possible at all three DSN complexes as all antennas at a complex share the same frequency reference.

### 2.2 Spacecraft Transponder Turnaround Ratios

To measure two-way or three-way Doppler shift, the spacecraft must transmit a downlink signal that is phase coherent with the uplink signal. Table 1 provides the recommended spacecraft transponder turnaround ratios for various uplink and downlink frequency bands. The tracking equipment at the DSN 34-m and 70-m stations can accommodate other turnaround ratios but this support must be negotiated through the JPL Frequency Manager, see [https://deepspace.jpl.nasa.gov/about/commitments-office/](https://deepspace.jpl.nasa.gov/about/commitments-office/).

810-005
201, Rev. F
Table 1. Spacecraft Transponder Turnaround Ratios

| Uplink | Downlink | Ratio (downlink/uplink) |
| :---: | :---: | :---: |
| S | S | $240 / 221$ |
| S | X | $880 / 221$ |
| S | Ka | $3328 / 221,3344 / 221,3360 / 221$ |
| X | S | $240 / 749$ |
| X | X | $880 / 749$ |
| X | $\mathrm{K}_{\mathrm{a}}$ | $3328 / 749,3344 / 749,3360 / 749$ |
| $\mathrm{~K}^{\star}$ | K | $2720 / 2407,2760 / 2407,2816 / 2407^{\star *}$ |
| $\mathrm{~K}_{\mathrm{a}}$ | $\mathrm{K}_{\mathrm{a}}$ | $3344 / 3599,3360 / 3599$ |

* K-band uplink implementation, at two 34-meter BWG antennas per complex, will start February 2022 and complete July 2024.
** Due to the difference between 600 MHz uplink and 1500 MHz downlink bandwidths, the coherency between uplink and downlink using these transponder ratios does not apply to the entire allocated bandwidth.


### 2.3 Frequency Bands Allocated by the International Telecommunication Union (ITU)

Frequency ranges have been allocated by the ITU for use in deep space and nearEarth research. These ranges are listed in Table 2.

Table 2. Allocated Frequency Bands

| Band Designation | Deep Space Bands <br> (for spacecraft outside <br> 2 million km from Earth) |  | Near Earth Bands <br> (for spacecraft within <br> 2 million km from Earth) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Uplink <br> (Earth to <br> space) | Downlink <br> (space to <br> Earth) | Uplink <br> (Earth to <br> space) | Downlink <br> (space to <br> Earth) |
|  | $2110-2120^{*}$ | $2290-2300$ | $2025-2110$ | $2200-2290$ |
| X-band | $7145-7190$ | $8400-8450$ | $7190-7235$ | $8450-8500$ |
| K-band (Near Earth) | N/A | N/A | $22550-23150$ | $25500-27000$ |
| Ka-band (Deep Space) | $34200-34700$ | $31800-32300$ | N/A | N/A |

* Deep Space S-band is not available at Madrid tracking stations due to a conflict with IMT2000 users, per agreement between NASA and Secretaria de Estado de
Telecomunicaciones para la Sociedad de la Informacion (SETSI), January 2001"


### 2.4 Deep Space Frequency Channels

The DSN has divided the frequency ranges allocated for deep space use into channels for tracking support associated with a given transponder ratio. Note that the frequencies out of the allocated ranges for deep space research are not shown in the tables.

The S-band downlink center frequency $\left(F_{c h}(14)=2295 \mathrm{MHz}\right)$ is used to derive all entries in the tables using the expressions
$F_{c h}(n)=(n-14)^{*}(10 / 27)+2295 \mathrm{MHz}$, rounded to the nearest Hertz
where $F_{c h(n)}$ is the center frequency (in MHz ) of channel $n$ rounded to the nearest Hz , and the ratio $10 / 27$ is the spacing (in MHz ) between the centers of two adjacent channels.

Frequencies for other columns are derived by the procedure described below. The calculated downlink frequencies may differ by one or two Hertz between the tables because each table assumes an integer uplink frequency and precise turnaround ratios.
(1) The uplink frequency specified in the table is calculated from the expression
$f_{c h}(n)=F_{c h}(n) \times T M / 240$, rounded to the nearest Hertz,
where
$f_{c h(n)}$ is the frequency of uplink channel $n$ being calculated;
$F c h(n)$ is the frequency of channel $n$ calculated for the S-band downlink column (including values for out-of-band channels);
$T M$ is the Transmit Multiplier of the frequency band, that is, $T M=221$ for S uplink and 749 for X-uplink.
(2) The downlink frequencies specified in the table are calculated from the expression
$F_{c h}(n)=f_{c h}(n) \times T R$, rounded to the nearest Hertz,
where
$F_{c h(n)}$ is the frequency of channel $n$ for the downlink columns;
$f_{c h(n)}$ is the frequency of channel $n$ in the uplink column;
$T R$ is the Turnaround Ratio for the downlink frequency band provided in Table 1.
Because Ka-band has a wide bandwidth, channels are divided into three categories: channel L1 to L50 for a low-band as shown in Table 6-1, channel 1 to 42 for a midband as shown in Table 6-2, and channel H1 to H34 for a high-band as shown in Table 6-3.

Although the DSN is capable of supporting two-way and three-way tracking in S-and X-band where the downlink frequency is not at the frequency specified for the selected uplink channel, the use of non-standard turn-around rations is highly discouraged. Therefore, only channels 5 through 27 fully support coherent uplink and downlink for both frequency bands. Channel 28, for example, supports S- or X-band uplink with a coherent X-band downlink, but not with a coherent S-band downlink.

Channel selection is also highly dependent on bandwidth considerations. The channel plan was developed to accommodate both low-rate spacecraft operating within a single channel and higher-rate spacecraft requiring one or more adjacent channels on each side of the nominal operating channel. Before selecting operating frequencies or channels for a project, the telecommunication designer should consult the JPL Frequency Spectrum Management (see< https://deepspace.jpl.nasa.gov/about/commitments-office/>) to avoid frequency interference with other spacecraft, present or planned.

810-005
201, Rev. F
Table 3. Frequency and Channel Assignments for S-band Uplink and S/X-bands Downlink

| Channel | $\begin{aligned} & \text { S-band U/L } \\ & (\mathrm{MHz}) \end{aligned}$ | S-band D/L (MHz) | $\begin{aligned} & \text { X-band D/L } \\ & (\mathrm{MHz}) \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 1 |  | 2290.185185 |  |
| 2 |  | 2290.555556 |  |
| 3 |  | 2290.925926 | 8400.061729 |
| 4 |  | 2291.296296 | 8401.419752 |
| 5 | 2110.243056 | 2291.666667 | 8402.777779 |
| 6 | 2110.584105 | 2292.037037 | 8404.135802 |
| 7 | 2110.925154 | 2292.407407 | 8405.493825 |
| 8 | 2111.266204 | 2292.777778 | 8406.851853 |
| 9 | 2111.607253 | 2293.148148 | 8408.209877 |
| 10 | 2111.948303 | 2293.518519 | 8409.567903 |
| 11 | 2112.289352 | 2293.888889 | 8410.925927 |
| 12 | 2112.630401 | 2294.259259 | 8412.283950 |
| 13 | 2112.971451 | 2294.629630 | 8413.641977 |
| 14 | 2113.312500 | 2295.000000 | 8415.000000 |
| 15 | 2113.653549 | 2295.370370 | 8416.358023 |
| 16 | 2113.994599 | 2295.740741 | 8417.716050 |
| 17 | 2114.335648 | 2296.111111 | 8419.074073 |
| 18 | 2114.676697 | 2296.481481 | 8420.432097 |
| 19 | 2115.017747 | 2296.851852 | 8421.790123 |
| 20 | 2115.358796 | 2297.222222 | 8423.148147 |
| 21 | 2115.699846 | 2297.592593 | 8424.506175 |
| 22 | 2116.040895 | 2297.962963 | 8425.864198 |
| 23 | 2116.381944 | 2298.333333 | 8427.222221 |
| 24 | 2116.722994 | 2298.703704 | 8428.580248 |
| 25 | 2117.064043 | 2299.074074 | 8429.938271 |
| 26 | 2117.405092 | 2299.444444 | 8431.296295 |
| 27 | 2117.746142 | 2299.814815 | 8432.654321 |
| 28 | 2118.087191 |  | 8434.012345 |
| 29 | 2118.428241 |  | 8435.370372 |
| 30 | 2118.769290 |  | 8436.728395 |
| 31 | 2119.110339 |  | 8438.086418 |
| 32 | 2119.451389 |  | 8439.444446 |
| 33 | 2119.792438 |  | 8440.802469 |
| 34 |  |  | 8442.160493 |
| 35 |  |  | 8443.518520 |
| 36 |  |  | 8444.876543 |
| 37 |  |  | 8446.234570 |
| 38 |  |  | 8447.592593 |
| 39 |  |  | 8448.950616 |

810-005
201, Rev. F

Table 4. Frequency and Channel Assignments for X-band Uplink and S-/X-bands Downlink

| Channel | $\begin{aligned} & \text { X-band U/L } \\ & (M H z) \end{aligned}$ | $\begin{gathered} \text { S-band D/L } \\ (\mathrm{MHz}) \end{gathered}$ | X-band D/L (MHz) |
| :---: | :---: | :---: | :---: |
| 1 | 7147.286265 | 2290.185185 |  |
| 2 | 7148.442131 | 2290.555556 |  |
| 3 | 7149.597994 | 2290.925926 | 8400.061729 |
| 4 | 7150.753857 | 2291.296296 | 8401.419752 |
| 5 | 7151.909723 | 2291.666667 | 8402.777779 |
| 6 | 7153.065586 | 2292.037037 | 8404.135802 |
| 7 | 7154.221449 | 2292.407407 | 8405.493825 |
| 8 | 7155.377316 | 2292.777778 | 8406.851853 |
| 9 | 7156.533179 | 2293.148148 | 8408.209877 |
| 10 | 7157.689045 | 2293.518519 | 8409.567903 |
| 11 | 7158.844908 | 2293.888889 | 8410.925927 |
| 12 | 7160.000771 | 2294.259259 | 8412.283950 |
| 13 | 7161.156637 | 2294.629630 | 8413.641977 |
| 14 | 7162.312500 | 2295.000000 | 8415.000000 |
| 15 | 7163.468363 | 2295.370370 | 8416.358023 |
| 16 | 7164.624229 | 2295.740741 | 8417.716050 |
| 17 | 7165.780092 | 2296.111111 | 8419.074073 |
| 18 | 7166.935955 | 2296.481481 | 8420.432097 |
| 19 | 7168.091821 | 2296.851852 | 8421.790123 |
| 20 | 7169.247684 | 2297.222222 | 8423.148147 |
| 21 | 7170.403551 | 2297.592593 | 8424.506175 |
| 22 | 7171.559414 | 2297.962963 | 8425.864198 |
| 23 | 7172.715277 | 2298.333333 | 8427.222221 |
| 24 | 7173.871143 | 2298.703704 | 8428.580248 |
| 25 | 7175.027006 | 2299.074074 | 8429.938271 |
| 26 | 7176.182869 | 2299.444444 | 8431.296295 |
| 27 | 7177.338735 | 2299.814815 | 8432.654321 |
| 28 | 7178.494598 |  | 8434.012345 |
| 29 | 7179.650464 |  | 8435.370372 |
| 30 | 7180.806327 |  | 8436.728395 |
| 31 | 7181.962190 |  | 8438.086418 |
| 32 | 7183.118057 |  | 8439.444446 |
| 33 | 7184.273920 |  | 8440.802469 |
| 34 | 7185.429783 |  | 8442.160493 |
| 35 | 7186.585649 |  | 8443.518520 |
| 36 | 7187.741512 |  | 8444.876543 |
| 37 | 7188.897378 |  | 8446.234570 |
| 38 |  |  | 8447.592593 |
| 39 |  |  | 8448.950616 |

810-005
201, Rev. F
Table 5. Frequency and Channel Assignments for X-band Uplink and Ka-band Downlink

| Channel | $\begin{aligned} & \text { X-band U/L } \\ & \text { (MHz) } \end{aligned}$ | $\begin{gathered} \text { Ka-band D/L } \\ \text { (MHz), } \\ 3328 / 749 \end{gathered}$ | $\begin{aligned} & \text { Ka-band D/L } \\ & \text { (MHz), } \\ & 3344 / 749 \end{aligned}$ | $\begin{aligned} & \text { Ka-band D/L } \\ & \text { (MHz), } \\ & 3360 / 749 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 7147.286265 |  | 31909.913578 | 32062.592591 |
| 2 | 7148.442131 |  | 31915.074080 | 32067.777784 |
| 3 | 7149.597994 |  | 31920.234569 | 32072.962964 |
| 4 | 7150.753857 |  | 31925.395057 | 32078.148144 |
| 5 | 7151.909723 |  | 31930.555559 | 32083.333337 |
| 6 | 7153.065586 |  | 31935.716048 | 32088.518517 |
| 7 | 7154.221449 |  | 31940.876536 | 32093.703696 |
| 8 | 7155.377316 |  | 31946.037042 | 32098.888894 |
| 9 | 7156.533179 |  | 31951.197531 | 32104.074074 |
| 10 | 7157.689045 | 31803.456798 | 31956.358033 | 32109.259267 |
| 11 | 7158.844908 | 31808.592595 | 31961.518521 | 32114.444447 |
| 12 | 7160.000771 | 31813.728392 | 31966.679010 | 32119.629627 |
| 13 | 7161.156637 | 31818.864203 | 31971.839512 | 32124.814820 |
| 14 | 7162.312500 | 31824.000000 | 31977.000000 | 32130.000000 |
| 15 | 7163.468363 | 31829.135797 | 31982.160488 | 32135.185180 |
| 16 | 7164.624229 | 31834.271608 | 31987.320990 | 32140.370373 |
| 17 | 7165.780092 | 31839.407405 | 31992.481479 | 32145.555553 |
| 18 | 7166.935955 | 31844.543202 | 31997.641967 | 32150.740733 |
| 19 | 7168.091821 | 31849.679012 | 32002.802469 | 32155.925926 |
| 20 | 7169.247684 | 31854.814810 | 32007.962958 | 32161.111106 |
| 21 | 7170.403551 | 31859.950624 | 32013.123464 | 32166.296304 |
| 22 | 7171.559414 | 31865.086422 | 32018.283952 | 32171.481483 |
| 23 | 7172.715277 | 31870.222219 | 32023.444441 | 32176.666663 |
| 24 | 7173.871143 | 31875.358029 | 32028.604943 | 32181.851856 |
| 25 | 7175.027006 | 31880.493826 | 32033.765431 | 32187.037036 |
| 26 | 7176.182869 | 31885.629624 | 32038.925920 | 32192.222216 |
| 27 | 7177.338735 | 31890.765434 | 32044.086422 | 32197.407409 |
| 28 | 7178.494598 | 31895.901231 | 32049.246910 | 32202.592589 |
| 29 | 7179.650464 | 31901.037042 | 32054.407412 | 32207.777782 |
| 30 | 7180.806327 | 31906.172839 | 32059.567901 | 32212.962962 |
| 31 | 7181.962190 | 31911.308636 | 32064.728389 | 32218.148142 |
| 32 | 7183.118057 | 31916.444451 | 32069.888895 | 32223.333340 |
| 33 | 7184.273920 | 31921.580248 | 32075.049384 | 32228.518520 |
| 34 | 7185.429783 | 31926.716045 | 32080.209872 | 32233.703699 |
| 35 | 7186.585649 | 31931.851856 | 32085.370374 | 32238.888893 |
| 36 | 7187.741512 | 31936.987653 | 32090.530863 | 32244.074073 |
| 37 | 7188.897378 | 31942.123463 | 32095.691365 | 32249.259266 |
| 38 |  | 31947.259260 | 32100.851853 | 32254.444446 |
| 39 |  | 31952.395058 | 32106.012341 | 32259.629625 |
| 40 |  | 31957.530868 | 32111.172843 | 32264.814819 |
| 41 |  | 31962.666665 | 32116.333332 | 32269.999999 |
| 42 |  | 31967.802462 | 32121.493820 | 32275.185178 |

810-005
201, Rev. F
Table 6-1. Frequency and Channel Assignments for Ka-band Uplink and Ka-band Downlink
(Channel L1 to L50)

| Channel | Ka-band U/L (MHz) | $\begin{gathered} \text { Ka-band D/L (MHz), } \\ 3344 / 3599 \end{gathered}$ | $\begin{gathered} \hline \hline \text { Ka-band D/L (MHz), } \\ 3360 / 3599 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| L1 |  |  | 31803.333340 |
| L2 |  |  | 31808.518520 |
| L3 |  |  | 31813.703699 |
| L4 |  |  | 31818.888893 |
| L5 |  |  | 31824.074073 |
| L6 |  |  | 31829.259266 |
| L7 |  |  | 31834.444446 |
| L8 |  |  | 31839.629625 |
| L9 |  |  | 31844.814819 |
| L10 |  |  | 31849.999999 |
| L11 |  |  | 31855.185178 |
| L12 |  |  | 31860.370376 |
| L13 |  |  | 31865.555556 |
| L14 |  |  | 31870.740736 |
| L15 |  |  | 31875.925929 |
| L16 |  |  | 31881.111109 |
| L17 |  |  | 31886.296302 |
| L18 |  |  | 31891.481482 |
| L19 |  |  | 31896.666662 |
| L20 |  |  | 31901.851855 |
| L21 |  |  | 31907.037035 |
| L22 |  |  | 31912.222215 |
| L23 |  |  | 31917.407408 |
| L24 |  |  | 31922.592592 |
| L25 |  |  | 31927.777785 |
| L26 | 34204.385033 |  | 31932.962965 |
| L27 | 34209.939040 |  | 31938.148145 |
| L28 | 34215.493061 |  | 31943.333338 |
| L29 | 34221.047067 |  | 31948.518518 |
| L30 | 34226.601074 | 31801.543204 | 31953.703698 |
| L31 | 34232.155095 | 31806.703706 | 31958.888891 |
| L32 | 34237.709102 | 31811.864194 | 31964.074071 |
| L33 | 34243.263123 | 31817.024696 | 31969.259264 |
| L34 | 34248.817129 | 31822.185185 | 31974.444444 |
| L35 | 34254.371136 | 31827.345673 | 31979.629624 |
| L36 | 34259.925162 | 31832.506180 | 31984.814822 |
| L37 | 34265.479168 | 31837.666668 | 31990.000001 |
| L38 | 34271.033175 | 31842.827157 | 31995.185181 |
| L39 | 34276.587196 | 31847.987659 | 32000.370375 |
| L40 | 34282.141202 | 31853.148147 | 32005.555554 |
| L41 | 34287.695209 | 31858.308635 | 32010.740734 |
| L42 | 34293.249230 | 31863.469137 | 32015.925927 |
| L43 | 34298.803237 | 31868.629626 | 32021.111107 |
| L44 | 34304.357258 | 31873.790128 | 32026.296301 |
| L45 | 34309.911264 | 31878.950616 | 32031.481480 |
| L46 | 34315.465271 | 31884.111105 | 32036.666660 |
| L47 | 34321.019297 | 31889.271611 | 32041.851858 |
| L48 | 34326.573303 | 31894.432099 | 32047.037038 |
| L49 | 34332.127310 | 31899.592588 | 32052.222218 |
| L50 | 34337.681331 | 31904.753090 | 32057.407411 |

810-005
201, Rev. F
Table 6-2. Frequency and Channel Assignments for Ka-band Uplink and Ka-band Downlink
(Channel 1 to 42)

| Channel | Ka-band U/L (MHz) | $\begin{gathered} \text { Ka-band D/L (MHz), } \\ 3344 / 3599 \end{gathered}$ | $\begin{gathered} \text { Ka-band D/L (MHz), } \\ 3360 / 3599 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 1 | 34343.235337 | 31909.913578 | 32062.592591 |
| 2 | 34348.789358 | 31915.074080 | 32067.777784 |
| 3 | 34354.343365 | 31920.234569 | 32072.962964 |
| 4 | 34359.897372 | 31925.395057 | 32078.148144 |
| 5 | 34365.451393 | 31930.555559 | 32083.333337 |
| 6 | 34371.005399 | 31935.716048 | 32088.518517 |
| 7 | 34376.559406 | 31940.876536 | 32093.703696 |
| 8 | 34382.113432 | 31946.037042 | 32098.888894 |
| 9 | 34387.667438 | 31951.197531 | 32104.074074 |
| 10 | 34393.221459 | 31956.358033 | 32109.259267 |
| 11 | 34398.775466 | 31961.518521 | 32114.444447 |
| 12 | 34404.329472 | 31966.679010 | 32119.629627 |
| 13 | 34409.883493 | 31971.839512 | 32124.814820 |
| 14 | 34415.437500 | 31977.000000 | 32130.000000 |
| 15 | 34420.991507 | 31982.160488 | 32135.185180 |
| 16 | 34426.545528 | 31987.320990 | 32140.370373 |
| 17 | 34432.099534 | 31992.481479 | 32145.555553 |
| 18 | 34437.653541 | 31997.641967 | 32150.740733 |
| 19 | 34443.207562 | 32002.802469 | 32155.925926 |
| 20 | 34448.761568 | 32007.962958 | 32161.111106 |
| 21 | 34454.315594 | 32013.123464 | 32166.296304 |
| 22 | 34459.869601 | 32018.283952 | 32171.481483 |
| 23 | 34465.423607 | 32023.444441 | 32176.666663 |
| 24 | 34470.977628 | 32028.604943 | 32181.851856 |
| 25 | 34476.531635 | 32033.765431 | 32187.037036 |
| 26 | 34482.085642 | 32038.925920 | 32192.222216 |
| 27 | 34487.639663 | 32044.086422 | 32197.407409 |
| 28 | 34493.193669 | 32049.246910 | 32202.592589 |
| 29 | 34498.747690 | 32054.407412 | 32207.777782 |
| 30 | 34504.301697 | 32059.567901 | 32212.962962 |
| 31 | 34509.855703 | 32064.728389 | 32218.148142 |
| 32 | 34515.409729 | 32069.888895 | 32223.333340 |
| 33 | 34520.963736 | 32075.049384 | 32228.518520 |
| 34 | 34526.517742 | 32080.209872 | 32233.703699 |
| 35 | 34532.071763 | 32085.370374 | 32238.888893 |
| 36 | 34537.625770 | 32090.530863 | 32244.074073 |
| 37 | 34543.179791 | 32095.691365 | 32249.259266 |
| 38 | 34548.733798 | 32100.851853 | 32254.444446 |
| 39 | 34554.287804 | 32106.012341 | 32259.629625 |
| 40 | 34559.841825 | 32111.172843 | 32264.814819 |
| 41 | 34565.395832 | 32116.333332 | 32269.999999 |
| 42 | 34570.949838 | 32121.493820 | 32275.185178 |

Table 6-3. Frequency and Channel Assignments for Ka-band Uplink and Ka-band Downlink
(Channel H1 to H34)

| Channel | Ka-band U/L (MHz) | $\begin{gathered} \text { Ka-band D/L (MHz), } \\ 3344 / 3599 \end{gathered}$ | $\begin{gathered} \text { Ka-band D/L (MHz), } \\ 3360 / 3599 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| H1 | 34576.503864 | 32126.654327 | 32280.370376 |
| H2 | 34582.057871 | 32131.814815 | 32285.555556 |
| H3 | 34587.611877 | 32136.975304 | 32290.740736 |
| H4 | 34593.165898 | 32142.135806 | 32295.925929 |
| H5 | 34598.719905 | 32147.296294 |  |
| H6 | 34604.273926 | 32152.456796 |  |
| H7 | 34609.827933 | 32157.617284 |  |
| H8 | 34615.381939 | 32162.777773 |  |
| H9 | 34620.935960 | 32167.938275 |  |
| H10 | 34626.489967 | 32173.098763 |  |
| H11 | 34632.043973 | 32178.259252 |  |
| H12 | 34637.597994 | 32183.419754 |  |
| H13 | 34643.152006 | 32188.580246 |  |
| H14 | 34648.706027 | 32193.740748 |  |
| H15 | 34654.260033 | 32198.901237 |  |
| H16 | 34659.814040 | 32204.061725 |  |
| H17 | 34665.368061 | 32209.222227 |  |
| H18 | 34670.922067 | 32214.382716 |  |
| H19 | 34676.476074 | 32219.543204 |  |
| H20 | 34682.030095 | 32224.703706 |  |
| H21 | 34687.584102 | 32229.864194 |  |
| H22 | 34693.138123 | 32235.024696 |  |
| H23 | 34698.692129 | 32240.185185 |  |
| H24 |  | 32245.345673 |  |
| H25 |  | 32250.506180 |  |
| H26 |  | 32255.666668 |  |
| H27 |  | 32260.827157 |  |
| H28 |  | 32265.987659 |  |
| H29 |  | 32271.148147 |  |
| H30 |  | 32276.308635 |  |
| H31 |  | 32281.469137 |  |
| H32 |  | 32286.629626 |  |
| H33 |  | 32291.790128 |  |
| H34 |  | 32296.950616 |  |

Deep Space Network

## 202 <br> Doppler Tracking

Document Owner:

| Signature Provided | $06 / 14 / 2022$ |
| :--- | :--- |
| Andrew O'Dea | Date |
| Telemetry, Tracking, and Command |  |
| System Engineer |  |

Prepared By:

| Signature Provided | $06 / 07 / 2022$ |
| :--- | :--- |
| Peter Kinman | Date |

Telecommunications Technical Consultant

Approved by:

| Signature Provided | 04/06/2022 |
| :--- | :--- |
| Timothy T. Pham | Date |
| Communications Systems Chief |  |
| Engineer |  |

Released by:

| Signature Provided | 07/14/2022 |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 202, Rev. E
Issue Date: July 19, 2022
JPL D-19379; CL\# 22-3475
Jet Propulsion Laboratory
California Institute of Technology

Users must ensure that they are using the current version in DSN Telecommunications Link Design Handbook website:
http://deepspace.jpl.nasa.gov/dsndocs/810-005/
© < 2022 > California Institute of Technology.
U.S. Government sponsorship acknowledged.

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | 06/07/2022 | Signature Provided | 04/12/2022 |
| :---: | :---: | :---: | :---: |
| Jeff B. Berner DSN Project Chief Engineer | Date | Dong K. Shin DSN System Engineer | Date |

810-005
202, Rev. E

Document Change Log

| Rev | Issue Date | Prepared By | Affected Sections or Pages | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| Initial | 11/30/2000 | P. W. Kinman | All | New Module |
| A | 12/15/2002 | P. W. Kinman | Many | Added Discussion of one-way Doppler error and X-Up/S-Down Solar Phase Scintillation errors. Renumbered all equations. |
| B | 9/30/2010 | D. K. Shin | All | Replaced DSMS with DSN. Eliminated the Rev. E designation for the document series. |
| C | 12/3/2018 | P. W. Kinman | All | Title of module changed to "Doppler Tracking". Added new equation on data imbalance. Added new equations on uplink noise affecting coherent operation. Added new equations on the effect of phase noise. Equations on phase scintillation corrected. Added Appendix A, "Carrier-Loop Transfer Function," and Appendix B, "Glossary of Parameters". Figures 3, 4, 5, 11, 12, and 13 added. Several sections were rewritten for better clarity. |
| D | 6/6/2021 | P. W. Kinman | $\begin{aligned} & \text { 2.1.3, } \\ & \text { 2.1.4, } \\ & \text { 2.2.1 } \end{aligned}$ | Equation (8) corrected for the case of OQPSK. Comments added on recommended minimum carrier loop signal-to-noise ratio. New Subsection 2.1.4 on carrier loop bandwidth. Figures 3, 4, and 5 corrected. |
| E | 07/19/2022 | P. W. Kinman | $\begin{aligned} & \text { 2.2.1.3, } \\ & \text { 2.2.2.3, } \\ & \text { 2.3.4.1.3, } \\ & \text { 2.3.4.2.3 } \end{aligned}$ | Equation for one-way $\sigma_{V S}{ }^{2}$ corrected [Eq. (19)]. Equations for $C_{\text {band }}$ corrected [Eqs. (20) and (29) in 202D; now Eqs. (21) and (31) in 202E]. Figures 3, 4, and 5 of 202D corrected [Figures 3, 4, and 6 in 202E]. New Figure 5 added for one-way K-band $\sigma_{V S}$. Figures 6 through 12 corrected [Figures 7 through 13 in 202E]. New Figure 14 added for coherent K-up/K-down $\sigma_{V S}$. New general equation for $C_{\text {band }}$ added [Eq. (20)]. |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## Contents

Section Page

1. Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope ..... 6
2. General Information ..... 6
2.1 Carrier Loop Signal-to-Noise Ratio ..... 9
2.1.1 Residual Carrier ..... 9
2.1.2 Suppressed-Carrier BPSK ..... 9
2.1.3 QPSK and Offset QPSK ..... 10
2.1.4 Carrier Loop Bandw idth ..... 12
2.2 Doppler Measurement Error ..... 12
2.2.1 One-Way Doppler Measurement Error ..... 14
2.2.2 Two-Way and Three-Way Doppler Measurement Error ..... 17
2.3 Carrier Tracking ..... 28
2.3.1 Carrier Power Measurement ..... 28
2.3.2 Carrier Loop Bandw idth ..... 28
2.3.3 Static Phase Error in the Carrier Loop ..... 29
2.3.4 Carrier Phase Error Variance ..... 29
Appendix A: Carrier-Loop Transfer Function ..... 36
Appendix B: Glossary of Parameters ..... 37
References ..... 39

## Illustrations

Figure Page
Figure 1. One-Way Doppler Measurement ..... 7
Figure 2. Two-Way Doppler Measurement ..... 8
Figure 3. Doppler Measurement Error Due to Solar Phase Scintillation: S-Down ..... 17
Figure 4: Doppler Measurement Error Due to Solar Phase Scintillation: X-Down ..... 18
Figure 5. Doppler Measurement Error Due to Solar Phase Scintillation: K-Down ..... 18
Figure 6. Doppler Measurement Error Due to Solar Phase Scintillation: Ka-Down ..... 19
Figure 7. Doppler Measurement Error Due to Solar Phase Scintillation: S-Up/S-Down ..... 24
Figure 8. Doppler Measurement Error Due to Solar Phase Scintillation: S-Up/X-Down ..... 24
Figure 9. Doppler Measurement Error Due to Solar Phase Scintillation: X-Up/S-Down ..... 25
Figure 10. Doppler Measurement Error Due to Solar Phase Scintillation: X-Up/X-Down ..... 25
Figure 11. Doppler Measurement Error Due to Solar Phase Scintillation: X-Up/Ka-Down ..... 26
Figure 12. Doppler Measurement Error Due to Solar Phase Scintillation: Ka-Up/X-Down ..... 26
Figure 13. Doppler Measurement Error Due to Solar Phase Scintillations: Ka-Up/Ka-Down ..... 27
Figure 14. Doppler Measurement Error Due to Solar Phase Scintillations: K-Up/K-Down ..... 27
Figure 15. Terms Relating U/L White Noise to D/L Carrier Phase-Error Variance ..... 33
Tables
Table Page
Table 1. Static Phase Error (rad) ..... 29
Table 2. $2^{\text {nd }}$ Order Loop Parameters ..... 36
Table 3. $3^{\text {rd }}$ Order Loop Parameters ..... 36

## 1. Introduction

### 1.1 Purpose

This module provides sufficient information for the telecommunications engineer to understand the capabilities and limitations of the equipment used for Doppler measurement at the Deep Space Network (DSN).

### 1.2 Scope

The scope of this module is limited to those features of the Low-Rate Downlink Channel at the $34-\mathrm{m}$ High-efficiency (34-m HEF), 34-m Beam Waveguide (34-m BWG), and $70-\mathrm{m}$ stations that relate to the measurement and reporting of the Doppler effect.

## 2. General Information

The relative motion of a transmitter and receiver causes the received carrier frequency to differ from that of the transmitter. This Doppler shift depends on the range ratethe rate-of-change of the distance separating transmitter and receiver. In the DSN a Doppler measurement consists of a set of carrier phase measurements. From these phase data, frequency may be calculated, since frequency is the rate-of-change of phase. Moreover, the calculated Doppler shift is related to the range rate. Doppler measurements are one of the most important radiometric data types used in orbit determination.

There are three types of Doppler measurement: one-way, two-way, and threeway. In all of these cases, the accumulating downlink carrier phase is measured and recorded.

With a one-way Doppler measurement, the spacecraft transmits a downlink carrier that is unrelated to any frequency source in the DSN and the downlink Doppler shift is determined. The frequency stability of the spacecraft oscillator used to generate the downlink carrier typically limits the performance of this Doppler measurement. Ultra-Stable Oscillators (USOs) are typically used for one-way Doppler measurement.

A two-way Doppler measurement employs an uplink from a Deep Space Station (DSS) and a downlink to that same station. The spacecraft's transponder tracks the arriving uplink carrier, whose frequency differs from that transmitted by the DSS by the uplink Doppler shift. The transponder produces a downlink carrier that is coherently related to the received uplink carrier. To be precise, the transmitted downlink carrier frequency equals the received uplink carrier frequency multiplied by a constant $G$, the transponding ratio. (The frequency multiplication is needed to achieve frequency separation between uplink and downlink carriers). The downlink carrier is received at the same DSS that transmitted the uplink carrier. The arriving downlink carrier experiences a two-way Doppler effect. The downlink carrier frequency is therefore different from that on the uplink because of the two-way Doppler effect and because of the transponding ratio.

Three-way Doppler measurement is similar to two-way measurement, except that the downlink carrier is received at a different DSS than that from which the uplink carrier was
transmitted. In a three-way measurement there are three nodes present: transmitting DSS, spacecraft, and receiving DSS.

A two-way or three-way Doppler measurement originates at a DSS. The uplink carrier frequency is synthesized within the exciter from a highly stable frequency reference provided by the Frequency and Timing Subsystem (FTS). Since this reference is typically more stable than the spacecraft-borne oscillator, a two-way or three-way Doppler measurement is more accurate than a one-way measurement.

For two-way and three-way Doppler measurements, it is necessary to account for the transponding ratio $G$. It is usual to define two-way Doppler as the transmitted uplink carrier frequency minus the ratio of the received downlink carrier frequency to the factor $G$. With this definition, the two-way Doppler would be zero if there were no relative motion between the DSS and the spacecraft. For a receding spacecraft that is typical of deep space exploration, two-way Doppler is a positive quantity.

The instrumentation of a Doppler measurement within a DSS is shown in diagrammatic form for a one-way measurement in Figure 1 and for a two-way measurement in Figure 2. In all Doppler measurements, the downlink carrier from the Low-Noise Amplifier (LNA) passes to the Downlink Tracking and Telemetry Subsystem (DTT), which resides in part in the antenna and in part in the Signal Processing Center (SPC). The Radio-frequency to Intermediate-frequency Downconverter (RID), which is located at the antenna, synthesizes a local oscillator from a frequency reference supplied by the FTS and then heterodynes this local oscillator with the downlink carrier. The Intermediate-Frequency (IF) signal that results is sent to the Signal Processing Center (SPC).


Figure 1. One-Way Doppler Measurement

In the SPC, the IF to Digital Converter (IDC) alters the frequency of the IF signal by a combination of up-conversion and down-conversion to a final analog frequency of approximately 200 MHz and then performs analog-to-digital conversion. The final analog stage of down-conversion uses a local oscillator supplied by the Channel-Select Synthesizer (CSS). The CSS is adjusted before the beginning of a pass to a frequency appropriate for the anticipated frequency range of the incoming downlink signal. During the pass, the frequency of the CSS
remains constant. The local oscillator frequencies of the CSS (and, indeed, of all local oscillators in the analog chain of down-conversion) are synthesized within the DTT from highly stable frequency references provided by the FTS. All analog stages of down-conversion are open-loop, and so the digital signal coming out of the IDC reflects the full Doppler shift.


Figure 2. Two-Way Doppler Measurement

The Receiver, Ranging and Telemetry (RRT) processor accepts the signal from the IDC and extracts carrier phase with a digital phase-locked loop (Reference 1). The loop is configured to track the phase of a residual carrier, a suppressed carrier, or a QPSK (or Offset QPSK) signal. Since every analog local oscillator is held at constant frequency during a pass, the downlink carrier phase at sky frequency (that is, the phase that arrives at the DSS antenna) is easily computed from the local oscillator frequencies and the time-varying phase extracted by the digital phase-locked loop.

For a two-way or three-way Doppler measurement, the DSS exciter synthesizes the uplink carrier from a stable FTS frequency reference, as illustrated in Figure 2. The uplink carrier may be either constant or varied in accord with a tuning plan. In either case, the phase of the uplink carrier is recorded for use in the Doppler determination. The uplink phase counts are available from the Uplink Processor Assembly (UPA) at 1.0 -second intervals.

The uplink and downlink carrier phase records must account for integer as well as fractional cycles. This is unlike many telecommunications applications where it is necessary to know the carrier phase only modulo one cycle. The reported data are uplink and downlink phase counts at sky frequency (but only downlink phase counts in the case of a one-way measurement). The downlink phase counts are available at 0.1 -second intervals.

### 2.1 Carrier Loop Signal-to-Noise Ratio

The downlink carrier loop signal-to-noise ratio $\rho_{L}$ must be known in order to calculate the Doppler measurement error and to calculate the variance of the phase error in the loop. The equation for $\rho_{L}$ depends on the type of modulation on the downlink.

### 2.1.1 Residual Carrier

When the downlink carrier has a residual carrier and carrier synchronization is attained by tracking that residual carrier, $\rho_{L}$ is

$$
\begin{equation*}
\rho_{L}=\left.\frac{P_{C}}{N_{0}}\right|_{D / L} \cdot \frac{1}{B_{L}} \tag{1}
\end{equation*}
$$

where
$P_{C} /\left.N_{0}\right|_{D / L}=$ downlink residual-carrier power to noise spectral density ratio, Hz
$B_{L} \quad=$ one-sided, noise-equivalent bandwidth of the downlink carrier loop, Hz
When non-return-to-zero (NRZ) telemetry symbols directly modulate the carrier (in the absence of a subcarrier), there is an additional loss to the carrier loop signal-to-noise ratio. This loss is due to the presence of data sidebands overlaying the residual carrier in the frequency domain and therefore increasing the effective noise level for carrier synchronization. In this case, $\rho_{L}$ must be calculated as (Reference 2)

$$
\begin{equation*}
\rho_{L}=\left.\frac{P_{C}}{N_{0}}\right|_{D / L} \cdot \frac{1}{B_{L}} \cdot \frac{1}{1+2 E_{S} / N_{0}} \tag{2}
\end{equation*}
$$

where

$$
E_{S} / N_{0} \quad=\text { telemetry symbol energy to noise spectral density ratio }
$$

It is recommended that $\rho_{L}$ meet the following constraint when the residual carrier is being tracked:

$$
\begin{equation*}
\rho_{L} \geq 10 \mathrm{~dB}, \quad \text { residual carrier } \tag{3}
\end{equation*}
$$

If $\rho_{L}$ is larger than 10 dB for a residual-carrier loop, cycle slips should be rare, as long as there is no static phase error in the loop. Static phase error arises when there is an uncompensated Doppler rate for a $2^{\text {nd }}$ order loop or an uncompensated Doppler acceleration for a $3^{\text {rd }}$ order loop. Table 1 contains equations for calculating the static phase error in the presence of uncompensated Doppler dynamics. If a finite static phase error is present in the loop, the minimum required $\rho_{L}$ might be larger than 10 dB . This can be accurately assessed through computer simulation or actual experimentation.

### 2.1.2 Suppressed-Carrier BPSK

A Costas loop is used to track a suppressed-carrier, binary phase-shift keyed (BPSK) carrier. For such a loop,

$$
\begin{equation*}
\rho_{L}=\left.\frac{P_{T}}{N_{0}}\right|_{D / L} \cdot \frac{S_{L}}{B_{L}} \tag{4}
\end{equation*}
$$

where
$P_{T} /\left.N_{0}\right|_{D / L}=$ downlink total signal power to noise spectral density ratio, Hz
$S_{L} \quad=$ squaring loss of the Costas loop (Reference 3),

$$
\begin{equation*}
S_{L}=\frac{2 \frac{E_{S}}{N_{0}}}{1+2 \frac{E_{S}}{N_{0}}} \tag{5}
\end{equation*}
$$

It is recommended that $\rho_{L}$ meet the following constraint for suppressed-carrier BPSK tracking:

$$
\begin{equation*}
\rho_{L} \geq 17 \mathrm{~dB}, \quad \text { suppressed-carrier BPSK } \tag{6}
\end{equation*}
$$

This recommended minimum $\rho_{L}$ is larger than for residual-carrier tracking because with a Costas loop there is the risk of half-cycle slips as well as full cycle slips.

### 2.1.3 QPSK and Offset QPSK

When tracking a quadriphase-shift keyed (QPSK) carrier or an Offset QPSK (OQPSK) carrier, the loop signal to noise ratio is

$$
\begin{equation*}
\rho_{L}=\left.\frac{P_{T}}{N_{0}}\right|_{D / L} \cdot \frac{S_{L Q}}{B_{L}} \tag{7}
\end{equation*}
$$

$P_{T}$ is the total carrier power. For (O)QPSK this includes the power in both phases of the carrier. $P_{T} /\left.N_{0}\right|_{D / L}$ is the ratio, on the downlink, of the total carrier power to the one-sided noise spectral density. As before, $B_{L}$ is the one-sided, noise-equivalent loop bandwidth of the downlink carrier loop.

The squaring loss $S_{L Q}$ for QPSK and OQPSK is given by (Reference 4)

$$
S_{L Q}= \begin{cases}\frac{1}{1+\frac{9}{4\left(E_{S} / N_{0}\right)}+\frac{3}{2\left(E_{S} / N_{0}\right)^{2}}+\frac{3}{16\left(E_{S} / N_{0}\right)^{3}}}, & \text { QPSK }  \tag{8}\\ \frac{1}{4} \cdot \frac{1}{1+\frac{9}{4\left(E_{S} / N_{0}\right)}+\frac{3}{2\left(E_{S} / N_{0}\right)^{2}}+\frac{3}{16\left(E_{S} / N_{0}\right)^{3}}}, & 0 Q P S K\end{cases}
$$

$E_{S} / N_{0}$ is the ratio of the energy per quaternary symbol to the one-sided noise spectral density in each arm of the Costas loop. The power in each arm of the Costas loop is $P_{T} / 2$, and the quaternary symbol period is denoted here $2 T_{S}$ (binary). So $E_{S} / N_{0}$ is given by

$$
\begin{equation*}
\frac{E_{S}}{N_{0}}=\frac{\left(P_{T} / 2\right) \cdot\left(2 T_{S(\text { binary })}\right)}{N_{0}} \tag{9}
\end{equation*}
$$

where

$$
T_{S(\text { binary })}=\text { period of the binary symbol, } \mathrm{s}
$$

The period $T_{S \text { (binary) }}$ is the duration of a binary symbol at the input to the decoder or, equivalently, at the output of the receiver's demodulator (after the multiplexer in the QPSK or OQPSK demodulator).
$E_{S} / N_{0}$ also equals the ratio, at the decoder input, of the energy in one binary symbol to the one-sided noise spectral density.

$$
\begin{equation*}
\frac{E_{S}}{N_{0}}=\left.\frac{P_{T}}{N_{0}}\right|_{D / L} \cdot T_{S}(\text { binary }) \tag{10}
\end{equation*}
$$

Equations (9) and (10) are equivalent definitions for $E_{S} / N_{0}$.
As indicated in Equation (8), the squaring loss $S_{L Q}$ is worse by a factor of $1 / 4$ for OQPSK than for QPSK. In comparing the performance of the OQPSK loop with that of the QPSK loop, with all fundamental parameters being equal, the OQPSK loop will have a $\rho_{L}$ that is smaller by 6 dB . This is a result of the OQPSK carrier-tracking loop having an S-curve slope (at the operating point) that is one-half that for the QPSK loop. (The square of this slope is a factor in $S_{L Q}$.)

It is recommended that $\rho_{L}$ meet the following constraint for QPSK and OQPSK:

$$
\begin{equation*}
\rho_{L} \geq 23, \mathrm{~dB} \quad \text { QPSK and Offset QPSK } \tag{11}
\end{equation*}
$$

With a QPSK or Offset QPSK loop there is a risk of quarter-cycle slips and half-cycle slips as well as full cycle slips. If $\rho_{L}$ is larger than 23 dB , these quarter-, half-, and full-cycle slips should be rare, as long as there is no static phase error in the loop.

Static phase error arises when there is an uncompensated Doppler rate for a $2^{\text {nd }}$ order loop or an uncompensated Doppler acceleration for a $3^{\text {rd }}$ order loop. Table 1 contains equations for calculating the static phase error in the presence of uncompensated Doppler dynamics. If a finite static phase error is present in the loop, the minimum required $\rho_{L}$ might be larger than 23 dB . This can be accurately assessed through computer simulation or actual experimentation.

Equation (11) might seem to suggest that an OQPSK loop has the same performance in the presence of thermal noise as does a QPSK loop. But this is not the case. For a common $P_{T} /\left.N_{0}\right|_{D / L}$ and a common $B_{L}$, the OQPSK loop will have a $\rho_{L}$ that is smaller by 6 dB than that for the QPSK loop. Equation (11) merely states that the minimum $\rho_{L}$, which must be calculated while accounting for $S_{L Q}$, is the same for both loops.

### 2.1.4 Carrier Loop Bandwidth

In this module, carrier loop bandwidth means the one-sided, noise-equivalent carrier loop bandwidth of the receiver. It is denoted $B_{L}$. There are limits on the carrier loop bandwidth. $B_{L}$ can be no larger than 200 Hz . The lower limit on $B_{L}$ is determined by the phase noise on the downlink. In addition, when operating in the suppressed-carrier mode, $B_{L}$ should be no larger than $(1 / 20)$ times the binary symbol rate.

In general, the value selected for $B_{L}$ should be small in order to maximize the carrier loop signal-to-noise ratio. On the other hand, $B_{L}$ must be large enough that neither of the following variables becomes too large:
a) The static phase error due to uncompensated Doppler dynamics,
b) The contribution to carrier loop phase error variance due to phase noise on the downlink.
The best $B_{L}$ to select will depend on circumstances. Sometimes it will be possible to select a $B_{L}$ of about 1 Hz . A larger value for $B_{L}$ is necessary when there is significant uncertainly in the downlink Doppler dynamics or when the Sun-Earth-probe angle is small (so that solar coronal phase scintillations are present on the downlink). When tracking a spinning spacecraft, it may be necessary to set the carrier loop bandwidth to a value that is somewhat larger than would otherwise be needed. The loop bandwidth must be large enough to track out the variation due to the spin.

### 2.2 Doppler Measurement Error

The performance of one-way Doppler measurements and two-way (or three-way) coherent Doppler measurements is addressed here. Models are given for the important contributors to measurement error. More information about Doppler performance is available in References 5 and 6.

The error in Doppler measurement is characterized here as a standard deviation $\sigma_{V}$, having velocity units (such as $\mathrm{mm} / \mathrm{s}$ ), or as a variance $\sigma_{V}{ }^{2}\left(\mathrm{~mm}^{2} / \mathrm{s}^{2}\right.$ ). Models are given here for measurement error in the case of two-way (or three-way) coherent Doppler measurement and in the case of one-way Doppler measurement.

A Doppler measurement error can also be characterized as a standard deviation of frequency $\sigma_{f}$. This standard deviation and $\sigma_{V}$ are related as follows:

$$
\sigma_{f}=\left\{\begin{array}{lc}
\frac{f_{C}}{c} \sigma_{V}, & \text { one - way }  \tag{12}\\
\frac{2 f_{C}}{c} \sigma_{V}, & \text { two }- \text { way or three - way }
\end{array}\right.
$$

where

$$
\begin{aligned}
\sigma_{V} & =\text { standard deviation of range rate, same units as } c \\
f_{C} & =\text { downlink carrier frequency } \\
c & =\text { speed of electromagnetic waves in vacuum }
\end{aligned}
$$

$$
\sigma_{f}=\text { standard deviation of frequency, same units as } f_{C}
$$

The factor of 2 in Equation (12) for two-way and three-way measurements is present because $\sigma_{V}$ represents the error in the rate-of-change of the (one-way) range and $\sigma_{f}$ represents the error in the total Doppler shift, including uplink as well as downlink.

The error variance $\sigma_{V}{ }^{2}$ for a Doppler measurement can be modeled as

$$
\begin{equation*}
\sigma_{V}^{2}=\sigma_{V N}^{2}+\sigma_{V F}^{2}+\sigma_{V S}^{2} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{V}^{2} & =\text { variance of range rate (square of } \sigma_{V} \text { ) } \\
\sigma_{V N}^{2} & =\text { contribution to }{\sigma_{V}}^{2} \text { from white (thermal) noise } \\
\sigma_{V F}^{2} & =\text { contribution to }{\sigma_{V}}^{2} \text { from phase noise of frequency sources } \\
\sigma_{V S}^{2} & =\text { contribution to }{\sigma_{V}}^{2} \text { from (solar) phase scintillation }
\end{aligned}
$$

When using BPSK with direct modulation of the carrier (that is, no subcarrier), a data imbalance (that is, an unequal number of logical ones and zeros) will cause a residualcarrier loop to experience an additional phase jitter. This phase jitter represents an additional error source for Doppler measurement, beyond those included in Equation (13). The standard deviation $\sigma_{V I}$ of Doppler error due to telemetry data imbalance, when direct-modulation BPSK is employed, may be roughly modeled as follows:

$$
\sigma_{V I} \cong\left\{\begin{array}{lc}
\frac{c \cdot \theta_{t} \cdot I_{\mathrm{data}} \cdot B_{L}}{\sqrt{24} \cdot \pi \cdot f_{C}}, & \text { one - way }  \tag{14}\\
\frac{c \cdot \theta_{t} \cdot I_{\text {data }} \cdot B_{L}}{2 \sqrt{24} \cdot \pi \cdot f_{C}}, & \text { two - way or three - way }
\end{array}\right.
$$

where

$$
\left.\begin{array}{rl}
\sigma_{V I}= & \text { standard deviation of Doppler error due to telemetry data imbalance, same } \\
& \text { units as } c
\end{array}\right)
$$

Data imbalance $I_{\text {data }}$ is defined as follows. In a large set of $n_{0}+n_{1}$ binaryvalued telemetry symbols, if $n_{0}$ is the number of logical zeros and $n_{1}$ is the number of logical ones, $I_{\text {data }}=\left|n_{0}-n_{1}\right| /\left(n_{0}+n_{1}\right)$. The case $I_{\text {data }}=0$ represents a perfect balance (and therefore $\sigma_{V I}=0$ ). The case $I_{\text {data }}=0.5$ represents the case where $n_{0}=3 n_{1}$ (or vice versa), a highly imbalanced situation. It is possible, of course, for $I_{\text {data }}$ to be larger than 0.5 (as large as 1 , for which all symbols are identical); but the model of Equation (14) is only valid in the range $0 \leq I_{\text {data }} \leq 0.5$.

Pseudo randomization of the telemetry data can be employed in the transponder. When this is done, there is no significant data imbalance and the Doppler error $\sigma_{V I}$ is 0 .

### 2.2.1 One-Way Doppler Measurement Error

One-way Doppler measurement is subject to the following error sources: white noise at the receiver, phase noise originating in the frequency source on the spacecraft, and phase scintillation acquired by the downlink carrier in passing through the solar corona.

### 2.2.1.1 Downlink White (Thermal) Noise Contribution to $\sigma_{V}{ }^{2}$, One-Way

For a one-way Doppler measurement, all of the white (thermal) noise originates on the downlink. The contribution $\sigma_{V N}{ }^{2}$ is modeled as

$$
\begin{equation*}
\sigma_{V N}^{2}=2 \cdot\left(\frac{c}{2 \pi f_{C} T}\right)^{2} \cdot \frac{1}{\rho_{L}}, \quad \text { one-way } \tag{15}
\end{equation*}
$$

where

$$
T=\text { integration time for Doppler measurement, } \mathrm{s}
$$

The carrier loop signal-to-noise ratio $\rho_{L}$ may be calculated from equations in Section 2.1.

### 2.2.1.2 Phase Noise Contribution to $\sigma_{V}{ }^{2}$, One-Way

The frequency source of the downlink carrier introduces two kinds of error to a one-way Doppler measurement: an unknown bias and a random error. The bias is due to uncertainty in the transmitted frequency; this bias is not further discussed here. The random error is due to frequency instability of the frequency source. Frequency instability can be characterized either in terms of a fractional frequency deviation (the Allan deviation) or in terms of phase noise. If the phase noise of the source has been characterized, its contribution to $\sigma_{V}{ }^{2}$ may be calculated as follows.

$$
\begin{equation*}
\sigma_{V F}^{2}=\left(\frac{c}{\pi f_{C} T}\right)^{2} \int_{0}^{\infty} S_{D / L}(f) \cdot\left|H_{D / L}(j 2 \pi f)\right|^{2} \cdot \sin ^{2}(\pi f T) d f, \quad \text { one-way } \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
S_{D / L}(f)= & \text { one-sided power spectral density of downlink-carrier phase noise }, \\
& \operatorname{rad}^{2} / \mathrm{Hz} \\
H_{D / L}(j 2 \pi f)= & \text { frequency response of DTT receiver's carrier loop }
\end{aligned}
$$

The frequency response $H_{D / L}(j 2 \pi f)$ is related to the transfer function $H_{D / L}(s)$ of that loop by

$$
\begin{equation*}
H_{D / L}(j 2 \pi f)=\left.H_{D / L}(s)\right|_{s=j 2 \pi f} \tag{17}
\end{equation*}
$$

where $s$ is the Laplace transform variable. The form of $H_{D / L}(s)$ depends on whether the DTT receiver is configured as a $2^{\text {nd }}$ or $3^{\text {rd }}$ order loop. Appendix A provides equations for $H_{D / L}(s)$.

The product $S_{D / L}(f) \cdot\left|H_{D / L}(j 2 \pi f)\right|^{2}$ appearing in Equation (16) represents that portion of the (one-sided) power spectral density of the phase noise that lies in the passband of $H_{D / L}(j 2 \pi f)$. This shows that $\sigma_{V F}{ }^{2}$ depends, in general, on the carrier-loop bandwidth $B_{L}$.

In order to keep the phase error of the carrier loop small, $B_{L}$ is normally selected to be large enough to pass almost all of the (low-pass) power spectral density $S_{D / L}(f)$. In this typical scenario, $\sigma_{V F}{ }^{2}$ becomes insensitive to the exact value of $B_{L}$. The following approximation is then possible:

$$
\begin{equation*}
\sigma_{V F} \cong c \sigma_{y}(T), \quad \text { one-way } \tag{18}
\end{equation*}
$$

where

$$
\sigma_{y}(T) \quad=\text { Allan deviation of the carrier's frequency source }
$$

Allan deviation is a dimensionless measure of the fractional frequency stability and is a function of the integration time $T$ (Reference 7). When using Equation (18), the Allan deviation function should be evaluated at the Doppler measurement time $T$. When using the approximation of Equation (18), $\sigma_{V F}{ }^{2}$ will, of course, be the square of the standard deviation $\sigma_{V F}$.

Equation (18) is an excellent approximation when the phase noise is predominantly white-in-frequency, for which $S_{D / L}(f) \propto 1 / f^{2}$. Therefore, when the phase noise is predominantly white-in-frequency and $B_{L}$ is large enough that the carrier-loop phase error is small, then Equation (18) is an excellent estimate of $\sigma_{V F}$ for one-way Doppler measurement.

In general, there is also a contribution to $\sigma_{V F}{ }^{2}$ from phase noise in the local oscillators of the DTT receiving chain. This contribution may be calculated using an equation similar to Equation (16), with $S_{D / L}(f)$ replaced by the one-sided power spectral density of the local oscillator phase noise. This contribution will depend, in general, on $B_{L}$. However, if $B_{L}$ is large enough that the carrier-loop phase error is small, then the contribution may be approximated as the square of the $\sigma_{V F}$ calculated by Equation (18), where the local oscillator's Allan deviation is used. At the stations, the local oscillators are derived from the FTS, where the Allan deviation of the local oscillators is typically very small compared with that for the frequency source, onboard the spacecraft, of the downlink carrier (for non-coherent operation). The contribution of the local oscillators in one-way Doppler measurement at a station is therefore typically negligible by comparison. However, at a test facility where there is no FTS, the phase noise of the local oscillators might be a significant contributor to $\sigma_{V F}{ }^{2}$.

It is expected that atomic clocks will in the future be employed on spacecraft; when this occurs, $\sigma_{V F}{ }^{2}$ will be calculated as the sum of two components: one from the onboard atomic clock and one from the DTT receiving-chain local oscillators.

### 2.2.1.3 Phase Scintillation Contribution to $\sigma_{V}{ }^{2}$, One-Way

A microwave carrier passing through the solar corona experiences phase scintillation, which introduces a random error to the Doppler measurement. The contribution $\sigma_{V S}{ }^{2}$ of phase scintillation to Doppler measurement error depends on the Sun-Earth-probe angle, the carrier frequency $f_{C}$, and the integration time $T$. A coarse approximation for $\sigma_{V S}{ }^{2}$ is:

$$
\sigma_{V S}^{2}=\left\{\begin{array}{cc}
\frac{2.13 C_{\mathrm{band}} c^{2}}{f_{C}^{2} T^{0.35}\left[\sin \left(\theta_{\mathrm{SEP}}\right)\right]^{2.45}}, & 0^{\circ}<\theta_{\mathrm{SEP}} \leq 90^{\circ}  \tag{19}\\
\frac{2.13 C_{\mathrm{band}} c^{2}}{f_{C}^{2} T^{0.35}}, & 90^{\circ}<\theta_{\mathrm{SEP}} \leq 180^{\circ}
\end{array} \quad\right. \text { one-way }
$$

where

$$
\theta_{\text {SEP }} \quad=\text { Sun-Earth-probe angle }\left(0^{\circ}<\theta_{\text {SEP }} \leq 180^{\circ}\right)
$$

The standard deviation $\sigma_{V S}$ (the square-root of the variance $\sigma_{V S}{ }^{2}$ ) has the same dimensions as $c$. (The product $2.13 C_{\text {band }}$ is not dimensionless; it has the same dimensions as $f_{C}{ }^{2} \cdot T^{0.35}$.)

The constant parameter $C_{\text {band }}$ depends on the downlink band,

$$
C_{\text {band }}=\left\{\begin{array}{cc}
0.00001247\left(\frac{v_{D S}}{v_{D}}\right)^{2}, & \text { non }- \text { coherent }  \tag{20}\\
0.00001247\left(\frac{v_{D S}}{v_{D}}\right)^{2}\left[G^{4}+1\right], & \text { coherent }
\end{array}\right.
$$

$$
C_{\text {band }}=\left\{\begin{array}{lc}
1.2 \times 10^{-5}, & \mathrm{~S}-\text { down }  \tag{21}\\
9.3 \times 10^{-7}, & \mathrm{X}-\text { down } \\
9.5 \times 10^{-8}, & \mathrm{~K}-\text { down } \\
6.4 \times 10^{-8}, & \mathrm{Ka}-\text { down }
\end{array} \quad\right. \text { one-way }
$$

In Equation (19), $\sigma_{V S}{ }^{2}$ is a continuous function of $\theta_{\text {SEP }}$ (when $f_{C}$ and $T$ are kept constant) for $0^{\circ}<\theta_{\text {SEP }} \leq 180^{\circ}$.

Throughout this module, the band designation K refers to the bands 22,550 to $23,150 \mathrm{MHz}$ on the uplink and 25,500 to $27,000 \mathrm{MHz}$ on the downlink. The band designation Ka refers to the bands 34,200 to $34,700 \mathrm{MHz}$ on the uplink and 31,800 to $32,300 \mathrm{MHz}$ on the downlink.

The approximation of Equation (19) is based on the work reported in Reference 8. This model is valid when tracking binary phase-shift keyed telemetry with either a residual or suppressed carrier or when tracking a QPSK (or Offset QPSK) signal. This model is the recommended estimate for all Sun-Earth-probe angles, even though this model was originally based on data for Sun-Earth-probe angles between $5^{\circ}$ and $27^{\circ}$. More recent measurements suggest that the estimate is more generally applicable.

Figure 3 shows the standard deviation $\sigma_{V S}$ (the square-root of the variance $\sigma_{V S}{ }^{2}$ ) as a function of $\theta_{\text {SEP }}$ for one-way Doppler measurement with an S -band downlink. The vertical
axis is in units of $\mathrm{mm} / \mathrm{s}$. Figure 4 shows $\sigma_{V S}$ for an X-band downlink. Figure 5 shows $\sigma_{V S}$ for a K-band downlink. Figure 6 shows $\sigma_{V S}$ for a Ka-band downlink. For all four of these figures, $\sigma_{V S}$ depends on $f_{C}$. For Figures $3,4,5$, and 6 , the curves were calculated using a value for $f_{C}$ of $2295 \mathrm{MHz}, 8425 \mathrm{MHz}, 26250 \mathrm{MHz}$ and 32050 MHz , respectively. (Each of these frequencies corresponds to the center of the band.)

### 2.2.2 Two-Way and Three-Way Doppler Measurement Error

Two-way and three-way Doppler measurements are made with the spacecraft transponder in coherent mode. The most important error sources for coherent measurements are white noise on both the uplink and downlink and phase scintillation acquired by the uplink and downlink carriers in passing through the solar corona.

### 2.2.2.1 White (Thermal) Noise Contribution to $\sigma_{V}{ }^{2}$, Two- and Three-Way

The white (thermal) noise contribution $\sigma_{V N}{ }^{2}$ to two-way and three-way Doppler measurement error has two components:

$$
\begin{equation*}
\sigma_{V N}^{2}=\sigma_{V N U}^{2}+\sigma_{V N D}{ }^{2} \tag{22}
\end{equation*}
$$

where
$\sigma_{V N U}{ }^{2}=$ contribution to $\sigma_{V N}{ }^{2}$ from uplink white (thermal) noise
$\sigma_{V N D}{ }^{2}=$ contribution to $\sigma_{V N}{ }^{2}$ from downlink white (thermal) noise


Figure 3. Doppler Measurement Error Due to Solar Phase Scintillation: S-Down

810-005
202, Rev. E


Figure 4: Doppler Measurement Error Due to Solar Phase Scintillation: X-Down


Figure 5. Doppler Measurement Error Due to Solar Phase Scintillation: K-Down


Figure 6. Doppler Measurement Error Due to Solar Phase Scintillation: Ka-Down

The variance $\sigma_{V N U}{ }^{2}$ accounts for white (thermal) noise that originates on the uplink, is tracked by the transponder's carrier loop, is transponded to the downlink band, and is tracked by the downlink receiver. For two- or three-way coherent Doppler measurement, the contribution $\sigma_{V N U}{ }^{2}$ of uplink white noise is modeled as

$$
\begin{equation*}
\sigma_{V N U}^{2}=\frac{1}{2} \cdot\left(\frac{c}{2 \pi f_{C} T}\right)^{2} \cdot \frac{G^{2}}{\rho_{T R} \cdot B_{T R}} \int_{0}^{\infty}\left|H_{U / L}(j 2 \pi f)\right|^{2} \cdot\left|H_{D / L}(j 2 \pi f)\right|^{2} d f \tag{23}
\end{equation*}
$$

where

$$
\begin{array}{cl}
G & =\text { transponding ratio } \\
\rho_{T R} & =\text { signal-to-noise ratio in transponder's carrier loop } \\
B_{T R} & =\text { noise-equivalent bandwidth of the transponder's carrier loop, } \mathrm{Hz} \\
H_{U / L}(j 2 \pi f) & =\text { frequency response of uplink (transponder) carrier loop }
\end{array}
$$

Here $B_{T R}(\mathrm{~Hz})$ is the noise-equivalent bandwidth of the transponder's carrier loop:

$$
\begin{equation*}
B_{T R}=\int_{0}^{\infty}\left|H_{U / L}(j 2 \pi f)\right|^{2} d f \tag{24}
\end{equation*}
$$

$\rho_{T R}$ is the signal-to-noise ratio in the transponder's carrier loop with bandwidth $B_{T R}$. It can be calculated from equations similar to those given in Section 2.1 but using uplink parameters, instead of downlink parameters. For example, when the uplink is residual carrier, $\rho_{T R}$ is calculated as the uplink residual-carrier power to noise spectral density ratio divided by $B_{T R}$. If the uplink were suppressed carrier and tracked by a Costas loop, $\rho_{T R}$ would equal the uplink total signal power to noise spectral density ratio times a squaring loss divided by $B_{T R}$.

In order to evaluate Equation (23), it is also necessary to know the frequency response $H_{U / L}(j 2 \pi f)$ of the transponder's carrier loop. Fortunately, there is an approximation for $\sigma_{V N U}{ }^{2}$ that requires only the bandwidth $B_{T R}$ of the transponder's carrier loop. This approximation is

$$
\sigma_{V N U}^{2} \cong\left\{\begin{array}{cl}
\frac{1}{2} \cdot\left(\frac{c}{2 \pi f_{C} T}\right)^{2} \cdot \frac{G^{2}}{\rho_{T R}} \cdot \frac{B_{L}}{B_{T R}}, & B_{L}<B_{T R}  \tag{25}\\
\frac{1}{2} \cdot\left(\frac{c}{2 \pi f_{C} T}\right)^{2} \cdot \frac{G^{2}}{\rho_{T R}}, & B_{L} \geq B_{T R}
\end{array}\right.
$$

Equation (25) can be understood with the following heuristic argument. In the case $B_{L}<B_{T R}$, only a fraction $B_{L} / B_{T R}$ of the uplink noise that is tracked by the transponder's carrier loop is also tracked by the DTT carrier loop; in this case, therefore, $\sigma_{V N U}{ }^{2}$ is proportional to $B_{L} / B_{T R}$. In the case $B_{L} \geq B_{T R}$, all of the uplink noise that is tracked by the transponder's loop is also tracked by the DTT receiver's loop; therefore, $B_{L} / B_{T R}$ is replaced by 1 . When $B_{L}$ and $B_{L}$ are comparable (that is, when neither $B_{L} \gg B_{T R}$ nor $B_{L} \ll B_{T R}$ ), the best accuracy is obtained for $\sigma_{V N U}{ }^{2}$ by using Equation (23).

The variance $\sigma_{V N D}{ }^{2}$ accounts for white (thermal) noise that originates on the downlink and is tracked by the DTT receiver. The contribution $\sigma_{V N D}{ }^{2}$ is modeled as

$$
\begin{equation*}
\sigma_{V N D}^{2}=\frac{1}{2} \cdot\left(\frac{c}{2 \pi f_{C} T}\right)^{2} \cdot \frac{1}{\rho_{L}}, \quad \text { two-way and three-way } \tag{26}
\end{equation*}
$$

where $\rho_{L}$ is the downlink carrier loop signal-to-noise ratio. Section 2.1 has equations for calculating $\rho_{L}$.

Equation (26) for two-way and three-way Doppler measurement is different from Equation (15) for one-way Doppler measurement. This difference is due to the fact that $\sigma_{V}$ is the error in the determination of the range-of-change of a (one-way) range, so there must be a scaling by a factor of $1 / 2$ for a two-way (or three-way) measurement. This factor of $1 / 2$ also appears in Equation (12). For the variance $\sigma_{V N D}{ }^{2}$, the factor becomes $1 / 4$.

### 2.2.2.2 Phase Noise Contribution to $\sigma_{V}{ }^{2}$, Two- and Three-Way

When making two- and three-way Doppler measurements at the stations (as opposed to the making of measurements entirely within a test facility), the contribution $\sigma_{V F}{ }^{2}$ may be modeled as:

$$
\begin{equation*}
\sigma_{V F}^{2}=2\left(\frac{c G}{2 \pi f_{C} T}\right)^{2} \int_{0}^{\infty} S_{U / L}(f) \cdot\left|H_{D / L}(j 2 \pi f)\right|^{2} \cdot \sin ^{2}(\pi f T) d f \tag{27}
\end{equation*}
$$

two- and three-way coherent measurement at the stations
where

$$
S_{U / L}(f)=\text { one-sided power spectral density of uplink-carrier phase noise, } \operatorname{rad}^{2} / \mathrm{Hz}
$$

Equation (27) accounts for both phase noise in the uplink frequency source and phase noise in the DTT receiving-chain local oscillators. For a three-way measurement, the uplink source phase noise is independent of the local-oscillator phase noise. For a two-way coherent measurement in deep space, the round-trip signal delay is large enough that localoscillator phase noise is uncorrelated with the delayed uplink source phase noise, even though both originate with a common FTS. The factor of 2 at the front of the right-hand side of Equation (27) is present because the total contribution $\sigma_{V F}{ }^{2}$ is twice as large as a contribution from either the uplink-source phase noise alone or the local-oscillator phase noise alone.

For two-way and three-way Doppler measurements, the uplink frequency source and the local oscillators in the DTT receiving chain are supplied by the FTS. The Allan deviation for the FTS frequency sources may be found in Module 304, "Frequency and Timing".

The contribution $\sigma_{V F}^{2}$ depends on the DTT receiver carrier-loop bandwidth $B_{L}$, since the frequency response $H_{D / L}(j 2 \pi f)$ of this loop depends on $B_{L}$. In order to keep the phase error of the carrier loop small, $B_{L}$ is normally selected to be large enough to pass almost all of the (low-pass) power spectral density $G^{2} \cdot S_{U / L}(f)$. In this typical scenario, $\sigma_{V F}{ }^{2}$ becomes insensitive to the exact value of $B_{L}$. The following approximation is then possible:

$$
\begin{equation*}
\sigma_{V F} \cong \frac{c \sigma_{y}(T)}{\sqrt{2}}, \quad \text { two- and three-way } \tag{28}
\end{equation*}
$$

When using Equation (28), the Allan deviation function should be evaluated at the Doppler measurement time $T . \sigma_{V F}{ }^{2}$ is the square of the standard deviation $\sigma_{V F}$ given in Equation (28). When the phase noise is predominantly white-in-frequency, for which $S_{U / L}(f) \propto 1 / f^{2}$, Equation (28) is an excellent approximation.

Equation (28) has a factor $1 / \sqrt{2}$ that is absent in Equation (18). The two-way and three-way case accounts for both the uplink-source phase noise and the DTT receiver localoscillator phase noise; this is a factor of 2 in $\sigma_{V F}{ }^{2}$, or a factor of $\sqrt{2}$ in $\sigma_{V F}$. Moreover, $\sigma_{V}$ is the error in the determination of the range-of-change of a (one-way) range, so there must be a scaling by a factor of $1 / 2$ for a two-way (or three-way) measurement.

Typically, $\sigma_{V F}{ }^{2}$ is negligible for two-way and three-way Doppler measurement, owing to the excellent frequency stability of the frequency sources, which are derived at the stations from the FTS. It is possible, however, to cause $\sigma_{V F}{ }^{2}$ to be significant during coherent operations by choosing a DTT receiver bandwidth $B_{L}$ that is too small. However, if this is done, the DTT carrier loop will have a large phase error. In such a case, a poor $\sigma_{V F}{ }^{2}$ might be the less concerning problem. Generally, for two-way or three-way coherent Doppler measurement with a
spacecraft, a $B_{L}$ of at least 1 Hz should ensure that $\sigma_{V F}{ }^{2}$ will be small. However, the phase error in the carrier loop might still be a problem, depending on the rate-of-change and the acceleration of the downlink carrier's frequency.

When testing a transponder at the Development and Test Facility (DTF-21) or the Compatibility Test Trailer (CTT-22), the frequency stability of the uplink carrier and local oscillators is substantially poorer than at the stations. For a two-way Doppler measurement at DTF-21 or CTT-22, $\sigma_{V F}{ }^{2}$ might be significant. For this scenario, $\sigma_{V F}{ }^{2}$ can be modeled as:

$$
\begin{equation*}
\sigma_{V F}^{2}=\left(\frac{c G}{2 \pi f_{C} T}\right)^{2} \int_{0}^{\infty} S_{U / L}(f) \cdot\left|1-H_{U / L}(j 2 \pi f)\right|^{2} \cdot\left|H_{D / L}(j 2 \pi f)\right|^{2} \cdot \sin ^{2}(\pi f T) d f \tag{29}
\end{equation*}
$$

DTF-21 and CTT-22

Equation (29) reflects the fact that uplink-carrier phase noise will largely be canceled by phase noise in the local oscillators of the receiving chain but that this cancellation is imperfect when the transponder does not track all of the uplink-carrier phase noise. The term $S_{U / L}(f) \cdot\left|1-H_{U / L}(j 2 \pi f)\right|^{2}$ represents that portion of the uplink-carrier phase noise that is not tracked by the transponder. When the transponder's carrier loop bandwidth is large enough that almost all of the uplink-carrier phase noise is tracked, the cancellation of downlink-carrier phase noise and receiving-chain local-oscillator phase noise will be nearly complete; and, under these circumstances, $\sigma_{V F}{ }^{2}$ will be negligible.

### 2.2.2.3 Phase Scintillation Contribution to $\sigma_{V}{ }^{2}$, Two- and Three-Way

The contribution $\sigma_{V S}{ }^{2}$ of phase scintillation to Doppler measurement error may be approximated as follows.

$$
\sigma_{V S}^{2}=\left\{\begin{array}{ccc}
\frac{0.53 C_{\mathrm{band}} c^{2}}{f_{C}{ }^{2} T^{0.35}\left[\sin \left(\theta_{\mathrm{SEP}}\right)\right]^{2.45}}, & 0^{\circ}<\theta_{\mathrm{SEP}} \leq 90^{\circ} & \text { two- and }  \tag{30}\\
\frac{0.53 C_{\mathrm{band}} c^{2}}{f_{C}{ }^{2} T^{0.35}}, & 90^{\circ}<\theta_{\mathrm{SEP}} \leq 180^{\circ} & \text { three-way }
\end{array}\right.
$$

As before, $\theta_{\text {SEP }}$ is the Sun-Earth probe angle $\left(0^{\circ}<\theta_{\text {SEP }} \leq 180^{\circ}\right), T$ is the measurement integration time, $f_{C}$ is the downlink carrier frequency, and $c$ is the speed of electromagnetic waves in vacuum. The standard deviation $\sigma_{V S}$ (the square-root of the variance $\sigma_{V S}{ }^{2}$ ) has the same dimensions as $c$. (The product $0.53 C_{\text {band }}$ is not dimensionless; it has the same dimensions as $f_{C}{ }^{2} \cdot T^{0.35}$.)

Equation (30) is applicable to two-way and three-way Doppler measurements. The parameter $C_{\text {band }}$ is different for two-way (and three-way) Doppler measurement than for one-way Doppler measurement. The parameter $C_{\text {band }}$ depends on the uplink/downlink band pairing.

$$
C_{\text {band }}=\left\{\begin{array}{lcc}
3.0 \times 10^{-5}, & \mathrm{~S}-\mathrm{up} / \mathrm{S}-\text { down } &  \tag{31}\\
2.3 \times 10^{-4}, & \mathrm{~S}-\mathrm{up} / \mathrm{X}-\text { down } & \\
1.3 \times 10^{-5}, & \mathrm{X}-\mathrm{up} / \mathrm{S}-\text { down } & \\
2.7 \times 10^{-6}, & \mathrm{X}-\mathrm{up} / \mathrm{X}-\text { down } & \text { two- and } \\
2.6 \times 10^{-5}, & \mathrm{X}-\mathrm{up} / \mathrm{Ka}-\text { down } & \text { three-way } \\
9.3 \times 10^{-7}, & \mathrm{Ka}-\mathrm{up} / \mathrm{X}-\text { down } & \\
1.1 \times 10^{-7}, & \mathrm{Ka}-\text { up/Ka }- \text { down } & \\
2.6 \times 10^{-7}, & \mathrm{~K}-\mathrm{up} / \mathrm{K}-\text { down } &
\end{array}\right.
$$

Throughout this module, the band designation K refers to the bands 22,550 to $23,150 \mathrm{MHz}$ on the uplink and 25,500 to $27,000 \mathrm{MHz}$ on the downlink. The band designation Ka refers to the bands 34,200 to $34,700 \mathrm{MHz}$ on the uplink and 31,800 to $32,300 \mathrm{MHz}$ on the downlink.

The approximation of Equation (30) is based on the work reported in Reference 8. This model is valid when tracking binary phase-shift keyed telemetry with either a residual or suppressed carrier or when tracking a QPSK (or Offset QPSK) signal. This model is the recommended estimate for all Sun-Earth-probe angles, even though this model was originally based on data for Sun-Earth-probe angles between $5^{\circ}$ and $27^{\circ}$. More recent measurements suggest that the estimate is more generally applicable.

Figure 7 shows the standard deviation $\sigma_{V S}$ (the square-root of the variance $\sigma_{V S}{ }^{2}$ ) as a function of Sun-Earth-probe angle for two-way or three-way Doppler measurement with an S-band uplink and an S-band downlink. The vertical axis is in units of $\mathrm{mm} / \mathrm{s}$. The three curves in that figure correspond to measurement integration times of 5, 60, and 1000 seconds. Figure 8 shows $\sigma_{V S}$ for an S-band uplink and an X-band downlink. Figure 9 shows $\sigma_{V S}$ for an X-band uplink and an S-band downlink. Figure 10 shows $\sigma_{V S}$ for an X-band uplink and an X-band downlink. Figure 11 shows $\sigma_{V S}$ for an X-band uplink and a Ka-band downlink. Figure 12 shows $\sigma_{V S}$ for a Ka-band uplink and an X-band downlink. Figure 13 shows $\sigma_{V S}$ for a Ka-band uplink and a Ka-band downlink. Figure 14 shows $\sigma_{V S}$ for a K-band uplink and a K-band downlink. In comparing these figures, it should be noted that the vertical scale is not the same for all of these figures.


Figure 7. Doppler Measurement Error Due to Solar Phase Scintillation: S-Up/S-Down


Figure 8. Doppler Measurement Error Due to Solar Phase Scintillation: S-Up/X-Down

810-005
202, Rev. E


Figure 9. Doppler Measurement Error Due to Solar Phase Scintillation: X-Up/S-Down


Figure 10. Doppler Measurement Error Due to Solar Phase Scintillation: X-Up/X-Down

810-005


Figure 11. Doppler Measurement Error Due to Solar Phase Scintillation: X-Up/Ka-Down


Figure 12. Doppler Measurement Error Due to Solar Phase Scintillation: Ka-Up/X-Down

810-005
202, Rev. E


Figure 13. Doppler Measurement Error Due to Solar Phase Scintillations: Ka-Up/Ka-Down


Figure 14. Doppler Measurement Error Due to Solar Phase Scintillations: K-Up/K-Down

### 2.3 Carrier Tracking

The DTT receiver can be configured to track phase-shift keyed telemetry with a residual carrier or a suppressed carrier or to track a QPSK or Offset QPSK signal. In order to achieve good telemetry performance and good Doppler measurement performance, it is important to characterize the phase error in the carrier loop.

### 2.3.1 Carrier Power Measurement

When the downlink is residual-carrier, an estimate of the downlink residualcarrier power $P_{C}$ is available. When the downlink is suppressed-carrier, an estimate of the total downlink power $P_{T}$ is available. This is done by first estimating $P_{C} /\left.N_{0}\right|_{D / L}$ (with a modified version of the algorithm described in Reference 9) or $P_{T} /\left.N_{0}\right|_{D / L}$ (with the split-symbol moments algorithm described in Reference 10). An estimate of the noise spectral density $N_{0}$ comes from continual measurements made by a noise-adding radiometer. This information is used to compute absolute power $P_{C}$ or $P_{T}$. The results are reported once per second.

### 2.3.2 Carrier Loop Bandwidth

The one-sided, noise-equivalent, carrier loop bandwidth of the DTT receiver is denoted $B_{L}$. The user may choose to change $B_{L}$ during a tracking pass, and this can be implemented without losing phase-lock, assuming the change is not too large. There are limits on the carrier loop bandwidth. For the DTT receiver, $B_{L}$ can be no larger than 200 Hz . The lower limit on $B_{L}$ is determined by the phase noise on the downlink. In addition, when operating in the suppressed-carrier mode, $B_{L}$ is subject to the following constraint.

$$
\begin{equation*}
B_{L} \leq \frac{R_{S Y M}}{20}, \text { suppressed carrier } \tag{32}
\end{equation*}
$$

where

$$
R_{S Y M} \quad=\text { telemetry symbol rate }
$$

In general, the value selected for $B_{L}$ should be small in order to maximize the carrier loop signal-to-noise ratio. On the other hand, $B_{L}$ must be large enough that neither of the following variables becomes too large: the static phase error due to Doppler dynamics and the contribution to carrier loop phase error variance from phase noise on the downlink. The best $B_{L}$ to select will depend on circumstances. Often, it will be possible to select a $B_{L}$ of about 1 Hz . A larger value for $B_{L}$ is necessary when there is significant uncertainty in the downlink Doppler dynamics, when the downlink is one-way (or two-way non-coherent) and originates with a less stable frequency source, or when the Sun-Earth-probe angle is small (so that solar phase scintillations are present on the downlink).

When tracking a spinning spacecraft, it may be necessary to set the carrier loop bandwidth to a value that is somewhat larger than would otherwise be needed. The loop bandwidth must be large enough to track out the variation due to the spin. Also, the coherent AGC in the receiver must track out the amplitude variations.

The user may select either a $2^{\text {nd }}$ order or $3^{\text {rd }}$ order carrier loop. Both $2^{\text {nd }}$ and $3^{\text {rd }}$ order loops are perfect, meaning that the loop filter implements a true accumulation.

### 2.3.3 Static Phase Error in the Carrier Loop

The carrier loop, of either $2^{\text {nd }}$ or $3^{\text {rd }}$ order, has a very large tracking range; even a Doppler offset of several megahertz can be tracked. With a finite Doppler rate, however, there will be a static phase error in a $2^{\text {nd }}$ order loop.

Table 1 shows the static phase error in the carrier loop that results from various Doppler dynamics for several different loops. These equations are based on the work reported in Reference 11. The Doppler dynamics are here defined by the parameters $\alpha$ and $\beta$.
$\alpha=$ Doppler Rate, $\mathrm{Hz} / \mathrm{s}$
$\beta=$ Doppler Acceleration, $\mathrm{Hz} / \mathrm{s}^{2}$
In the presence of a persistent Doppler acceleration, a $2^{\text {nd }}$ order loop will periodically slip cycles. The equations of Table 1 are valid when tracking binary phase-shift keyed telemetry with either a residual or suppressed carrier or when tracking a QPSK or Offset QPSK signal. These equations are exactly the same as those appearing in Module 207.

Table 1. Static Phase Error (rad)

| Loop | Constant Range Rate $\binom{$ Constant }{ Doppler Offset } | Constant Derivative of Range Rate $\binom{$ Constant }{ Doppler Rate } | Constant Second Derivative of Range Rate $\binom{\text { Constant }}{\text { Doppler Acceleration }}$ |
| :---: | :---: | :---: | :---: |
| $2^{\text {nd }}$ order, standard underdamped | 0 | $\frac{9 \pi \alpha}{16 B_{L}{ }^{2}}$ | $\left(\frac{9 \pi \beta}{16 B_{L}{ }^{2}}\right) t-\frac{27 \pi \beta}{64 B_{L}{ }^{3}}$ |
| $\qquad$ | 0 | $\frac{25 \pi \alpha}{32 B_{L}{ }^{2}}$ | $\left(\frac{25 \pi \beta}{32 B_{L}{ }^{2}}\right) t-\frac{125 \pi \beta}{128 B_{L}{ }^{3}}$ |
| $\begin{gathered} 3^{3 \mathrm{rd}} \text { order, } \\ \text { standard } \\ \text { underdamped } \end{gathered}$ | 0 | 0 | $\frac{12167 \pi \beta}{8000 B_{L}{ }^{3}}$ |
| $\begin{gathered} 3^{\text {rd }} \text { order, } \\ \text { supercritically } \\ \text { damped } \\ \hline \end{gathered}$ | 0 | 0 | $\frac{35937 \pi \beta}{16384 B_{L}{ }^{3}}$ |

### 2.3.4 Carrier Phase Error Variance

In order to ensure a strong phase lock, the phase error variance in the downlink carrier loop should be small. If this variance grows too large, both telemetry detection and Doppler measurement may suffer. This is, however, a second-order effect. For a baseline assessment of Doppler measurement error, the equations of Section 2.2 should be used.

In general, the carrier phase error variance ${\sigma_{\phi}}^{2}$ may be modeled as

$$
\begin{equation*}
{\sigma_{\phi}}^{2}={\sigma_{\phi N}}^{2}+{\sigma_{\phi F}}^{2}+{\sigma_{\phi S}}^{2} \tag{33}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{\phi}^{2} & =\text { carrier phase error variance, } \operatorname{rad}^{2} \\
\sigma_{\phi N}{ }^{2} & =\text { contribution to }{\sigma_{\phi}}^{2} \text { from white (thermal) noise, } \operatorname{rad}^{2} \\
\sigma_{\phi F}^{2} & =\text { contribution to }{\sigma_{\phi}}^{2} \text { from phase noise of frequency sources, } \operatorname{rad}^{2} \\
\sigma_{\phi S}{ }^{2} & =\text { contribution to }{\sigma_{\phi}}^{2} \text { from (solar) phase scintillation, } \operatorname{rad}^{2}
\end{aligned}
$$

Equation (33) does not characterize Doppler measurement error; rather it characterizes the variance of the phase error in the DTT receiver's carrier loop. For characterizing the Doppler measurement error, Equation (13) should be used. The loop phase error is, however, relevant because if the phase error is large it has a second-order effect on the Doppler measurement.

The models for $\sigma_{\phi N}{ }^{2}, \sigma_{\phi F}{ }^{2}$, and $\sigma_{\phi S}{ }^{2}$ depend on whether the transponder is in coherent or non-coherent mode.

It is recommended that the variance $\sigma_{\phi}{ }^{2}$ of the downlink receiver's carrier loop not exceed the following limits:

$$
\sigma_{\phi}^{2} \leq\left\{\begin{array}{cc}
0.1 \mathrm{rad}^{2}, & \text { residual carrier }  \tag{34}\\
0.02 \mathrm{rad}^{2}, & \text { suppressed carrier BPSK } \\
0.005 \mathrm{rad}^{2}, & \text { QPSK or Offset QPSK }
\end{array}\right.
$$

The limits of Equation (34) are consistent with the limits on $\rho_{L}$ given in Equations (3), (6) and (11) for the case where the only significant contributor to ${\sigma_{\phi}}^{2}$ is downlink thermal noise.

The recommended maximum variance $\sigma_{\phi}{ }^{2}$ of Equation (34) is intended for the case of zero static phase error. If there is a significant static phase error, $\sigma_{\phi}{ }^{2}$ should be smaller than the maximum given by Equation (34). As a rough guide, the maximum value of ${\sigma_{\phi}}^{2}\left(\operatorname{rad}^{2}\right)$ in the presence of a static phase error $\phi_{\text {SPE }}(\mathrm{rad})$ should be less than the suggested maximum of Equation (34) by $\phi_{\mathrm{SPE}}{ }^{2}$.

### 2.3.4.1 Non-Coherent Operation

For non-coherent operation (such as one-way), the important contributors to $\sigma_{\phi}{ }^{2}$ are: white noise at the receiver, phase noise originating in the frequency source on the spacecraft, and phase scintillation acquired by the downlink carrier in passing through the solar corona.

### 2.3.4.1.1 Downlink White (Thermal) Noise Contribution to $\sigma_{\phi}{ }^{2}$, Non-Coherent

The variance $\sigma_{\phi N}{ }^{2}$ accounts for white (thermal) noise.

$$
\begin{equation*}
\sigma_{\phi N}^{2}=\frac{1}{\rho_{L}}, \quad \text { non-coherent } \tag{35}
\end{equation*}
$$

where $\rho_{L}$ is the downlink carrier loop signal-to-noise ratio. Section 2.1 has equations for calculating $\rho_{L}$.

### 2.3.4.1.2 Phase Noise Contribution to $\sigma_{\phi}{ }^{2}$, Non-Coherent

The frequency source for the (non-coherent) downlink carrier has inherent phase noise. When this phase noise is characterized by the one-sided power spectral density $S_{D / L}(f)$, having units $\mathrm{rad}^{2} / \mathrm{Hz}, \sigma_{\phi F}{ }^{2}$ is given by

$$
\begin{equation*}
\sigma_{\phi F}^{2}=\int_{0}^{\infty} S_{D / L}(f) \cdot\left|1-H_{D / L}(j 2 \pi f)\right|^{2} d f \tag{36}
\end{equation*}
$$

$H_{D / L}(j 2 \pi f)$ is the frequency response of the downlink carrier loop and is given in Appendix A for $2^{\text {nd }}$ order and $3^{\text {rd }}$ order DTT carrier loops. This transfer function depends on the noiseequivalent loop bandwidth $B_{L}$.

The term $S_{D / L}(f) \cdot\left|1-H_{D / L}(j 2 \pi f)\right|^{2}$ represents that portion of the downlinkcarrier phase noise that is not tracked by the DTT carrier loop. Without evaluating the integral of Equation (36), it is possible to say that $\sigma_{\phi F}{ }^{2}$ decreases with increasing $B_{L}$. When $B_{L}$ is large enough that almost all of the downlink-carrier phase noise is tracked, $\sigma_{\phi F}{ }^{2}$ will be negligible.

In general, there is also a contribution to $\sigma_{\phi F}{ }^{2}$ from phase noise in the local oscillators of the DTT receiving chain. This contribution may be calculated using an equation similar to Equation (36), with $S_{D / L}(f)$ replaced by the one-sided power spectral density of the local oscillator phase noise. Since the local oscillators are derived from the FTS, this contribution has typically been very small compared with that for the frequency source, onboard the spacecraft, of the downlink carrier (for non-coherent operation). It is expected that atomic clocks will in the future be employed on spacecraft; when this occurs, $\sigma_{\phi F}{ }^{2}$ will be calculated as the sum of two components: one from the onboard atomic clock and one from the DTT receiving-chain local oscillators.

### 2.3.4.1.3 Phase Scintillation Contribution to $\sigma_{\phi}{ }^{2}$, Non-Coherent

$$
\text { The contribution } \sigma_{\phi s}{ }^{2} \text { may be approximated by }
$$

$$
\sigma_{\phi S}{ }^{2}=\left\{\begin{array}{cc}
\frac{C_{\text {band }} \cdot C_{\text {loop }}}{\left[\sin \left(\theta_{\mathrm{SEP}}\right)\right]^{2.45} \cdot B_{L}^{1.65}}, & 0^{\circ}<\theta_{\mathrm{SEP}} \leq 90^{\circ}  \tag{37}\\
\frac{C_{\mathrm{band}} \cdot C_{\mathrm{loop}}}{B_{L}^{1.65}}, & 90^{\circ}<\theta_{\mathrm{SEP}} \leq 180^{\circ}
\end{array}\right.
$$

$\theta_{\text {SEP }}$ is the Sun-Earth-probe angle $\left(0^{\circ}<\theta_{\text {SEP }} \leq 180^{\circ}\right) . \sigma_{\phi S}{ }^{2}$ has the dimensions $\operatorname{rad}^{2}$. (The product $C_{\text {band }} \cdot C_{\text {loop }}$ has the same dimensions as $B_{L}{ }^{1.65}$.) The parameter $C_{\text {band }}$ is constant for any given band and is given by Equation (21), which is repeated below for the reader's convenience.

$$
C_{\text {band }}=\left\{\begin{array}{lc}
1.2 \times 10^{-5}, & \mathrm{~S}-\text { down }  \tag{21}\\
9.3 \times 10^{-7}, & \mathrm{X}-\text { down } \\
9.5 \times 10^{-8}, & \mathrm{~K}-\text { down } \\
6.4 \times 10^{-8}, & \mathrm{Ka}-\text { down }
\end{array}\right.
$$

The parameter $C_{\text {loop }}$ is constant for a given loop.

$$
C_{\text {loop }}= \begin{cases}5.9, & \text { standard underdamped } 2^{\text {nd }} \text { order loop }  \tag{38}\\ 5.0, & \text { supercritically damped } 2^{\text {nd }} \text { order loop } \\ 8.3, & \text { standard underdamped } 3^{\text {rd }} \text { order loop } \\ 6.7, & \text { supercritically damped } 3^{\text {rd }} \text { order loop }\end{cases}
$$

Equation (37) indicates that $\sigma_{\phi S}{ }^{2}$ increases as $\theta_{\text {SEP }}$ decreases and as $B_{L}$ decreases. Equation (21) indicates that $\sigma_{\phi S}{ }^{2}$ increases with decreasing downlink carrier frequency.

### 2.3.4.2 Coherent Operation

The most important contributors to the carrier phase error variance $\sigma_{\phi}{ }^{2}$ for coherent operation are white noise on both the uplink and downlink and phase scintillation acquired by the uplink and downlink carriers in passing through the solar corona.

### 2.3.4.2.1 White (Thermal) Noise Contribution to $\sigma_{\phi}{ }^{2}$, Coherent

The white (thermal) noise contribution $\sigma_{\phi N}{ }^{2}$ to carrier phase error variance $\sigma_{\phi}{ }^{2}$ has two components:

$$
\begin{equation*}
\sigma_{\phi N}^{2}=\sigma_{\phi N U}{ }^{2}+\sigma_{\phi N D}^{2} \tag{39}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sigma_{\phi N U}{ }^{2}=\text { contribution to } \sigma_{\phi N}{ }^{2} \text { from uplink white (thermal) noise, } \mathrm{rad}^{2} \\
& \sigma_{\phi N D}{ }^{2}=\text { contribution to } \sigma_{\phi N}{ }^{2} \text { from downlink white (thermal) noise, } \mathrm{rad}^{2}
\end{aligned}
$$

For coherent operation, the contribution $\sigma_{\phi N U}{ }^{2}$ of uplink white noise is modeled as

$$
\begin{equation*}
\sigma_{\phi N U}^{2}=\frac{G^{2}}{\rho_{T R} \cdot B_{T R}} \int_{0}^{\infty}\left|H_{U / L}(j 2 \pi f)\right|^{2} \cdot\left|1-H_{D / L}(j 2 \pi f)\right|^{2} d f \tag{40}
\end{equation*}
$$

where
$B_{T R} \quad=$ transponder's carrier-loop bandwidth, Hz
Equation (40) accounts for noise that originates on the uplink, is tracked by the transponder's carrier loop, is transponded to the downlink band, and is not tracked by the DTT carrier loop. $\sigma_{\phi N U}{ }^{2}$ generally increases as the DTT carrier-loop bandwidth $B_{L}$ decreases. In the case where $B_{L}$ is much smaller than the transponder's carrier-loop bandwidth $B_{T R}$, the following approximation is accurate:

$$
\begin{equation*}
\sigma_{\phi N U}{ }^{2} \cong \frac{G^{2}}{\rho_{T R}}, \quad B_{L} \ll B_{T R} \tag{41}
\end{equation*}
$$

Equation (41) is as an upper bound on $\sigma_{\phi N U}{ }^{2}$. This upper bound is accurate when $B_{L} \ll B_{T R}$.
In general, when $B_{L}$ is comparable with $B_{T R}$ or larger than $B_{T R}$, the integral of Equation (40) must be evaluated in order to obtain an accurate value for $\sigma_{\phi N U}{ }^{2}$. Both terms $\left|H_{U / L}(j 2 \pi f)\right|^{2}$ and $\left|1-H_{D / L}(j 2 \pi f)\right|^{2}$, considered as functions of Fourier frequency, have relatively large transition bands. This is because they represent filters that are only of second or third order. These two functions of Fourier frequency are plotted in Figure 15 for a case where $B_{L}=B_{T R}$. In this case, there is considerable overlap between the functions. So it would clearly be a mistake for the case $B_{L}=B_{T R}$ to assume that $\sigma_{\phi N U}{ }^{2}$ is zero (based on the simple notion that $\sigma_{\phi N U}{ }^{2}$ represents uplink white noise that lies simultaneously inside $B_{T R}$ and outside $B_{L}=B_{T R}$ ).

The variance $\sigma_{\phi N D}{ }^{2}\left(\mathrm{rad}^{2}\right)$ accounts for white (thermal) noise that originates on the downlink.

$$
\begin{equation*}
\sigma_{\phi N D}{ }^{2}=\frac{1}{\rho_{L}} \tag{42}
\end{equation*}
$$

where $\rho_{L}$ is the downlink carrier loop signal-to-noise ratio. Section 2.1 has equations for calculating $\rho_{L}$.


Figure 15. Terms Relating U/L White Noise to D/L Carrier Phase-Error Variance

### 2.3.4.2.2 Phase Noise Contribution to $\sigma_{\phi}{ }^{2}$, Coherent

For coherent operations at the stations (but not at a test facility), the contribution $\sigma_{\phi F}{ }^{2}$ may be modeled as:

$$
\begin{equation*}
\sigma_{\phi F}^{2}=2 G^{2} \int_{0}^{\infty} S_{U / L}(f) \cdot\left|1-H_{D / L}(j 2 \pi f)\right|^{2} d f \tag{43}
\end{equation*}
$$

coherent operation at the stations

Equation (43) accounts for both phase noise in the uplink frequency source and phase noise in the DTT receiving-chain local oscillators. For a three-way measurement, the uplink source phase noise is independent of the local-oscillator phase noise. For a two-way coherent measurement in deep space, the round-trip signal delay is large enough that localoscillator phase noise is uncorrelated with the delayed uplink source phase noise, even though both originate with a common FTS. The factor of 2 at the front of the right-hand side of Equation (43) is present because the total contribution $\sigma_{V F}{ }^{2}$ is twice as large as a contribution from either the uplink-source phase noise alone or the local-oscillator phase noise alone.

The term $G^{2} \cdot S_{U / L}(f) \cdot\left|1-H_{D / L}(j 2 \pi f)\right|^{2}$ represents that portion of the downlink-carrier phase noise that is not tracked by the DTT carrier loop. Without evaluating the integral of Equation (43), it is possible to say that $\sigma_{\phi F}{ }^{2}$ decreases with increasing $B_{L}$. When $B_{L}$ is large enough that almost all of the downlink-carrier phase noise is tracked, $\sigma_{\phi F}{ }^{2}$ will be negligible. A DTT carrier-loop bandwidth $B_{L}$ of at least 1 Hz is adequate to ensure that $\sigma_{\phi F}{ }^{2}$ is small while tracking a coherent downlink carrier. Of course, the rate-of-change and the acceleration of the downlink carrier's frequency causes a static phase error; therefore, $B_{L}$ must be chosen large enough to ensure that this static phase error is not a problem.

At DTF-21 and CTT-22 the frequency stability of the uplink carrier and local oscillators is substantially poorer than at the stations; so, for coherent operation, $\sigma_{\phi F}{ }^{2}$ might be significant. For this scenario, $\sigma_{\phi F}{ }^{2}$ can be modeled as:

$$
\begin{equation*}
\sigma_{\phi F}^{2}=G^{2} \int_{0}^{\infty} S_{U / L}(f) \cdot\left|1-H_{U / L}(j 2 \pi f)\right|^{2} \cdot\left|1-H_{D / L}(j 2 \pi f)\right|^{2} d f \tag{44}
\end{equation*}
$$

DTF-21 and CTT-22

Equation (44) reflects the fact that uplink-carrier phase noise will largely be canceled by phase noise in the local oscillators of the receiving chain but that this cancellation is imperfect when the transponder does not track all of the uplink-carrier phase noise. The product $S_{U / L}(f) \cdot\left|1-H_{U / L}(j 2 \pi f)\right|^{2} \cdot\left|1-H_{D / L}(j 2 \pi f)\right|^{2}$ represents that portion of the uplink-carrier phase noise that is not tracked by the transponder and not tracked by the DTT receiver. When the transponder's carrier-loop bandwidth $B_{T R}$ and the DTT carrier-loop bandwidth $B_{L}$ are large,
$\sigma_{\phi F}{ }^{2}$ will be negligible. To the extent that $B_{T R}$ and $B_{L}$ are not sufficiently large, an estimate of $\sigma_{\phi F}{ }^{2}$ requires a numerical evaluation of Equation (44).

### 2.3.4.2.3 Phase Scintillation Contribution to $\sigma_{\phi}{ }^{2}$, Coherent

In two-way and three-way tracking, both the uplink and downlink carriers acquire phase scintillation when passing through the solar corona. During coherent operation, the uplink phase scintillation is transponded onto the downlink carrier.

The contribution $\sigma_{\phi s}{ }^{2}$ of phase scintillation to downlink-carrier phase error variance may be approximated with Equation (37), which is repeated below for the reader's convenience.

$$
\sigma_{\phi S^{2}}=\left\{\begin{array}{cc}
\frac{C_{\text {band }} \cdot C_{\text {loop }}}{\left[\sin \left(\theta_{\text {SEP }}\right)\right]^{2.45} \cdot B_{L}^{1.65}}, & 0^{\circ}<\theta_{\text {SEP }} \leq 90^{\circ}  \tag{37}\\
\frac{C_{\text {band }} \cdot C_{\text {loop }}}{B_{L}^{1.65}}, & 90^{\circ}<\theta_{\text {SEP }} \leq 180^{\circ}
\end{array}\right.
$$

$\theta_{\text {SEP }}$ is the Sun-Earth-probe angle $\left(0^{\circ}<\theta_{\text {SEP }} \leq 180^{\circ}\right) . \sigma_{\phi s^{2}}$ has the dimensions rad ${ }^{2}$. (The product $C_{\text {band }} \cdot C_{\text {loop }}$ has the same dimensions as $B_{L}{ }^{1.65}$.) The parameter $C_{\text {band }}$ is constant for any given band pairing and is given by Equation (31), which is repeated below for the reader's convenience.

$$
C_{\text {band }}=\left\{\begin{array}{lc}
3.0 \times 10^{-5}, & \mathrm{~S}-\text { up } / \mathrm{S}-\text { down }  \tag{31}\\
2.3 \times 10^{-4}, & \mathrm{~S}-\mathrm{up} / \mathrm{X}-\text { down } \\
1.3 \times 10^{-5}, & \mathrm{X}-\mathrm{up} / \mathrm{S}-\text { down } \\
2.7 \times 10^{-6}, & \mathrm{X}-\text { up } / \mathrm{X}-\text { down } \\
2.6 \times 10^{-5}, & \mathrm{X}-\text { up/Ka }- \text { down } \\
9.3 \times 10^{-7}, & \mathrm{Ka}-\text { up } / \mathrm{X}-\text { down } \\
1.1 \times 10^{-7}, & \mathrm{Ka}-\text { up } / \mathrm{Ka}-\text { down } \\
2.6 \times 10^{-7}, & \mathrm{~K}-\text { up } / \mathrm{K}-\text { down }
\end{array}\right.
$$

The parameter $C_{\text {loop }}$ is constant for a given loop and is given by Equation (38), which is repeated below for the reader's convenience.

$$
C_{\text {loop }}= \begin{cases}5.9, & \text { standard underdamped } 2^{\text {nd }} \text { order loop }  \tag{38}\\ 5.0, & \text { supercritically damped } 2^{\text {nd }} \text { order loop } \\ 8.3, & \text { standard underdamped } 3^{\text {rd }} \text { order loop } \\ 6.7, & \text { supercritically damped } 3^{\text {rd }} \text { order loop }\end{cases}
$$

Equation (37) indicates that $\sigma_{\phi S}{ }^{2}$ increases as $\theta_{\text {SEP }}$ decreases and as $B_{L}$ decreases.

## Appendix A: Carrier-Loop Transfer Function

The transfer function of the DTT receiver's carrier loop is characterized here. For a $2^{\text {nd }}$ order loop, the transfer function is given by:

$$
\begin{equation*}
H_{D / L}(s)=\frac{K_{1} s+K_{2}}{s^{2}+K_{1} s+K_{2}} \tag{45}
\end{equation*}
$$

where $s$ is the Laplace transform variable. The parameters $K_{1}$ and $K_{2}$ depend on whether the loop is standard underdamped or supercritically damped (Reference 11), as shown in Table 2.

Table 2. $2^{\text {nd }}$ Order Loop Parameters

|  | $K_{1}$ | $K_{2}$ |
| :--- | :---: | :---: |
| standard underdamped | $\frac{8}{3} B_{L}$ | $\frac{1}{2} K_{1}{ }^{2}$ |
| supercritically damped | $\frac{16}{5} B_{L}$ | $\frac{1}{4}{K_{1}}^{2}$ |

$B_{L}$ is the one-sided, noise-equivalent bandwidth of the carrier loop $(\mathrm{Hz})$.

$$
\begin{equation*}
B_{L}=\int_{0}^{\infty}\left|H_{D / L}(j 2 \pi f)\right|^{2} d f \tag{46}
\end{equation*}
$$

For a $3^{\text {rd }}$ order loop, the transfer function is given by:

$$
\begin{equation*}
H_{D / L}(s)=\frac{K_{1} s^{2}+K_{2} s+K_{3}}{s^{3}+K_{1} s^{2}+K_{2} s+K_{3}} \tag{47}
\end{equation*}
$$

The parameters $K_{1}, K_{2}$ and $K_{3}$ depend on whether the loop is standard underdamped or supercritically damped (Reference 11), as shown in Table 3.

Table 3. $3{ }^{\text {rd }}$ Order Loop Parameters

|  | $K_{1}$ | $K_{2}$ | $K_{3}$ |
| :--- | :---: | :---: | :---: |
| standard underdamped | $\frac{60}{23} B_{L}$ | $\frac{4}{9} K_{1}{ }^{2}$ | $\frac{2}{27} K_{1}{ }^{3}$ |
| supercritically damped | $\frac{32}{11} B_{L}$ | $\frac{1}{3} K_{1}{ }^{2}$ | $\frac{1}{27} K_{1}{ }^{3}$ |

## Appendix B: Glossary of Parameters

$P_{C} /\left.N_{0}\right|_{D / L}$ downlink residual-carrier power to noise spectral density ratio, Hz
$P_{T} /\left.N_{0}\right|_{D / L}$ downlink total signal power to noise spectral density ratio, Hz
$E_{S} / N_{0} \quad$ telemetry symbol energy to noise spectral density ratio
$\rho_{T R} \quad$ signal-to-noise ratio of transponder's carrier loop
$\rho_{L} \quad$ signal-to-noise ratio of DTT receiver's carrier loop
$B_{T R}$ noise-equivalent bandwidth of transponder's carrier-loop bandwidth, Hz
$B_{L}$ noise-equivalent bandwidth of DTT receiver's carrier loop, Hz
$H_{U / L}(j 2 \pi f) \quad$ frequency response of transponder's carrier loop
$H_{D / L}(j 2 \pi f)$ frequency response of DTT receiver's carrier loop
$S_{U / L}(f)$ one-sided power spectral density of uplink-carrier phase noise, $\operatorname{rad}^{2} / \mathrm{Hz}$
$S_{D / L}(f)$ one-sided power spectral density of downlink-carrier phase noise, $\mathrm{rad}^{2} / \mathrm{Hz}$
$S_{L} \quad$ squaring loss of a (BPSK) Costas loop
$S_{L Q} \quad$ squaring loss of a QPSK or OQPSK loop
$T \quad$ integration time for Doppler measurement, s
$T_{S \text { (binary) }}$ period of the binary symbol, s
$R_{S Y M} \quad$ telemetry symbol rate, symbols per second
$f_{C}$ downlink carrier frequency, Hz
c speed of electromagnetic waves in vacuum, $\mathrm{mm} / \mathrm{s}$
$G \quad$ transponding ratio
$\alpha \quad$ Doppler Rate, $\mathrm{Hz} / \mathrm{s}$
$\beta \quad$ Doppler Acceleration, $\mathrm{Hz} / \mathrm{s}^{2}$
$\theta_{\text {SEP }} \quad$ Sun-Earth-probe angle $\left(0^{\circ}<\theta_{\text {SEP }} \leq 180^{\circ}\right)$
$\theta_{t}$ telemetry modulation index, rad
$I_{\text {data }} \quad$ data imbalance, $0 \leq I_{\text {data }} \leq 0.5$
$\sigma_{f} \quad$ standard deviation of frequency, Hz
$\sigma_{V I} \quad$ standard deviation of Doppler error due to telemetry data imbalance, $\mathrm{mm} / \mathrm{s}$
$\sigma_{y}(T) \quad$ Allan deviation
$\sigma_{V}{ }^{2} \quad$ variance of range rate, $\mathrm{mm}^{2} / \mathrm{s}^{2}$
$\sigma_{V N}{ }^{2}$ contribution to $\sigma_{V}{ }^{2}$ from white (thermal) noise, $\mathrm{mm}^{2} / \mathrm{s}^{2}$
$\sigma_{V F}{ }^{2}$ contribution to $\sigma_{V}{ }^{2}$ from phase noise of frequency sources, $\mathrm{mm}^{2} / \mathrm{s}^{2}$
$\sigma_{V S}{ }^{2} \quad$ contribution to $\sigma_{V}{ }^{2}$ from (solar) phase scintillation, $\mathrm{mm}^{2} / \mathrm{s}^{2}$
$\sigma_{\phi}{ }^{2} \quad$ carrier phase error variance, $\operatorname{rad}^{2}$
$\sigma_{\phi N}{ }^{2}$ contribution to $\sigma_{\phi}{ }^{2}$ from white (thermal) noise, $\operatorname{rad}^{2}$
$\sigma_{\phi F}{ }^{2} \quad$ contribution to $\sigma_{\phi}{ }^{2}$ from phase noise of frequency sources, $\operatorname{rad}^{2}$
$\sigma_{\phi S}{ }^{2} \quad$ contribution to $\sigma_{\phi}{ }^{2}$ from (solar) phase scintillation, $\operatorname{rad}^{2}$
$\sigma_{\phi N U}{ }^{2}$ contribution to $\sigma_{\phi N}{ }^{2}$ from uplink white (thermal) noise, $\operatorname{rad}^{2}$
$\sigma_{\phi N D}{ }^{2}$ contribution to $\sigma_{\phi N}{ }^{2}$ from downlink white (thermal) noise, $\operatorname{rad}^{2}$

## References

1. J. B. Berner and K. M. Ware, "An Extremely Sensitive Digital Receiver for Deep Space Satellite Communications," Eleventh Annual International Phoenix Conference on Computers and Communications, pp. 577-584, Scottsdale, Arizona, April 1-3,1992.
2. J. Lesh, "Tracking Loop and Modulation Format Considerations for High Rate Telemetry," DSN Progress Report 42-44, Jet Propulsion Laboratory, Pasadena, CA, pp. 117-124, April 15, 1978.
3. M. K. Simon and W. C. Lindsey, "Optimum Performance of Suppressed Carrier Receivers with Costas Loop Tracking," IEEE Transactions on Communications, Vol. COM-25, No. 2, pp. 215-227, February 1977.
4. M. K. Simon, "Carrier Synchronization of Offset Quadrature Phase-Shift Keying," TMO Progress Report 42-133, Jet Propulsion Laboratory, Pasadena, CA, May 15, 1998.
5. C. L. Thornton and J. S. Border, Radiometric Tracking Techniques for Deep-Space Navigation, Monograph 1 of the Deep-Space Communications and NavigationSeries, Jet Propulsion Laboratory, Pasadena, CA, 2000.
6. S. W. Asmar, J. W. Armstrong, L. Iess, and P. Tortora, "Spacecraft Doppler Tracking: Noise Budget and Accuracy Achievable in Precision Radio Science Observations," Radio Science, Vol. 40, RS2001, 2005.
7. J. A. Barnes, et al., "Characterization of Frequency Stability," IEEE Transactions on Instrumentation and Measurement, Vol. IM-20, No. 2, pp. 105-120, May 1971.
8. R. Woo and J. W. Armstrong, "Spacecraft Radio Scattering Observations of the Power Spectrum of Electron Density Fluctuations in the Solar Wind," Journal of Geophysical Research, Vol. 84, No. A12, pp. 7288-7296, December 1, 1979.
9. A. Monk, "Carrier-to-Noise Power Estimation for the Block-V Receiver," TDA Progress Report 42-106, Jet Propulsion Laboratory, Pasadena, CA, pp. 353-363, August 15, 1991.
10. S. Dolinar, "Exact Closed-Form Expressions for the Performance of the Split-Symbol Moments Estimator of Signal-to-Noise Ratio," TDA Progress Report 42-100, pp. 174-179, Jet Propulsion Laboratory, Pasadena, CA, February 15, 1990.
11. S. A. Stephens and J. B. Thomas, "Controlled-Root Formulation for Digital PhaseLocked Loops," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 1, pp. 78-95, January 1995.

Deep Space Network

## 203

## Sequential Ranging

Document Owner:

| Signature Provided | 06/20/2019 | Signature Provided | 06/13/2019 |
| :---: | :---: | :---: | :---: |
| Andrew O'Dea | Date | Timothy Pham | Date |
| Telemetry, Tracking, and Command |  | Communications Systems Chief |  |
| System Engineer |  | Engineer |  |
| Prepared By: |  | Released by: |  |
| Signature Provided | 06/13/2019 | Signature Provided | 06/20/2019 |
| Peter Kinman | Date | Christine Chang | Date |
| Telecommunications Technical |  | DSN Document Release Authority |  |

Approved by:

Timothy Pham Date
Communications Systems Chief Engineer

Christine Chang Date
DSN Document Release Authority

DSN No. 810-005, 203, Rev. D
Issue Date: July 17, 2019
JPL D-19379; CL\# 19-4107
Jet Propulsion Laboratory
California Institute of Technology

810-005
203, Rev. D

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | $06 / 13 / 2019$ |  | Signature Provided | $06 / 18 / 2019$ |
| :--- | :--- | :--- | :--- | :--- |
| Jeff Berner Date Scott Bryant <br> DSN Project Chief Engineer |  | DSN Ranging Cognizant Development <br> Engineer |  |  |

## Document Change Log

| Rev | Issue Date | Prepared By | Affected <br> Sections or <br> pages | Change Summary |
| :---: | :---: | :---: | :---: | :--- |
| Initial | $1 / 15 / 2001$ | P. W. Kinman | All | New Module |
| A | $2 / 20 / 2006$ | P. W. Kinman | Many | Revised to incorporate changes resulting from <br> improvements in sequential ranging <br> implementation. |
| B | $4 / 2 / 2007$ | P. W. Kinman | 2.6 | Added new paragraph in section on "Range <br> Measurement Performance" providing <br> recommended range for $P_{r} / N_{0}$. |
| C | $10 / 31 / 2009$ | P. W. Kinman | Page 5, 31, 40, A1 <br> \& A2 | Removed references of the 26-m subnet stations <br> for they have been decommissioned. Made <br> editorial changes. |
| D | $07 / 17 / 2019$ | P. W. Kinman | Many | Rewrote "Allocation of Link Power" section, <br> including new models for downlink phase deviation <br> for each of two types of ranging channels. <br> Reorganized "Range Measurement Performance" <br> section, including new curve fit and new <br> interpolation for probability of acquisition. <br> Removed square-wave models. Added glossary. <br> Rewrote many paragraphs for improved clarity. |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## Contents

Section Page

1. Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope .....  6
2. General Information ..... 6
2.1 System Description ..... 7
2.2 Sequential Ranging Signal Structure ..... 9
2.2.1 Range Components ..... 9
2.2.2 Range Clock ..... 10
2.2.3 Ranging Sequence ..... 10
2.2.4 Sequence Timing ..... 13
2.3 Parameters Specified for Ranging Operations ..... 16
2.3.1 Ranging Sequence Parameters ..... 16
2.3.2 Correlation Type ..... 17
2.3.3 Uplink Ranging Modulation Index ..... 17
2.3.4 Probability of Acquisition Tolerance ..... 17
2.4 Allocation of Link Power ..... 18
2.4.1 Uplink ..... 20
2.4.2 Downlink ..... 22
2.5 Uplink Spectrum ..... 28
2.6 Range Measurement Performance ..... 30
2.6.1 Range Measurement Error Due to Thermal Noise ..... 30
2.6.2 Probability of Acquisition ..... 33
2.6.3 Selection of Integration Times ..... 36
2.6.4 Three-Way Ranging ..... 36
2.6.5 Ranging Anomalies Related to Sequence Timing ..... 36
2.6.6 Interference Caused by Sequential Ranging ..... 38
2.7 Range Corrections ..... 38
2.7.1 DSS Delay ..... 39
2.7.2 Z-Correction ..... 40
2.8 Total Error for Range Measurement ..... 41
Appendix: Glossary of Parameters ..... 42
Reference ..... 43

## Illustrations

Figure Page
Figure 1. The DSN Ranging System Architecture ..... 8
Figure 2. Component 6 Chopped by Sinewave Component 4 ..... 12
Figure 3. Example Timing Diagram ..... 14
Figure 4. Bessel Functions of the First Kind of Order 0 and 1 ..... 21
Figure 5. Downlink rms Phase Deviation by Ranging Signal (No Command Feedthrough) ..... 25
Figure 6. Downlink rms Phase Deviation by Noise (No Command Feedthrough) ..... 26
Figure 7. Downlink Ranging-Signal Power to Total Power (No Telemetry, No Command) ..... 27
Figure 8. Downlink Carrier Suppression (No Telemetry, No Command) ..... 28
Figure 9. Spectrum: Sinewave Range Clock ..... 29
Figure 10. Spectrum: $125-\mathrm{kHz}$ Component Chopped by Range Clock ..... 30
Figure 11. Unfiltered Spectrum: 125-kHz Component Chopped by Range Clock ..... 31
Figure 12. Range Measurement Error for Sinewave Range Clock ..... 32
Figure 13. Probability of Acquisition ..... 34
Figure 14. DSS Delay Calibration ..... 39
Figure 15. DSS Delay as a Function of Downlink Frequency ..... 40
Tables
Table Page
Table 1. Range Components for Channel 18 (Nominal) ..... 11
Table 2. Range Points per Hour ..... 16
Table 3. Interpolation Table ..... 35
Table 4. Coefficients for Equation (46) ..... 35

## 1. Introduction

## $1.1 \quad$ Purpose

This module describes capabilities of the Deep Space Network (DSN) for sequential ranging. These capabilities are available within the 70-m, the 34-m High Efficiency (HEF), and the 34-m Beam Waveguide (BWG) subnets.

### 1.2 Scope

The material contained in this module covers the sequential ranging system that may be utilized by both near-Earth and deep-space missions. This document describes those parameters and operational considerations that are independent of the particular antenna being used to provide the telecommunications link. For antenna-dependent parameters, refer to Module 101, 103, or 104 of this handbook. The other ranging scheme employed by the DSN is PN ranging, described in Module 214.

An overview of the ranging system is given in Section 2.1. The sequential ranging signal structure is explained in Section 2.2. The parameters to be specified for ranging operations are explained in Section 2.3. The distribution of link power is characterized in Section 2.4. The spectrum of an uplink carrier modulated by a sequential ranging signal is described in Section 2.5. The performance of sequential ranging is summarized in Section 2.6. In Section 2.7 the corrections required to determine the actual range to a spacecraft are described. In Section 2.8 the total error for a range measurement is discussed.

## 2. General Information

The ranging signal of interest in this module is a sequence of periodic signals; this signaling technique is called sequential ranging. A different signaling technique, PN ranging, is also supported by the DSN. The same instrumentation within the DSN supports both sequential ranging and PN ranging. However, there are performance differences between these two signaling techniques. This module only discusses sequential ranging. PN ranging is discussed in Module 214.

The range clock is coherently related to the carrier. The uplink carrier is often tuned during a tracking pass, in order to compensate for the Doppler effect on the uplink carrier, thereby reducing stress on the transponder's carrier-tracking loop. As the uplink carrier is tuned, the range-clock frequency varies proportionately.

In two-way ranging, one Deep Space Station (DSS) both transmits the uplink and receives the downlink. For two-way ranging, the user may calculate the round-trip light time (RTLT) from data provided by the DSN: phase measurements of the ranging signal and a record of the transmitted uplink carrier frequency.

Three-way ranging is also supported, for which one DSS transmits the uplink and a different DSS receives the downlink. As with two-way ranging, the DSN reports phase measurements of the ranging signal and a record of the uplink-carrier frequency. From these
data, the user may calculate the light time for the travel of the ranging signal from the uplink DSS, through the spacecraft, to the downlink DSS.

To put matters in perspective, the measurements discussed here are phase measurements and the resulting data permit the user to calculate time delays. Range cannot be calculated directly and accurately from the time delays because the range changes significantly over the course of the signal travel time. Similar measurement techniques employed in terrestrial applications, where the distances and measurement times are much smaller, typically permit the calculation of the range as the two-way time delay times the speed of an electromagnetic wave divided by 2. That has been the justification for using the term range measurement for this class of measurement technique. The two-way and three-way time delays calculated for deep-space missions are useful in the orbit determination process. These calculated delays assist in the improvement of trajectory models; and so, indirectly, the delays assist in the estimation of range as a function of time.

It is customary to quote range measurement error in units of meters. For two-way ranging, the range error is defined as the error in the two-way time delay times the speed of electromagnetic waves in vacuum divided by 2. (The division by two accounts for the fact that range is a one-way distance but the time delay is two-way.)

### 2.1 System Description

The DSN ranging system records the phase of the ranging signal that is transmitted and measures the phase of the ranging signal that returns. For two-way ranging, both recorded phase values (that of the uplink ranging signal and that of the downlink ranging signal) apply to a common instant in time, an epoch of the 1-pulse per second timing reference, which becomes the common time tag. From the difference between the uplink and downlink phases and from the history of the transmitted range-clock frequency (which can be calculated from the history of the uplink-carrier frequency), a user may compute the RTLT (Reference 1). This twoway time delay applies to a signal arriving at the DSS at the instant specified by the time tag.

The architecture for the DSN ranging system is shown in Figure 1. The ranging signal originates in the Uplink Subsystem (UPL). The returned signal is processed in the Downlink Tracking and Telemetry Subsystem (DTT). Both the UPL and the DTT are located at the Deep Space Communications Complex (DSCC).

The signal processing in the UPL may be summarized as follows. The Uplink Signal Generator (USG) synthesizes the range clock such that it is coherently related to the uplink carrier. The range-clock frequency equals a rational factor times the uplink carrier frequency. The USG generates the ranging signal, which is the range clock modified by additional signal structure that makes possible resolution of the phase ambiguity. A sample of the uplink phase, which is required for the delay measurement, is passed from the USG to the Uplink Processor Assembly (UPA). The USG modulates the uplink carrier with the ranging signal. The klystron supplies the final stage of power amplification for the uplink carrier.

The downlink carrier, after amplification within the Low-Noise Amplifier (LNA), passes to the DTT. Frequency down-conversion to an intermediate frequency (IF) takes place in the RF-to-IF Downconverter (RID). The IF signal is sent to an IF-to-Digital Converter (IDC). Demodulation of the IF carrier occurs in the Receiver, Ranging and Telemetry (RRT) processor.

Also within the RRT, the correlation of the received, baseband ranging signal with a local model produces a measurement of the downlink phase. This downlink phase is passed to the Downlink Channel Controller (DCC).


Figure 1. The DSN Ranging System Architecture

Uplink phase samples, each corresponding to an epoch of the 1-PPS (pulse per second) clock, are passed from the UPA, via the Data Capture and Delivery (DCD) software, to the Tracking Data Delivery Subsystem (TDDS), located in Pasadena. The DCC passes the downlink phase measurement and its time tag (an epoch of the 1-PPS clock), via the DCD, to the TDDS. A history of the uplink range clock's frequency is also needed for the calculation of the two-way time delay. Since the uplink range clock is coherently related to the uplink carrier, this necessary information can be derived from the history of the uplink carrier frequency, which is supplied by the UPA to the TDDS. All data required for the two-way delay calculation are archived by the TDDS for later use by a navigation team or other users.

The IDC, RRT, and DCC required for the processing of a downlink carrier are located within a Downlink Channel Processing Cabinet (DCPC). Each DCPC supports a single channel. For spacecraft with multiple channels (for example, X-band and Ka-band), or for multiple spacecraft within a single antenna beamwidth, multiple DCPCs will be assigned to that antenna.

The DSN uses the Range Unit (RU) to deliver the difference of the ranging signal's uplink phase and downlink phase. Since the range clock and the carrier are coherently related, it is permissible to define the RU in terms of carrier phase. For an S-band uplink, the RU is defined as two cycles of the carrier. For an X-band uplink, one RU is (749/221) times two cycles of the carrier. For a Ka-band uplink, one RU is $(3599 / 221)$ times two cycles of the
carrier. Because the RU is defined with a factor (1 for an S-band uplink, 749/221 for an Xband uplink, and $3599 / 221$ for a Ka-band uplink) that is proportional to frequency, the RU is proportional to time delay. (But the RU is a dimensionless unit.) One RU corresponds to approximately 0.94 ns of time delay.

A user may convert a two-way phase delay in RU into a two-way time delay as follows:

$$
\text { Two-way Time Delay }=\left\{\begin{array}{cl}
\frac{2 \times R U}{f_{S}}, & \text { S-band uplink }  \tag{1}\\
\frac{749}{221} \cdot \frac{2 \times R U}{f_{X}}, & \text { X-band uplink } \\
\frac{3599}{221} \cdot \frac{2 \times R U}{f_{K a}}, & \text { Ka-band uplink }
\end{array}\right.
$$

where $f_{S}$ is the frequency of an S-band uplink carrier, $f_{X}$ is the frequency of an X-band uplink carrier, and $f_{K a}$ is the frequency of a Ka-band uplink carrier. For example, if the uplink carrier is in the X band with a frequency of 7.16 GHz and the two-way phase delay is reported as $6,500,000 \mathrm{RU}$, then the two-way time delay is $6,153,467 \mathrm{~ns}$.

### 2.2 Sequential Ranging Signal Structure

The sequential ranging signal is a sequence of periodic signals. These periodic signals are all coherently related to each other and to the uplink carrier. The basis for these periodic ranging signals is a table of well-defined range components.

### 2.2.1 Range Components

The range components are periodic signals. Each component is assigned a number. A larger number represents a component with a smaller frequency (but a larger period). The components that are available, at least in theory, are ordered according to these component numbers. The frequency $f_{0}$ of component 0 , which is never actually used in practice, is related to the uplink carrier frequency by

$$
f_{0}=\left\{\begin{array}{cl}
2^{-7} \cdot f_{S}, & \text { S-band uplink }  \tag{2}\\
2^{-7} \cdot \frac{221}{749} \cdot f_{X}, & \text { X-band uplink } \\
2^{-7} \cdot \frac{221}{3599} \cdot f_{K a}, & \text { Ka-band uplink }
\end{array}\right.
$$

where $f_{S}$ is the frequency of the S-band uplink carrier, $f_{X}$ is the frequency of the X-band uplink carrier, and $f_{K a}$ is the frequency of the Ka-band uplink carrier. The frequency $f_{n}$ of component $n$ is related to $f_{0}$ by

$$
\begin{equation*}
f_{n}=2^{-n} \cdot f_{0} \tag{3}
\end{equation*}
$$

Because the component frequencies are related to the uplink carrier frequency, the exact values of the component frequencies depend on the channel assignment and any uplink Doppler compensation that may be present. An example table of the transmitted range component frequencies is given in Table 1 for channel assignment 18 , assuming the transmitted
uplink carrier is at its nominal channel frequency (no uplink Doppler compensation). The frequencies of Table 1 are rounded-off to the nearest millihertz. (In a typical measurement, the component frequencies are known to a better accuracy than 1 mHz . The intent of Table 1 is to give the reader a general idea of the component frequencies and how they vary with component number.) Even though Table 1 represents a particular case (nominal Channel 18), there are discernable features of this table that are also present in any table of range component frequencies. The frequency of component 4 is always approximately 1 MHz , and it is often called the " 1 MHz component". Every component has a frequency that is exactly half of its immediate predecessor.

Whenever a periodic signal is used to measure signal delay, there is an ambiguity. The phase delay consists, in principle, of an integer number of cycles plus some fraction of a cycle. If only one periodic signal of frequency $f_{n}$ is used in the measurement, only the fractional part of the phase delay (a fraction of one cycle) can be measured. The integer number of cycles in the delay cannot be known from the measurement itself. However, a priori knowledge of the approximate value of the delay may provide that information. The successful resolution of the ambiguity requires that the a priori estimate of the delay be correct to within 1 cycle of phase. In time units, the a priori estimate of the delay must be correct to within 1 period $\left(1 / f_{n}\right)$. Considering that the speed $c$ of an electromagnetic wave in vacuum is $299,792,458 \mathrm{~m} / \mathrm{s}$ and that the delay measurement is two-way, the a priori estimate of the range must be correct to within $c /\left(2 f_{n}\right)$ if the ambiguity is to be resolved. This is the number entered in the third column of Table 1.

### 2.2.2 Range Clock

The first periodic signal in the ranging sequence is called the range clock. With component $n_{R C}$ as the range clock, the frequency $f_{R C}$ of the range clock is

$$
f_{R C}=\left\{\begin{array}{cl}
\left(2^{-7-n_{R C}}\right) \cdot f_{S}, & \text { S-band uplink }  \tag{4}\\
\left(2^{-7-n_{R C}}\right) \cdot \frac{221}{749} \cdot f_{X}, & \text { X-band uplink } \\
\left(2^{-7-n_{R C}}\right) \cdot \frac{221}{3599} \cdot f_{K a}, & \text { Ka-band uplink }
\end{array}\right.
$$

This equation is consistent with Equations (2) and (3).

### 2.2.3 Ranging Sequence

The ranging signal consists of a sequence of range components. The first is the range clock. The second is the component having a component number equal to one plus that of the range clock. The third is the component having a component number equal to two plus that of the range clock, and so forth. For example, if the range clock is component 4, then the sequence is $4,5,6$, etc.

All range components in a ranging sequence except the first (the range clock) are known as ambiguity-resolving components. The number of ambiguity-resolving components that should be used in the ranging sequence for any particular range measurement is determined by the required ambiguity-resolving capability for that measurement. The range components
always occur sequentially, in order of increasing component number, without skipping any, from the range clock to the last ambiguity-resolving component.

Table 1. Range Components for Channel 18 (Nominal)

| Component Number | Frequency (Hz) | Ambiguity-Resolving Capability (km) |
| :---: | :---: | :---: |
| 4 | 1,032,556.981 | 0.1452 |
| 5 | 516,278.490 | 0.2903 |
| 6 | 258,139.245 | 0.5807 |
| 7 | 129,069.623 | 1.1614 |
| 8 | 64,534.811 | 2.3227 |
| 9 | 32,267.406 | 4.6454 |
| 10 | 16,133.703 | 9.2909 |
| 11 | 80,66.851 | 18.5818 |
| 12 | 4,033.426 | 37.1635 |
| 13 | 2,016.713 | 74.3270 |
| 14 | 1,008.356 | 148.6540 |
| 15 | 504.178 | 297.3081 |
| 16 | 252.089 | 594.6161 |
| 17 | 126.045 | 1,189.2323 |
| 18 | 63.022 | 2,378.4645 |
| 19 | 31.511 | 4,756.9291 |
| 20 | 15.756 | 9,513.8581 |
| 21 | 7.878 | 19,027.7163 |
| 22 | 3.939 | 38,055.4326 |
| 23 | 1.969 | 76,110.8651 |
| 24 | 0.985 | 152,221.7303 |

In any given measurement, some ambiguity-resolving components will be multiplied by a higher-frequency component; this multiplication is called chopping. The purpose of chopping is to enforce spectral separation between the ranging signal and command on the uplink and between the ranging signal and telemetry on the downlink. The effect of the chopping is to modulate the lower frequency range components onto a ranging subcarrier. This ranging subcarrier is called the chop component. Often, the chop component is the range clock. Figure 2 shows an example of component 6 multiplied (chopped) by component 4. In this case, the chop component 4 has a frequency four times that of component 6 , so there are two cycles of the chop component for each half-cycle of component 6 . The user specifies at which point in the sequence the chopping should begin; all components after this point are multiplied by the chop component. The user also specifies the chop component. This chop component remains the same for the duration of the range measurement session.

The ranging sequence passes through the uplink ranging filter on its way to the phase modulator for the uplink carrier. This filter, implemented digitally in the USG, is low-pass with a default bandwidth of 1.2 MHz but is configurable for larger bandwidths. The purpose of the uplink ranging filter is to reduce the bandwidth of the modulated carrier for the sake of spectral efficiency. In Figure 2, the chop component (component 4, in this case) is shown as a sinewave; this is a good approximation when the uplink ranging filter passes the fundamental harmonic of the range clock but blocks the third and higher-order harmonics.

The purpose of ranging with a sequence is to get the advantages of both highfrequency and low-frequency range components. The accuracy of a range measurement improves when a higher-frequency range clock is used (see Section 2.6). All components that follow the range clock are present in order to resolve the phase ambiguity. The ambiguityresolving capability of a ranging sequence equals the ambiguity-resolving capability of the lowest-frequency range component (see, for example, Table 1).


Figure 2. Component 6 Chopped by Sinewave Component 4

### 2.2.4 Sequence Timing

Three parameters control the timing of the transmitted sequence: the transmit time (XMIT), the integration time $T_{1}$ that is to be used for the range clock, and the integration time $T_{2}$ that is used to be used for each of the ambiguity-resolving components. XMIT is always selected to fall on an integer-second epoch, as determined by the uplink timing system. That is to say, this time, when expressed in seconds, has no fractional part. Each of the integration times $T_{1}$ and $T_{2}$ is an integer number of seconds.

### 2.2.4.1 Timing at the Exciter

At the exciter, the actual start time of the ranging sequence, which is also the start time of the range clock, is 1 second before the specified time XMIT. (The purpose of this slightly early start is to increase the probability that the range clock integration at the receiver does not begin before the range clock arrives at the receiver.) The range clock persists from the (XMIT -1 )-second epoch up through the (XMIT $+T_{1}+1$ )-second epoch. The transition from the range clock to the first ambiguity-resolving component occurs sometime within the 1 -second interval that immediately follows the (XMIT $+T_{1}+1$ )-second epoch. Hence, the range clock is present for $T_{1}+2$ seconds (plus a fraction of another second).

Once the first ambiguity-resolving component has started, a fraction of a second before the (XMIT $+T_{1}+2$ )-second epoch, it persists up through the (XMIT $+T_{1}+T_{2}+2$ )second epoch. The transition to the next ambiguity-resolving component occurs sometime within the 1 -second interval that immediately follows the (XMIT $+T_{1}+T_{2}+2$ )-second epoch. Hence, the first ambiguity-resolving component has a duration of at least $T_{2}$. The actual duration is typically about $T_{2}+1$ seconds: from a fraction of a second before the (XMIT $+T_{1}+2$ )second epoch to a fraction of a second after the (XMIT $+T_{1}+T_{2}+2$ )-second epoch, but no guarantee is made for a duration longer than $T_{2}$.

In general, the transition to the $n$-th ambiguity-resolving component occurs a fraction of a second before the [XMIT $\left.+T_{1}+2+(n-1) \cdot\left(T_{2}+1\right)\right]$-second epoch. The duration of the $n$-th ambiguity-resolving component is typically about $T_{2}+1$ seconds, but no guarantee is made for a duration longer than $T_{2}$.

Figure 3 shows an example of the sequence timing. In this example, the range clock is component 4 (C4) and the last component is 9 (C9). The range clock begins 1 second before XMIT. After XMIT, the range clock continues for an additional $T_{1}$ seconds (for the nominal measurement) plus 1 second (as a margin for error). During the next second there is a transition from the range clock to component 5 (C5). The transition itself occurs essentially instantaneously, but there is no programmatic guarantee of when within this second the actual transition occurs. There is another transition second following the planned $T_{2}$-second period for C5. The pattern established by C5 is repeated for components 6 through 9 (C6 through C9). Following a transition second that accommodates the transition from C9 back to C4 (in preparation for a second range measurement), the range clock is transmitted for 1 second (as a margin for error) plus $T_{1}$ seconds (for the nominal measurement), and so forth.

The phase is continuous throughout the ranging sequence, including at the transitions from one component to the next. This is essential for the correct resolution of the phase ambiguity.


Figure 3. Example Timing Diagram

$$
T_{1}=6 \mathrm{~s}, T_{2}=3 \mathrm{~s}, \mathrm{RTLT}=7.4 \mathrm{~s}
$$

### 2.2.4.2

## Timing at the Receiver

At the receiver, the estimated RTLT is an input parameter. Within the DTT this estimate is rounded-off to the nearest integer second. The rounded-off, estimated RTLT is added to XMIT to get the start time $T_{0}$ of the range-clock integration. The start time $T_{0}$, when expressed in seconds, has no fractional part. The range clock integration extends from the $T_{0}$ epoch to the $T_{0}+T_{1}$ epoch, as marked by the timing system. The error introduced to $T_{0}$ by round-off is no larger than 0.5 second. Therefore, if the estimated RTLT is correct to within 0.5 second, $T_{0}$ is different from XMIT + RTLT by less than 1 second. That is why the range clock at the exciter begins 1 second before the specified sequence start time and ends $T_{1}+1$ seconds after the specified start time. The 1-second padding at the start and at the end of the range clock interval ensures that the range clock is present at the receiver during the entire range clock integration (as long as the estimated RTLT is correct to within 0.5 second).

The integration for the first ambiguity-resolving component begins at the ( $T_{0}+T_{1}+2$ )-second epoch. Hence, there is 2 -second interval that separates the range-clock integration from that of the first ambiguity-resolving component.

In general, the integration for the $n$-th ambiguity-resolving component begins at the $\left[T_{0}+T_{1}+2+(n-1) \cdot\left(T_{2}+1\right)\right]$-second epoch. There is a 1 -second interval that separates the integrations of any two ambiguity-resolving components.

Figure 3 is an example of the timing. In this example, the RTLT (and the estimated RTLT) is 7.4 s . This value is rounded-off to 7 s within the DTT. In this case, $T_{0}$ is less than XMIT + RTLT by 0.4 s . Shown in Figure 3 is the received sequence as well as a local
model of that sequence, as computed from $T_{0}$. The local model is, in this case, 0.4 s in advance of the received sequence. The timing of the component integrations is determined by this local model. In this case, all integrations begin 0.4 s early.

Because $T_{0}$ does not, in general, exactly equal XMIT + RTLT, it will sometimes happen that the integration of each ambiguity-resolving component in a range measurement begins slightly before that component arrives or ends slightly after that component departs. In such cases, the effective integration time for each ambiguity-resolving component is slightly less than the design value $T_{2}$. The difference between the design value and the effective value of $T_{2}$ is typically a fraction of a second. Normally, this is not a problem. However, if the design value $T_{2}$ is only 1 or 2 seconds, the degradation in performance may be noticeable, as discussed in Subsection 2.6.5.1. As mentioned previously, this alignment problem does not affect the rangeclock integration (as long as the estimated RTLT is correct to within 0.5 s ), owing to the $1-\mathrm{s}$ padding at the start and the end of the range clock interval.

### 2.2.4.3 Cycle Time

Typically, range measurements are done serially during a tracking pass. For each range measurement there is a ranging sequence of the type described above (a range clock followed by a set of ambiguity-resolving components). When the ranging sequence associated with one range measurement ends, another ranging sequence with exactly the same signal structure begins immediately. The cycle time is the repetition period of the range measurements. The cycle time is given by

$$
\begin{equation*}
\text { Cycle Time }=T_{1}+3+\left(n_{L}-n_{R C}\right) \cdot\left(T_{2}+1\right) \quad \text { seconds } \tag{5}
\end{equation*}
$$

where $n_{L}$ is the range component number of the last ambiguity-resolving component and $n_{R C}$ is the range component number of the range clock. In light of the previous discussion of sequence timing, Equation (5) can be understood as follows. There is a period of time, $T_{1}+2$ seconds, during which the range clock is transmitted, followed by a 1 -second interval that contains the transition from the range clock to the first ambiguity-resolving component. This is the $T_{1}+3$ seconds appearing in Equation (5). There are ( $n_{L}-n_{R C}$ ) ambiguity-resolving components. Each of these ambiguity-resolving components has a guaranteed duration $T_{2}$, and associated with each ambiguity-resolving component is a 1 -second interval that contains the transition to the next component.

The last component $n_{L}$ should be chosen carefully if it is desirable to maximize the number of range data points in a tracking pass. For any given a priori range ambiguity, there is a minimum $n_{L}$ that will resolve the ambiguity (see Table 1 ). Choosing an $n_{L}$ larger than this will reduce the number of range data points that can be obtained in a tracking pass. Table 2 shows the number of range points that can be obtained per hour as a function of $n_{L}$ for integration time $T_{1}=100 \mathrm{~s}$ and for range clock component $n_{R C}=4$.

Table 2. Range Points per Hour

$$
T_{1}=100 \mathrm{~s} \text { and } n_{R C}=4
$$

| $n_{L}$ | Range Points per Hour |  |
| :---: | :---: | :---: |
|  | $T_{2}=5 \mathrm{~s}$ | $T_{2}=20 \mathrm{~s}$ |
| 12 | 23.8 | 13.3 |
| 13 | 22.9 | 12.3 |
| 14 | 22.1 | 11.5 |
| 15 | 21.3 | 10.8 |
| 16 | 20.6 | 10.1 |
| 17 | 19.9 | 9.6 |
| 18 | 19.3 | 9.1 |
| 19 | 18.7 | 8.6 |
| 20 | 18.1 | 8.2 |
| 21 | 17.6 | 7.8 |
| 22 | 17.1 | 7.5 |
| 23 | 16.6 | 7.2 |
| 24 | 16.1 | 6.9 |

### 2.3 Parameters Specified for Ranging Operations

The following subsections present the parameters that are required in ranging operations.

### 2.3.1 Ranging Sequence Parameters

The ranging sequence is established by specifying the range clock component number, the last component number, the chop component number, the component number at which chopping begins, and the integration times $T_{1}$ and $T_{2}$.

The range clock component number determines the approximate frequency of the range clock. The exact frequency of the range clock is set by its relation to the uplink carrier frequency (see Section 2.2). The range clock is typically selected to be component 4, which corresponds to a range-clock having a frequency of approximately 1 MHz .

The last component number determines the ambiguity-resolving capability of the ranging sequence. Therefore, the proper selection of this number depends on a priori knowledge of the range. The approximate ambiguity-resolving capability of the different range components is given in Table 1. The exact ambiguity-resolving capability depends on the uplink frequency.

The purpose of chopping is to enforce spectral separation between the ranging sequence and the command signal on the uplink and between the ranging sequence and the telemetry signal on the downlink. Selection of the chop component and the component at which chopping begins should be made with this in mind.

There is a fundamental trade-off in the selection of the integration times $T_{1}$ and $T_{2}$. On the one hand, a large $T_{1}$ decreases the range measurement error due to thermal noise and a large $T_{2}$ increases the probability of range acquisition (see Section 2.6). On the other hand, large values for $T_{1}$ and $T_{2}$ increase the cycle time (see Section 2.2), decreasing the number of range measurements that can be made in a tracking pass. The selection of these integration times will depend on the available the ratio $P_{R} / N_{0}$ of the downlink ranging signal power to the noise spectral density (see Section 2.6).

### 2.3.2 Correlation Type

Either a sinewave or a squarewave may be used at the receiver as the local model of the range clock for the purpose of correlation. Normally, the user will select a local model that matches the form of the actual range clock. A small degradation in performance results if a local model is selected that does not match the form of the actual range clock.

### 2.3.3 Uplink Ranging Modulation Index

The uplink ranging modulation index is chosen to get a suitable distribution of power among the ranging and command sidebands and the residual carrier on the uplink (see Section 2.4). The uplink ranging modulation index also affects the distribution of power on the downlink carrier, because of the turn-around processing in the spacecraft transponder. The analysis appearing below employs an rms phase deviation of the uplink carrier. This rms phase deviation equals the peak modulation index divided by $\sqrt{2}$ for the case of a sinewave range clock.

### 2.3.4 Probability of Acquisition Tolerance

The tolerance plays a role in deciding whether to judge range acquisitions as "in lock" or "out of lock". The ranging process does not use a phase-locked loop, so ranging lock status is estimated using the ranging probability of acquisition. For any given range acquisition, the ratio $P_{R} / N_{0}$ of the downlink ranging signal power to the noise spectral density is measured. From this measured $P_{R} / N_{0}$, an estimate of the probability of acquisition $P_{\text {acq }}$ is calculated. Section 2.6 describes the calculation of the $P_{\text {acq }}$ from $P_{R} / N_{0}$.

Tolerance may be selected over the range of $0.0 \%$ to $100.0 \%$. The default value for tolerance is $99 \%$. An acquisition lock status depends upon the following criteria:

$$
\begin{aligned}
& P_{\mathrm{acq}}(\%) \geq \text { Tolerance results in Acquisition declared "in lock" } \\
& P_{\mathrm{acq}}(\%)<\text { Tolerance results in Acquisition declared "out of lock" }
\end{aligned}
$$

This procedure is explained for the example where the tolerance has the default value of $99 \%$. For a given acquisition, $P_{R} / N_{0}$ is measured. From this measured value, the probability of acquisition $P_{\text {acq }}$ is calculated; this number is the probability that the ambiguity is correctly resolved for this particular acquisition. Treating $P_{\text {acq }}$ as a percentage, it is compared with the tolerance of $99 \%$. If $P_{\text {acq }}(\%)$ equals or exceeds $99 \%$, the acquisition is declared "in lock". Otherwise, it is declared "out of lock". Note that the "out of lock" ranging data may be valid data, with a probability of $P_{\text {acq }}(\%)$ of being correct.

### 2.4 Allocation of Link Power

The power allocation for a link is the distribution of power among the important link components: the residual carrier, the ranging sidebands, and the data (command or telemetry) sidebands. The following notation is used here for both the uplink and downlink:

$$
\begin{aligned}
& P_{C}=\text { power in residual carrier } \\
& P_{R}=\text { usable power in ranging sidebands } \\
& P_{D}=\text { usable power in data sidebands } \\
& P_{T}=\text { total link power }
\end{aligned}
$$

$P_{C}$ is the power in a single spectral line at the carrier frequency. When $P_{C}$ is finite (greater than zero), carrier synchronization may be obtained at the receiver using a phase-locked loop that tracks this residual carrier. (Carrier synchronization may also be obtained with a Costas loop tracking the data sidebands, which are symmetrically located about the nominal carrier frequency.)
$P_{R}$ is that portion of the power in the ranging sidebands that is used in the range measurement. At the beginning of the ranging sequence, when the range clock is present, $P_{R}$ comprises two discrete spectral lines (one at $f_{R C} \mathrm{~Hz}$ above and a second at $f_{R C} \mathrm{~Hz}$ below the residual carrier) that correspond to the range clock's fundamental harmonic. Higher-order harmonics (beyond the fundamental harmonic) of the range clock are not used in a range measurement and are not included in $P_{R}$. For the components in the ranging sequence that come after the range clock, $P_{R}$ comprises those discrete spectral lines, both above and below the residual carrier, that correspond to the fundamental harmonic of the component or of the chop component.

For the uplink, $P_{D}$ is that portion of the power in the command sidebands that is employed in command detection in the transponder. In the most common signal design for a deep-space uplink, command data modulate a sinewave subcarrier and $P_{D}$ only accounts for the power in the sidebands associated with the upper and lower fundamental harmonic of the subcarrier frequency. In the case of a sinewave subcarrier, the higher-order harmonics of the subcarrier frequency are not employed in command detection in the typical transponder and are not included in $P_{D}$.

For some missions, the command signal is bi-polar. An example of this is when the command symbols, represented as rectangular pulses, directly phase-modulate the uplink carrier. In this case, the uplink $P_{D}$ accounts for all power in command sidebands, since the
command detection process in the typical transponder utilizes all command sidebands arising from a bi-polar command signal.

For the downlink, $P_{D}$ is that portion of the power in the telemetry sidebands that is employed in telemetry detection at the station. Commonly, the telemetry signal is bi-polar; this happens when rectangular pulses (the telemetry symbols) directly phase-modulate the downlink carrier or when these symbols modulate a square-wave subcarrier that, in turn, phase-modulates the downlink carrier. In such cases, all of the power in the telemetry sidebands is employed in telemetry detection. This is a result of both the data and the subcarrier (if present) being bipolar.

For some missions, the telemetry signal modulates a sinewave subcarrier and this composite signal phase-modulates the downlink carrier. In such a case, the downlink $P_{D}$ is that portion of the power in the telemetry sidebands that is employed in telemetry detection at the station. Not included is the power in the higher-order harmonics of the subcarrier frequency.
$P_{T}$ is not, in general, the sum of $P_{C}, P_{R}$, and $P_{D}$. In general, $P_{T}$ is larger than that sum. There are multiple reasons for this. First, $P_{R}$ does not account for power in the higherorder harmonics of a sinewave range clock. Second, when multiple signals (for example, a ranging signal and a telemetry signal) simultaneously phase-modulate a carrier, intermodulation products arise. These intermodulation products consume link power but do not contribute to either the range measurement or telemetry detection. Moreover, for the downlink, noise sidebands are present (in the case of turn-around ranging).

In calculating power allocations for a modulated carrier, it is necessary to characterize the level of the modulation. In this document, the root-mean-square (rms) phase deviation of the carrier will be used for this purpose. The following symbols are used in this module to represent rms phase deviation of the carrier:

```
uplink: }\quad\mp@subsup{\phi}{r}{}== rms phase deviation by ranging signal, rad rms
uplink: }\quad\mp@subsup{\phi}{cmd}{}= rms phase deviation by command signal, rad rms
downlink: }\quad\mp@subsup{0}{rs}{}=\mathrm{ rms phase deviation by ranging signal (strong signal), rad rms
downlink: }\quad\mp@subsup{0}{r}{}== rms phase deviation by ranging signal, rad rms
downlink: }\mp@subsup{0}{cmd}{}=\mathrm{ rms phase deviation by feedthrough command signal, rad rms
downlink: }\quad\mp@subsup{0}{n}{}=\mathrm{ rms phase deviation by noise, rad rms
downlink: }\mp@subsup{0}{\mathrm{ tlm }}{}=\mathrm{ rms phase deviation by telemetry signal, rad rms
```

On the uplink, $\phi_{r}$ and $\phi_{c m d}$ are parameters, constant for any given tracking pass. For a sinewave range clock, $\phi_{r}$ is related to the peak modulation index for uplink ranging by:

$$
\begin{equation*}
\phi_{r}=(\text { peak modulation index for uplink ranging, rad }) / \sqrt{2} \tag{6}
\end{equation*}
$$

When a sinewave subcarrier is used with command, $\phi_{c m d}$ is related to the peak modulation index for command by:

$$
\phi_{c m d}=(\text { peak modulation index for command }, \mathrm{rad}) / \sqrt{2}, \quad \begin{align*}
& \text { sinewave }  \tag{7}\\
& \text { subcarrier }
\end{align*}
$$

However, for a bi-polar command signal, $\phi_{c m d}$ equals the peak modulation index for command.
A turn-around ranging channel is used for sequential ranging. Within this channel the uplink carrier is demodulated, and the baseband signal plus noise that is the result of this demodulation is presented to a filter. The filter output is applied to an automatic gain control (AGC) circuit. The signal plus noise that exits the turn-around ranging channel is phasemodulated onto the downlink carrier.

On the downlink, $\theta_{r s}$ is a constant parameter that is determined by the AGC in the turn-around ranging channel. $\theta_{r s}$ is the rms phase deviation of the downlink carrier by the ranging signal in a strong-signal scenario. In such a scenario, the noise in the transponder's ranging channel is negligible compared with the ranging signal and there is no command. This scenario occurs in a test facility before flight and in the early phase of flight when the ranging signal-to-noise ratio in the transponder’s ranging channel is large. For a sinewave range clock, $\theta_{r s}$ is related to the peak modulation index (strong signal) by:

$$
\begin{equation*}
\theta_{r s}=(\text { strong-signal peak modulation index for downlink ranging, rad }) / \sqrt{2} \tag{8}
\end{equation*}
$$

For an arbitrary signal-to-noise ratio in the transponder's ranging channel, the rms phase deviation by ranging signal on the downlink, denoted $\theta_{r}$, is less than or equal to $\theta_{r s}$. Thus, $\theta_{r}$ is a variable, depending on both the parameter $\theta_{r s}$ and the ranging signal-to-noise ratio in the ranging channel. $\theta_{r s}$ is the limiting value of $\theta_{r}$, corresponding to the strong-signal case. If command is present on the uplink and that command passes through the transponder's ranging channel, then $\theta_{r}$ also depends on the command signal-to-noise ratio in the ranging channel.

Uplink noise passes through the ranging channel and is phase-modulated onto the downlink carrier. $\theta_{n}$ is the rms phase deviation by this ranging-channel noise. $\theta_{n}$, like $\theta_{r}$, is a variable that depends on both the parameter $\theta_{r s}$ and the ranging signal-to-noise ratio (and, possibly, also the command signal-to-noise ratio) in the ranging channel.
$\theta_{\text {tlm }}$ is the rms phase deviation of the downlink carrier due to telemetry. When the telemetry signal is bi-polar, the rms phase deviation and the peak modulation index for telemetry are identical. When a sinewave subcarrier is used with telemetry, $\theta_{\text {tlm }}$ is related to the peak modulation index for telemetry by:

$$
\theta_{t l m}=(\text { peak modulation index for telemetry, rad }) / \sqrt{2}, \quad \begin{align*}
& \text { sinewave }  \tag{9}\\
& \text { subcarrier }
\end{align*}
$$

### 2.4.1 Uplink

The equations of this subsection represent the case where a ranging signal and a command signal are simultaneously present on the uplink carrier. The range clock is taken here to be a sinewave. The ratio of $P_{C}$ to $P_{T}$, the carrier suppression, is

$$
\begin{equation*}
\left.\frac{P_{C}}{P_{T}}\right|_{\mathrm{U} / \mathrm{L}}=J_{0}^{2}\left(\sqrt{2} \phi_{r}\right) \cdot S_{c m d}\left(\phi_{c m d}\right) \tag{10}
\end{equation*}
$$

The ratio of $P_{R}$ to $P_{T}$ is

$$
\begin{equation*}
\left.\frac{P_{R}}{P_{T}}\right|_{\mathrm{U} / \mathrm{L}}=2 J_{1}{ }^{2}\left(\sqrt{2} \phi_{r}\right) \cdot S_{c m d}\left(\phi_{c m d}\right) \tag{11}
\end{equation*}
$$

The ratio of the fundamental command sideband power to $P_{T}$ is

$$
\begin{equation*}
\left.\frac{P_{D}}{P_{T}}\right|_{\mathrm{U} / \mathrm{L}}=J_{0}^{2}\left(\sqrt{2} \phi_{r}\right) \cdot M_{c m d}\left(\phi_{c m d}\right) \tag{12}
\end{equation*}
$$

where $J_{0}(\cdot)$ and $J_{1}(\cdot)$ are Bessel functions of the first kind of order 0 and 1 , respectively. These functions are plotted in Figure 4. When the argument $x$ of $J_{0}(x)$ and $J_{1}(x)$ is small and positive, the following approximations may be used:

$$
\begin{array}{cc}
J_{0}(x) \cong 1, & 0 \leq x \ll 1 \\
J_{1}(x) \cong x / 2, & 0 \leq x \ll 1 \tag{14}
\end{array}
$$



Figure 4. Bessel Functions of the First Kind of Order 0 and 1

The suppression factor $S_{c m d}\left(\phi_{c m d}\right)$ in Equations (10) and (11) and the modulation factor $M_{c m d}\left(\phi_{c m d}\right)$ in Equation (12) depend on whether the command signal is bipolar or uses a sinewave subcarrier. These two factors are given by:

$$
\begin{gather*}
S_{c m d}\left(\phi_{c m d}\right)=\left\{\begin{array}{cc}
\cos ^{2}\left(\phi_{c m d}\right), & \text { bi-polar } \\
J_{0}^{2}\left(\sqrt{2} \phi_{c m d}\right), & \text { sinewave subcarrier }
\end{array}\right.  \tag{15}\\
M_{c m d}\left(\phi_{c m d}\right)=\left\{\begin{array}{cc}
\sin ^{2}\left(\phi_{c m d}\right), & \text { bi-polar } \\
2 J_{1}^{2}\left(\sqrt{2} \phi_{c m d}\right), & \text { sinewave subcarrier }
\end{array}\right. \tag{16}
\end{gather*}
$$

In the event that command is absent from the uplink, the factor $S_{c m d}\left(\phi_{c m d}\right)$ in Equations (10) and (11) can be omitted, since $S_{c m d}(0)=1$.

### 2.4.2 Downlink

A turn-around ranging channel demodulates the uplink carrier, filters the baseband signal, applies automatic gain control, and then re-modulates the baseband signal onto the downlink carrier. The AGC serves the important purpose of ensuring that the downlink carrier suppression is approximately constant, independent of received uplink signal level. The bandwidth $B_{R}$ of the transponder's ranging channel must be larger (typically about $50 \%$ larger) than the range-clock frequency, in order to pass the ranging signal with minimal distortion. For example, $B_{R}$ is typically about 1.5 MHz when the transponder is intended to accommodate a range clock of 1 MHz . Substantial thermal noise from the uplink also passes through this channel. In many deep space scenarios, the thermal noise dominates over the ranging signal in this wideband, turn-around channel. Moreover, command signal from the uplink may pass through this ranging channel. In general, then, noise and command signal as well as the desired ranging signal are modulated onto the downlink carrier whenever the ranging channel is active (Reference 2).

The equations of this subsection represent the case where a ranging signal, a (feedthrough) command signal and noise are simultaneously present in the ranging channel, so that all three of these components, plus telemetry, phase-modulate the downlink carrier. The range clock is taken here to be a sinewave. The ratio of $P_{C}$ to $P_{T}$, the carrier suppression, is

$$
\begin{equation*}
\left.\frac{P_{C}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=J_{0}^{2}\left(\sqrt{2} \theta_{r}\right) \cdot S_{f t h}\left(\theta_{c m d}\right) \cdot e^{-\theta_{n}^{2}} \cdot S_{t l m}\left(\theta_{t l m}\right) \tag{17}
\end{equation*}
$$

The ratio of $P_{R}$ to $P_{T}$ is

$$
\begin{equation*}
\left.\frac{P_{R}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=2 J_{1}^{2}\left(\sqrt{2} \theta_{r}\right) \cdot S_{f t h}\left(\theta_{c m d}\right) \cdot e^{-\theta_{n}^{2}} \cdot S_{t l m}\left(\theta_{t l m}\right) \tag{18}
\end{equation*}
$$

The ratio of the telemetry sideband power to $P_{T}$ is

$$
\begin{equation*}
\left.\frac{P_{D}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=J_{0}{ }^{2}\left(\sqrt{2} \theta_{r}\right) \cdot S_{f t h}\left(\theta_{c m d}\right) \cdot e^{-\theta_{n}^{2}} \cdot M_{t l m}\left(\theta_{t l m}\right) \tag{19}
\end{equation*}
$$

where $J_{0}(\cdot)$ and $J_{1}(\cdot)$ are Bessel functions of the first kind of order 0 and 1, respectively.

The command-feedthrough suppression factor $S_{f t h}\left(\theta_{c m d}\right)$ that appears in each of Equations (17), (18) and (19) depends on whether the command signal is bi-polar or uses a sinewave subcarrier. This factor is given by:

$$
S_{f t h}\left(\theta_{c m d}\right)=\left\{\begin{array}{cc}
\cos ^{2}\left(\theta_{c m d}\right), & \text { bi-polar }  \tag{20}\\
J_{0}^{2}\left(\sqrt{2} \theta_{c m d}\right), & \text { sinewave subcarrier }
\end{array}\right.
$$

In the event that command feedthrough is absent from the ranging channel, the factor $S_{f t h}\left(\theta_{c m d}\right)$ in each of Equations (17), (18) and (19) can be omitted, since $S_{f t h}(0)=1$.

The suppression factor $S_{t l m}\left(\phi_{t l m}\right)$ in Equations (17) and (18) and the modulation factor $M_{t l m}\left(\phi_{t l m}\right)$ in Equation (19) depend on whether the telemetry signal is bi-polar or uses a sinewave subcarrier. These two factors are given by:

$$
\begin{align*}
S_{t l m}\left(\theta_{t l m}\right) & =\left\{\begin{array}{cc}
\cos ^{2}\left(\theta_{t l m}\right), & \text { bi-polar } \\
J_{0}{ }^{2}\left(\sqrt{2} \theta_{t l m}\right), & \text { sinewave subcarrier }
\end{array}\right.  \tag{21}\\
M_{t l m}\left(\theta_{t l m}\right) & =\left\{\begin{array}{cc}
\sin ^{2}\left(\theta_{t l m}\right), & \text { bi-polar } \\
2 J_{1}{ }^{2}\left(\sqrt{2} \theta_{t l m}\right), & \text { sinewave subcarrier }
\end{array}\right. \tag{22}
\end{align*}
$$

For a turn-around ranging channel, the downlink rms phase deviations $\theta_{r}, \theta_{n}$, and (if command feedthrough is present) $\theta_{c m d}$ depend on the ranging signal-to-noise ratio $\rho_{r}$ and (if command feedthrough is present) the command signal-to-noise ratio $\rho_{c m d}$ in the ranging channel.

$$
\begin{gather*}
\rho_{r}=\left.\left.\frac{P_{R}}{P_{T}}\right|_{\mathrm{U} / \mathrm{L}} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{U} / \mathrm{L}} \cdot \frac{1}{B_{R}}  \tag{23}\\
\rho_{c m d}=\left.\left.\frac{P_{D}}{P_{T}}\right|_{\mathrm{U} / \mathrm{L}} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{U} / \mathrm{L}} \cdot \frac{1}{B_{R}} \tag{24}
\end{gather*}
$$

where

$$
\begin{aligned}
P_{T} /\left.N_{0}\right|_{\mathrm{U} / \mathrm{L}} & =\text { uplink total power to noise spectral density ratio, } \mathrm{Hz} \\
B_{R} & =\text { noise-equivalent (one-sided) bandwidth of transponder's ranging channel, } \mathrm{Hz}
\end{aligned}
$$

In some transponders with a turn-around ranging channel, the AGC is designed to keep constant the average of the absolute value of the voltage at the AGC output. In other transponders, the AGC is designed to keep constant the rms voltage at the AGC output. For both types of AGC, the downlink rms phase deviations $\theta_{r}, \theta_{n}$, and $\theta_{c m d}$ depend on $\rho_{r}$ and $\rho_{c m d}$ (as well as the parameter $\theta_{r s}$ ). Turn-around ranging channels with both types of AGC are treated below.

810-005
203, Rev. D

### 2.4.2.1 $\quad$ AGC with Constant Average of Absolute Value of Voltage

When the transponder's ranging channel has an AGC that keeps constant the average of the absolute value of the channel voltage, there are no exact, analytical expressions for the rms phase deviations $\theta_{r}, \theta_{c m d}$ and $\theta_{n}$. However, these rms phase deviations may be obtained by computer simulation. Curve fits to the simulations appear below.

$$
\begin{equation*}
\theta_{r}=\frac{\theta_{r s}}{1+\exp \left[\gamma-0.79 \cdot \ln \left(\rho_{r}\right)\right]} \tag{25}
\end{equation*}
$$

where

$$
\gamma=\left\{\begin{array}{cc}
-1.2, & \rho_{c m d}=0  \tag{26}\\
\ln \left[0.3+0.27 \cdot \rho_{c m d}^{0.88}\right], & \rho_{c m d}>0
\end{array}\right.
$$

Here $\exp (\cdot)$ and $\ln (\cdot)$ are the exponential function and natural logarithm, respectively. In the event that there is no command feedthrough, $\rho_{c m d}=0$ and $\theta_{r}$ depends only on the constant parameter $\theta_{r s}$ and the ranging signal-to-noise ratio $\rho_{r}$. The asymptotes for Equation (25) are $\lim _{\rho_{r} \rightarrow 0} \theta_{r}=0$ and $\lim _{\rho_{r} \rightarrow \infty} \theta_{r}=\theta_{r s}$.

A similar set of equations are valid (approximately) for $\theta_{c m d}$

$$
\begin{equation*}
\theta_{c m d}=\frac{\theta_{r s}}{1+\exp \left[\chi-0.79 \cdot \ln \left(\rho_{c m d}\right)\right]} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi=\ln \left[0.3+0.27 \cdot \rho_{r}{ }^{0.88}\right] \tag{28}
\end{equation*}
$$

The asymptotes for Equation (27) are $\lim _{\rho_{c m d} \rightarrow 0} \theta_{c m d}=0$ and $\lim _{\rho_{c m d} \rightarrow \infty} \theta_{c m d}=\theta_{r s}$.
A curve-fit to the simulation data for $\theta_{n}$ as a function of $\rho_{r}$ and $\rho_{c m d}$ is:

$$
\begin{equation*}
\theta_{n}=\frac{\theta_{r s} \cdot(2 / \sqrt{\pi})}{1+\exp \left[-0.87+0.81 \cdot \ln \left(\rho_{r s s}\right)\right]} \tag{29}
\end{equation*}
$$

where $\rho_{r s s}$ is the root-sum-square of $\rho_{r}$ and $\rho_{c m d}$ :

$$
\begin{equation*}
\rho_{r s s}=\sqrt{\rho_{r}^{2}+\rho_{c m d}^{2}} \tag{30}
\end{equation*}
$$

The asymptotes for this curve are $\lim _{\rho_{r s s} \rightarrow 0} \theta_{n}=\theta_{r s} \cdot(2 / \sqrt{\pi})$ and $\lim _{\rho_{r s s} \rightarrow \infty} \theta_{n}=0$.
Since $\theta_{r}$ is directly proportional to the parameter $\theta_{r s}$, the ratio $\theta_{r} / \theta_{r s}$ may be plotted as a function of $\rho_{r}$ (and $\rho_{r}$ alone when $\rho_{c m d}=0$ ). This appears in Figure 5 for the case of no command feedthrough: $\rho_{c m d}=0$ and $\theta_{c m d}=0$. The solid curve labeled AAV is valid for a turn-around ranging channel whose AGC keeps constant the average of the absolute voltage (AAV). Figure 5 shows that the ratio $\theta_{r} / \theta_{r s}$ increases monotonically as a function of $\rho_{r}$ with a limiting value of 1 . (In other words, the strong-signal value of $\theta_{r}$ is $\theta_{r s}$.) The AAV curve of Figure 5 comes from Equations (25) and (26) with $\rho_{c m d}=0$.


Figure 5. Downlink rms Phase Deviation by Ranging Signal (No Command Feedthrough)

The ratio $\theta_{n} / \theta_{r s}$ may also be plotted as a function of $\rho_{r}$ when $\rho_{c m d}=0$. This appears in Figure 6. The solid curve labeled AAV is valid for a turn-around ranging channel whose AGC keeps constant the average of the absolute voltage (AAV). Figure 6 shows that the ratio $\theta_{n} / \theta_{r s}$ decreases monotonically as a function of $\rho_{r}$. The AAV curve of Figure 6 comes from Equations (29) and (30) with $\rho_{c m d}=0$.

### 2.4.2.2 AGC with Constant Root-Mean-Square Voltage

In some transponders, especially older designs, the ranging channel has an AGC that enforces a constant rms voltage at the AGC output. Since an unchanging rms voltage corresponds to an unchanging power, this type of AGC is also called a power-controlled AGC.

An AGC that enforces constant rms voltage (equivalently, constant power) at the AGC output is characterized by the following relationship among the rms phase deviations $\theta_{r}$, $\theta_{c m d}, \theta_{n}$, and $\theta_{r s}$.

$$
\begin{equation*}
\theta_{r}^{2}+\theta_{c m d}{ }^{2}+\theta_{n}{ }^{2}=\theta_{r s}{ }^{2} \tag{31}
\end{equation*}
$$

In other words, the total power in the turn-around ranging channel, which equals the ranging signal power plus the feedthrough command signal power plus the noise power in the channel bandwidth, equals a constant value. The rms phase deviations are given by

$$
\begin{gather*}
\theta_{r}=\theta_{r s} \cdot \sqrt{\frac{\rho_{r}}{1+\rho_{r}+\rho_{c m d}}}  \tag{32}\\
\theta_{c m d}=\theta_{r s} \cdot \sqrt{\frac{\rho_{c m d}}{1+\rho_{r}+\rho_{c m d}}}  \tag{33}\\
\theta_{n}=\frac{\theta_{r s}}{\sqrt{1+\rho_{r}+\rho_{c m d}}} \tag{34}
\end{gather*}
$$



Figure 6. Downlink rms Phase Deviation by Noise (No Command Feedthrough)

The ratio $\theta_{r} / \theta_{r s}$ is plotted as a function of $\rho_{r}$ in Figure 5 for the case of no command feedthrough: $\rho_{c m d}=0$ and $\theta_{c m d}=0$. The dashed curve labeled RMS is valid for a turn-around ranging channel whose AGC enforces a constant rms voltage at the AGC output. The RMS curve of Figure 5 comes from Equation (32) with $\rho_{c m d}=0$.

The ratio $\theta_{n} / \theta_{r s}$ is plotted as a function of $\rho_{r}$ in Figure 6 for the case of no command feedthrough: $\rho_{c m d}=0$ and $\theta_{c m d}=0$. The dashed curve labeled RMS is valid for a turn-around ranging channel whose AGC enforces a constant rms voltage at the AGC output. The RMS curve of Figure 6 comes from Equation (34) with $\rho_{c m d}=0$.

### 2.4.2.3 Comparison of Two AGC Types

As explained above, there are two types of AGC that have been employed in transponders with turn-around ranging channels. These two AGCs differ in the quantity that is kept constant: either the average of the absolute voltage (AAV) or the root-mean-square (RMS).

Figure 7 plots $P_{R} /\left.P_{T}\right|_{D / L}$ as a function of $\rho_{r}$ for each of the two AGC types. For all curves in this figure, there is no telemetry and there is no command feedthrough. For each AGC type, there are two curves: one for $\theta_{r s}=0.2 \mathrm{rad} \mathrm{rms}$ and a second for $\theta_{r s}=0.4 \mathrm{rad} \mathrm{rms}$. $P_{R} /\left.P_{T}\right|_{D / L}$ was calculated using Equation (18). The phase deviations $\theta_{r}$ and $\theta_{n}$ needed within Equation (18) were calculated using the equations of Subsection 2.4.2.1 for the AAV curves and Subsection 2.4.2.2 for the RMS curves.

Figure 8 plots the carrier suppression $P_{C} /\left.P_{T}\right|_{D / L}$ as a function of $\rho_{r}$ for each of the two AGC types. For all curves in this figure, there is no telemetry and there is no command feedthrough. For each AGC type, there are two curves: one for $\theta_{r s}=0.2 \mathrm{rad} \mathrm{rms}$ and a second for $\theta_{r s}=0.4 \mathrm{rad} \mathrm{rms} . P_{C} /\left.P_{T}\right|_{D / L}$ was calculated using Equation (17). The phase deviations $\theta_{r}$ and $\theta_{n}$ needed within Equation (17) were calculated using the equations of Subsection 2.4.2.1 for the AAV curves and Subsection 2.4.2.2 for the RMS curves.


Figure 7. Downlink Ranging-Signal Power to Total Power (No Telemetry, No Command)


Figure 8. Downlink Carrier Suppression (No Telemetry, No Command)

### 2.5 Uplink Spectrum

The spectrum of the uplink carrier is of some concern because of the very large transmitter power used on the uplink for deep space missions. In the interest of spectral efficiency, the ranging signal is filtered prior to passing to the phase modulator for the uplink carrier. This is accomplished with the uplink ranging filter, which is digitally implemented within the USG. The uplink ranging filter is a low-pass filter with a configurable bandwidth. The default (and minimum) bandwidth is 1.2 MHz .

Below are some examples of the spectrum of an uplink carrier when ranging is present. It is assumed that ranging is the only signal that modulates the uplink carrier in all examples given here. In the more general case, where command and ranging are both present, the spectrum would be similar to that indicated below except that the ranging sidebands would be reduced by an extra suppression factor due to the presence of command and there would also be command sidebands and intermodulation products. In general, the calculation of the spectrum is quite complicated.

Since the ranging sequence consists of a set of periodic signals, the spectrum for every ranging component consists of a set of discrete spectral lines. The ratio of the power in any one discrete spectral line to the total uplink power is denoted here

$$
\frac{P_{k}}{P_{T}}=\left\{\begin{array}{c}
\text { fraction of uplink total power }  \tag{35}\\
\text { in the discrete spectral line } \\
\text { with frequency } f_{C}+k f_{R}
\end{array}\right.
$$

where $f_{C}$ is the uplink carrier frequency, $k$ is an integer harmonic number, and $f_{R}$ is the frequency of the range component that presently modulates the carrier. The spectrum is symmetric about the carrier: for every discrete spectral line at $f_{C}+k f_{R}$ there is another of equal power at $f_{C}-k f_{R}$. When ranging alone modulates the carrier, the ratios of Equation (35) are subject to the conservation-of-energy law:

$$
\begin{equation*}
\frac{P_{0}}{P_{T}}+2 \sum_{k=1}^{\infty} \frac{P_{k}}{P_{T}}=1 \tag{36}
\end{equation*}
$$

The first term in Equation (36), $P_{0} / P_{T}$, represents the ratio of the residual-carrier power to the total power $P_{T}$.

When the range component is a sinewave (such as the range clock, for example, when the third and higher-order harmonics have been blocked by the uplink ranging filter), the relative powers of the discrete spectral lines are given by

$$
\begin{equation*}
\frac{P_{k}}{P_{T}}=J_{k}{ }^{2}\left(\sqrt{2} \phi_{r}\right) \tag{37}
\end{equation*}
$$

$\phi_{r}$ is the rms phase deviation of the uplink carrier by the ranging signal. $J_{k}(\cdot)$ is the Bessel function of the first kind of order $k$. The spectrum defined by Equation (37) is illustrated in Figure 9 for the case of a range-clock frequency $f_{R C}=1 \mathrm{MHz}$ and $\phi_{r}=0.80 \mathrm{rad} \mathrm{rms}$, corresponding to 3 dB of carrier suppression.


Figure 9. Spectrum: Sinewave Range Clock $f_{R C}=1 \mathrm{MHz}, \phi_{r}=0.80 \mathrm{rad} \mathrm{rms}$

During those periods when an ambiguity-resolving component is multiplied by a chop component, the spectrum of the uplink carrier consists of discrete spectral lines, as indicated in Equation (35). Figure 10 shows the spectrum of a $125-\mathrm{kHz}$ component chopped by the range clock. In this example, $\phi_{r}=0.80$ rad rms and the chop component, which is the range clock, is a sinewave and has a frequency $f_{R C}=1 \mathrm{MHz}$. The effect of the uplink ranging filter has been taken into account in Figure 10. The uplink spectrum would be much broader in the absence of the uplink ranging filter; the spectrum without filtering is shown in Figure 11.


Figure 10. Spectrum: $125-\mathrm{kHz}$ Component Chopped by Range Clock

$$
f_{R C}=1 \mathrm{MHz}, \phi_{r}=0.80 \mathrm{rad} \mathrm{rms}
$$

### 2.6 Range Measurement Performance

Thermal noise has two effects on range measurements. First, there is a standard deviation of range measurement error due to thermal noise. Second, there is a probability of acquisition of the range measurement that is less than $100 \%$ due to the presence of thermal noise.

### 2.6.1 Range Measurement Error Due to Thermal Noise

The standard deviation $\sigma_{\rho}$ of range measurement error, in meters rms, due to downlink thermal noise is given by

$$
\begin{equation*}
\sigma_{\rho}=\frac{c}{f_{R C} \cdot \sqrt{32 \pi^{2} \cdot T_{1} \cdot\left(P_{R} / N_{0}\right)}} \tag{38}
\end{equation*}
$$

where
$c=$ speed of electromagnetic waves in vacuum, $299,792,458 \mathrm{~m} / \mathrm{s}$
$T_{1}=$ integration time for range clock, s $f_{R C}=$ frequency of the range clock, Hz


Figure 11. Unfiltered Spectrum: $125-\mathrm{kHz}$ Component Chopped by Range Clock $f_{R C}=1 \mathrm{MHz}, \phi_{r}=0.80 \mathrm{rad} \mathrm{rms}$

Equation (38) is valid for the case of a sinewave range clock and a matching sinewave local model of the range clock at the RRT.
$P_{R} / N_{0}$, the ratio of the downlink ranging signal power to the noise spectral density, is given by

$$
\begin{equation*}
\frac{P_{R}}{N_{0}}=\left.\left.\frac{P_{R}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \tag{39}
\end{equation*}
$$

where $P_{T} /\left.N_{0}\right|_{\mathrm{D} / \mathrm{L}}$ is the downlink total signal to noise spectral density ratio and where $P_{R} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}}$ is the ratio of downlink ranging signal power to total power, which is given in Equation (18).
$P_{R}$ is reduced by the effect of uplink noise and any command feedthrough. This can be understood by noting that $P_{R} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}}$, as given in Equation (18), depends on the rms phase deviations $\theta_{r}, \theta_{c m d}$, and $\theta_{n}$; and these rms phase deviations depend, in turn, on the ranging signal-to-noise ratio $\rho_{r}$ in the transponder's ranging channel.

The standard deviation of range measurement error (m) due to thermal noise is plotted in Figure 12 against the product $T_{1} \cdot\left(P_{R} / N_{0}\right)$, expressed in decibels: $10 \log \left(T_{1} \cdot P_{R} / N_{0}\right)$. These curves were calculated from Equation (38) for three different values of range-clock frequency: $250 \mathrm{kHz}, 500 \mathrm{kHz}$, and 1 MHz .


Figure 12. Range Measurement Error for Sinewave Range Clock

When $\sigma_{\rho}$ has a specified value and an estimate is available for $P_{R} / N_{0}$, the required integration time $T_{1}$ can be found by a rewriting of Equation (38):

$$
\begin{equation*}
T_{1}=\frac{c^{2}}{32 \pi^{2} \cdot f_{R C}{ }^{2} \cdot\left(P_{R} / N_{0}\right) \cdot \sigma_{\rho}{ }^{2}} \tag{40}
\end{equation*}
$$

The standard deviation of the two-way time delay $\sigma_{\tau}$, in seconds, is related to $\sigma_{\rho}$, as given in Eq. (38), by

$$
\begin{equation*}
\sigma_{\tau}=\frac{2}{c} \cdot \sigma_{\rho} \tag{41}
\end{equation*}
$$

The factor of 2 in Eq. (41) accounts for the fact that $\sigma_{\rho}$ characterizes the error in the one-way range, while $\sigma_{\tau}$ characterizes the error in a two-way time delay. The standard deviation of the two-way phase delay $\sigma_{R U}$, as measured in range units, is related to $\sigma_{\tau}$ by

$$
\sigma_{R U}=\left\{\begin{array}{cl}
\frac{f_{S}}{2} \cdot \sigma_{\tau}, & \text { S-band uplink }  \tag{42}\\
\frac{221}{749} \cdot \frac{f_{X}}{2} \cdot \sigma_{\tau}, & \text { X-band uplink } \\
\frac{221}{3599} \cdot \frac{f_{K a}}{2} \cdot \sigma_{\tau}, & \text { Ka-band uplink }
\end{array}\right.
$$

where $f_{S}$ is the frequency of an S-band uplink carrier, $f_{X}$ is the frequency of an X-band uplink carrier, and $f_{K a}$ is the frequency of a Ka-band uplink carrier.

### 2.6.2 Probability of Acquisition

A correct determination of the range can only happen if the ambiguity is correctly resolved. This is accomplished with a set of correlations within the RRT between the received baseband ranging signal and local models of the ambiguity-resolving components. A range measurement is successfully acquired when every ambiguity-resolving correlation is correctly determined. The probability of acquisition $P_{\text {acq }}$ for the range measurement is

$$
\begin{equation*}
P_{\mathrm{acq}}=\left[\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\sqrt{T_{2} \cdot P_{R} / N_{0}}\right)\right]^{N_{C}} \tag{43}
\end{equation*}
$$

where $T_{2}$ is the integration time for each ambiguity-resolving component and $N_{C}$ is the number of ambiguity-resolving components in the ranging sequence,

$$
\begin{equation*}
N_{C}=n_{L}-n_{R C} \tag{44}
\end{equation*}
$$

This is the difference between the component number $n_{L}$ of the last (smallest-frequency) component and the component number $n_{R C}$ of the range clock. For example, if the range clock is component 4 (approximately 1 MHz ) and the last component is 20 , then $N_{C}=16$. (In this case, the ranging sequence consists of the range clock followed by 16 ambiguity-resolving components.) The error function $\operatorname{erf}(\cdot)$ is defined by

$$
\begin{equation*}
\operatorname{erf}(y)=\frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{-t^{2}} d t \tag{45}
\end{equation*}
$$

The value that Equation (43) gives for $P_{\text {acq }}$ is, in general, greater than 0 and less than $1 . P_{\text {acq }}$ is often characterized as a percentage (between $0 \%$ and $100 \%$ ).
$P_{\text {acq }}$ is plotted in Figure 13 as a function of the product $T_{2} \cdot\left(P_{R} / N_{0}\right)$, in decibels: $10 \log \left(T_{2} \cdot P_{R} / N_{0}\right)$. The functional dependence is shown for three representative values of $N_{C}$ : 10,15 , and 20. The curves in this figure were calculated from Equation (43).

It will often be necessary to work the problem in the reverse direction. For a specified $P_{\text {acq }}$, what is the required value for $T_{2} \cdot P_{R} / N_{0}$ ? Of course, this question can be answered approximately by applying a graphical method to Figure 13. Table 3 provides a more accurate method; this table lists required values for $T_{2} \cdot P_{R} / N_{0}$ (in decibels) as a function of $\log \left(P_{\text {acq }}\right) / N_{C}$. Here $\log (\cdot)$ is is the common logarithm (the base-10 logarithm). This table is based on Equation (43).


Figure 13. Probability of Acquisition

Here is an example of how Table 3 can be used. If the desired $P_{\text {acq }}$ is 0.95 and $N_{C}$ is 16 , then $\log \left(P_{\mathrm{acq}}\right) / N_{C}=-0.00139$. From Table 3, the decibel values 5.3 dB and 6.1 dB are found for $\log \left(P_{\mathrm{acq}}\right) / N_{C}=-0.0020$ and $\log \left(P_{\mathrm{acq}}\right) / N_{C}=-0.0010$, respectively. An interpolation suggests that $T_{2} \cdot P_{R} / N_{0}$ must be about 5.8 dB in order to acquire correctly with $P_{\text {acq }}=0.95$ when $N_{C}=16$.

In a computational environment where a special function like $\operatorname{erf}(\cdot)$ is not available, it is useful to have an algebraic approximation to Equation (43). Here is such an approximation:

$$
P_{\mathrm{acq}}=\left\{\begin{array}{cc}
{\left[c_{3} Z^{3}+c_{2} Z^{2}+c_{1} Z+c_{0}\right]^{N C},} & 0 \leq Z \leq 8.0  \tag{46}\\
1.00, & Z>8.0
\end{array}\right.
$$

where $Z$ is the product $T_{2} \cdot\left(P_{R} / N_{0}\right)$ in units of decibels,

$$
\begin{equation*}
Z=10 \log \left[T_{2} \cdot\left(P_{R} / N_{0}\right)\right] \quad \mathrm{dB} \tag{47}
\end{equation*}
$$

The coefficients for the model of Equation (46) are given in Table 4. The Equation (46) model is not reliable for $Z<0 \mathrm{~dB}$. For $Z>8.0 \mathrm{~dB}$, it is approximately true that $P_{\mathrm{acq}}=1$.

Table 3. Interpolation Table
Required $T_{2} \cdot P_{R} / N_{0}$ (in decibels) for Given $\log \left(P_{\text {acq }}\right) / N_{C}$

| $\frac{\log \left(P_{\mathrm{acq}}\right)}{N_{C}}$ | $T_{2} \cdot\left(P_{R} / N_{0}\right)$ <br> dB |
| :---: | :---: |
| -0.0300 | 0.7 |
| -0.0200 | 1.6 |
| -0.0100 | 3.0 |
| -0.0080 | 3.4 |
| -0.0060 | 3.9 |
| -0.0040 | 4.5 |
| -0.0030 | 4.8 |
| -0.0020 | 5.3 |
| -0.0010 | 6.1 |
| -0.0008 | 6.3 |
| -0.0006 | 6.6 |
| -0.0004 | 7.0 |
| -0.0003 | 7.4 |
| -0.0002 | 8.0 |

Table 4. Coefficients for Equation (46)

| $c_{3}$ | 0.000158 |
| :---: | :---: |
| $c_{2}$ | -0.003843 |
| $c_{1}$ | 0.031437 |
| $c_{0}$ | 0.9131 |

The recommended range for $P_{R} / N_{0}$ is $-20 \mathrm{~dB}-\mathrm{Hz}$ to $+50 \mathrm{~dB}-\mathrm{Hz}$. Range measurement performance has been validated down to $-20 \mathrm{~dB}-\mathrm{Hz}$. At this low end of performance, however, the integration times are quite large. (For a given measurement accuracy,
the smaller $P_{R} / N_{0}$, the larger must be the integration times.) Although there is no upper limit on $P_{R} / N_{0}$, a value in excess of $+50 \mathrm{~dB}-\mathrm{Hz}$ is not needed. Moreover, two downlink estimatorsthat for the symbol signal-to-noise ratio and that for the system noise temperature-become inaccurate when $P_{R} / N_{0}$ is large (see Subsection 2.6.6).

### 2.6.3 Selection of Integration Times

Thermal noise sets lower limits on the integration times $T_{1}$ and $T_{2}$. For a specified $\sigma_{\rho}$, a given $f_{R C}$ and an estimated available $P_{R} / N_{0}$, a minimum required integration time $T_{1}$ may be calculated from Equation (40). For a specified $P_{\text {acq }}$, a $N_{C}$ dictated by considerations of ambiguity resolution, and an estimated available $P_{R} / N_{0}$, a minimum required integration time $T_{2}$ may be found with the aid of Table 3.

If the RTLT changes by more than about 1 second during a tracking pass in which ranging is done, then the integration times $T_{1}$ and $T_{2}$ should be increased beyond the values calculated from thermal-noise considerations. Subsection 2.6.5.2 offers guidance in this matter.

### 2.6.4 Three-Way Ranging

Three-way ranging may be done if the RTLT is too large for two-way ranging. One station transmits a ranging sequence to the spacecraft where it is received and retransmitted. A second station receives the ranging sequence and performs the necessary correlations.

Three-way ranging yields less accurate results than two-way ranging. There are two reasons for this. First, the station delays cannot be accurately calibrated for three-way ranging. Second, the clock offset between the transmitter and receiver is imperfectly known.

Ideally, in order to get the best three-way ranging measurements, the transmitting station's one-way uplink delay and the receiving station's one-way downlink delay should be removed from the measured three-way delay. However, these one-way delays cannot be measured directly. Instead, the two-way station delay of each station is measured with the assumption that half of the delay is in the uplink equipment and the other half is in the downlink equipment. The two round-trip station delays are averaged, and this average is subtracted from the round-trip phase delay to the spacecraft. This average is only as accurate as the approximation that the delay is equally distributed between the uplink and downlink at both stations.

Three-way range measurement error is often dominated by a clock offset between the time reference at the transmitting and receiving stations. This clock offset can be as large as $9 \mu \mathrm{~s}(3 \sigma)$, and there is an additional small uncertainty in the delay between the station clock and the exciter or receiver (see Module 304). The largest part of the clock offset can be determined and removed from the range measurement. However, the remaining (unmodeled) clock offset translates directly into an error in the three-way range measurement.

### 2.6.5 Ranging Anomalies Related to Sequence Timing

It has been observed that there can be problems with range measurements when the integration time $T_{2}$ is very short or when the RTLT changes during a single tracking pass by an amount comparable with $T_{2}$. These anomalies, along with suggested remedies, are discussed below.

### 2.6.5.1 $\quad$ Short Integration Time $\boldsymbol{T}_{2}$

If a very short integration time such as 1 or 2 s is used for $T_{2}$, the effective integration time of each ambiguity-resolving component may be significantly less that the design value of $T_{2}$. This happens if the downlink integration interval for each ambiguity-resolving component does not completely overlap the received component being integrated (as discussed in Section 2.2). The difference between the design $T_{2}$ and the effective integration time will typically be a fraction of a second.

The user may suspect this problem when a very small $T_{2}$ is being used and the number of range blunder points is more than the Probability of Acquisition Tolerance should permit. The simplest solution is to increase the design $T_{2}$. It will often suffice to increase $T_{2}$ by just 1 s .

### 2.6.5.2 Changing RTLT

The effective integration time of each component (the range clock as well as the ambiguity-resolving components) is reduced for some range measurements if the RTLT varies significantly during a tracking pass. The estimated RTLT that is applied to ranging operations for a tracking pass is typically correct at the beginning of the pass. But if the actual RTLT moves away from this estimated value by a few seconds during the pass, a misalignment arises for range measurements occurring later in the pass. This causes the integration of any given component of measurements made later in the pass to slip so that there is not a complete overlap with the received component. The result can be an increase in the range measurement error and a decrease in the probability of range acquisition.

The preferred solution to the problem of a changing RTLT is to use larger values for the integration times, with due consideration for the variability of the RTLT. With this solution, the range measurements will not degrade significantly as the tracking pass proceeds. In the description of this solution, $\triangle$ RTLT represents the absolute value of the change in RTLT over the course of a ranging pass.

If $\Delta$ RTLT exceeds 1 s , the integration time $T_{1}$ should be increased by $\lceil\Delta$ RTLT -1$\rceil$, where $\lceil\cdot\rceil$ is the ceiling function (the smallest integer that is greater than or equal to its argument). Two examples are given here. If $1 \mathrm{~s}<\Delta \mathrm{RTLT} \leq 2 \mathrm{~s}, T_{1}$ should be increased by 1 s . If $2 \mathrm{~s}<\Delta \mathrm{RTLT} \leq 3 \mathrm{~s}, T_{1}$ should be increased by 2 s .

If $\Delta$ RTLT exceeds 0.5 s , the integration time $T_{2}$ should be increased by $\operatorname{round}(\Delta \mathrm{RTLT})$, where round $(\cdot)$ indicates rounding to the nearest integer. Two examples are given here. If $0.5 \mathrm{~s}<\Delta \mathrm{RTLT} \leq 1.5 \mathrm{~s}, T_{2}$ should be increased by 1 s . If $1.5 \mathrm{~s}<\Delta$ RTLT $\leq 2.5 \mathrm{~s}$, $T_{2}$ should be increased by 2 s .

An alternative solution is to stop the downlink range measurements whenever the difference between the estimated RTLT and the actual RTLT exceeds some threshold and restart the downlink range measurements with an updated RTLT estimate. In order to maintain the quality of the range measurements while using the smallest possible integration times, it may be necessary to stop and restart the downlink range measurements multiple times during some tracking passes. This will be particularly true for missions having a fast-changing RTLT and small integration times. The first solution, discussed in the previous paragraph, will ordinarily be the preferred solution, due to its simplicity.
$P_{R} / N_{0}$, the ratio of the downlink ranging signal power to the noise spectral density, is estimated by the RRP during range measurements, and the estimate is included in the delivered data. An accurate estimate depends on having a value for RTLT that is correct to within about 1 s . When the RTLT changes, during a tracking pass, by more than about 1 s , $P_{R} / N_{0}$ is underestimated during the later part of the tracking pass. This effect is most noticeable for large values of $P_{R} / N_{0}$.

### 2.6.6 Interference Caused by Sequential Ranging

Sequential ranging has, on occasion, been a source of interference to conical-scan tracking and to the downlink signal power estimators. This interference is usually only an issue during early mission phase when signal-to-noise ratios are very high.

Perhaps the best-known case of such interference occurred with the Ulysses spacecraft. In that case, sequential ranging caused variations in the uplink carrier suppression, which was a problem for the conical-scan (conscan) pointing of the high-gain antenna on the Ulysses spacecraft. This is not a general problem because conscan is not used for pointing most spacecraft antennas. Furthermore, this problem for Ulysses occurred at a time when a squarewave was being used for the $1-\mathrm{MHz}$ range clock. At present, a $1-\mathrm{MHz}$ range clock is filtered and approximates a sinewave, and with a sinewave range clock the variation in carrier suppression is much reduced.

Sequential ranging has also, on occasion, caused variations in the downlink residual-carrier power, which can interfere with the conscan pointing of the DSS antenna (Reference 2). This only happens when the ranging signal-to-noise ratio is large, as occurs sometimes during the early phase of a mission.

It has been observed in the early phase of some missions, shortly after launch when the signal-to-noise ratios are large, that sequential ranging can cause variations in some of the downlink signal power estimators. In particular, the symbol signal-to-noise ratio estimate may be low when a strong ranging signal is present on the downlink. This is due to the fact that the ranging signal looks like noise to the estimator. The symbol signal-to-noise ratio estimate is used as an input by the algorithm that estimates the system noise temperature. When the symbol signal-to-noise ratio estimate is low, the system noise temperature estimate is high. Both estimates have been observed to be affected by the presence of a strong ranging signal.

### 2.7 Range Corrections

Range is defined to be the distance from the reference point on the DSS antenna to the reference point on the spacecraft antenna. The reference point of a DSS antenna is the intersection of the azimuth and elevation axes. When the two-way time delay is measured, the result includes more than just the two-way delay between the reference points of the DSS and spacecraft antennas. The measured two-way delay also includes station delay and spacecraft delay. These extra delays must be determined through calibration and then removed from the measured two-way time delay. The spacecraft delay is measured during DSN compatibility testing prior to launch. The station delay is determined in two parts: the DSS delay and the Zcorrection.

A range measurement (that has not yet been corrected) provides the two-way delay through the station uplink path, starting from the USG, to and from the spacecraft, and through the station downlink path, ending in the RRT. Figure 14 illustrates the two-way signal path at the station. It is necessary to determine the uplink station delay for the path from the USG to the antenna reference point, to determine the downlink station delay for the path from the antenna reference point to the RRT, and to remove these delays from the measured two-way delay.


Figure 14. DSS Delay Calibration

### 2.7.1 DSS Delay

The DSS delay is obtained by a calibration that mimics an actual two-way range measurement, except that the signal path lies entirely within the station. A portion of the uplink carrier is diverted through a coupler to a test translator. The test translator shifts the carrier to the downlink frequency (while not altering the modulation) and feeds this frequency-shifted carrier to a coupler that places it on the downlink path within the station. The DSS delay contains most of the station delay. To be precise, the DSS delay comprises the delay from the USG to the ranging coupler on the uplink, the delay through the test translator (and its cables), and the delay from the ranging coupler on the downlink to the RRT.

Figure 14 is a somewhat abstract representation of the configuration. The microwave instrumentation shown in this figure is not an official subsystem, rather it is a conceptual grouping of microwave signal paths and microwave devices. On the uplink, the uplink carrier that is output from the klystron passes through the microwave instrumentation on its way to the reference point of the antenna. On the downlink, the downlink passes through the microwave instrumentation on its way to the LNA. Along the uplink path, a portion of the uplink carrier is coupled to the test translator. The portion of the carrier that has been frequency shifted to the downlink band inside the test translator is then coupled to the downlink path. The specific details of the microwave instrumentation are generally different at different DSSs and for different bands within a given DSS. Modules 101, 103 and 104 should be consulted for those details.

The DSS delay is station and configuration dependent. It should be measured for every ranging pass. This measurement is called precal for pre-track calibration and postcal for post-track calibration. The former is done at the beginning of a ranging pass; the latter is only needed when there is a change in equipment configuration during the track or precal was not performed due to a lack of time.

The DSS delay varies significantly as a function of carrier frequency. This is illustrated in Figure 15 for an X-band (uplink and downlink) calibration at DSS 63. The vertical axis on this plot is the DSS delay, labeled STDL in this plot. The difference between the largest and smallest delays over the $8400-8450 \mathrm{MHz}$ band is about 18 ns in this case. On both the lower and upper ends of this band, the rise in station delay originates in the klystron on the uplink side of the station. The ripple in the station delay arises from impedance mismatches; every transmission line that has some mismatch at both ends will introduce ripple in the group delay.


Figure 15. DSS Delay as a Function of Downlink Frequency

### 2.7.2 Z-Correction

The DSS delay itself must be corrected. This is accomplished with the Zcorrection. The DSS delay includes the delay through the test translator (and its cables), but the test translator is not in the signal path of an actual range measurement. Moreover, the DSS delay does not include, but should include, the delays between the ranging couplers and the antenna reference point.

The Z-correction is defined as the delay through the test translator (and its cables) minus the uplink and downlink delays between the ranging couplers and the antenna reference point. The DSS delay minus the Z-correction therefore gives the delay between the USG and the antenna reference point plus the delay between the antenna reference point and the RRT. This is
exactly the quantity that must be subtracted from a range measurement in order to produce a twoway delay relative to the antenna reference point.

The test translator delay is measured by installing a zero delay device (ZDD) in place of the test translator. Since the ZDD delay is measured in the laboratory, the signal delay contributed by the test translator can be calculated to a known precision. This measurement is made approximately once each year or when there are hardware changes in this portion of the signal path. The delays between the ranging couplers and the antenna reference point are stable and need not be updated often; they are determined by a combination of calculation and measurement.

## $2.8 \quad$ Total Error for Range Measurement

Several error sources contribute to the total error for a range measurement. For two-way range measurement, the two most important error sources are typically thermal noise and station calibration error. The error due to thermal noise is discussed in Section 2.6. The error in calibrating and removing the station delay is often the dominant error source for twoway ranging. For two-way range measurements in the $X$ band, there is typically about 6 ns of station calibration error in the two-way delay, corresponding to a (one-way) range error of about 1 meter.

The error in calibrating and removing the spacecraft delay is stable for a given spacecraft and a given band pairing (for example, X band on the uplink and X band on the downlink). The orbit determination program can, given enough range measurements for this spacecraft and band pairing, solve for this error.

There are error contributions, usually small compared to the station calibration error, due to the passage of the uplink and downlink through the troposphere, ionosphere and solar corona (Reference 3). When the angle between the sun and the spacecraft, as seen from the station, is small and the spacecraft is beyond the sun, the error contribution from the solar corona can become the dominant contributor to error in the range measurement.

For three-way ranging (in which one station transmits the uplink and a second station receives the downlink), the total delay measurement error is larger than for two-way. There are two reasons for this. First, there is a clock offset between the transmitting and receiving stations. Second, the calibration of the station delays is more difficult to achieve accurately in this case.

## Appendix: Glossary of Parameters

$P_{T} /\left.N_{0}\right|_{\mathrm{U} / \mathrm{L}} \quad$ ratio of uplink total power to noise spectral density, Hz
$P_{C} /\left.P_{T}\right|_{\mathrm{U} / \mathrm{L}} \quad$ ratio of uplink residual-carrier to total power
$P_{R} /\left.P_{T}\right|_{\mathrm{U} / \mathrm{L}} \quad$ ratio of uplink ranging-signal to total power
$P_{D} /\left.P_{T}\right|_{\mathrm{U} / \mathrm{L}} \quad$ ratio of uplink command-signal to total power
$P_{T} /\left.N_{0}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of downlink total power to noise spectral density, Hz
$P_{C} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of downlink residual-carrier to total power
$P_{R} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of downlink ranging-signal to total power
$P_{D} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of downlink telemetry to total power
$P_{R} / N_{0} \quad$ ratio of downlink ranging-signal power to noise spectral density, Hz
$P_{k} / P_{T} \quad$ ratio of discrete spectral line power to total power
$P_{0} / P_{T} \quad$ ratio of residual-carrier power to total power
$Z \quad T_{2} \cdot\left(P_{R} / N_{0}\right)$ in decibels
$\rho_{\rho} \quad$ ranging signal-to-noise ratio in transponder's ranging channel
$\rho_{c m d} \quad$ command-feedthrough signal-to-noise ratio in transponder's ranging channel
$B_{R} \quad$ noise-equivalent bandwidth of transponder's ranging channel, Hz
$T_{1} \quad$ integration time for range clock, s
$T_{2} \quad$ integration time for ambiguity-resolving component, s
$f_{n} \quad$ frequency of range component $n, \mathrm{~Hz}$
$f_{R C} \quad$ range-clock frequency, Hz
$f_{S} \quad$ S-band carrier frequency, Hz
$f_{X} \quad$ X-band carrier frequency, Hz
$f_{K a} \quad$ Ka-band carrier frequency, Hz
c speed of electromagnetic waves in vacuum, $\mathrm{m} / \mathrm{s}$
$n_{R C} \quad$ component number of range clock
$n_{L} \quad$ component number of last ambiguity-resolving component
$N_{C} \quad$ number of ambiguity-resolving components

| $\phi_{r}$ | phase deviation of uplink carrier by ranging signal, rad rms |
| :---: | :--- |
| $\phi_{c m d}$ | phase deviation of uplink carrier by command signal, rad rms |
| $\theta_{r s}$ | phase deviation of downlink carrier by ranging signal (strong signal), rad rms |
| $\theta_{r}$ | phase deviation of downlink carrier by ranging signal, rad rms |
| $\theta_{c m d}$ | phase deviation of downlink carrier by command feedthrough, rad rms |
| $\theta_{n}$ | phase deviation of downlink carrier by noise, rad rms |
| $\theta_{t l m}$ | telemetry modulation index, rad |
| $S_{c m d}\left(\phi_{c m d}\right)$ | suppression factor on uplink due to command |
| $M_{c m d}\left(\phi_{c m d}\right)$ | modulation factor on uplink for command |
| $S_{f t h}\left(\theta_{c m d}\right)$ | suppression factor on downlink due to command feedthrough |
| $S_{t l m}\left(\theta_{t l m}\right)$ | suppression factor on downlink due to telemetry |
| $M_{t l m}\left(\theta_{t l m}\right)$ | modulation factor on downlink for telemetry |
| $P_{\mathrm{acq}}$ | probability of acquisition |
| $\sigma_{\rho}$ | standard deviation of range measurement error, m |
| $\sigma_{\tau}$ | standard deviation of two-way delay, s |
| $\sigma_{\mathrm{RU}}$ | standard deviation of the two-way phase delay, RU |
| $\Delta \mathrm{RTLT}$ | change in RTLT over the course of a ranging pass, s |

## References

1. J. B. Berner, S. H. Bryant, and P. W. Kinman, "Range Measurement as Practiced in the Deep Space Network," Proceedings of the IEEE, Vol. 95, No. 11, November 2007.
2. P. W. Kinman and J. B. Berner, "Two-Way Ranging During Early Mission Phase," 2003 IEEE Aerospace Conference, March 8-15, 2003, Big Sky, MT.
3. C. L. Thornton and J. S. Border, Radiometric Tracking Techniques for Deep-Space Navigation, Monograph 1 of the Deep-Space Communications and Navigation Series, Jet Propulsion Laboratory, Pasadena, CA, 2000.

Deep Space Network

## 205 <br> Command Service

## Document Owner:

| Signature provided | $12 / 13 / 2022$ |
| :--- | :--- |
| Michael Settember | Date |
| Command Service System Engineer |  |

Approved by:

| Signature provided | 11/01/2022 |
| :--- | :--- |
| Timothy T. Pham | Date |
| DSN Communications Systems |  |
| Chief Engineer |  |

Released by:

Signature provided
03/23/2023
Christine Chang Date
DSN Document Release Authority

DSN No. 810-005, 205, Rev. G
Issue Date: March 23, 2023
JPL D-19379; URS CL\#23-1592
Jet Propulsion Laboratory
California Institute of Technology

Users must ensure that they are using the current version in DSN Telecommunications Link Design Handbook website::
https://deepspace.jpl.nasa.gov/dsndocs/810-005/

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature provided | $10 / 31 / 2022$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Jeff Berner | Sate |  | Signature not provided |  |
| DSN Project Chief Engineer | Jndrew O'Dea | Date |  |  |
| Tracking, Telemetry, and Command |  |  |  |  |

810-005
205, Rev. G
Document Change Log

| Rev | Issue Date | Prepared By | Affected Sections or pages | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| Initial | 1/15/2001 | Robert Sniffin | All | Initial Release |
| A | 12/15/2002 | Robert Sniffin | All | Provides description and capabilities of new DSN command equipment. |
| B | 12/15/2009 | A. Kwok | All | Replaced DSMS with DSN. Removed references to the decommissioned $26-\mathrm{m}$ subnet. <br> Updated Table 1 and replaced previous Figure 3 with the current Figure 3, Figure 4, and Figure 5. |
| C | 6/1/2010 | A. Kwok | Page 18 | Corrected an error in Equation (1). Eliminated the Rev. E designation for the document series. |
| D | 12/15/2014 | T. Cornish | Table 1 | Updated to current data. <br> Added restrictions on S-band uplink from MDSCC. <br> Deleted Ka-band uplink from DSS-25. <br> Deleted DSS-27. <br> Added DSS-35, -36 20 kW and DSS-26 80 kW . |
|  |  |  | 3.12 | Changed "output of the exciter" to "output of command modulator". |
|  |  |  | Was 4.1 <br> is now 3.4 | Added 128k and 256k data rates and removed statement about rates above 64k being unavailable due to exciter bandwidth restrictions (future Block 6 Exciter capabilities). <br> Moved entire paragraph to 3.8 , thus eliminating section 4 on "Proposed Capabilities". <br> Changed "will be implemented" to "is available, with some restrictions". Added statement about CLTU size versus bit rate. |
| E | 11/17/2016 | T. Cornish | Table 1 | Added DSS-36 S- and X-band. Deleted DSS-45. |
|  |  |  | Section 2 | Added 0239-Telecomm and CLTUF. Updated Figs. 3, 4, and 5. |
|  |  |  | Appendix A | Updated references. |
| F | 04/02/2021 | M. Settember | Table 1 | Added DSS-56 S/X-band and DSS-26 S-band Deleted DSS-15. <br> Updated DSS-43 power level/EIRP per upgrades Removed Gain/ G/T column, not relevant to cmd. Updated EIRP column per subnet interface docs. |
|  |  |  | Section 2 \& 3 Figure 3 | Removed FCLTU "Red book", 0163 support |
|  |  |  | Section 2 \& 3.1 | Removed emergency recording capability. |

810-005
205, Rev. G

| Rev | Issue Date | Prepared By | Affected Sections or pages | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Section 3.2 \& 3.6 | Clarified step tuning limitations applicable to 20kW S-band only. |
|  |  |  | Appendix A | Added "2010 blue book" reference. <br> Added missing referenced 820-013 modules. |
| G | 03/23/2023 | M. Settember | Table $1 \& 3$, <br> Figures 1, 2, 4, 5 \& 6, Section 3.2, 3.4, 3.9, 3.10 \& 3.13 | Added K-band and current Ka-band capability. Updated reference figures to reflect current RF power capabilities. <br> Added new command modulation, data rate and encoding capabilities. <br> Removed Mean-time between Command Aborts numbers. |

## Contents

Paragraph Page
Contents ..... 5
1 Introduction ..... 7
1.1 Purpose. ..... 7
1.2 Scope ..... 7
2 General Information ..... 7
3 Command Parameters ..... 14
3.1 RF Power ..... 17
3.2 Carrier Frequency ..... 17
3.3 Subcarriers ..... 17
3.4 Direct Carrier Modulation. ..... 17
3.5 Modulation Index ..... 18
3.6 Modulation Losses ..... 19
3.7 PCM Data Formats ..... 19
3.8 Subcarrier to Data Rate Ratios ..... 19
3.9 Encoding ..... 21
3.10 Idle Patterns ..... 21
3.11 Command Timing ..... 21
3.12 Command Verification ..... 21
3.13 Availability ..... 22
Appendix A References ..... 23

810-005
205, Rev. G

## Figures

# Figure 1. Maximum Command Range for a Reference Spacecraft with an Omni-directional Antenna and a 0.5 Radian Command Modulation Index <br> 9 

Figure 2. Maximum Command Range for a Reference Spacecraft with a High-gain Antenna anda 1.2 Radian Command Modulation Index10
Figure 3. Space Link Extension (SLE) Forward Service Data Flow ..... 11
Figure 4. Command Radiation Service Data Flow - File Mode (SCMF or CLTUF) ..... 12
Figure 5. Command Delivery Service Data Flow - (CFDP) ..... 12
Figure 6. Command Data Formats ..... 20
Tables
Table Page
Table 1. Capabilities of DSN 70-m and 34-m Antennas ..... 8
Table 2. Reference Spacecraft Characteristics for Figure 1 and Figure 2 ..... 9
Table 3. Command Parameters ..... 14

## 1 Introduction

### 1.1 Purpose

This module provides performance parameters for the elements of the Deep Space Network (DSN) that are exclusively used for sending commands to spacecraft. It is intended to assist the telecommunications engineer in designing an uplink (or forward space link) that is compatible with currently installed DSN equipment. It also contains brief descriptions of future enhancements that have been proposed for this equipment and capabilities that are being maintained for legacy customers using the previous generation of command equipment.

### 1.2 Scope

The discussion in this module is limited to command equipment used with the Deep Space Network (DSN) antennas. Detailed performance of equipment used for purposes in addition to command is covered elsewhere in 810-005. Information on antennas, exciters, and transmitters have been included as a convenience and should be verified against their primary source. In particular, the following modules should be considered:

101 70-m Subnet Telecommunications Interfaces,
103 34-m HEF Subnet Telecommunications Interfaces,
104 34-m BWG Stations Telecommunications Interfaces, and
301 Coverage and Geometry.

## 2 General Information

Each antenna in the DSN is capable of sending commands to one spacecraft at a time. Each Deep Space Communications Complex (DSCC) contains one $70-\mathrm{m}$ and multiple $34-\mathrm{m}$ antennas. There are two types of $34-\mathrm{m}$ antennas. The first is the so-called high-efficiency (HEF) antennas that have their feed, low-noise amplifiers, and transmitter located on the tilting structure of the antenna. These antennas were named when a less-efficient $34-\mathrm{m}$ antenna was in use by the DSN and the name has survived. The efficiency of all DSN 34-m antennas is now approximately the same. Note that only one HEF antenna remains in operation, located at Madrid DSCC. The HEF at Goldstone and Canberra DSCC have been decommissioned. The second type of 34-m antenna is the beam waveguide (BWG) antenna where the feeds, low noise amplifiers and transmitters are located in a room below the antenna structure and the radio frequency energy is transferred to and from the antenna surface by a series of mirrors and dichroics encased in a protective tube.

The capabilities of each antenna type and, in some cases, of the individual antennas are different and must be considered in designing a command link. Often, the selection of antenna for uplink will depend on the downlink frequencies it supports.

Table 1 lists the uplink and downlink frequency ranges for each antenna type and provides approximate ranges for uplink Effective Isotropic Radiated Power (EIRP). The modules referred to above should be consulted for exact values and other parameters. The telecommunications link designer is cautioned against making designs dependent on the $70-\mathrm{m}$ antenna, as there is only one per complex and it subject to severe scheduling constraints.

810-005
205, Rev. G

Table 1. Capabilities of DSN 70-m and 34-m Antennas

| Antenna Type | Complex/Site | DSS ID | Uplink Freq (MHz) | TXR <br> Power <br> (W) | $\begin{aligned} & \text { EIRP } \\ & \text { (dBW) } \end{aligned}$ | Downlink Freq (MHz) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34M <br> BWG | Goldstone, CA USA | DSS 24 | S: 2025-2120 | 20,000 | 78.6-98.6 | S: 2200-2300 |
|  |  | DSS 26 | S: 2025-2110 | 250 | 71.9-78.9 | S: 2200-2300 |
|  | Canberra, Australia | DSS 34 | S: 2025-2120 | 20,000 | 78.6-98.6 | S: 2200-2300 |
|  |  | DSS 36 | S: 2025-2110 | 250 | 71.9-78.9 | S: 2200-2300 |
|  | Madrid, Spain | DSS $54{ }^{1}$ | S: 2025-2120 | 20,000 | 78.6-98.6 | S: 2200-2300 |
|  |  | DSS 56 | S: 2025-2110 | 250 | 71.9-78.9 | S: 2200-2300 |
|  | Goldstone, CA USA | DSS 24, 25, 26 | X: 7145-7235 | 20,000 | 89.4-109.4 | X: 8400-8500 |
|  |  | DSS 26 | X: 7145-7235 | 80,000 | 89.3-115.3 | X: 8400-8500 |
|  | Canberra, Australia | DSS 34, 35, 36 | X: 7145-7235 | 20,000 | 89.4-109.4 | X: 8400-8500 |
|  | Madrid, Spain | DSS 54, 55, 56 | X: 7145-7235 | 20,000 | 89.4-109.4 | X: 8400-8500 |
|  | Goldstone, CA USA | DSS 26, $24{ }^{2}$ | K: 22550-23150 | 250 | 113.7-127.7 | K: 25500-27000 |
|  | Canberra, Australia | DSS 36, $34^{2}$ | K: 22550-23150 | 250 | 113.7-127.7 | K: 25500-27000 |
|  | Madrid, Spain | DSS $56{ }^{2}, 54^{2}$ | K: 22550-23150 | 250 | 113.7-127.7 | K: 25500-27000 |
|  | Goldstone, CA USA | DSS $25^{3}$ | Ka: 34315-34415 | 300 | 125.8-133.6 | Ka: 31800-32300 |
| 34M | Madrid, Spain | DSS 65 | S: 2025-2110 | 250 | 71.8-78.8 | S: 2200-2300 |
| HEF | Madrid, Spain | DSS 65 | X: 7145-7190 | 20,000 | 89.8-109.8 | X: 8400-8500 |
| 70M | Goldstone, CA USA | DSS 14 | S: 2110-2120 | 20,000 | 85.6-105.6 | S: 2200-2300 |
|  | Canberra, Australia | DSS 43 | S: 2110-2120 | 100,000 | 85.6-111.6 | S: 2200-2300 |
|  | Madrid, Spain | DSS $63{ }^{1}$ | S: 2110-2120 | 20,000 | 85.6-105.6 | S: 2200-2300 |
|  | Goldstone, CA USA | DSS 14 | X: 7145-7190 | 20,000 | 95.8-115.8 | X: 8400-8500 |
|  | Canberra, Australia | DSS 43 | X: 7145-7235 | 80,000 | 95.8-121.8 | X: 8400-8500 |
|  | Madrid, Spain | DSS 63 | X: 7145-7190 | 20,000 | 95.8-115.8 | X: 8400-8500 |

Notes:

1) S-band uplink in the Deep Space frequency range of $2110-2120 \mathrm{MHz}$ is not available from MDSCC except for Voyager support by special agreement with the Spanish Frequency Spectrum Regulator.
2) Near-earth K-band uplink capability planned to be deployed at 24 (2023), 56 (2024), 34 (2024), 54 (2026), dates subject to change.
3) Deep Space Ka-band uplink capability planned to be deployed at DSS 55 (2028), 35 (2030), dates subject to change.

Figure 1 and Figure 2 illustrate the DSN command capabilities assuming a reference spacecraft employing a residual carrier uplink and having the characteristics specified in Table 2. These figures show that command range at low bit rates is limited by the spacecraft carrier tracking performance. At higher bit rates, the range is limited by available $\mathrm{Eb}_{\mathrm{b}} / \mathrm{N}_{\mathrm{O}}$.
Figure 1 is intended to show performance during a spacecraft emergency that forces the use of an omnidirectional antenna. The uplink modulation index has been intentionally lowered to 0.5 radians to direct more power to the carrier. Figure 2 assumes a more typical spacecraft configuration using a high-gain antenna and an uplink modulation index of 1.2 radians.

## Data Rate vs. Command Range (Omni)



Figure 1. Maximum Command Range for a Reference Spacecraft with an Omni-directional Antenna and a 0.5 Radian Command Modulation Index.

Table 2. Reference Spacecraft Characteristics for Figure 1 and Figure 2

| Parameter | Value |
| :--- | :---: |
| Antenna Gain including pointing loss |  |
| Omnidirectional | 0 dB |
| S-band Hi-gain | 30 dB |
| X-band Hi-gain | 39.7 dB |
| Other RF losses | -1.8 dB |
| System Temperature | 500 K |
| Carrier Loop Bandwidth | 100 Hz |
| Required Carrier Margin | 12 dB |
| Command Detection Losses | -1.5 dB |
| Required $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ | 9.6 dB |



Figure 2. Maximum Command Range for a Reference Spacecraft with a High-gain Antenna and a 1.2 Radian Command Modulation Index.

Uplink data are delivered to the DSN using one of three services. The first is referred to as Stream Mode Command Radiation Service using the Space Link Extension (SLE) forward service, an implementation of the Consultative Committed for Space Data Systems (CCSDS) recommendation 912.1, Space Link Extension Forward Command Link Transmission Unit (CLTU) Service, and is described in DSN Document 820-013, module 0239-Telecomm, which describes the DSN implementation of Forward CLTU Service Specifications "2004 Blue Book", CCSDS 912.1-B-2-S, and "2010 Blue Book", CCSDS 912.1-B-3-S, and Enhanced Forward CLTU Service Specification "Orange Book", CCSDS 912.11-O-1. See the data flow diagram in Figure 3.

The SLE forward service is an online only service including service users providing command bits to be transferred to the spacecraft and ancillary information such as routing (e.g., antenna to be used for command service), ensuring the integrity of the Earth segment of the communications link, and providing the customer limited control of the command process as described in the aforementioned documents.

The second, File Mode Command Radiation Service, is provided by accessing a file of CLTUs from the Mission Operations Center (MOC) via DSN File Store where the individual CLTUs are extracted and passed on to the Ground Station for modulation onto the uplink carrier and radiation to the spacecraft. The file of CLTUs is referred to as a Spacecraft Command Message File (SCMF per DSN Document 820-013, module 0198-Telecomm-SCMF), or CLTU File (CLTUF per DSN Document 820-013, module 0241-Telecomm-CLTUF). See the data flow diagram in Figure 4. This service is an online or offline store and forward service that allows management of multiple stored command files.

The SCMF contains a layer of service provision parameters (window open/close times, allowable bit rates, modulation index, etc.) in addition to the CLTUs to be radiated. The CLTUF contains just a simple header and the CLTUs to be radiated.

In addition to the files containing the actual CLTUs, there are a number of other products that may optionally be exchanged between the service user and the DSN for scheduling and reporting:

1) Radiation List (Rad_List per DSN Document 820-013, module 0197-TelecommCMDRAD), which contains a list of SCMFs or CLTUFs to be radiated as a batch.
2) SCMF Radiation Report (Rad_SCMF per DSN Document 820-013, module 0191Telecomm), which is a report of SCMFs and CLTUs radiated, including information such as bit1 times, number of bits, etc.
3) CLTUF Radiation Report (Rad_CLTUF per DSN Document 820-013, module 0242Telecomm), which is a report of CLTUFs and CLTUs radiated, including information such as bit-1 times, number of bits, etc.

The third, Command Delivery Service, uses the CCSDS File Delivery Protocol (CFDP) and is available for spacecraft that employ this protocol. It is described in DSN Document 820013, module 0213-Telecomm-CFDP. The service is provided by accessing files from the MOC via DSN File Store where the files are converted CLTUs which are then passed to the Ground Station for modulation onto the uplink carrier and radiation to the spacecraft. See the data flow diagram in Figure 5. This is also an online or offline service that allows generalized uplink file transfer.


Figure 3. Space Link Extension (SLE) Forward Service Data Flow

810-005
205, Rev. G


Figure 4. Command Radiation Service Data Flow - File Mode (SCMF or CLTUF)


Figure 5. Command Delivery Service Data Flow - (CFDP)

When configured for Forward CLTU Service (CCSDS 912.1-B-2-S and CCSDS 912.1-B-3-S) the only function performed at the stations is the mechanism whereby command data are extracted from the delivery format and converted to an RF signal suitable for reception by a spacecraft. This means that all commands including prefix symbols and command data symbols must be generated at the appropriate MOC. If coding such as Bose-Chaudhuri-Hocquenghem $(\mathrm{BCH})$ is required, it must be accomplished before the commands are delivered to the DSN. The DSN may perform checks for format compliance, but it will not interpret nor modify the contents of any command. Neither does it guarantees error free command delivery to the spacecraft. It is up to the project to provide its own error detection and correction schemes.

When configured for Enhanced Forward CLTU Service (Orange Book), the input stream to the DSN is in the form of Telecommand (TC) or Advanced Orbiter System (AOS) transfer frames. The DSN can optionally apply forward error correction block encoding, optionally randomize the frames, and optionally can attach sync markers to the frames. It will also insert user defined idle frames when no command data is present, and then radiate the frames in the form of CLTUs.

In addition to the interfaces by which command data are delivered to the DSN, a management interface is required for selecting the particular set of parameters appropriate for the spacecraft being supported. Details of this interface can be found in DSN Document 820-013 module 0211-Service_Mgmt-SEQ. A discussion of this interface is contained in DSN Document 810-007 Module 109, DSN Mission Interface Design Handbook, Service Management. (This document is still in development and not available at the time of this writing.)

## 3 Command Parameters

The following paragraphs provide a discussion of the principal command parameters. Parameters that are a function of antenna type performance capabilities are summarized in Table 1.

Parameters that are independent of antenna type are summarized in Table 3.

Table 3. Command Parameters

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| RF Power Output | See Table 1 | Also see modules 101, 103, and 104 |
| Effective Isotropic Radiated Power (EIRP) | See Table 1 | Also see modules 101, 103, and 104 |
| Carrier Frequency | See Table 1 | Also see modules 101, 103, and 104 |
| Subcarrier Frequencies <br> Sine wave <br> Square wave | $\begin{gathered} 999 \mathrm{~Hz}-250075 \mathrm{~Hz} \\ 100 \mathrm{~Hz}-1000 \mathrm{~Hz} \end{gathered}$ | The CCSDS recommends a 16 kHz sine wave subcarrier for all data rates up to and including 8 kbps . Direct carrier modulation is recommended above 8 kbps. <br> Subcarrier Frequency Resolution is 0.1 Hz for Sine wave and Square wave Harmonic and Spurious Signals (Sine wave Subcarrier) are $>45 \mathrm{~dB}$ below subcarrier amplitude (dB-V) <br> Harmonic Response (Square wave Subcarrier) are $<6 \mathrm{~dB}$ attenuation of $7^{\text {th }}$ harmonic (dB-V) <br> Subcarrier Stability is $<1 \times 10^{-9}$ for all measurement times from 100 s through 12 h (derived from station frequency standard) |
| PCM Data Formats | $\begin{gathered} \text { NRZ-L, M, S } \\ \text { Bi- } \phi-L, M, S \\ \text { QPSK, OQPSK } \end{gathered}$ | NRZ-L, M, S and Bi- $\phi-L, M, S$ are BPSK <br> See Figure 4 |
| Modulation Types | Residual carrier BPSK with or without subcarrier, Suppressed Carrier QPSK, OQPSK | Optional Square Root Raised Cosine (SRRC) Filter ( $\alpha=0.5$ ) available for suppressed carrier modulations |

810-005
205, Rev. G

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| Modulation Index Range Sine wave Subcarrier Square wave Subcarrier No Subcarrier | $\begin{aligned} & 0.1-1.52 \text { radians } \\ & 0.1-1.40 \text { radians } \\ & 0.1-1.57 \text { radians } \end{aligned}$ | 6-87 degrees <br> 6-80 degrees <br> 6-90 degrees <br> Modulation Index Accuracy is $\pm 10 \%$ of carrier suppression in dB <br> Modulation Index Stability is $\pm 3 \%$ of carrier suppression in dB over a 12-h period |
| Data Rates <br> Sine wave Subcarrier Square wave Subcarrier No Subcarrier | $\begin{gathered} 7.8 \mathrm{bps}-125037.5 \mathrm{bps} \\ 7.8 \mathrm{bps}-500 \mathrm{bps} \\ 8 \mathrm{kbps}-20 \mathrm{Mbps} \end{gathered}$ | Set by subcarrier frequency: <br> Subcarrier Frequency/2n, $1 \leq n \leq 11$ <br> Max. encoded symbol rate is 40 Msps (assuming QPSK, OQPSK) <br> Coherency to Subcarrier is $\pm 6^{\circ}$ offset between bit/symbol transitions and subcarrier zero crossings. <br> Data Rate Stability is $<1 \times 10^{-9}$ for all measurement times from 100 s through 12 h (derived from subcarrier stability) |
| Inter-command modulation | None (Carrier only), carrier and command subcarrier, carrier, command subcarrier and idle pattern |  |
| Available Encoding | RS and LDPC |  |
| Reed Solomon (RS) Encoding Parameters | Redundancy $(E)=16$ <br> Bits $/$ Symbol $(J)=8$ <br> Symbol /RS Codeword $(\mathrm{n})=255$ <br> Interleave Depth $\text { (I) }=1,2,3,4,5 \text {, or } 8$ | CCSDS 131.0-B-3 |

810-005
205, Rev. G

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| Low Density Parity Check (LDPC) Encoding Parameters | $\begin{aligned} & \hline(r)=1 / 2,(k)=64 \text { or } 256 \\ & (r)=1 / 2,(k)=1024, \\ & 4096 \text { or } 16384 \\ & (r)=2 / 3,(k)=1024, \\ & 4096 \text { or } 16384 \\ & (r)=4 / 5,(k)=1024, \\ & 4096 \text { or } 16384 \\ & (r)=7 / 8,(k)=7136 \end{aligned}$ | $\begin{aligned} & \text { CCSDS 231.0-B-3 } \\ & \text { CCSDS 131.0-B-3 } \\ & (\mathrm{r})=\text { Code Rate } \\ & (\mathrm{k})=\text { Block Length } \end{aligned}$ |
| Idle Pattern | 8 -bit repetitive or idle PDU |  |
| Command Timing | 0.1 s | 0.1 s plus $1-8$ bit times if idle pattern is present |
| Pre-track Calibration | 20 minute <br> 5 minute | With Transmitter warm-up or band change <br> Transmitter already warmed-up |
| Availability | $\begin{aligned} & 95 \% \\ & 98 \% \end{aligned}$ | Nominal <br> Mission critical events (with backup station allocation) |

### 3.1 RF Power

RF power is produced by solid state or variable beam klystron amplifiers that permit saturated operation over a relatively wide power range. Refer to Table 1 for the power levels available at each antenna. Since DSN can support simultaneous command and ranging, carrier power is a function of both the data modulation index and ranging modulation index.

### 3.2 Carrier Frequency

The DSN considers establishment of carrier frequency to be a tracking function as opposed to a command function. Small frequency changes such as might be required for Doppler compensation will have little effect on the transmitter output. Larger frequency changes such as might be required to command two spacecraft within the same beamwidth may cause the transmitter output to vary by as much as $1-\mathrm{dB}$ due to ripple across the klystron passband. Should this happen, the operator at the station will be warned that the transmitter should be re-calibrated. This warning may be ignored to no detriment other than the power output being as much as 1 dB from the requested value.

The S/X 20kW capable BWG's have two klystron amplifiers that share a common power supply and cooling system. Therefore, a change of band will require a minimum of 20-minutes to cool-down the klystron that is no longer needed and warm-up and calibrate the other klystron. Additionally, the S-band 20 kW klystron at these stations is step-tunable to provide coverage over the entire uplink band. Changing from one band segment to another requires turning off the transmitter, changing the band segment, and re-calibrating at the new frequency.

K-band (Near-Earth) or Ka-band (Deep-Space) command link capability, where equipped, can be supported independent and simultaneous with an S-band or X-band command link on a common aperture (Deep Space Station).

### 3.3 Subcarriers

Both sine wave and square wave subcarriers are available. Subcarrier frequencies are initialized from an entry in the Forward Spacelink Carrier Profile (see interface 820-013 module 0211-Service_Mgmt-SEQ) but may be changed during a support activity providing no command waveform is being radiated. This technique can be used to provide a limited amount of subcarrier Doppler compensation recognizing that command modulation (including the subcarrier) must be removed when the subcarrier frequency is changed. Changing the subcarrier frequency will cause a corresponding change in data rate because these two items are coherent. See the discussion on data rate for details.

### 3.4 Direct Carrier Modulation

CCSDS Medium Rate Command Recommendation (CCSDS Recommendation 401.0-B, paragraph 2.2.7) is available, with some restrictions. NRZ bit rates and bi-phase symbol rates of $8000,16000,32000,64000,128000$, and 256000 are supported. Carrier and data suppression for direct carrier modulation are calculated using the equations for square wave modulation (3) and (4).

Suppressed carrier modulation formats, similar to those used in telemetry (space to earth) links are available with some restrictions. DSN Command Service supports Binary Phase-shift keying
(BPSK), Quadrature Phase-shift Keying (QPSK) and Offset QPSK (OQPSK) formats at data rates up to 40 Mega-symbols per second. A Square-root-raised-cosine (SRRC) filter option ( $\alpha=$ 0.5 ) is available and recommended to optimize bandwidth efficiency. Maximum data rates will be limited by operational RF band and allocated bandwidth.

### 3.5 Modulation Index

The modulation index is established by applying a variable-amplitude voltage to the phase modulator in the exciter. The amplitude of this voltage can be adjusted in 255 steps of approximately 0.0065 radians. The range of 0.1 radians through 1.52 radians occupies approximately 220 of these steps. The modulating voltage is calibrated periodically at the $3-\mathrm{dB}$ carrier suppression point for both sine wave and square wave subcarriers. The calibration interval is selected to assure a carrier suppression within $10 \%$ of the specified value in dB at any time between calibrations. For example, a sine wave modulation index of 0.67 radians ( $38.5^{\circ}$ ) will produce a carrier suppression of $1.0 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$. A sine wave modulation index of 1.13 radians ( $64.5^{\circ}$ ) will produce a carrier suppression of $3.0 \mathrm{~dB} \pm 0.3 \mathrm{~dB}$.

The modulation index is initialized from an entry in the activity service table but may be changed during a support activity providing no command waveform is being radiated. Carrier power suppression and data power suppression as functions of modulation index angle are:

Sine-wave subcarrier:

$$
\begin{align*}
& \frac{P_{C}}{P_{T}}(\mathrm{~dB})=10 \log \left[\mathrm{~J}_{0}^{2}\left(\theta_{D}\right)\right], \mathrm{dB}  \tag{1}\\
& \frac{P_{D}}{P_{T}}(\mathrm{~dB})=10 \log \left[2 \mathrm{~J}_{1}^{2}\left(\theta_{D}\right)\right], \mathrm{dB}\{\text { first upper and lower sidebands }\} \tag{2}
\end{align*}
$$

Square-wave subcarrier:

$$
\begin{align*}
& \frac{P_{C}}{P_{T}}(\mathrm{~dB})=10 \log \left[\cos ^{2}\left(\theta_{D}\right)\right], \mathrm{dB}  \tag{3}\\
& \frac{P_{D}}{P_{T}}(\mathrm{~dB})=10 \log \left[\sin ^{2}\left(\theta_{D}\right)\right], \mathrm{dB}\{\text { all sidebands }\} \tag{4}
\end{align*}
$$

where

| $\theta_{D}$ | $=$ data modulation index, radians, peak |
| :--- | :--- |
| $P_{T}$ | $=$ total power |
| $P_{C}$ | $=$ carrier power |
| $P_{D}$ | $=$ data power |
| $\mathrm{J}_{0}$ | $=$ zero-order Bessel function |
| $\mathrm{J}_{1}$ | $=$ first-order Bessel Function |

### 3.6 Modulation Losses

The bandpass of all elements in the command path, with the exception of the S-band power amplifier at the 20 kW capable BWG stations, is adequate to make modulation losses negligible over the frequency and power ranges specified in Table 1. The modulation losses at the S-band 20 kW BWG stations are negligible provided the klystron frequency step is properly selected.

### 3.7 PCM Data Formats

The baseband signal is a pulse code modulated (PCM) waveform that is binary phaseshift keyed (BPSK) onto a subcarrier. That is, phase-shift keyed with a signaling level of $\pm 90^{\circ}$ and resulting in a fully suppressed subcarrier. The six supported PCM data formats are illustrated in Figure 4. The data format is established at the start of a support activity by an entry in the activity service table.

When configured for direct modulation, BPSK PCM types are modulated on the carrier based on the modulation index. When configured for QPSK or OQPSK data is modulated resulting in a fully suppressed carrier.

### 3.8 Subcarrier to Data Rate Ratios

Bit rates for NRZ modulation and symbol rates for bi-phase modulation are available over the range of 7.8 to $125,037.5 \mathrm{bps}$ or sps . They are derived from the subcarrier frequency generator using a binary divider of $2^{\mathrm{n}}$ where n can be from 1 to 11 depending on the combination of subcarrier frequency and data rate desired. Thus, a 7.8 bps data stream would require a sine wave subcarrier of no more than 8000 Hz and the lowest bit rate available for a 1000 Hz subcarrier would be 1.953125 bps . For a 16000 Hz subcarrier, the bit can be between 7.8125 and 8000 bps. For a 250075 Hz subcarrier, the bit can be between 122.1069 and 125037.5 bps.

The data rate entry in the activity service table is rounded to the nearest acceptable value depending on the subcarrier frequency selected divided by $2^{n}$. If Doppler correction to the nominal subcarrier frequency and data rate are desired, it should be applied to the subcarrier frequency only. The data rate will be correspondingly Doppler compensated, since it is the subcarrier frequency divided by $2^{n}$, and $2^{n}$ is a fixed integer. The data rate may be changed during a support activity providing no command waveform is being radiated.

810-005
205, Rev. G

## BPSK



## O/QPSK



Figure 6. Command Data Formats

### 3.9 Encoding

DSN command can optionally apply error correction encoding to data formatted as TC or AOS transfer frames, per CDSCC 912.11-0-1. Command supports Reed-Solomon (RS) code capable of correcting up to 16 encoded symbol errors out of each 255 and Low-Density ParityCheck (LDPC) codes conforming to the code family specified in the CCSDS Recommended Standards 231.0-B-3 and 131.0-B-3.

Optional frame randomization and synchronization marker attachment of coded blocks is also available per CDSCC 912.11-0-1.

### 3.10 Idle Patterns

The DSN command equipment can be configured to operate in one of three modes during a command support activity whenever command data is not being radiated. The command mode is initialized from an entry in the activity service table but may be changed during a support activity providing no command waveform (subcarrier or subcarrier and data) is being radiated. The first of these is carrier only as might be used during a support activity not involving commands. In this mode, all command modulation is removed whenever command data are not being radiated. The second mode is subcarrier only in which a continuous, unmodulated subcarrier is transmitted to the spacecraft at the specified frequency and modulation index. The third mode is a repeating customer defined 8-bit idle pattern or idle Protocol Data Unit (PDU), with or without a subcarrier. The most common idle pattern is an alternating sequence of ones and zeros. If a sequence cannot be specified as an 8 -bit pattern, it must be originated at the MOC or POCC as command bits.

When configured for Enhanced Forward CLTU Service (Orange Book), command will insert user defined idle PDU when no command data is present.

### 3.11 Command Timing

The customer may specify a first bit radiation time within the command data stream to an accuracy of 0.1 s . If an idle pattern has been specified, the actual first bit radiation time will be from 1 to 8 bit times later than the specified radiation time, since the transition between an idle pattern and command bits can only occur at 8 -bit boundaries. Commands will be radiated upon receipt if no first bit radiation time is specified. If contiguous radiation of commands is desired, it is the customer's responsibility to ensure that the commands are delivered at a rate sufficient to satisfy the radiation requirements while not overflowing the buffering capability of the command equipment. Further details can be found in 820-013 module 0239-Telecomm (SLE Command).

### 3.12 Command Verification

No test on data content is performed because there is no independent source of data available for comparison. The transmitter power level, waveguide configuration, presence of frequency and timing references, and software health are monitored. Failure of a monitored parameter will cause command radiation to abort.

### 3.13 Availability

The DSN Command System availability is 95 percent for nominal commanding and 98 percent for mission critical events, achieved by allocating back-up stations.

There is no history available from which an undetected command bit error rate can be determined but it is believed to be significantly less than 3 in $10^{8}$ transmitted bits and may be as low as 1 in $10^{13}$ which is the error rate of the communications channel between the customer and the stations.

1 CCSDS 727.0-B-4, CCSDS file Delivery Protocol, Blue Book, January 2007.
2 CCSDS 401.0-B-25-S, Recommendations for Radio Frequency and Modulation Systems, February 2015.

3 CCSDS 912.1-B-2-S, Space Link Extension - Forward CLTU Service Specification, Silver Book, November 2004.

4 CCSDS 912.1-B-3-S, Space Link Extension - Forward CLTU Service Specification, Silver Book, July 2010.
5 CCSDS 912.11-O-1, Space Link Extension - Enhanced Forward CLTU Service Specification, Orange Book, July 2012.
6 810-007, Deep Space Mission System Mission Interface Design Handbook.
7 820-013 module 0188-Telecomm-CFPD, Transaction Log File Interface, Revision B, October 31, 2019.
8 820-013 module 0191-Telecomm, Radiated Spacecraft Command Message File (Rad_SCMF), Revision A, October 28, 2009.
9 820-013 module 0197-Telecomm-CMDRAD, Command Radiation List File Software Interface Specification, July 15, 2008.
10 820-013 module 0198-Telecomm-SCMF, Spacecraft Command Message File (SCMF) Interface, Revision C, November 26, 2012.
11 820-013 module 0211-Service_Mgmt-SEQ, Flight Project and the DSN Interface for Sequence of Events Generation, Revision C, January 4, 2022.
12 820-013 module 0213-Telecomm-CFDP, Deep Space Network (DSN) Interface for the CCSDS File Delivery Protocol (CFDP), Revision B, October 28, 2009.

13 820-013 module 0239-Telecomm, Space Link Extension Forward Link Service, Revision A, September 16, 2019.
14 820-013 module 0241-Telecomm-CLTUF, Command Link Transmission Unit File (CLTUF) Interface, December 15, 2015.
15 820-013 module 0242-Telecomm, Radiated Command Link Transmission Unit File (RAD_CLTUF) Interface, December 15, 2015.
16 CCSDS 131.0-B-3, TM Synchronization and Channel Coding Standard, Blue Book, September 2017.
17 CCSDS 231.0-B-3, TC Synchronization and Channel Coding Standard, Blue Book, September 2017

Deep Space Network

## 206

## Telemetry General Information

Document Owner:

| Signature provided | $09 / 13 / 2023$ |
| :--- | :--- |
| Andrew O'Dea | Date |
| TT\&C System Engineer |  |

Prepared by:

| Signature provided | $09 / 14 / 2023$ |
| :--- | :--- |
| Scott Allen | Date |
| DSN Support System Engineer |  |

Approved by:

| Signature provided | $09 / 13 / 2023$ |
| :--- | :--- |
| Timothy Pham | Date |
| Communications Systems Chief <br> Engineer |  |

Released by:

| Signature provided | 10/09/2023 |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 206, Rev. E
Issue Date: October 10, 2023
JPL D-19379; CL\#23-5791
Jet Propulsion Laboratory
California Institute of Technology

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature provided | $09 / 11 / 2023$ |
| :--- | :--- |
| Jeff Berner | Date |
| DSN Project Chief Engineer |  |


| Signature provided | $08 / 23 / 2023$ |
| :--- | :--- |
| Harvey Soldan | Date |
| DSN Systems Engineer |  |


| Signature provided | $09 / 13 / 2023$ |
| :--- | :--- |
| Stephen Slobin | Date |
| DSN Systems Engineer |  |

Signature not provided

Signature provided 09/19/2023

| Robert Navarro | Date |
| :--- | :--- |
| Manager, TTC E2E Data Services |  |
| Office |  |

Felicia Sanders Date

Deputy Manager, TTC E2E Data
Services Office

## Document Change Log

| Rev | Issue Date | Prepared By | Affected Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| Initial | 10/7/2004 | L. Paal | All | All |
| Rev. A | 9/19/2008 | R. Sniffin | Many | Added 34-m and 70-m array information originally planned for inclusion in module 215. Deleted references to portions of AMMOS that are responsibility of projects and to the GDSCC 26-m antenna that has been decommissioned. Added Near-earth 26 GHz (K-band) support and revised proposed capabilities |
| Rev. B | 10/31/2009 | A. Kwok | Many | Removed all references related to the $26-\mathrm{m}$ stations. |
| Rev. C | 05/03/2017 | S. Allen | Most of sections 2, 3 and 4; removal of section 5 . <br> Minor changes in section 1. | Update to reflect current and near future station changes, update Figure 1 and Table 2 to reflect station changes, update to reflect projected capabilities that are now implemented capabilities. |
| Rev. D | 09/01/2021 | S. Allen | ALL | Minor updates to reflect current and near future station changes. Update to Figure 1 to reflect station changes. Addition of LDPC rates. Addition of DSS-56 and DSS-53. |
| Rev. E | 10/10/2023 | S. Allen | Many | Update to Table 1, update to Table 2 Downlink Frequency Ranges, updated to Table 3 to reflect HRT specs, update to Figure 1, movement of Figures 2 and 3, as well as Table 6, to Section 3, update to Table 6, removal of long constraint length decoder (MCD3), other minor corrections. |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## Contents

Paragraph Page
1 Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope ..... 6
1.3 Relation to Other 810-005 Material ..... 6
1.3.1 Telecommunications Interface Modules ..... 6
1.3.2 Environmental Effects ..... 6
1.3.3 Receiver Performance ..... 7
1.3.4 Arraying ..... 7
1.3.5 Telemetry Decoding ..... 7
1.3.6 Other Factors ..... 7
2 General Information ..... 7
2.1 Telemetry Services ..... 11
2.2 Facilities and Equipment ..... 11
2.2.1 Antennas ..... 11
2.2.2 Telemetry Receivers ..... 13
2.2.3 Telemetry Processing ..... 13
2.2.4 Ground Communications Network ..... 13
2.2.5 DSN Data Delivery ..... 14
2.3 Concepts Used in Estimating Telemetry Performance ..... 15
2.3.1 Relative Power of Telemetry Signal Components ..... 16
2.3.2 Definition of STB/N0 and STSY/N0 (dB) ..... 17
2.3.3 Carrier Loop SNR ..... 18
2.3.4 Arraying ..... 18
3 Typical Performance ..... 20
4 Recommendations for Mission Design ..... 22
4.1 Operating Frequency ..... 22
4.1.1 S-band (2.2-2.3 GHz) ..... 22
4.1.2 X-band (8.4-8.5 GHz) ..... 22
4.1.3 K-band (25.5 - 27.0 GHz) ..... 22
4.1.4 Ka-band ( $31.8-32.3 \mathrm{GHz}$ ) ..... 23
4.2 Telemetry Modulation ..... 23
4.2.1 Residual-Carrier BPSK ..... 23
4.2.2 Suppressed-Carrier BPSK ..... 24
4.2.3 QPSK and OQPSK ..... 24
4.3 Symbol Formats ..... 24
4.4 Coding Schemes ..... 24
4.4.1 Uncoded ..... 25
4.4.2 Reed-Solomon Code ..... 25
4.4.3 Short Constraint Length, Rate $1 / 2$ Convolutional Code ..... 25
4.4.4 Concatenated Reed-Solomon and Rate 1/2 Convolutional Codes ..... 25
4.4.5 Turbo Codes ..... 25
4.4.6 Low-density Parity-Check Codes ..... 25
4.4.7 Derandomization ..... 26
5 Proposed Capabilities ..... 26
5.1 Bandwidth-efficient Modulation ..... 26
Illustrations
Figure Page
Figure 1. DSN Telemetry Equipment for Spacecraft Support ..... 9
Figure 2. X-band Telemetry Performance with Reference Spacecraft ..... 20
Figure 3. Ka-band Telemetry Performance with Reference Spacecraft ..... 21
Tables
Table Page
Table 1. Telemetry Support Capability ..... 10
Table 2. Frequencies Covered and Sensitivity of DSN Antennas for Telemetry ..... 12
Table 3. 34-m and 70-m Telemetry Reception Characteristics ..... 14
Table 4. Definition of $\alpha(\theta)$ and $\beta(\theta)$ for $\theta$ in radians, peak. ..... 16
Table 5. Relative Telemetry Aperture ..... 19
Table 6. Typical $34 m$ BWG and 70 m Antenna Parameters with $C D=0.50$ Weather, 45-degree Elevation Angle. ..... 21

## 1 Introduction

### 1.1 Purpose

This module is intended to provide Deep Space Network (DSN) customers with an overview of DSN telemetry capability and to direct telecommunications designers with specific concerns to the appropriate portions of this handbook. This module also contains brief descriptions of future enhancements to telemetry capability that are in the design or early implementation phases and of capabilities that are being maintained for legacy customers using the previous generation of telemetry equipment.

### 1.2 Scope

This module describes the Telemetry Service as currently implemented in the DSN. It includes high-level definitions, equations, functional descriptions, and capabilities to provide the telecommunication designer with an introduction to the more detailed information in the other modules of this handbook. Some characteristics are extracted from these modules for the readers' convenience and information relating to telemetry reception that does not conveniently fit in the major divisions of this handbook is included. Schedules for proposed implementation or the removal of any legacy support are not included. All questions relating to schedule should be directed to the Customer Interface Management Office (910).

### 1.3 Relation to Other 810-005 Material

The information necessary to properly design a telemetry link is distributed across many modules of this handbook. The following paragraphs discuss these modules and describe the parameters contained in them that should be of interest to a telecommunications link designer.

### 1.3.1 Telecommunications Interface Modules

Modules 101, 103, and 104 contain the radio frequency (RF) characteristics of the Deep Space Network (DSN) antennas. These characteristics include the frequencies of operation, antenna gain, system noise temperature, beamwidth, and polarization capability. A block diagram of each antenna's microwave equipment is also included.

### 1.3.2 Environmental Effects

Module 105 provides the model for attenuation effects of the Earth's atmosphere on the telecommunications link. Statistics are provided from which a confidence level for link performance can be derived. Limited information on wind effects is provided as a guide for
estimating when the antennas may not be available. The module also includes information on solar, lunar, and planetary noise that will be experienced when the antenna beam is in their vicinity when tracking spacecraft.

Module 106 provides information on additional effects caused by the solar wind or corona when the antenna beam passes near the sun.

### 1.3.3 Receiver Performance

The telemetry receiver used in the $34-\mathrm{m}$ and $70-\mathrm{m}$ stations is described in module 207. This module provides information on the types of telemetry modulation that can be accommodated and recommendations on carrier loop bandwidth, subcarrier frequency, modulation index, and data rate for each modulation type. Also included is a discussion of system losses for each modulation type.

The $34-\mathrm{m}$ and $70-\mathrm{m}$ stations may make use of the open-loop Radio Science receiver to record an appropriate segment of the received spectrum for post-pass processing. The characteristics of this receiver are described in module 209, however the process of extracting telemetry from radio science receiver recordings is not a standard DSN Service and is not covered in this handbook.

### 1.3.4 Arraying

The 34-m antennas at each complex can be combined into an array with or without the co-located 70-m antenna. The capabilities of such an array are discussed in paragraph 2.3.4.

### 1.3.5 Telemetry Decoding

Telemetry decoding capability for the $34-\mathrm{m}$ and $70-\mathrm{m}$ stations is covered in module 208.

### 1.3.6 Other Factors

Although not of primary interest, the telemetry link designer may be interested in coverage limits presented in module 301 and antenna mechanical performance, including openloop beam positioning, presented in module 302. Test support provided by the DSN may also be of interest and is described in module 305.

## 2 General Information

Telemetry service support is available from the three Deep Space Communication Complexes (DSCCs) located in Goldstone, California, USA (GDSCC), near Canberra, Australia (CDSCC), and near Madrid, Spain (MDSCC). Telemetry support is also available from the DSN development and test facility, DTF-21, near JPL, the Merritt Island Launch Area also known as MIL-71 at the Kennedy Space Center, and the transportable Compatibility Test Trailer, CTT-22. CCSDS (Consultative Committee for Space Data Communications) Space Link Extension (SLE)

810-005
206, Rev. E
data is available from JPL. All data types including SLE are routed by the Ground Networks Subsystem (GNW) to JPL before delivery to the users.

810-005
206, Rev. E


Figure 1. DSN Telemetry Equipment for Spacecraft Support

Figure 1 shows the DSN equipment used for telemetry service support. The items shown on the figure are discussed below.

In general, telemetry service support requires one antenna, at least one receiver, and telemetry processing equipment for each spacecraft. Additional receivers and telemetry processing equipment can be added for spacecraft with multiple downlinks or for redundancy. In addition, the DSN can track up to four spacecraft per antenna (MSPA) if they all are within the scheduled antenna's beamwidth.

Table 1 summarizes the DSN telemetry service support available from each complex.

Table 1. Telemetry Support Capability

| Capability | Value | Remarks |
| :--- | :---: | :--- |
| Number of simultaneous <br> spacecraft tracks per <br> complex | GDSCC $=7$ <br> CDSCC $=7$ <br> MDSCC $=8$ | Based on the number of <br> antennas plus three for MSPA |
| MSPA | Up to 2 antennas per complex <br> configurable for MSPA <br> concurrently | MSPA is presently limited to <br> four spacecraft per antenna |
| Frequency bands supported | S, X, K¹, and Ka | Depends on antenna. |
| Polarization | Right-hand circular (RCP) or <br> left-hand circular (LCP) | Simultaneous RCP and LCP is <br> available on some antennas |
| Arraying | All 34-m and 70-m antennas <br> within one complex | Uses full-spectrum combining. <br> See paragraph 2.3.4 |

[^0]
### 2.1 Telemetry Services

Two distinct types of telemetry service are available. The first of these is the traditional return link from a spacecraft (Return Channel Frame Service, Return All Frame Service, ...) that may carry engineering or science data as one of several forms of telemetry modulation including residual-carrier or suppressed-carrier binary-phase-shift keying (BPSK), quadrature-phase-shift keying (QPSK), or offset QPSK (OQPSK). The second is the Return Beacon Tone Service that is intended to monitor the high-level state of a spacecraft during periods when insufficient link margin prevents the reception of traditional telemetry.

### 2.2 Facilities and Equipment

### 2.2.1 Antennas

Each Deep Space Communications Complex contains one 70-m and three, four or five $34-\mathrm{m}$ antennas. There are two types of $34-\mathrm{m}$ antennas. The first is the high-efficiency (HEF) antennas that have their feed, low-noise amplifiers, and transmitter located on the tilting structure of the antenna. These antennas were the first antennas in the DSN to use dual shaped reflectors (main reflector and subreflector) instead of conventional paraboloid and hyperboloid shapes. The efficiency of all DSN 34-m antennas is now approximately the same. Note that the 34-m HEF antennas are being decommissioned and will not be available in the future. DSS-45 and DSS-15 have already been taken off-line. DSS-65 decommission is expected in the future (TBD). The second type of $34-\mathrm{m}$ antenna is the beam waveguide (BWG) antenna where the feeds, low noise amplifiers and transmitters are located in a room below the antenna structure and the radio frequency energy is transferred to and from the antenna surface by a series of mirrors encased in a protective tube. All antennas that are designed to support both RCP and LCP. Antennas with two low noise amplifiers (LNAs) and downconverters in either S or X band can receive simultaneous RCP and LCP. Five of the six antennas that receive 32 GHz can receive LCP provided that autotrack (monopulse) capability is not required.

The capabilities of each antenna type and of the individual Beam Waveguide (BWG) antennas are different and must be considered in designing a return link. The selection of antenna will depend on the downlink frequencies it supports and the gain it can provide. Table 2 lists the uplink and downlink frequency ranges for each antenna type and the sensitivity, expressed as the ratio of antenna gain to system temperature, at the time this module was published. The modules referred to in Section 1.3.1 should be consulted for current values and other parameters. The telecommunications link designer is cautioned against making designs dependent on the $70-\mathrm{m}$ antenna as there is only one per complex and it is subject to severe scheduling constraints.

Table 2. Frequencies Covered and Sensitivity of DSN Antennas for Telemetry

| Antenna type | Downlink Frequency Ranges (MHz) | Sensitivity (G/T, dB) (See Note 1) | GDSCC | CDSCC | MDSCC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 70-m | $\begin{aligned} & 2200-2300 \\ & 8200-8600 \end{aligned}$ | $\begin{aligned} & 48.3-50.9 \\ & 60.9-61.7 \end{aligned}$ | 1 | 1 | 1 |
| $\begin{gathered} \text { 34-m HEF } \\ \text { (Note 2) } \end{gathered}$ | $\begin{aligned} & 2200-2300 \\ & 8400-8500 \end{aligned}$ | $\begin{gathered} 39.1-39.8 \\ 53.2-54.6 \end{gathered}$ | 0 | 0 | 1 |
| $\begin{gathered} \text { 34-m BWG } \\ \text { S/X/K/Ka } \\ \text { (Notes } 3 \text { and } 4 \text { ) } \end{gathered}$ | $\begin{gathered} 2200-2300 \\ 8200-8600 \\ 25500- \\ 27000 \\ 31800- \\ 32300 \end{gathered}$ | $\begin{aligned} & 40.6-42.2 \\ & 51.3-55.2 \\ & 58.2-60.2 \\ & 60.1-62.5 \end{aligned}$ | $\begin{gathered} 4 \\ (\text { Note 5) } \end{gathered}$ | 3 | 4 |

Notes:

1. Range covers best performing antenna with $90 \%$ weather (see module 105) at band center and 45degrees elevation in highest sensitivity configuration (usually one band, downlink only) to worst performing antenna at band center and peak gain point in lowest sensitivity configuration (usually dual band downlink or backup LNA with uplink in one band). See appropriate telecommunications interface modules (101, 103 and 104) for complete performance envelope and module 105 for atmospheric effects. In the context of this document, $\mathrm{G} / \mathrm{T}$ is defined as effective antenna gain divided by system noise temperature, including the effects of atmospheric attenuation and noise temperature contribution.
2. The $8200-8600 \mathrm{MHz}(\mathrm{VLBI})$ band uses a wideband HEMT LNA with generally lower performance than the maser LNA that supports only the $8400-8500 \mathrm{MHz}$ frequency range. DSS65, the only operational HEF, will be updated in 2024 to include the wideband HEMT and will support $8200-8600$ Mhz at that time. See module 103.
3. S-Band capability is available at DSS-24, $-26,-34,-36-54 \&-56$. K-band capability is available at DSS-24, -26, -34, -36, -54 \& -56-NOTE: K-band implementation includes a special low G/T mode for high signal level conditions. Some X and Ka-band BWG antennas also allow for the same higher input signal power.
4. Wide range of K - and Ka-band performance results from much lower atmospheric contribution at GDSCC compared with that at CDSCC and MDSCC. Wide range of X-band performance results from use of partially-cooled X/X/Ka-band feeds at all BWG antennas except DSS-24, compared with the room-temperature feeds at DSS-24.
5. Includes DSS23 expected ~2026.

### 2.2.2 Telemetry Receivers

All DSN antennas employ a receiver architecture where one or both circular polarizations of the received spectrum are amplified by an LNA and translated to an intermediate frequency by a downconverter (D/C) before being routed to the control room where the desired signal is extracted. The antennas are designed to receive extremely weak signals and can be overloaded by signals in excess of -85 dBm . Antennas supporting K-band have a special lowgain mode that permits operation up to -50 dBm with degraded G/T. X and Ka-band BWG antennas also have a low-gain mode that allow for the same higher input signal power. Missions must be careful to not exceed these limits when designing for near-Earth operations.

Each S-, X-, K-, and Ka-band intermediate frequency from the $34-\mathrm{m}$ and $70-\mathrm{m}$ stations is made available to from one to four sets of receiving and telemetry processing equipment in the SPC. The additional receivers can be used to provide redundancy or reception for additional return links from the supported spacecraft. The following is a brief discussion of the DSN telemetry receivers. Their characteristics are summarized in Table 3.

Each receiver for the S-, X-, K-, and Ka- bands at the $34-\mathrm{m}$ and $70-\mathrm{m}$ antennas is contained in an assembly referred to as a Downlink Channel. The receiver utilizes a closed-loop digital super-heterodyne receiver with a selectable carrier tracking loop bandwidth to produce an 8 -bit estimated symbol value as its output. Alternatively, these receivers can be used to detect the presence or absence of one of four subcarriers referred to as beacon tones. A complete discussion of the capabilities of this receiver is contained in module 207 of this handbook.

The receiver for K-band is part of a special Downlink Channel containing a wideband telemetry processor. The receiver is preceded by a fixed-frequency downconverter in the antenna and a step-tunable downconverter in the control room.

### 2.2.3 Telemetry Processing

Telemetry processing at the stations is available for both CCSDS and non-CCSDS (legacy) spacecraft. A summary of the capabilities for these stations is provided in Table 3.

At the stations, the digital symbol output of the telemetry receiver is time-tagged, subjected to optional decoding and frame synchronization, virtual channel extraction and formatting of the data for delivery to the customer. Decoding and frame synchronization are discussed in module 208 of this handbook.

Real-time data delivery may sometimes be limited to critical data. The remainder will be delivered non real-time within an agreed timeframe.

### 2.2.4 Ground Communications Network

The GNW uses communications circuits provided by the NASA Communications (NASCOM) infrastructures provided by the NASA Communications Program to connect the
stations to JPL Central. The communication lines are shared with all users. The bandwidth is scoped such that it would meet the latency requirements from various missions.

### 2.2.5 DSN Data Delivery

The DSN provides CCSDS SLE data delivery through the DSN central facility at JPL. Data delivery for additional telemetry functions such as packet extraction (for legacy missions) and CCSDS File Delivery Protocol (CFDP) file processing is also from the DSN central facility.

Table 3. $34-\mathrm{m}$ and $70-\mathrm{m}$ Telemetry Reception Characteristics

| Parameter | S-, X-, K (low rate) and Ka-band Characteristics | K-band (high rate) Characteristics |
| :---: | :---: | :---: |
| Receiver Type | Digital | Digital |
| Closed-loop Carrier Loop Bandwidth (1 sided) | $0.2 \mathrm{~Hz}-100 \mathrm{~Hz}$ | 0.1\% of symbol rate |
| Carrier Tracking | Residual Carrier or Suppressed Carrier | Suppressed Carrier |
| Pre-digitization Bandwidth | 66 MHz | 400 MHz |
| Modulation Types | Residual Carrier BPSK with or without subcarrier, Suppressed Carrier BPSK, QPSK, OQPSK | Suppressed Carrier BPSK, QPSK, OQPSK |
| Subcarrier Frequencies | $500 \mathrm{~Hz}-2.0 \mathrm{MHz}$ | Not Available |
| Subcarrier Data Rate (Residual Carrier) | $\begin{gathered} 4 \mathrm{~s} / \mathrm{s}-0.67 \mathrm{Xf} \text { fsubcarrier } \\ (\mathrm{s} / \mathrm{s}) \\ \hline \end{gathered}$ | Not Available |
| Subcarrier Data Rate (Suppressed Carrier) | $\begin{gathered} 20 \times \text { loop B/W (s/s) }-0.67 \\ \text { Xf_subcarrier (s/s) } \\ \hline \end{gathered}$ | Not Available |
| Direct Modulation (Residual Carrier) | $10 \mathrm{ks} / \mathrm{s}-26 \mathrm{Ms} / \mathrm{s}(\mathrm{NRZ})$ $100 \mathrm{~s} / \mathrm{s}-13 \mathrm{Ms} / \mathrm{s}$ (Biphase) | Not Available |
| Direct Modulation (Suppressed Carrier) | $\begin{gathered} 20 \times \text { loop B/W (s/s) }-26 \\ \mathrm{Ms} / \mathrm{s} \text { (NRZ) } \\ 20 \times \mathrm{loop} \text { B/W (s/s) }-13 \\ \mathrm{Ms} / \mathrm{s}(\mathrm{Bi}-\mathrm{phase})) \\ 40 \mathrm{ks} / \mathrm{s}-26 \mathrm{Ms} / \mathrm{s}(\text { QPSK } \\ \text { or OQPSK) } \end{gathered}$ | $1 \mathrm{Ms} / \mathrm{s}$ to $300 \mathrm{Ms} / \mathrm{s}$ |
| Beacon Mode | 1 of 4 tones, $\text { SNR }>5 \mathrm{~dB}-\mathrm{Hz}$ | Not Available |
| Data Formats | NRZ (-L, -M, -S) <br> Bi-phase (-L, -M, -S) | NRZ (-L, -M, -S) Bi-phase -L |
| Available Decoding | Short and long Constraint Convolutional, Reed- | Short Constraint Convolutional, Reed- |


| Parameter | S-, X-, K (low rate) and Ka-band Characteristics | K-band (high rate) Characteristics |
| :---: | :---: | :---: |
|  | Solomon, Concatenated Convolutional and ReedSolomon, Turbo, LDPC | Solomon, Concatenated Convolutional and ReedSolomon, LDPC |
| Short Constraint Convolutional Decoding | $k=7, r=1 / 2$ CCSDS or DSN Connection vector, Optional De-randomization and alternate symbol inversion $26.4 \mathrm{Ms} / \mathrm{s}$ (max) | $\mathrm{k}=7, \mathrm{r}=1 / 2 \mathrm{CCSDS}$ <br> Connection vector, Optional De-randomization $300 \mathrm{Ms} / \mathrm{s}$ (max) |
| Frame Synchronization | $\begin{gathered} \hline \text { CCSDS and } \\ \text { non-CCSDS, } \\ 13.2 \mathrm{Mb} / \mathrm{s} \text { (max) } \\ \hline \end{gathered}$ | CCSDS, $300 \mathrm{Ms} / \mathrm{s}$ (Max) |
| Reed-Solomon Decoding | $\begin{gathered} \mathrm{RS}(255,223), \\ \text { Interleave }=1-8 \end{gathered}$ | $\begin{gathered} \mathrm{RS}(255,223) \\ \text { Interleave }=1-8 \end{gathered}$ |
| Turbo Decoding Frame Size Code Rate and Data Rate | CCSDS <br> Code Rates $1 / 2,1 / 3$ and $1 / 4$ have a max rate of 1.6 $\mathrm{Mb} / \mathrm{s}$. <br> Code Rate $1 / 6$ has a max rate of $1.0 \mathrm{Mb} / \mathrm{s}$. <br> Frame sizes: 1784, 3568, 7136, 8920 <br> Code rates: 1/2. 1/3, 1/4, and $1 / 6$ | Not Available |
| LDPC Decoding <br> Frame Size Code Rate and Data Rate | CCSDS <br> All frame sizes and Data rates limited to $5 \mathrm{Mb} / \mathrm{s}$ max <br> Frame sizes: 1024, 4096, 16384 for Code Rates: $1 / 2,2 / 3$, and 4/5 <br> Frame Size 7136, for code rate $7 / 8$ (223/255) | CCSDS <br> All frame sizes and Data rates limited to $150 \mathrm{Mb} / \mathrm{s}$ max <br> Frame size: 16384 for Code Rates: $1 / 2,2 / 3$, and $4 / 5$ <br> Frame Size 7136, for code rate $7 / 8$ (223/255) |

### 2.3 Concepts Used in Estimating Telemetry Performance

The following concepts are important to understanding telemetry performance. A more detailed discussion of these concepts is contained in module 207 of this handbook.

### 2.3.1 Relative Power of Telemetry Signal Components

It is possible to share the available downlink power between more than one type of modulation when using residual carrier power modulation schemes. The functions $\alpha(\theta)$ and $\beta(\theta)$, as shown in Table 4, are used to describe the allocation of downlink power between two or more modulation types.

The equations below provide the component to total power relationships for any combination of the modulating signals identified as Channels 1 through 4 although it is rare that more than two types of modulation will be used. Power not accounted for by these equations is distributed as inter-modulation products and is not available to the communications process. The modulation indices, $\phi_{N}$, for all equations must be in units of radians, peak, and the modulation index for the unused channels should be set to zero.

Table 4. Definition of $\alpha(\theta)$ and $\beta(\theta)$ for $\theta$ in radians, peak
$\left.\left.\begin{array}{|c|c|c|c|}\hline \text { Telemetry type } & \alpha(\theta) & \beta(\theta) & \text { Remarks } \\ \hline \begin{array}{c}\text { Square wave } \\ \text { subcarrier or data only }\end{array} & \cos (\theta) & \sin (\theta) & \beta(\theta) \text { includes data power in all } \\ \text { harmonics }\end{array} \right\rvert\, \begin{array}{c}\text { Sine wave subcarrier }\end{array} J_{0}(\theta) \quad \sqrt{2} J_{1}(\theta) \quad \begin{array}{c}\beta(\theta) \text { only includes data power in } \\ \text { fundamental harmonics }\end{array}\right]$.
(1) Channel 1 data (D1) directly modulates the carrier with modulation index $\phi_{1}$.
(2) Channel 2 data (D2) bi-phase modulates a square-wave or sine wave subcarrier that is used to modulate the carrier with modulation index $\phi_{2}$.
(3) Channel 3 data ( $D 3$ ) bi-phase modulates a square wave or sine wave subcarrier that is used to modulate the carrier with modulation index $\phi_{3}$.
(4) Channel 4 data ( $D 4$ ) is a square wave or sine wave ranging signal that directly modulates the carrier with modulation index $\phi_{4}$.

The carrier suppression is

$$
\begin{equation*}
\frac{P_{C}}{P_{T}}=\left[\cos \left(\phi_{1}\right) \cdot \alpha\left(\phi_{2}\right) \cdot \alpha\left(\phi_{3}\right) \cdot \alpha\left(\phi_{4}\right)\right]^{2} . \tag{1}
\end{equation*}
$$

The ratio of the available data power to total power for each of the data streams is

$$
\begin{align*}
& \frac{P_{D 1}}{P_{T}}=\left[\sin \left(\phi_{1}\right) \cdot \alpha\left(\phi_{2}\right) \cdot \alpha\left(\phi_{3}\right) \cdot \alpha\left(\phi_{4}\right)\right]^{2},  \tag{2}\\
& \frac{P_{D 2}}{P_{T}}=\left[\cos \left(\phi_{1}\right) \cdot \beta\left(\phi_{2}\right) \cdot \alpha\left(\phi_{3}\right) \cdot \alpha\left(\phi_{4}\right)\right]^{2},  \tag{3}\\
& \frac{P_{D 3}}{P_{T}}=\left[\cos \left(\phi_{1}\right) \cdot \alpha\left(\phi_{2}\right) \cdot \beta\left(\phi_{3}\right) \cdot \alpha\left(\phi_{4}\right)\right]^{2},  \tag{4}\\
& \frac{P_{D 4}}{P_{T}}=\left[\cos \left(\phi_{1}\right) \cdot \alpha\left(\phi_{2}\right) \cdot \alpha\left(\phi_{3}\right) \cdot \beta\left(\phi_{4}\right)\right]^{2} . \tag{5}
\end{align*}
$$

### 2.3.2 Definition of STB/N0 and STSY/N0 (dB)

Telemetry signal-to-noise ratios (SNRs) are expressed as bit SNR (represented as either $S T_{B} / N_{0}$ or $E_{B} / N_{0}$ ) or symbol SNR (represented as either $S T_{S Y} / N_{0}$ or $E_{S} / N_{0}$ ). The distinction between symbols and bits is that when the telemetry data are encoded prior to transmission, channel bits (information bits plus overhead such as frame sync and parity bits) are the input to the encoder and symbols are the output. When coded data are processed after receipt on the ground, the telemetry stream consists of symbols until converted to bits again by the decoder at which time any overhead bits are discarded. The relationship between $S T_{S Y} / N_{0}$ and $S T_{B} / N_{0}$ is:

$$
\begin{equation*}
S T_{S Y} / N_{0}=\frac{1}{r} \cdot S T_{B} / N_{0} \tag{6}
\end{equation*}
$$

where

$$
\begin{array}{ll}
S & =\text { the data power as defined in equations }(1),(2), \text { or }(3) \\
T_{B} & =\text { the bit period, } \\
T_{S Y} & =\text { the symbol period, } \\
N_{0} & =\text { the one-sided noise spectral density, } \\
r & =\text { the number of symbols per bit. }
\end{array}
$$

Some typical values for $r$ include:
1 for uncoded data,
2 for rate $1 / 2$ convolutionally, turbo, or LDPC coded data,
6 for rate $1 / 6$ convolutionally coded or turbo coded data,

### 2.3.3 Carrier Loop SNR

The DSN Telemetry provides the user with an estimate of $E_{S} / N_{0}$. This can be used to calculate a value for Carrier Loop SNR that includes system losses. This provides both a way to validate link design and a way to determine the system loss in a controlled environment. The following equations provide the Carrier Loop SNR $\left(\rho_{L}\right)$ where $B_{L}$ is the one-sided carrier loop bandwidth.

$$
\begin{array}{ll}
\rho_{L}=\frac{E_{S} / N_{0}}{\tan ^{2} \phi \cdot T_{S Y} \cdot B_{L}} \quad \text { for square wave subcarrier and direct modulation. } \\
\rho_{L}=\frac{\left(E_{S} / N_{0}\right) \cdot \mathrm{J}_{0}^{2}(\phi)}{2 \mathrm{~J}_{2}^{2}(\phi) \cdot T_{S Y} \cdot B_{L}} \quad \text { for sine wave subcarrier modulation. } \tag{8}
\end{array}
$$

When using these relationships with more than one data stream modulating the carrier, care should be taken to use the values of $E_{S} / N_{0}, T_{S Y}$, and $\phi$ that all pertain to the same data stream.

### 2.3.4 Arraying

The DSN Telemetry can combine the intermediate frequencies from the $70-\mathrm{m}$ and $34-\mathrm{m}$ antennas at each complex by full spectrum combining. The output of the Array Combiner appears to be another IF spectrum that can be selected by from one to four receivers.

Ideally, the combined telemetry SNR is:

$$
\begin{equation*}
\left(\frac{E_{b}}{N_{0}}\right) \sum=\sum_{i=1}^{n}\left(\frac{E_{b}}{N_{0}}\right)_{i} \tag{9}
\end{equation*}
$$

where
$\left(\frac{E_{b}}{N_{0}}\right)=\quad$ the telemetry SNR at the input of the $i^{\text {th }}$ receiver for the non-arrayed case
$n \quad=\quad$ the number of streams combined.
The ratio of the array sum $E_{b} / N_{0}$ to the $E_{b} / N_{0}$ of the master antenna (usually the antenna with the highest individual $E_{b} / N_{0}$ ) is the array gain. The individual SNRs are proportional to the ratios of antenna sensitivity, G/T, at each of the contributing antennas. Table 5 is a tabulation of G/T ratios relative to a $34-\mathrm{m}$ and $70-\mathrm{m}$ antenna for individual antennas and for combinations of arrayed antennas. The antenna performance values used to calculate the values in this table are those of the average antenna for each antenna type listed in Table 2 at its peak gain elevation angle. Relative aperture will approach the ratio of the antenna areas at low
elevation angles where the high atmospheric temperature component becomes dominant over the LNA temperature.

The values in the table must be considered approximations as they do not take into consideration the particular antennas being arrayed, the effects of varying elevation, and the selected support configuration (polarization, diplexed vs. non-diplexed, etc.). The "Equivalent (dB)" column has been reduced by 0.3 dB to accommodate the typical combining loss.

Note: K-band arraying is not supported.
Table 5. Relative Telemetry Aperture

| Practical Arrays <br> [Best Antenna, Arrayed Antenna(s)] | G/T Ratio Relative <br> to Reference Antenna | Equivalent (dB) Less <br> Combining Loss |  |  |
| :--- | :---: | :---: | :---: | :---: |
| 34-m BWG Antenna |  |  |  |  |
| S-band, 34-m BWG \& 34-m HEF | 1.66 | 1.90 |  |  |
| X-band, 2 34-m (BWG or HEF) | 2 | 2.71 |  |  |
| X-band, 3 34-m (BWG or HEF) | 3 | 4.47 |  |  |
| X-band, 3 34-m BWG and HEF | 4 | 5.72 |  |  |
| Ka-band, 2 34-m BWG | 2 | 2.71 |  |  |
| Relative to 70-m Antenna |  |  |  |  |
| S-band, 70-m, 34-m BWG | 1.12 | 0.18 |  |  |
| S-band, 70-m, 34-m BWG \& 34-m HEF | 1.23 | 0.60 |  |  |
| X-band, 70-m, 1 34-m (BWG or HEF) | 1.18 | 0.42 |  |  |
| X-band, 70-m, 2 34-m (BWG or HEF) | 1.36 | 1.03 |  |  |
| X-band, 70-m, 3 34-m (BWG or HEF) | 1.53 | 1.55 |  |  |
| X-band, 70-m, 3 34-m BWG and HEF | 1.70 | 2.01 |  |  |

## 3 Typical Performance

Figure 2 and Figure 3 provide the expected performance at X-band and Ka-band using a generic reference spacecraft having equal antenna size and transmitter power for the two bands of interest. These figures illustrate that, all other factors being the same, the performance of the 34-m BWG antennas at Ka-band is essentially the same as the 70-m antennas at Xband. It is also evident that the use of a spacecraft omni-directional antenna at X-band and Kaband is not practical for reception using a BWG antenna. Table 6 presents a set of antenna performance parameters for "average" DSN 34m and 70m antennas, in this case DSS-34 and DSS-43 in Canberra. All parameters are given for 45-degree elevation angle and a CD $=0.50$ weather condition. It should be noted that the G/T values for a 70 m antenna at X -band and a 34 m antenna at Ka-band are nearly the same, as stated above.


Figure 2. X-band Telemetry Performance with Reference Spacecraft


Figure 3. Ka-band Telemetry Performance with Reference Spacecraft
Table 6. Typical 34m BWG and 70m Antenna Parameters with CD=0.50 Weather, 45 -degree Elevation Angle

|  | S-Band |  | X-Band |  | K-Band | Ka-Band |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{3 4 - m}$ | $\mathbf{7 0 - m}$ | $\mathbf{3 4 - m}$ | $\mathbf{7 0 - m}$ | $\mathbf{3 4 - m}$ | $\mathbf{3 4 - m}$ |
| Gain, dBi | 56.8 | 63.5 | 68.3 | 74.5 | 76.9 | 78.6 |
| Atmosphere <br> loss, dB | 0.051 | 0.051 | 0.066 | 0.066 | 0.300 | 0.337 |
| T-op, K | 30.7 | 19.4 | 23.0 | 19.1 | 48.3 | 41.9 |
| G/T, dB | 41.9 | 50.7 | 54.6 | 61.7 | 60.1 | 62.4 |

## 4 Recommendations for Mission Design

### 4.1 Operating Frequency

The DSN supports telemetry reception in the S-, X-, K-, and Ka-bands. The trend in deep space communications (Category B spacecraft) has been towards the higher frequencies. Near-Earth (Category A) spacecraft have used S-band exclusively but are adopting K-band for high data rate applications.

### 4.1.1 S-band (2.2-2.3 GHz)

S-band has been the frequency of choice for near-Earth spacecraft where link performance is relatively easy to obtain and the mass of spacecraft components is not as critical as with deep space spacecraft. Other advantages include the availability of low-cost spacecraft components and ground resources along with compatibility with the Goddard Spaceflight Center (GSFC)-managed Tracking and Data Relay Satellite System (TDRSS). The principal disadvantage of S-band for Category A spacecraft is that the total allocation bandwidth is 90 MHz . This creates a significant possibility of interference between spacecraft.

The principal advantage of S-band for deep space (Category B) spacecraft is low space loss that may be important for applications where there is little or no antenna gain at the transmitting (space) end of the link. Its disadvantages include larger spacecraft components, a limited channel bandwidth of 370 kHz , and significant link degradation when the link must pass near the sun. While it is possible to use more than one channel, the total deep space S -band allocation bandwidth is only 10 MHz .

Note that DSN S-band assets are limited, so scheduling may be challenging.

### 4.1.2 X-band (8.4-8.5 GHz)

X -band is presently the most heavily used allocation for deep space missions. It is the highest frequency band in which uplink is currently supported making it possible to have a single-band spacecraft with a moderately high telemetry rate. The standard telemetry channel bandwidth at X -band is 1.4 MHz and, while missions may use more than one channel, the total X-band allocation bandwidth is only 50 MHz and the use of bandwidth-efficient modulation is preferred over multiple channel use.

### 4.1.3 K-band (25.5-27.0 GHz)

K-band is available for high data-rate, Category A (near-Earth) missions in combination with S-band for command and engineering telemetry. It provides an advantage of approximately 20 dB over an S-band link with equivalent specifications. Its principal disadvantage is degradation from adverse weather but this can be ameliorated by a combination of on-board data storage, weather forecasting, and an adaptive downlink data rate strategy.

### 4.1.4 Ka-band (31.8-32.3 GHz)

Ka-band is recommended for high data-rate missions in combination with X-band for command and engineering or emergency telemetry. It has no defined channels as its total allocation of 500 MHz cannot be accommodated with a single turn-around ratio from S- or Xband uplinks. It provides an advantage of approximately 9 dB over X-band for spacecraft with equivalent specifications and is the least susceptible to solar effects. Its principal disadvantages are degradation from adverse weather, high space loss that precludes use of an omni-directional antenna for emergency transmission, and somewhat greater spacecraft pointing requirements. Adverse weather effects can be ameliorated by a combination of on-board data storage, weather forecasting, and an adaptive downlink data rate strategy.

### 4.2 Telemetry Modulation

The DSN supports a wide range of telemetry modulation schemes. Some advantages and disadvantages of the various schemes are discussed in the following paragraphs. Additional information can be found in Module 207.

### 4.2.1 Residual-Carrier BPSK

Residual carrier BPSK using a square wave subcarrier is the modulation scheme that has been most commonly employed for deep space telemetry. There are historical reasons for this but it remains a good choice in many applications. A residual carrier provides the ability to share downlink power to support additional functions such as two-way ranging and Deltadifferential One-way Ranging ( $\Delta \mathrm{DOR}$ ). The ability of a spacecraft to provide an un-modulated carrier is also useful for Radio Science investigations. Residual carrier tracking tolerates a lower carrier loop SNR before experiencing cycle slips and is not subject to the more damaging halfcycle slips that are possible with suppressed carrier tracking. The subcarrier keeps the data sidebands away from the residual carrier in the frequency domain so the carrier can be tracked without interference. Use of a subcarrier occupies more spectrum than direct modulation, but the occupied bandwidth is typically not an issue for low data-rate telemetry.

Sine wave subcarriers have been used for Category A (near Earth) missions where relatively high power and wide antenna beamwidths make spectrum conservation essential. The higher-order harmonics of a sine wave subcarrier fall off faster with the result being that less bandwidth is occupied than by a square wave subcarrier of the same frequency. The disadvantage of sine wave subcarriers is that the receiver can recover only the power in the fundamental harmonics. Data power transmitted in the higher-order harmonics is lost. This is contrasted to square wave subcarriers where all data power within the bandwidth of the receiver is recovered.

Direct carrier modulation is a good choice for medium and high-rate telemetry when other considerations require a residual carrier. The baseline performance of this scheme is the same as that when using a square wave subcarrier and spectral occupancy is no more than half that of the equivalent square wave subcarrier system.

### 4.2.2 Suppressed-Carrier BPSK

Suppressed-carrier BPSK provides approximately the same performance at high data rates as residual-carrier BPSK and improved performance at some medium data rates. The bandwidth occupancy is the same as residual-carrier BPSK without a subcarrier. Suppressedcarrier BPSK can result in half-cycle slips and telemetry inversion, which is subsequently handled in frame synchronization. The half-cycle slips can also invert the ranging, which can be handled by configuring for automated detection of ranging polarity.

### 4.2.3 QPSK and OQPSK

QPSK and Offset QPSK offer better bandwidth efficiency than BPSK. For a given binary symbol rate, a QPSK or OQPSK carrier occupies only half the bandwidth of a BPSK-modulated carrier (with no subcarrier). QPSK and OQPSK have the disadvantage that telemetry must be disabled in order to perform DSN ranging or $\triangle \mathrm{DOR}$.

The baseline telemetry performance of QPSK and OQPSK is the same as suppressed-carrier BPSK at high data rates. When shaped data pulses are used, there is some advantage to OQPSK, relative to QPSK, which accounts for the popularity of OQPSK in satellite communications; however, for unshaped data pulses, the performance and spectral occupancy of QPSK and OQSPK are the same. Note that for OQPSK modulation with shaped pulses (e.g., Gaussian Minimum-Shift Keying (GMSK) or Square Root Raised Cosine (SRRC) filtering), the DSN receivers can track the signal, but there are additional losses.

### 4.3 Symbol Formats

NRZ-L and biphase-L symbol formats are supported for all decoding schemes. Differentially encoded NRZ-M, NRZ-S, biphase-M and biphase-S formats are supported for uncoded and short constraint length convolutionally coded data (see below). The data is presented to downstream functions in NRZ-L format with differential decoding applied after convolutional decoding, if applicable.

### 4.4 Coding Schemes

Selection of coding scheme is independent of modulation scheme and involves the tradeoff of four considerations. These are coding gain, bandwidth, latency, and error floor. In general, coding gain increases with bandwidth and latency. More detailed information can be found in Module 208. The following coding schemes are supported by the DSN.

### 4.4.1 Uncoded

Uncoded data requires the least bandwidth and introduces the lowest latency. Its primary use is for transfer of extremely high data rates in bandwidth-limited situations when adequate link margin is available.

### 4.4.2 Reed-Solomon Code

The $(255,223)$ Reed-Solomon (RS) code used by the DSN is capable of correcting up to 16 symbol errors out of each 255 . The error-correcting capability provides a significant improvement over uncoded data with a modest bandwidth expansion but the lack of performance near threshold limits its use to high $E_{B} / N_{0}$ conditions.

### 4.4.3 Short Constraint Length, Rate 1/2 Convolutional Code

Short constraint length $(k=7)$, rate $1 / 2$ convolutional code is a low-latency code that requires twice the bandwidth of uncoded data but provides coding gain for any input SNR. Its low latency makes it a good choice for low rate, emergency communications when recovery of data in real-time may outweigh the coding gain of higher-latency codes.

### 4.4.4 Concatenated Reed-Solomon and Rate 1/2 Convolutional Codes

When Reed-Solomon encoded spacecraft data is rate $1 / 2$ convolutionally encoded before transmission, the resultant code has a slightly greater bandwidth expansion but significantly better performance at all SNRs than either of its components. This is because the convolutional decoder improves the input bit error rate to the Reed-Solomon decoder at low SNRs while the RS decoder improves the output error rate for all SNRs above its input threshold. As convolutional decoders tend to produce bursts of errors as they near their threshold, they can overwhelm the correction capability of the RS decoder. This can be alleviated by a technique called interleaving (See module 208) that trades improved performance for increased latency.

### 4.4.5 Turbo Codes

Turbo codes provide near Shannon-limit performance with bandwidth expansions from slightly more than 2 to slightly more than 6 . Block sizes of $1784,3568,7136$, and 8920 symbols are accommodated. The smaller block sizes are intended for lower data rates while using larger block sizes as the data rate increases reduces coding overhead. Their principal disadvantages are the amount of processing that must be done to decode them and the presence of an error floor at a Frame Error Rate of about $10^{-6}$. The decoding complexity limits the maximum supported data rate.

### 4.4.6 Low-density Parity-Check Codes

Low-Density Parity-Check codes conforming to the code family specified in Section 7 of the CCSDS Recommended Standard 131.0-B-2 are supported by the DSN. The decoding complexity limits the maximum supported data rate.

### 4.4.7 Derandomization

If the telemetry data is randomized as defined in CCSDS 131.0-B-2, derandomization is applied prior to frame (Reed-Solomon, turbo or LDPC) decoding.

## 5 Proposed Capabilities

The following paragraph discusses capabilities that have not yet been implemented by the DSN but have adequate maturity to be considered for spacecraft mission and equipment design. Telecommunications engineers are advised that any capabilities discussed in this section cannot be committed to except by negotiation with the Customer Interface Management Office (910).

### 5.1 Bandwidth-efficient Modulation

Several bandwidth-efficient modulation schemes are in development to permit the maximum amount of data to be returned within the allocated frequency bands. The most likely candidate for implementation is Gaussian minimum-shift keying (GMSK). This would remove the additional losses mentioned in section 4.2.3.

# 207, Rev. A 34-m and 70-m Telemetry Reception 

June 13, 2003

Document Owner:

Signature on file at DSMS Library
L. Paal, Date

Telemetry System Engineer

Approved by:
Signature on file at DSMS Library

| J. B. Berner | Date |
| :--- | :---: |
| Telecommunications Services |  |
| System Development Engineer |  |

Released by:
Signature on file at DSMS Library
DSMS Document Release Date

## Change Log

| Rev | Issue Date | Affected <br> Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: |
| Initial | $11 / 30 / 2000$ | All |  |
| A | $6 / 13 / 2003$ | Many | Revised to include concatenated codes, <br> QPSK/OQPSK modulation, and to improve <br> description of turbo code performance. |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Note to Readers

There are two sets of document histories in the 810-005 document that are reflected in the header at the top of the page. First, the overall document is periodically released as a revision when major changes affect a majority of the modules. For example, the original release of this document was part of Revision E. Second, the individual modules also change, starting as an initial issue that has no revision letter. When a module is changed, a change letter is appended to the module number on the second line of the header and a summary of the changes is entered in the module's change log.

## Contents

Paragraph Page
1 Introduction ..... 7
1.1 Purpose ..... 7
1.2 Scope ..... 7
1.3 General Information ..... 7
2 Telemetry Capability ..... 8
2.1 Modulation ..... 9
2.2 Symbol Rate ..... 9
2.3 Carrier Loop Bandwidth ..... 10
3 Definitions. ..... 11
4 Receiver Acquisition ..... 13
4.1 FFT ..... 14
4.2 Loop Locking ..... 19
4.3 Acquisition Time ..... 20
5 Telemetry Performance ..... 26
5.1 Comparison of Residual Carrier and Suppressed Carrier ..... 26
5.2 Decoding Threshold and System Loss ..... 30
5.3 Carrier Synchronization ..... 31
5.3.1 Residual Carrier ..... 32
5.3.2 Suppressed-Carrier BPSK ..... 48
5.3.3 QPSK and OQPSK ..... 49
5.3.4 Two/Three-Way Coherent ..... 50
5.3.5 Radio Loss ..... 50
5.4 Subcarrier Synchronization ..... 56
5.5 Symbol Synchronization ..... 61
5.6 Waveform Distortion ..... 65
5.7 Amplitude Scintillation at Small Sun-Earth-Probe (SEP) Angles ..... 65
Appendix A, Baseline BER and FER Performance ..... 69
A. 1 Uncoded and Convolutionally Coded Telemetry ..... 69
A. 2 Concatenated and Turbo-Coded Telemetry ..... 70
Appendix B, High-Rate Model (HRM) Radio Loss ..... 72
Paragraph Page
Appendix C, Static Phase Error ..... 77
Appendix D, Transmitter Phase Noise ..... 78
Appendix E, Solar Phase Noise ..... 80
Appendix F, Subcarrier Demodulation Loss ..... 81
Appendix G, Symbol Loop Squaring Loss ..... 82
Appendix H, Symbol Synchronization Loss ..... 83
Appendix I, Rician Fading at Small Sun-Earth-Probe (SEP) Angles ..... 84
Appendix J, References ..... 85
Illustrations
Figure Page

1. Receiver Architecture ..... 8
2. Number of Data Points for FFT; Sample Rate $=2000 \mathrm{~Hz}$ ..... 17
3. Number of Data Points for FFT; Sample Rate $=20 \mathrm{~Hz}$ ..... 18
4. Loop Locking Time ..... 21
5. Receiver Acquisition Time; Residual Carrier ..... 23
6. Receiver Acquisition Time; Suppressed Carrier, $E_{S} / N_{0}=-3 \mathrm{~dB}$ ..... 24
7. Receiver Acquisition Time; Suppressed Carrier, $E_{S} / N_{0}=0 \mathrm{~dB}$ ..... 25
8. Comparison of Residual Carrier and Suppressed Carrier ..... 27
9. Comparison of Optimized and Non-optimized Modulation Index ..... 29
10. Telemetry Performance; Uncoded, Residual Carrier ..... 34
11. Telemetry Performance; $(k=7, r=1 / 2)$ Convolutional Code with Residual Carrier ..... 35
12. Telemetry Performance; $(k=15, r=1 / 4)$ Convolutional Code with Residual Carrier ..... 36
13. Telemetry Performance; $(k=15, r=1 / 6)$ Convolutional Code with Residual Carrier. ..... 37
14. Telemetry Performance; Concatenated RS and $(k=7, r=1 / 2)$, Convolutional Codes with Residual Carrier ..... 38
15. Telemetry Performance; Concatenated RS and $(k=15, r=1 / 6)$ Convolutional Code with Residual Carrier. ..... 39
16. Telemetry Performance; $(1784,1 / 2)$ Turbo Code with Residual Carrier ..... 40
17. Telemetry Performance; $(1784,1 / 3)$ Turbo Code with Residual Carrier ..... 41
Figure Page
18. Telemetry Performance; (8920, 1/4) Turbo Code with Residual Carrier ..... 42
19. Telemetry Performance; (8920, 1/6) Turbo Code with Residual Carrier ..... 43
20. Optimum Modulation Index; Uncoded ..... 44
21. Optimum Modulation Index; $(k=7, r=1 / 2)$ Convolutional Code. ..... 45
22. Optimum Modulation Index; $(k=15, r=1 / 6)$ Convolutional Code ..... 46
23. Optimum Modulation Index; Turbo Codes ..... 47
24. Symbol Loop Squaring Loss ..... 62
25. (1784, 1/3) Turbo Code Performance at S-Band With Amplitude Scintillation ..... 66
26. (1784, 1/3) Turbo Code Performance at X-Band With Amplitude Scintillation ..... 67
27. $(1784,1 / 3)$ Turbo Code Performance at Ka-Band With Amplitude Scintillation ..... 68
Tables
Table Page
28. Telemetry Capabilities ..... 8
29. Symbol Rates ..... 9
30. FFT Sample Frequencies ..... 14
31. FFT Section Bandwidths ..... 15
32. Coefficients $\alpha_{1}$ and $\alpha_{2}$ in the Calculation of $P_{C T P} / N_{0}$ ..... 19
33. Baseline $E_{b} / N_{0}$ for Uncoded and Convolutionally Coded Data, dB ..... 30
34. Effective Threshold $E_{b} / N_{0}$ for Concatenated Codes, dB ..... 30
35. Effective Threshold $E_{b} / N_{0}$ for Turbo Codes, dB ..... 31
36. Interpolation Factor Coefficients $c_{1}$ and $c_{2}$ for Concatenated Codes ..... 52
37. Interpolation Factor Coefficients $c_{1}$ and $c_{2}$ for Turbo Codes ..... 52
38. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for Uncoded Telemetry ..... 53
39. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for $(k=7, r=1 / 2)$ Convolutional Code ..... 53
40. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for $k=15$ Convolutional Codes ..... 54
41. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for Concatenated Codes ..... 54
42. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for Turbo Codes, Residual Carrier ..... 55
43. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for Turbo Codes, Suppressed Carrier ..... 55
44. LRM Coefficients $c_{L 0}$ and $c_{L 1}$ for All Codes ..... 55
45. Interpolation Factor Coefficients $c_{1}$ and $c_{2}$ for Concatenated Codes ..... 57

810-005, Rev. E<br>207, Rev. A

Table Page
19. Subcarrier Demodulation HRM Loss Coefficients for Uncoded and Convolutionally Coded Data using Squarewave Subcarriers ..... 58
20. Subcarrier Demodulation HRM Loss Coefficients for Uncoded and Convolutionally Coded Data using Sinewave Subcarriers ..... 59
21. Subcarrier Demodulation HRM Loss Coefficients for Concatenated Codes Using Squarewave Subcarriers ..... 59
22. Subcarrier Demodulation HRM Loss Coefficients for Concatenated Codes Using Sinewave Subcarriers ..... 60
23. Subcarrier Demodulation HRM Loss Coefficients for Turbo Codes Using Squarewave Subcarriers ..... 60
24. Subcarrier Demodulation HRM Loss Coefficients for Turbo Codes Using Sinewave Subcarriers ..... 61
25. Symbol Synchronization HRM Loss Coefficients for Concatenated Codes ..... 64
26. Symbol Synchronization HRM Loss Coefficients for Turbo Codes ..... 64
A-1. Coefficients $a_{0}$ and $a_{1}$ for Equation (A-4) ..... 69
A-2. Coefficients $a_{0}$ and $a_{1}$ for Equation (A-6), Concatenated Codes ..... 70
A-3. Rate $1 / 2$ Turbo Code Baseline Data ..... 71
A-4. Rate $1 / 3$ Turbo Code Baseline Data ..... 72
A-5. Rate $1 / 4$ Turbo Code Baseline Data ..... 73
A-6. Rate $1 / 6$ Turbo Code Baseline Data ..... 74
C-1. Static Phase Error (rad) ..... 77
D-1. Carrier Phase Error Variance, $\sigma_{\phi}^{2}\left(\operatorname{rad}^{2}\right)$ ..... 79

## 1 Introduction

### 1.1 Purpose

This module provides the performance parameters for telemetry reception at the Deep Space Network (DSN) 34-m and 70-m stations.

### 1.2 Scope

The scope of this module is limited to those features of the Downlink Channel at the $34-\mathrm{m}$ and $70-\mathrm{m}$ stations that relate to telemetry reception and demodulation. Under the Network Simplification Plan (NSP), each Block-V Receiver has been renamed the Receiver and Ranging Processor (RRP) and has become part of a Downlink Channel. The Downlink Channel also performs the frame synchronization and data decoding that are discussed in Module 208, Telemetry Data Decoding.

## $1.3 \quad$ General Information

Figure 1 shows the architecture used in the $34-\mathrm{m}$ and $70-\mathrm{m}$ stations to process an arriving telemetry signal through the point at which it becomes a stream of data symbols. The arriving signal is routed from the Antenna Feed/Low Noise Amplifier (LNA) to the Downlink Channel. Within the radio-frequency (RF) to Intermediate-frequency (IF) Downconverter (RID) at the antenna, a local oscillator is generated by frequency multiplication of a highly stable frequency reference from the Frequency and Timing Subsystem (FTS), and the incoming downlink signal is heterodyned with this local oscillator. The Intermediate-Frequency (IF) signal that results is sent to the Signal Processing Center (SPC). Here, the Intermediate-frequency to Digital Converter (IDC) alters the frequency of the IF signal by a combination of up-conversion and down-conversion to a final analog frequency of approximately 200 MHz and then performs analog-to-digital conversion. The final analog stage of down-conversion uses a local oscillator supplied by the Channel-Select Synthesizer (CSS), that is also part of the Downlink Channel. The CSS is adjusted before the beginning of a pass to a frequency appropriate for the channel of the incoming downlink signal; during the pass, the frequency of the CSS remains constant. The frequency of the CSS (and, indeed, of all local oscillators in the analog chain of downconversion) are synthesized within the Downlink Channel from highly stable frequency references provided by the FTS. The RRP accepts the digital signal and performs carrier, subcarrier, and symbol synchronization, Doppler compensation, and data demodulation (Reference 1). For purposes of telemetry, the output of the RRP is a stream of soft-quantized symbols, suitable for input to a decoder.


Figure 1. Receiver Architecture

## 2 <br> Telemetry Capability

Table 1 shows the types of telemetry signals that can be tracked at the $34-\mathrm{m}$ and 70-m stations. The new CCSDS bandwidth-efficient modulation schemes, which generally involve non-rectangular pulse shapes, are not shown. The Downlink Channel can, in fact, demodulate these new modulation schemes. However, there are large losses that result from using equipment that was designed for the optimum demodulation of rectangular pulse shapes to demodulate non-rectangular pulse shapes.

Table 1. Telemetry Capabilities

| Parameter | Capabilities |
| :--- | :---: |
| Data Formats | $\mathrm{NRZ}(-\mathrm{L},-\mathrm{M},-\mathrm{N})$ <br> $\mathrm{Bi}-\phi(-\mathrm{L},-\mathrm{M},-\mathrm{N})$ |
| Modulation Types | Residual-carrier BPSK <br> Suppressed-carrier BPSK <br> QPSK, OQPSK |
| Subcarriers | Squarewave <br> Sinewave |
| Symbol Rates | See Table 2 |
| Carrier Loop Bandwidth | $B_{L} \leq 200 \mathrm{~Hz}$, residual carrier <br> $B_{L} \leq \min \left(200 \mathrm{~Hz}, R_{S Y M} / 20\right)$, suppressed carrier |
| Loop Types | 2,3 |

### 2.1 Modulation

Both residual-carrier and suppressed-carrier binary phase-shift keying (BPSK) can be coherently demodulated. A suppressed carrier is tracked with a Costas loop (Reference 2). Both squarewave and sinewave subcarriers can be coherently demodulated. Non-Return to Zero (NRZ) and Bi- $\phi$ (i.e., bi-phase or Manchester) data formats are supported.

Table 2. Symbol Rates

| Data Type | Symbol Rates |
| :---: | :---: |
| Residual-Carrier |  |
| Subcarrier Present | $4 \mathrm{sps} \leq R_{S Y M} \leq 0.67 f_{\text {subcarrier }}$ |
| Direct Modulation |  |
| NRZ | $4 \mathrm{sps} \leq R_{S Y M} \leq 26 \mathrm{Msps}$ |
| Bi- $\phi$ | $4 \mathrm{sps} \leq R_{S Y M} \leq 13 \mathrm{Msps}$ |
| Suppressed-Carrier |  |
| Subcarrier Present | $20 B_{L} \leq R_{S Y M} \leq 0.67 f_{\text {subcarrier }}$ |
| Direct Modulation |  |
| NRZ | $20 B_{L} \leq R_{S Y M} \leq 26 \mathrm{Msps}$ |
| Bi- $\phi$ | $20 B_{L} \leq R_{S Y M} \leq 13 \mathrm{Msps}$ |
| QPSK or OQPSK | $40 \mathrm{ksps} \leq R_{Q S Y M} \leq 26 \mathrm{Msps}$ |

When the incoming carrier has a quadriphase shift keyed (QPSK) or Offset QPSK (OQPSK), with symbols on both the in-phase and quadrature components of the carrier, the Downlink Channel can synchronize to the carrier and coherently demodulate and detect the symbols on both of its components. The four-fold phase ambiguity that arises in QPSK needs to be resolved downstream in the telemetry decoding operation. In Table 2, the limits on symbol rate for QPSK and OQPSK are written in terms of the quaternary channel symbol rate, $R_{Q S Y M}$. For QPSK and OQPSK, the information bit rate is $2 r R_{Q S Y M}$, where $r$ is the code rate.

### 2.2 Symbol Rate

When tracking a residual carrier, the smallest symbol rate that can be used is 4 sps. When tracking a suppressed carrier, there is an additional constraint on the relationship between symbol rate $R_{S Y M}$ and carrier loop bandwidth $B_{L}$ of the Costas loop.

$$
\begin{equation*}
\frac{R_{S Y M}}{B_{L}} \geq 20, \quad \text { suppressed carrier } \tag{1}
\end{equation*}
$$

The reason that suppressed-carrier BPSK has a different minimum symbol rate than does residual carrier has to do with the implementation of the Costas loop that tracks the suppressed carrier. The effective update rate of this loop is equal to the smaller of 2 kHz or the symbol rate. The update rate must be large relative to the loop bandwidth otherwise good tracking will not be obtained.

For QPSK and OQPSK, the minimum symbol rate given in Table 2 represents a recommended minimum. The Downlink Channel can demodulate symbol rates smaller than this minimum but with an additional performance degradation that increases as the symbol rate decreases. There is no good reason to use QPSK or OQPSK for these smaller symbol rates since other modulation schemes offer better performance at small symbol rates and there is no pressing need for bandwidth efficiency under these circumstances.

Paragraph 5.5 provides information on symbol synchronization. This includes an equation for the Signal-to-Noise Ratio (SNR) in the symbol loop and the required value of symbol loop SNR.

It is recommended that the symbol transition density be greater than or equal to 0.25 . (It is 0.5 for truly random data.) When the symbol transition density is less than 0.25 , more signal-to-noise ratio will be required for symbol synchronization.

The baseband telemetry bandwidth is 36 MHz (half-power, i.e., -3 dB ). In the absence of a subcarrier, the maximum symbol rate that can be demodulated and detected is 26 Msps for NRZ data and 13 Msps for $\mathrm{Bi}-\phi$ (Manchester) data. Other limitations on symbol rate arise in the telemetry processing stages that are downstream from the RRP. Module 206, Telemetry General Information, should be consulted for greater detail.

If the symbol rate is derived from the same frequency source as the subcarrier frequency (i.e., synchronous), it is recommended that there be at least three subcarrier cycles per data symbol. If the subcarrier and symbol rate are asynchronous, a subcarrier frequency to symbol rate ratio of greater than 1.5 is recommended. Furthermore, it is recommended that all proposed combinations of subcarrier frequency and symbol rate be tested to ensure efficient subcarrier demodulation. If the subcarrier and symbol rate are asynchronous, the frequency difference between the subcarrier and any of the first ten harmonics of the symbol rate should be greater than the bandwidth of the subcarrier loop.

### 2.3 Carrier Loop Bandwidth

In this module, carrier loop bandwidth means the one-sided, noise-equivalent carrier loop bandwidth of the receiver. It is denoted $B_{L}$. There are limits on the carrier loop bandwidth. $B_{L}$ can be no larger than 200 Hz . The lower limit on $B_{L}$ is determined by the phase noise on the downlink. In addition, when operating in the suppressed-carrier mode, $B_{L}$ is subject to the constraint given in Equation (1).

In general, the value selected for $B_{L}$ should be small in order to maximize the carrier loop signal-to-noise ratio. On the other hand, $B_{L}$ must be large enough that neither of the following variables becomes too large:
a) The static phase error due to Doppler dynamics,
b) The contribution to carrier loop phase error variance due to phase noise on the downlink.

The best $B_{L}$ to select will depend on circumstances. Often, it will be possible to select a $B_{L}$ of less than 1 Hz . A larger value for $B_{L}$ is necessary when there is significant uncertainly in the downlink Doppler dynamics, when the Sun-Earth-probe angle is small (so that solar coronal phase scintillations are present on the downlink), or when the spacecraft transmitter (such as an auxiliary oscillator) has relatively poor frequency stability.

When tracking a spinning spacecraft, it may be necessary to set the carrier loop bandwidth to a value that is somewhat larger than would otherwise be needed. The loop bandwidth must be large enough to track out the variation due to the spin. Also, the coherent AGC in the receiver must track out the amplitude variations (Coherent AGC bandwidth is onetenth of the carrier loop bandwidth).

The user may select either a type 2 or type 3 carrier loop. Both loop types are perfect, meaning that the loop filter implements a true accumulation.

## 3 Definitions

When a subcarrier is present, the modulation index of the data on the subcarrier is normally $90^{\circ}$ so there is no residual subcarrier. There is no performance advantage to using a residual subcarrier since the Downlink Channel was designed to track the data and ignores the presence or absence of a residual subcarrier. Throughout this document, it is assumed that the modulation index of data onto the subcarrier is $90^{\circ}$ and all subsequent references to modulation index refer to the modulation index of the carrier.

A residual carrier is present in each of the following cases:
a) With no subcarrier, the modulation index is less than or equal to $80^{\circ}$,
b) With a squarewave subcarrier, the modulation index is less than $80^{\circ}$,
c) With a sinewave subcarrier, the peak modulation index is less than $105^{\circ}$.

The carrier is considered to be suppressed when the modulation is BPSK and there is either no subcarrier or a squarewave subcarrier and the modulation index is greater than $80^{\circ}$.
$P_{T}$ is the total received signal power at the input to the low-noise amplifier. $N_{0}$ is the one-sided noise spectral density referenced to the input to the low-noise amplifier. It equals the system noise temperature (referenced to the input to the low-noise amplifier) times

Boltzmann's constant, $1.380622 \times 10^{-23} \mathrm{~W} /(\mathrm{Hz} \cdot \mathrm{K})$. In decibel units, Boltzmann's constant is $-198.6 \mathrm{dBm} /(\mathrm{Hz} \cdot \mathrm{K})$. The ratio $P_{T} / N_{O}$ is a useful parameter.

When there is only a single telemetry channel present and no ranging modulation, the carrier power $P_{C}$ and data power $P_{D}$ are given by

$$
\begin{align*}
& P_{C}= \begin{cases}P_{T} \cos ^{2} \theta, & \text { no subcarrier or squarewave subcarrier } \\
P_{T} \mathrm{~J}_{0}^{2}(\theta), & \text { sinewave subcarrier }\end{cases}  \tag{2}\\
& P_{D}= \begin{cases}P_{T} \sin ^{2} \theta, & \text { no subcarrier or squarewave subcarrier } \\
P_{T} 2 \mathrm{~J}_{1}^{2}(\theta), & \text { sinewave subcarrier }\end{cases} \tag{3}
\end{align*}
$$

where $\theta$ is the peak modulation index and $\mathrm{J}_{0}$ and $\mathrm{J}_{1}$ are Bessel functions of the first kind of orders zero and one. In the case of a sinewave subcarrier, the Downlink Channel uses the power in the fundamental harmonics (upper and lower) of the subcarrier and does not use the power in the higher-order harmonics. In this case, $P_{D}$ represents the power in just these harmonics.

When there is only a single suppressed carrier and there is no ranging modulation present, the total received signal power and the data power are the same.

$$
\begin{equation*}
P_{D}=P_{T}, \quad \text { suppressed carrier } \tag{4}
\end{equation*}
$$

If two telemetry channels are present, or if one telemetry channel and a ranging code are present, more complicated expressions are needed. For example, with two telemetry channels, each of which has a squarewave subcarrier (or one with no subcarrier and one with a squarewave subcarrier), the carrier and data powers are given by

$$
\begin{align*}
& P_{C}=P_{T} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}  \tag{5}\\
& P_{D 1}=P_{T} \sin ^{2} \theta_{1} \cos ^{2} \theta_{2}  \tag{6}\\
& P_{D 2}=P_{T} \cos ^{2} \theta_{1} \sin ^{2} \theta_{2} \tag{7}
\end{align*}
$$

where $P_{D 1}$ and $P_{D 2}$ are the data powers for the first and second telemetry channels, and $\theta_{1}$ and $\theta_{2}$ are the corresponding modulation indices.

If ranging modulation is present on the downlink carrier, then the equations for residual-carrier power and data power need to be adjusted to reflect the fact that some of the downlink power is being allocated to ranging signal and noise that is present in the transponder ranging channel. The proper equations to use depend on the type of ranging signal. With sequential ranging, the equations are given in Reference 3.

The input energy per bit to noise spectral density ratio (bit SNR) is

$$
\begin{equation*}
\frac{E_{b}}{N_{0}}=\frac{P_{D}}{N_{0} R_{B I T}} \tag{8}
\end{equation*}
$$

where $R_{B I T}$ is the bit rate (before encoding). The energy per symbol to noise spectral density ratio (symbol SNR) is

$$
\begin{equation*}
\frac{E_{S}}{N_{0}}=\frac{P_{D}}{N_{0} R_{S Y M}} \tag{9}
\end{equation*}
$$

where $R_{S Y M}$ is the symbol rate (after encoding). For a convolutional code with code rate $r$ ( $r=1 / 2,1 / 4$, or $1 / 6$ ),

$$
\begin{equation*}
R_{S Y M}=\frac{R_{B I T}}{r} \tag{10}
\end{equation*}
$$

## 4 Receiver Acquisition

The following paragraphs describe normal receiver acquisition. There is also a Fast Acquisition algorithm, which is applicable to telemetry with low symbol rates. Fast Acquisition, which is similar in many respects to normal acquisition, has been described in Reference 4. Guidelines for estimating the receiver acquisition times are given in this section. These guidelines apply to residual carrier and suppressed-carrier BPSK. QPSK and OQPSK normally are used only for high data rates that have very short acquisition times.

The general procedure for normal acquisition is as follows. The carrier frequency is measured by searching the downlink signal spectrum in fixed bandwidth sections using a fast Fourier transform (FFT). This is true for both suppressed-carrier downlinks and residual-carrier downlinks. With a suppressed carrier, some signal processing that precedes the FFT causes a collapse of data modulation sidebands into a tone (located at the frequency of the phantom carrier) that can be identified by the FFT. Once a tone is found, FFTs are optionally computed for the adjacent bandwidth sections in order to verify that the true tone was found, as opposed to an alias from one of these adjacent bandwidth sections. Then a confirmation FFT, centered at the detected tone, may be computed if it is thought necessary to verify that the tone was not a strong signal that was just passing through. Such a set of FFTs produces an accurate measure of the carrier frequency.

When necessary, a set of FFTs can also be computed for determining the subcarrier frequency and symbol rate. Sometimes however, it is not necessary to measure the subcarrier frequency and symbol rate, since their predicts are usually quite accurate. Next, the numerically controlled oscillator ( NCO ) in the carrier loop is set with the aid of the information from the FFTs, and the carrier loop is closed (enabled). In the subcarrier loop and symbol loop, the NCOs are set and the loops closed (enabled). The loop closures may be selected to occur in parallel or in series. When the loops are initially closed, the loop gain normalizations are set in
accord with available predictions; but when phase-lock is indicated by the lock detectors, the coherent AGCs are enabled, allowing loop gain normalizations to be based on the actual received signal. This means that the power predicts are only required for acquisition.

## 4.1 <br> FFT

The FFT is an optional part of the acquisition process. It is only needed when the signal's frequency uncertainty is greater than one-half the initial loop bandwidth of the tracking loop. Often, only the carrier loop requires the computation of FFTs. The subcarrier and symbol frequencies are usually well enough known that they need not be measured with FFTs.

An FFT takes a sequence of data points as its input. The sample frequency of these data points, here denoted $f_{s}$, depends in general on the type of data being processed and the symbol rate. Permissible values of $f_{s}$ are given in Table 3. $R_{S Y M}$ is the symbol rate and $R_{Q S Y M}$ is the quaternary channel symbol rate for QPSK/OQPSK.

For the residual-carrier FFT, $f_{s}$ is independent of the tracking loop update rate and is selectable by the user from one of the values given in Table 3. (The most commonly used values are $10 \mathrm{kHz}, 50 \mathrm{kHz}$, and 100 kHz .)

For the suppressed-carrier FFT, $f_{s}$ is selectable by the user from the same set of values as for the residual-carrier case. However, $f_{S}$ cannot exceed the symbol rate, $R_{S Y M}$.

For the QPSK/OQPSK FFT, $f_{s}$ is selectable by the user from the same set of values as for the residual-carrier case. However, $f_{s}$ cannot exceed the symbol rate, $R_{Q S Y M}$.

Table 3. FFT Sample Frequencies

| Data Type | Sample Frequency |
| :---: | :---: |
| Residual Carrier | $2,5,10,20,50,100,200,500,1000$, or 2000 kHz |
| Suppressed Carrier | Same as above if $f_{S}<R_{S Y M}$; else $R_{S Y M}$ |
| QPSK and OQPSK | Same as above if $f_{S}<R_{Q S Y M}$; else $R_{Q S Y M}$ |
| Subcarrier | minimum of 500 Hz and $R_{S Y M}$ |
| Symbol | minimum of 500 Hz and $R_{S Y M}$ |

In general, a number of FFTs may need to be computed before the signal is found. The search bandwidth is explored in sections, with one FFT computed for each section. A section is selected by an appropriate setting of the NCO. This setting determines the center of the section. The bandwidth of each section is determined by the data type and by $f_{s}$, as shown in Table 4.

Table 4. FFT Section Bandwidths

| Data Type | Section Bandwidth | Section Bandwidth Limits |
| :--- | :---: | :---: |
| Residual Carrier | $f_{S}$ | $-f_{S} / 2 \rightarrow+f_{S} / 2$ |
| Suppressed Carrier | $f_{S} / 2$ | $-f_{S} / 4 \rightarrow+f_{S} / 4$ |
| QPSK and OQPSK | $f_{S} / 4$ | $-f_{S} / 8 \rightarrow+f_{S} / 8$ |
| Subcarrier | $f_{S} / 2$ | $-f_{S} / 4 \rightarrow+f_{S} / 4$ |
| Symbol | $f_{S} / 2$ | $-f_{S} / 4 \rightarrow+f_{S} / 4$ |

The tone representing the carrier (or subcarrier or symbol rate) will be considered detected within a given section when the corresponding FFT indicates the presence of a tone for which the power level falls within an acceptance range centered on the predicted tone power. The acceptance range is characterized by a lower limit delta, $\delta_{\text {lower }}$ in decibels and an upper limit delta, $\delta_{\text {upper }}$, in decibels. The user will select the two parameters $\delta_{\text {lower }}$ and $\delta_{\text {upper }}$.

Even after a tone is initially detected, more FFTs will, in general, be computed. An FFT for each of two adjacent sections is computed in order to check for aliases. Such an alias check is, however, optional; if the frequency predictions are quite good, the alias checks are unnecessary.

There is also an optional confirmation check. This consists of one FFT that is computed with the NCO set to the tone value detected in the previous FFTs. It is used to verify that the detected tone was not a noise spur (for weak signal acquisitions) and that the tone was not a very strong signal that was simply passing through.

The number of data points that should be selected for input to a particular FFT computation will depend on the predicted tone power. The algorithm that should be used in determining the number of data points is summarized here.

$$
\begin{equation*}
\text { Number of Data Points }=2^{M} \tag{11}
\end{equation*}
$$

$M$, the base 2 logarithm of the number of data points, is given by

$$
\begin{equation*}
M=\max \left\{9,\left[4.817-3.581 \cdot \log _{10}\left(\frac{P_{C T P}}{N_{0}} \cdot \frac{1}{f_{S}}\right)\right]\right\} \tag{12}
\end{equation*}
$$

where $\log _{10}(*)$ is the base 10 logarithm and $\lceil\cdot\rceil$ is the ceiling function. The ceiling function equals the smallest integer not less than its argument. The smallest permissible value for $M$ is 9 , corresponding to $2^{9}(512)$ data points. $P_{C T P} / N_{O}$ is the computed tone power to noise spectral density ratio as calculated with Equation (13) for residual-carrier FFT or with Equation (14) for all other FFTs (see below). Figures 2 and 3 illustrate the dependence of the integer $M$ on $P_{C T P} / N_{0}$ for $f_{s}=2000 \mathrm{~Hz}$ and $f_{s}=20 \mathrm{~Hz}$, respectively.

For the FFT that measures the carrier frequency of a residual-carrier downlink, $P_{C T P} / N_{O}$ is given by

$$
\begin{equation*}
\frac{P_{C T P}}{N_{0}}=\left(10^{\delta_{\text {lower }} / 10}\right) \cdot \frac{P_{C}}{N_{0}} \cdot \operatorname{sinc}^{2}\left(\frac{1}{2 F_{Z P}}\right), \text { residual - carrier FFT } \tag{13}
\end{equation*}
$$

where $\delta_{\text {lower }}$ is a (negative) number representing the delta, in decibels, between the lower limit on acceptance and the predicted tone power level. $P_{C} / N_{0}$ is the residual carrier power-to-noise spectral density ratio. The $\operatorname{sinc}(*)$ function is: $\operatorname{sinc}(x)=\sin (\pi x) /(\pi x) . F_{Z P}$ is the zero pad factor. When $F_{Z P}=1$, there is no zero padding in the FFT. When $F_{Z P}=2$, there are as many zeros padded to the end of the data points as there are data points. The size of the sequence that is input to the FFT equals $F_{Z P}$ times the number of data points.

For all other FFTs (i.e., for all FFTs except that for the carrier frequency of a residual-carrier downlink), $P_{C T P} / N_{O}$ is given by

$$
\begin{equation*}
\frac{P_{C T P}}{N_{0}}=\left(10^{\delta_{\text {lower }} / 10}\right) \cdot \frac{R_{S Y M}\left(E_{S} / N_{0}\right)}{\alpha_{1}+\alpha_{2}\left(E_{S} / N_{0}\right)^{-1}} \cdot \frac{P_{C}}{N_{0}} \cdot \operatorname{sinc}^{2}\left(\frac{1}{2 F_{Z P}}\right), \text { all other FFTs } \tag{14}
\end{equation*}
$$

where $R_{S Y M}$ is the symbol rate, and $E_{S} / N_{O}$ is the predicted energy per symbol to noise spectral density ratio. The coefficients $\alpha_{1}$ and $\alpha_{2}$ depend on the particular FFT. Table 5 lists these values. For example, for an FFT that is computed in order to identify the symbol rate, the coefficients $\alpha_{1}$ and $\alpha_{2}$ are 390 and 880 , respectively, when there is a squarewave subcarrier present. For all loops besides the residual-carrier loop, the data modulation sidebands are employed. That is the reason Equation (14) is more complicated than Equation (13). Equation (14) is valid under the assumption that all loops are slipping (i.e., that none of the loops have acquired phase-lock) as the data points are being collected. If some loops have acquired phase-lock before the data points are collected for subsequent FFTs, then the $P_{C T P} / N_{0}$ given in Equation (14) will be somewhat pessimistic for these subsequent FFTs. Equations (13) and (14) are based on modifications to the theory presented in Reference 4. (The modifications are necessary since the theory of Reference 4 is for the Fast Acquisition algorithm, which is not described in this module.)


Figure 2. Number of Data Points for FFT; Sample Rate $=2000 \mathrm{~Hz}$


Figure 3. Number of Data Points for FFT; Sample Rate $=20 \mathrm{~Hz}$

Table 5. Coefficients $\alpha_{1}$ and $\alpha_{2}$ in the Calculation of $P_{C T P} / N_{0}$

| FFT | Subcarrier | $\alpha_{\mathbf{1}}$ | $\alpha_{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: |
| Suppressed Carrier | none | 6 | 4.5 |
| Suppressed Carrier | square | 18 | 41 |
| QPSK and OQPSK | none | 46 | 145 |
| Subcarrier | square | 18 | 41 |
| Subcarrier | sine | 12 | 18 |
| Symbol | none | 130 | 100 |
| Symbol | square | 390 | 880 |
| Symbol | sine | 260 | 390 |

## 4.2 <br> Loop Locking

Once the carrier frequency has been found, the NCO in the carrier loop is set to the detected frequency and the carrier loop is closed (enabled). The loop starts at an initial bandwidth. The loop phase error, initially large, diminishes with time through the natural feedback action of the loop. Once phase-lock is declared at this bandwidth, the loop bandwidth is gradually reduced to its final value - the desired operational value - in a manner consistent with the retention of phase-lock. When the final bandwidth has been achieved and the degradation to effective signal level resulting from transient phase errors just drops below 0.1 dB , the loop is considered to be acquired. The initial and final bandwidths are controlled by the user, as are the parameters that control the rate at which the bandwidth is narrowed. Starting with loop closure, the time it takes for the lock detector to indicate phase-lock at the final bandwidth is approximately ten times the reciprocal of the final bandwidth. For purposes of estimating acquisition time, however, it is recommended that twenty times the reciprocal of the final loop bandwidth be used. This admits the possibility that phase-lock is not indicated in the first lock detection period. The final step in the procedure is for the coherent AGC loop to be enabled, providing an accurate estimate of the loop normalization constant.

The locking of the subcarrier and symbol loops is a similar process to that described in the previous paragraph for the carrier loop. The subcarrier and symbol loops may either be closed (enabled) at the same time that the carrier loop is closed (enabled) or be closed after the carrier loop has indicated phase-lock. It is the user's choice. In the former case, all three loops are simultaneously trying to achieve phase-lock. For the (squarewave) subcarrier and symbol loops, there is also a transition window, which has an initial value, a final value, and a parameter that controls the rate of narrowing.

### 4.3 Acquisition Time

The total receiver acquisition time is estimated as a sum of two components: the time required for the FFT stage of the acquisition process and the time required for locking the loops.

There is a time associated with the collection of enough data points as required for each FFT. For a given FFT, this time equals the number of data points divided by the sample frequency.

$$
\begin{equation*}
\text { Time for each FFT }=\frac{2^{M}}{f_{S}} \tag{15}
\end{equation*}
$$

where $M$ is given by Equation (12). For the carrier FFT, the time required to actually compute an FFT is often small compared with the time it takes to collect the data points for input to that FFT. (The time it takes to pad an input sequence with zeros is also small.) Hence, it is often a good approximation to use Equation (15) to estimate the time it takes to produce one FFT.

It is necessary to consider how many FFTs might be required and to sum together the individual FFT times in order to estimate the time spent on the FFT stage of the acquisition process. Consideration must be given to whether subcarrier or symbol FFTs will be required. Often, it is not necessary to compute FFTs in support of subcarrier and symbol acquisition. In the best possible scenario, in which carrier frequency, subcarrier frequency and symbol rate are all very accurately characterized by predicts, no FFTs are required. In a more typical scenario, however, at least two FFTs will be required for the carrier: an initial FFT and a confirmation FFT. In some cases, more FFTs will be required for carrier acquisition: the search bandwidth may be larger than a single section bandwidth and alias checking may be required.

A second component of receiver acquisition time is the time required for the loops to lock once their NCOs have been set. For each loop, phase-lock will be achieved and duly indicated by the lock detector in a time that may be estimated as

$$
\begin{equation*}
\text { Time for each loop }=\frac{20}{B} \tag{16}
\end{equation*}
$$

where $B$ represents the final loop bandwidth of the loop in question (carrier, subcarrier, or symbol). The numerator in this estimate is twenty, rather than ten, allowing for the possibility that phase-lock is not indicated in the first lock detection period. Figure 4 illustrates this dependence. If the loops are acquired in parallel, the loop-locking component of receiver acquisition time may be estimated from Equation (16) with the smallest of all loop bandwidths substituted for $B$. Typically, the smallest loop bandwidth is that of the symbol loop. If the loops are acquired in series, the loop-locking component of receiver acquisition time may be estimated as the sum of the individual loop-locking times, each of which may be estimated from Equation (16) with the substitution of the appropriate loop bandwidth. In general, the following factors will influence the user's choice of loop bandwidths: $P_{T} / N_{0}$, Doppler dynamics, oscillator stability, and acquisition time. For example, larger values of $P_{T} / N_{0}$ will permit larger loop bandwidths (for more details, see paragraph 5).


Figure 4. Loop Locking Time

For many applications, the receiver acquisition time will be one minute or less. This will be particularly true when the symbol rate is large and no particularly narrow loop bandwidths are employed. In such cases, it will not be necessary to estimate beforehand the receiver acquisition time. In other cases, particularly for small symbol rates and narrow loop bandwidths, it will take several minutes to accomplish receiver acquisition; and it may be important to characterize the receiver acquisition time with some degree of accuracy. Under such circumstances the discussion and equations of this paragraph should be used as a guide.

It would be very difficult to provide here a set of curves characterizing receiver acquisition time for all potential cases of interest. There are just too many possibilities. Not only are there a number of important variables (symbol rate, signal-to-noise ratio, loop bandwidths, quality of frequency predictions) with large dynamic ranges, but the flexibility of the Downlink Channel permits a wealth of different acquisition strategies. Alias-check FFTs and confirmationcheck FFTs may or may not be used. Subcarrier FFTs and symbol rate FFTs may or may not be used. The loops may be acquired in parallel, in series, or in some other combination. (For example, the carrier loop might be acquired first, then the subcarrier and symbol loops might be acquired in parallel.) Although it is not practical to provide curves for all potential cases of interest, three sets of curves are provided in order to illustrate how receiver acquisition time varies with certain key parameters.

Figures 5, 6, and 7 show receiver acquisition time for a very specific set of assumptions. For all three of these figures, the frequency predicts are good enough that only two carrier FFTs (an initial FFT and a confirmation-check FFT) are necessary and that no subcarrier or symbol rate FFT is required. Furthermore, it is assumed that the loops are acquired in parallel. For these figures the receiver acquisition time is calculated as twice the "Time for each FFT", as given by Equation (15), plus $20 / B$, where $B$ is the smallest loop bandwidth (typically the symbol loop bandwidth). The integer $M$ in Equation (15) is calculated from Equations (12) and (13) or (14). $F_{Z P}$ is taken to be 1 (i.e., no zero padding) and $\delta_{\text {lower }}$ taken to be -2 dB .

Figure 5 shows the receiver acquisition time (in seconds) for a residual-carrier downlink as a function of $P_{C} / N_{0}$ with $B$, the smallest loop bandwidth, as a parameter. The frequency predicts have to be reasonably good to achieve the acquisition times shown in this figure: the carrier must lie within the section bandwidth of the first FFT and the subcarrier frequency and symbol rate must be well enough known to obviate the need for their measurement.

Figure 6 shows the receiver acquisition time (in seconds) for a suppressed-carrier downlink as a function of $R_{S Y M}$ with $B$, the smallest loop bandwidth, as a parameter. The energy per symbol to noise spectral density ratio is -3 dB . The frequency predicts have to be reasonably good to achieve the acquisition times shown in this figure: the collapsed carrier tone must lie within the section bandwidth of the first FFT, and the subcarrier frequency and symbol rate must be well enough known to obviate the need for their measurement.


Figure 5. Receiver Acquisition Time; Residual Carrier


Figure 6. Receiver Acquisition Time; Suppressed Carrier, $E_{S} / N_{0}=-3 \mathrm{~dB}$

810-005, Rev. E 207, Rev. A


Figure 7. Receiver Acquisition Time; Suppressed Carrier, $E_{S} / N_{0}=0 \mathrm{~dB}$

Figure 7 shows the receiver acquisition time (in seconds) for a suppressed-carrier downlink as a function of $R_{S Y M}$ with $B$, the smallest loop bandwidth, as a parameter. The energy per symbol to noise spectral density ratio is 0 dB . The frequency predicts have to be reasonably good to achieve the acquisition times shown in this figure: the collapsed carrier tone must lie within the section bandwidth of the first FFT, and the subcarrier frequency and symbol rate must be well enough known to obviate the need for their measurement.

A comparison of Figures 5, 6, and 7 reveals that the receiver acquisition time increases as the symbol rate decreases, the signal-to-noise ratio decreases, or the loop bandwidths decrease. Also, the receiver acquisition time for suppressed-carrier operation will generally be larger than for residual-carrier operation.

## 5 Telemetry Performance

In general, four signal-to-noise ratios affect telemetry performance: the energy per bit to noise spectral density ratio and the signal-to-noise ratios in each of the three synchronization loops (carrier, subcarrier, and symbol). In some cases (especially with a suppressed carrier) there will be no subcarrier present. In order for telemetry to be supported at a given bit rate, $P_{T} / N_{0}$ must be large enough that these four (or three, if there is no subcarrier) signal-to-noise ratios are adequate. The following paragraphs offer guidance in this matter.

### 5.1 Comparison of Residual Carrier and Suppressed Carrier

The relative telemetry performance of residual-carrier operation and suppressedcarrier operation depends strongly on the bit rate. One scheme is said to have better telemetry performance than the other when it has a smaller required $P_{T} / N_{0}$ for the support of a given bit rate at a given threshold FER. In general, residual carrier has the better telemetry performance for the very low bit rates and especially for low bit rates coupled with larger carrier loop bandwidths (as would be necessary in the presence of significant phase noise or uncompensated Doppler dynamics). For intermediate bit rates, suppressed carrier offers a significant telemetry performance advantage over residual carrier. For high bit rates, suppressed carrier offers a telemetry performance advantage, but it is only about 0.1 dB . Of course, there will be times in which the decision between residual carrier and suppressed carrier is made on grounds having nothing to do with telemetry performance. For example, a residual carrier is sometimes needed for a radio science experiment. Also, in some applications it will important to minimize acquisition time. Then, the choice of residual carrier or suppressed carrier will be based on whichever scheme offers the quicker acquisition.

Figure 8 shows a typical case. It compares the required $P_{T} / N_{0}$ as a function of bit rate $R_{B I T}$ for residual-carrier and suppressed-carrier operation in the case where a $(1784,1 / 3)$ turbo code is employed and the threshold FER is $1 \times 10^{-4}$. Three carrier loop bandwidths are considered: $0.5 \mathrm{~Hz}, 1 \mathrm{~Hz}$, and 2 Hz .


Figure 8. Comparison of Residual Carrier and Suppressed Carrier

For Figure 8, it has been assumed that there is no additional phase noise present in the carrier loop beyond that resulting from thermal noise. The required $P_{T} / N_{0}$ is, in this case, the minimum $P_{T} / N_{0}$ that simultaneously meets each of the following four constraints. First, the carrier loop signal-to-noise ratio ( $\rho_{L}$, see paragraph 5.3) must be at least 10 dB if tracking a residual carrier or at least 17 dB if tracking a suppressed carrier. Second, the squarewave subcarrier loop signal-to-noise ratio ( $\rho_{S U B}$, see paragraph 5.4) must be at least 20 dB . Third, the symbol loop signal-to-noise ratio ( $\rho_{S Y M}$, see paragraph 5.5) must be at least 15 dB . Fourth, the product $\eta_{S Y S} \cdot E_{b} / N_{0}$ must be at least 0.8 dB , where $\eta_{S Y S}$ is system loss. For each residual-carrier performance curve, it is assumed that at each point on the curve the optimum modulation index is used. The subcarrier loop bandwidth and window factor are assumed to be 50 mHz and 0.25 , respectively. The symbol loop bandwidth and window factor are assumed to be 50 mHz and 0.25 , respectively.

For the case represented in Figure 8 with $B_{L}=0.5 \mathrm{~Hz}$, residual carrier offers better telemetry performance than suppressed carrier for bit rates less than 20 bps , and suppressed carrier is better for bit rates greater than 20 bps . With $B_{L}=1 \mathrm{~Hz}$, the performances of residual carrier and suppressed carrier cross at 50 bps . With $B_{L}=2 \mathrm{~Hz}$, they cross at 100 bps . These numbers are specific to the example considered here. However, the essential qualitative features of the curves shown in Figure 8 are true in general. Residual carrier is better at low bit rates, suppressed carrier is better at intermediate bit rates, and there is not much difference at high bit rates. The bit rate for which the two performance curves cross increases with carrier loop bandwidth.

The reason residual carrier performs better than suppressed carrier at the low bit rates is because a residual-carrier loop is not subject to half-cycle slips. A suppressed-carrier loop, on the other hand, can slip a half-cycle and therefore requires a higher carrier loop signal-to-noise ratio in order to guard against these damaging slips. (A residual-carrier loop can slip a whole cycle, but this is both less likely and less damaging than a half-cycle slip.)

In order to get the best performance from residual-carrier operation, it is necessary that the modulation index be optimal or, at least, near optimal. Each residual-carrier performance curve of Figure 8 is based on the assumption that the modulation index is optimized at each point on the curve. Figure 9 shows what happens if this is not the case. In Figure 9, the lower curve (with the better telemetry performance) is the same as the residual-carrier curve with $B_{L}=1 \mathrm{~Hz}$ of Figure 8, with an optimized modulation index at each point on the curve. The upper curve of Figure 9 represents residual-carrier performance with $B_{L}=1 \mathrm{~Hz}$ under all the same circumstances except that the modulation index is not optimized at each point on the curve; instead, a single modulation index of $54^{\circ}$ (the optimum modulation index for a bit rate of 10 bps ) is used for the entire curve. The two curves of Figure 9 coalesce at $R_{B I T}=10 \mathrm{bps}$ but, for $R_{B I T}$ greater than 10 bps , a penalty is paid for not using the appropriate optimum modulation index. At $R_{B I T}=1000$ bps, the penalty is about 2 decibels.


Figure 9. Comparison of Optimized and Non-optimized Modulation Index

### 5.2 Decoding Threshold and System Loss

Telemetry will not be properly decoded unless the product $\eta_{S Y S} \cdot E_{b} / N_{0}$ (the effective $E_{b} / N_{0}$ after the available $E_{b} / N_{0}$ has been reduced by system losses) is greater than or equal to the effective threshold energy per bit to noise spectral density ratio, $f^{-1}(\mathrm{BER})$ or $f^{-1}$ (FER), that is required by the coding scheme. $\eta_{S Y S}$ is the system loss, BER is the threshold bit error rate, FER is the threshold frame error rate, and $f(*)$ is the ideal functional dependence of probability of bit (or frame) error on bit SNR (see Appendix A).

Table 6 lists the effective threshold energy per bit to noise spectral density ratio, $f^{-1}$ (BER), in decibels, that is required by an uncoded link and by each of three different convolutionally coded links. These baseline values are valid for residual carrier, suppressedcarrier BPSK, and QPSK or OQPSK.

Table 6. Baseline $E_{b} / N_{0}$ for Uncoded and Convolutionally Coded Data, dB

| Code | Threshold Bit Error Rate |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{5} \times \mathbf{1 0}^{\mathbf{- 3}}$ | $\mathbf{1 0}^{\mathbf{- 3}}$ | $\mathbf{1 0}^{\mathbf{- 4}}$ | $\mathbf{1 0}^{\mathbf{- 5}}$ |
| Uncoded | 5.2 | 6.8 | 8.4 | 9.6 |
| $(k=7, r=1 / 2)$ | 2.3 | 3.0 | 3.8 | 4.5 |
| $(k=15, r=1 / 4)$ | 0.5 | 0.9 | 1.5 | 2.0 |
| $(k=15, r=1 / 6)$ | 0.3 | 0.7 | 1.3 | 1.8 |

Table 7 lists the effective threshold energy per bit to noise spectral density ratio, $f^{-1}$ (FER), for a concatenated code (a Reed-Solomon outer code with one of two convolutional inner codes, the combination achieving a threshold frame error rate of $10^{-5}$ ) using residual carrier, suppressed-carrier BPSK, QPSK and OQPSK. A frame error rate (as opposed to a bit error rate) is used because decoding failures of block-coded data result in the loss of the entire codeblock or data frame.

Table 7. Effective Threshold $E_{b} / N_{0}$ for Concatenated Codes, dB

| Concatenated Code | FER | $\mathbf{1 0} \log \left[\boldsymbol{f}^{\mathbf{1}}\right.$ (FER)] |
| :---: | :---: | :---: |
| RS with $(k=7, r=1 / 2)$ convolutional | $1 \times 10^{-5}$ | 2.38 dB |
| RS with $(k=15, r=1 / 4)$ convolutional | $1 \times 10^{-5}$ | 1.24 dB |
| RS with $(k=15, r=1 / 6)$ convolutional | $1 \times 10^{-5}$ | 1.04 dB |

Table 8 lists the effective threshold energy per bit to noise spectral density ratio, $f^{-1}$ (FER), for a turbo-coded link in order to achieve a frame error rate of $1 \times 10^{-4}$ using residual carrier, suppressed-carrier BPSK, QPSK or OQPSK. A frame error rate is used because turbo decoding failures result in the loss of the entire codeblock or data frame. The threshold FER specified with each turbo code is considered to be representative of what should be expected from a telecommunications link using that code.

Table 8. Effective Threshold $E_{b} / N_{0}$ for Turbo Codes, dB

| Turbo Code | 10 log $\boldsymbol{f}^{\boldsymbol{- 1}}$ (FER)] |
| :---: | :---: |
| $(1784,1 / 2)$ | 1.5 dB |
| $(1784,1 / 3)$ | 0.8 dB |
| $(1784,1 / 4)$ | 0.6 dB |
| $(1784,1 / 6)$ | 0.3 dB |
| $(3568,1 / 2)$ | 1.3 dB |
| $(3568,1 / 3)$ | 0.6 dB |
| $(3568,1 / 4)$ | 0.4 dB |
| $(3568,1 / 6)$ | 0.1 dB |


| Turbo Code | $\mathbf{1 0} \boldsymbol{\operatorname { l o g }}\left[\boldsymbol{f}^{\mathbf{1}}\right.$ (FER)] |
| :---: | :---: |
| $(7136,1 / 2)$ | 1.1 dB |
| $(7136,1 / 3)$ | 0.4 dB |
| $(7136,1 / 4)$ | 0.3 dB |
| $(7136,1 / 6)$ | 0.0 dB |
| $(8920,1 / 2)$ | 1.1 dB |
| $(8920,1 / 3)$ | 0.4 dB |
| $(8920,1 / 4)$ | 0.2 dB |
| $(8920,1 / 6)$ | -0.1 dB |

The system loss $\eta_{S Y S}\left(0<\eta_{S Y S}<0.93\right)$ is a composite factor used in communication link budgets to account for the following influences on telemetry efficiency: imperfect carrier, subcarrier, and symbol synchronization, and waveform distortion.

$$
\begin{equation*}
\eta_{S Y S}=\min \left\{0.93, \eta_{R A D I O} \cdot \eta_{S U B} \cdot \eta_{S Y M} \cdot \eta_{W D}\right\} \tag{17}
\end{equation*}
$$

where $\eta_{\text {RADIO }}$ is radio loss, $\eta_{S U B}$ is subcarrier demodulation loss, $\eta_{S Y M}$ is symbol synchronization loss, and $\eta_{W D}$ is waveform distortion loss. The models for the four loses are given in paragraphs 5.3.5 (Radio Loss), 5.4 (Subcarrier Synchronization), 5.5 (Symbol Synchronization) and 5.6 (Waveform Distortion). The component losses are estimated separately and the results multiplied (or their decibel equivalents added) to get the composite system loss. If the product of the component losses is not less than 0.93 , then $\eta_{S Y S}$ should be estimated as 0.93 (i.e., $-10 \log \eta_{S Y S}=$ 0.3 dB ).

### 5.3 Carrier Synchronization

Three different algorithms are used for carrier synchronization, depending on whether the tracking is residual carrier, suppressed-carrier BPSK, or QPSK/OQPSK.

### 5.3.1 Residual Carrier

A residual-carrier signal can be tracked whether or not there is a subcarrier (squarewave or sinewave) present and whether the symbols are non-return-to-zero or Bi-phase. When tracking a residual carrier, the carrier loop signal-to-noise ratio is

$$
\begin{equation*}
\rho_{L}=\frac{P_{C}}{N_{0} B_{L}} . \tag{18}
\end{equation*}
$$

There is an additional loss to the carrier loop signal-to-noise ratio when tracking a residual carrier with non-return-to-zero symbols in the absence of a subcarrier. This loss is due to the presence of data sidebands overlaying the residual carrier in the frequency domain and therefore increasing the effective noise level for carrier synchronization. $\rho_{L}$, in this case, must be calculated as (Reference 5)

$$
\begin{equation*}
\rho_{L}=\frac{P_{C}}{N_{0} B_{L}} \cdot \frac{1}{1+2 E_{S} / N_{0}} . \tag{19}
\end{equation*}
$$

The model of Equation (19) is valid when the data bits are balanced. If the data bits are unbalanced (an unequal number of logical ones and zeroes), non-return-to-zero, and directly modulate the carrier (that is, no subcarrier), there will be a phase bias in the residualcarrier tracking loop that causes an additional loss in telemetry demodulation. This loss can be as great as 2 dB .

Imperfect carrier synchronization results in a higher bit error probability for the recovered telemetry data than would be the case if perfect tracking could be achieved. Radio loss is a measure of this discrepancy between the ideal and what is achieved in practice. Figures 10 through 19 show the effect of radio loss with residual carrier. Figure 10 is for uncoded telemetry. Figures 11, 12, and 13 are for convolutionally coded ( $k=7, r=1 / 2$ ), $(k=15, r=1 / 4)$ and ( $k=15, r=1 / 6$ ) telemetry. Figures 14 and 15 are for concatenated codes using a Reed-Solomon outer code with either a $(k=7, r=1 / 2)$ or $(k=15, r=1 / 6)$ convolutional inner code. Figures 16, 17, 18 , and 19 are for turbo-coded $(1784,1 / 2),(1784,1 / 3),(8920,1 / 4)$ and $(8920,1 / 6)$ telemetry. Turbo codes have an error floor in their performance that is not shown in these figures. The error floor is different for each code but, for each of the turbo codes shown here, the error floor lies below a frame error rate of $10^{-5}$ and therefore is not visible in the figure. Great care must be taken in evaluating the performance of these codes for frame error rates of less than $10^{-5}$.

For the last six figures (14 through 19) the ordinate is Frame Error Rate rather than Bit Error Rate. For all figures, it has been assumed that subcarrier synchronization, symbol synchronization, and waveform symmetry are perfect and that transmitter and solar phase noise is negligible. Furthermore, it has been assumed that the bit rate is very large compared with the carrier loop bandwidth. The purpose of these six figures is to show the effect of imperfect carrier synchronization (due to thermal noise and static phase error) on telemetry performance.
Appendix B summarizes the theory upon which the curves of Figures 10 through 19 are based.

The radio loss as a positive, decibel quantity (i.e., $-10 \log \eta_{\text {RADIO }}$ ) is simply the horizontal distance between the baseline curve and the curve that represents performance in the presence of imperfect carrier synchronization. In comparing several curves from any one figure, it is evident that radio loss is a function of both $\rho_{L}$ and the threshold BER (FER). In comparing different figures, it is evident that radio loss is a function of the coding scheme.

In each of Figures 10 through 19, there are three curves, corresponding to static phase errors of 0,3 , and 5 degrees, for each value of $\rho_{L}$. Static phase error is caused by uncompensated Doppler dynamics (Appendix C).

With residual-carrier tracking it is important to make an optimal selection of the modulation index. In general, the optimum value for modulation index is a function of the bit rate, the carrier loop bandwidth, the coding scheme, and the threshold BER. Figure 20 shows the optimum modulation index for uncoded telemetry. Figures 21 and 22 show the optimum modulation index for convolutionally coded ( $k=7, r=1 / 2$ ) and ( $k=15, r=1 / 6$ ) telemetry, respectively. The optimum modulation index for convolutionally coded ( $k=15, r=1 / 4$ ) and ( $k=15$, $r=1 / 6$ ) are approximately the same. Figure 23 shows modulation indices that are approximately optimum for use with any of the sixteen turbo codes listed in Table 8. For concatenated codes, it is recommended that the optimum modulation for the inner (convolutional) code be selected. Figures 20 through 23 are all based on the assumption that the carrier loop phase error variance is determined by thermal noise. If significant external phase noise is present, such as phase noise from the transmitter or phase scintillations from the solar corona, the optimum modulation index must be reconsidered.

The curves of Figures 20 through 23 are defined by two constraints: $\rho_{L}$ should be greater than or equal to 10 dB and the product $\eta_{\text {RADIO }} \cdot E_{b} / N_{0}$ should be greater than the threshold effective energy per bit to noise spectral density ratio. Moreover, for effective residual-carrier tracking the modulation index must be no larger than 80 degrees.

Sometimes, it is important to take transmitter and solar phase noise into account. This is especially true for operation close to the Sun or for one-way or two-way noncoherent operation with an Auxiliary Oscillator (or some oscillator, serving as the source of the downlink carrier, that has relatively poor frequency stability).


Figure 10. Telemetry Performance; Uncoded, Residual Carrier


Figure 11. Telemetry Performance; $(k=7, r=1 / 2)$ Convolutional Code with Residual Carrier


Figure 12. Telemetry Performance; $(k=15, r=1 / 4)$ Convolutional Code with Residual Carrier


Figure 13. Telemetry Performance; $(k=15, r=1 / 6)$ Convolutional Code with Residual Carrier


Figure 14. Telemetry Performance; Concatenated RS and ( $k=7, r=1 / 2$ ), Convolutional Code with Residual Carrier.


Figure 15. Telemetry Performance; Concatenated RS and ( $k=15, r=1 / 6$ ) Convolutional Code with Residual Carrier.


Figure 16. Telemetry Performance; $(1784,1 / 2)$ Turbo Code with Residual Carrier


Figure 17. Telemetry Performance; (1784, 1/3) Turbo Code with Residual Carrier


Figure 18. Telemetry Performance; $(8920,1 / 4)$ Turbo Code with Residual Carrier


Figure 19. Telemetry Performance; (8920, 1/6) Turbo Code with Residual Carrier

810-005, Rev. E
207, Rev. A


Figure 20. Optimum Modulation Index; Uncoded

810-005, Rev. E
207, Rev. A


Figure 21. Optimum Modulation Index; ( $k=7, r=1 / 2$ ) Convolutional Code

810-005, Rev. E
207, Rev. A


Figure 22. Optimum Modulation Index; $(k=15, r=1 / 6)$ Convolutional Code

810-005, Rev. E
207, Rev. A


Figure 23. Optimum Modulation Index; Turbo Codes

Radio loss may, more generally, be regarded as a function of the carrier phase error variance $\sigma_{\phi}^{2}$.

$$
\begin{equation*}
\sigma_{\phi}^{2}=\frac{1}{\rho_{L}}+\sigma_{T}^{2}+\sigma_{S}^{2}, \operatorname{rad}^{2} \tag{20}
\end{equation*}
$$

where $\sigma_{T}^{2}$ is the contribution of the transmitter phase noise to the phase error variance in the carrier loop and $\sigma_{S}^{2}$ is the contribution of solar phase noise. The contribution of thermal noise to phase error variance in the carrier loop equals the reciprocal of the carrier loop SNR; this is the first term on the right-hand side of Equation (20). $\sigma_{T}^{2}$ is a function of $B_{L}$ and the statistical properties of the transmitter phase noise. Appendix D offers suggestions for estimating $\sigma_{T}^{2}$. If the Sun-Earth-probe angle is small, $\sigma_{S}^{2}$ will be significant and must be taken into account. Appendix E provides estimates of $\sigma_{S}^{2}$ as a function of Sun-Earth-probe angle and $B_{L}$.

In general, as a first step in estimating radio loss, the carrier phase error variance $\sigma_{\phi}^{2}$ should be calculated using Equation (20). Then, radio loss will be calculated as a function of $\sigma_{\phi}^{2}$.

It is recommended that the following constraint on residual-carrier tracking be observed.

$$
\begin{equation*}
\sigma_{\phi}^{2} \leq 0.10 \mathrm{rad}^{2} \tag{21}
\end{equation*}
$$

This recommendation is based on simulations of cycle clipping in a phase-locked loop (Reference 12). In the absence of transmitter or solar phase noise, this becomes $\rho_{L} \geq 10.0$ $(10 \mathrm{~dB})$. In general, with transmitter or solar phase noise present, $\rho_{L}$ needs to be larger yet.

The contributions of transmitter phase noise and of solar phase noise to the carrier phase error variance are computed as described in Appendices D and E, respectively. These computed contributions, together with Equations (20) and (21), define the minimum-acceptable carrier loop SNR for residual-carrier tracking.

### 5.3.2 Suppressed-Carrier BPSK

Suppressed-carrier BPSK is tracked with a Costas loop. This loop has different statistical properties than does the residual-carrier loop; thus, radio loss will be different in this case.

When tracking suppressed-carrier BPSK, the carrier loop signal-to-noise ratio is

$$
\begin{equation*}
\rho_{L}=\frac{S_{L} P_{T}}{N_{0} B_{L}} \tag{22}
\end{equation*}
$$

where $S_{L}$ is the squaring loss of the Costas loop (Reference 6).

$$
\begin{equation*}
S_{L}=\frac{2 \frac{E_{S}}{N_{0}}}{1+2 \frac{E_{S}}{N_{0}}} \tag{23}
\end{equation*}
$$

Radio loss can be regarded as a function of the carrier phase error variance $\sigma_{\phi}{ }^{2}$.

$$
\begin{equation*}
\sigma_{\phi}^{2}=\frac{1}{\rho_{L}}+\sigma_{T}^{2}+\sigma_{S}^{2}, \operatorname{rad}^{2} \tag{24}
\end{equation*}
$$

As before, $\sigma_{T}^{2}$ and $\sigma_{S}^{2}$ are the contributions of transmitter and solar phase noise, respectively, to the phase error variance in the carrier loop (see Appendices D and E).

It is recommended that the following constraint on suppressed-carrier BPSK tracking be observed.

$$
\begin{equation*}
\sigma_{\phi}^{2} \leq 0.02, \operatorname{rad}^{2} \tag{25}
\end{equation*}
$$

Violating this recommendation will lead to (at least) an occasional half-cycle slip. In the absence of transmitter or solar phase noise, inequality (25) corresponds to $\rho_{L} \geq 50.0$ ( 17 dB ), see
Reference 7. In general, with transmitter or solar phase noise present, $\rho_{L}$ needs to be larger yet.

### 5.3.3 QPSK and OQPSK

A QPSK or OQPSK signal is tracked by a loop designed for this purpose. The squaring loss is different than for the Costas loop used for suppressed-carrier BPSK.

When tracking a QPSK or OQPSK signal, the carrier loop signal-to-noise ratio is

$$
\begin{equation*}
\rho_{L}=\frac{S_{L Q} P_{T}}{N_{0} B_{L}} \tag{26}
\end{equation*}
$$

where $S_{L Q}$ is the squaring loss of the QPSK/OQPSK loop.

$$
\begin{equation*}
S_{L Q}=\frac{1}{1+\frac{9}{2 E_{S Q} / N_{0}}+\frac{6}{\left(E_{S Q} / N_{0}\right)^{2}}+\frac{3}{2\left(E_{S Q} / N_{0}\right)^{3}}} \tag{27}
\end{equation*}
$$

Radio loss can be regarded as a function of the carrier phase error variance $\sigma_{\phi}{ }^{2}$.

$$
\begin{equation*}
\sigma_{\phi}^{2}=\frac{1}{\rho_{L}}+\sigma_{T}^{2}+\sigma_{S}^{2}, \operatorname{rad}^{2} \tag{28}
\end{equation*}
$$

As before, $\sigma_{T}^{2}$ and $\sigma_{S}^{2}$ are the contributions of transmitter and solar phase noise, respectively, to the phase error variance in the carrier loop (see Appendices D and E).

It is recommended that the following constraint on QPSK and OQPSK tracking be observed.

$$
\begin{equation*}
\sigma_{\phi}^{2} \leq 0.005, \mathrm{rad}^{2} \tag{29}
\end{equation*}
$$

Violating this recommendation will lead to (at least) an occasional quarter-cycle slip. In the absence of transmitter or solar phase noise, inequality (29) corresponds to $\rho_{L} \geq 200.0$ (23dB), see Reference 7. In general, with transmitter or solar phase noise present, $\rho_{L}$ needs to be larger yet.

### 5.3.4 Two/Three-Way Coherent

When the spacecraft is tracked in a two-way (or three-way) phase-coherent mode, the carrier phase error variance $\sigma_{\phi}{ }^{2}$ in the ground receiver is increased by a portion of the phase noise (of thermal origin) introduced onto the downlink by the spacecraft transponder.

$$
\begin{equation*}
\sigma_{\phi}^{2}=\frac{1}{\rho_{L}}+\frac{G^{2}\left(B_{T R}-B_{L}\right)}{P_{C} /\left.N_{0}\right|_{U / L}}+\sigma_{S}^{2}, \operatorname{rad}^{2} \tag{30}
\end{equation*}
$$

where $G$ is the spacecraft transponder ratio and $P_{C} /\left.N_{0}\right|_{U / L}$ is the uplink residual-carrier power-to-noise spectral density ratio. $B_{T R}$ and $B_{L}$ are the (one-sided) noise-equivalent carrier loop bandwidths of the transponder and ground receiver, respectively.

Equation (30) is a valid approximation only if $B_{T R}>B_{L} . \sigma_{S}{ }^{2}$ is the contribution of solar phase noise to the phase error variance in the carrier loop; it will generally be larger for coherent operation than for one-way or two-way noncoherent operation (see Appendix E).

### 5.3.5 Radio Loss

For all of the carrier tracking modes discussed above-residual carrier, suppressed-carrier BPSK, QPSK/OQPSK, and two/three-way coherent-a common framework is used for modeling radio loss, the loss due to imperfect carrier tracking. That framework is summarized in the paragraphs that follow. Radio loss is a function of carrier loop phase error variance $\sigma_{\phi}{ }^{2}$. This variance must be calculated as described in the previous paragraphs. The radio loss models of this paragraph will be valid when $\sigma_{\phi}{ }^{2}$ satisfies the inequality:

$$
\sigma_{\phi}^{2} \leq \begin{cases}0.1 \mathrm{rad}^{2}, & \text { Residual carrier }  \tag{31}\\ 0.02 \mathrm{rad}^{2}, & \text { Suppressed - carrier BPSK } \\ 0.005 \mathrm{rad}^{2}, & \text { QPSK or OQPSK }\end{cases}
$$

In the discussion that follows, a distinction is made between residual-carrier tracking and suppressed-carrier tracking where the latter includes both suppressed-carrier BPSK and QPSK/OQPSK.

Radio loss is modeled as an interpolation between a High-Rate Model (HRM) and a Low-Rate Model (LRM). This interpolation is

$$
\begin{equation*}
\eta_{R A D I O}^{*}=a \cdot \eta_{H R M}^{*}+(1-a) \cdot \eta_{L R M}^{*} \tag{32}
\end{equation*}
$$

where

$$
\begin{aligned}
\eta_{R A D I O}^{*} & =\text { positive decibel radio loss }\left(\eta_{\text {RADIO }}^{*}=-10 \log \eta_{\text {RADIO }}\right) \\
\eta_{H R M}^{*} & =\text { positive decibel HRM radio loss } \\
\eta_{L R M}^{*} & =\text { positive decibel LRM radio loss } \\
a & =\text { interpolation factor }(0 \leq a \leq 1)
\end{aligned}
$$

The interpolation factor $a$ depends on the code. For uncoded and convolutionally coded telemetry, the interpolation factor is given by

$$
\begin{equation*}
a=\frac{1}{4 B_{L} T_{S Y M}}\left[1-\frac{1}{8 B_{L} T_{S Y M}}\left(1-e^{-8 B_{L} T_{S Y M}}\right)\right] \tag{33}
\end{equation*}
$$

where $B_{L}$ is the (one-sided, noise-equivalent) carrier loop bandwidth and $T_{S Y M}$ is the binary symbol period (the reciprocal of the binary symbol rate). For concatenated and turbo codes, the interpolation factor $a$ is given by

$$
\begin{equation*}
a=\frac{1}{1+c_{1}\left(R / B_{L}\right)^{-c_{2}}} \tag{34}
\end{equation*}
$$

where $R$ is the bit rate. Computer simulations verify that Equation (34) yields an appropriate interpolation factor for concatenated and turbo codes (References 8 and 9). Table 9 gives the coefficients $c_{1}$ and $c_{2}$ for concatenated codes. The coefficients for turbo codes are provided in Table 10.

The HRM radio loss is modeled with a curve-fit of the form

$$
\begin{equation*}
\eta_{H R M}^{*}=c_{H 0}\left[\exp \left(c_{H 1} \sigma_{\phi}^{2}\right)-1\right] \tag{35}
\end{equation*}
$$

and the LRM radio loss is modeled with a curve-fit of the same form (but with different coefficients)

$$
\begin{equation*}
\eta_{L R M}^{*}=c_{L 0}\left[\exp \left(c_{L 1} \sigma_{\phi}^{2}\right)^{-1}\right] \tag{36}
\end{equation*}
$$

where $\sigma_{\phi}{ }^{2}$ is the carrier loop phase error variance in units of $\mathrm{rad}^{2}$.

Table 9. Interpolation Factor Coefficients $c_{1}$ and $c_{2}$ for Concatenated Codes

| Concatenated Code | Tracking Mode | $C_{1}$ | $C_{2}$ |
| :---: | :---: | :---: | :---: |
| RS with ( $k=7, r=1 / 2$ ) Convolutional | Residual | 31,000. | 1.3 |
| RS with ( $k=15, r=1 / 4$ ) or ( $k=15, r=1 / 6$ ) Convolutional | Residual | 52,400. | 1.3 |
| RS with ( $k=7, r=1 / 2$ ) Convolutional | Suppressed | 76,000. | 1.3 |
| RS with ( $k=15, r=1 / 4$ ) or ( $k=15, r=1 / 6$ ) Convolutional | Suppressed | 129,000. | 1.3 |

Table 10. Interpolation Factor Coefficients $c_{1}$ and $c_{2}$ for Turbo Codes

| Turbo Code | $\boldsymbol{C}_{\mathbf{1}}$ | $\boldsymbol{C}_{\mathbf{2}}$ |
| :---: | :---: | :---: |
| $(1784,1 / 2),(1784,1 / 3),(1784,1 / 4),(1784,1 / 6)$ | 264. | 0.84 |
| $(3568,1 / 2),(3568,1 / 3),(3568,1 / 4),(3568,1 / 6)$ | 473. | 0.84 |
| $(7136,1 / 2),(7136,1 / 3),(7136,1 / 4),(7136,1 / 6)$ | 846. | 0.84 |
| $(8920,1 / 2),(8920,1 / 3),(8920,1 / 4),(8920,1 / 6)$ | 1020. | 0.84 |

The HRM coefficients $c_{H O}$ and $c_{H I}$ of Equation (35) depend on the code, the threshold BER or FER, and the tracking mode. These coefficients are given in Table 11 for uncoded telemetry, in Table 12 for ( $k=7, r=1 / 2$ ) convolutionally coded telemetry, and in Table 13 for both ( $k=15, r=1 / 4$ ) and ( $k=15, r=1 / 6$ ) convolutionally coded telemetry. For concatenated codes, the coefficients at a threshold FER of $1 \times 10^{-5}$ are given in Table 14. The coefficients for the turbo codes listed in Table 8 at a threshold FER of $1 \times 10^{-4}$ are given in Table 15 for residual carrier tracking and in Table 16 for suppressed carrier tracking. The LRM coefficients $c_{L O}$ and $c_{L I}$ are independent of the code and are given in Table 17.

Table 11. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for Uncoded Telemetry

| Tracking <br> Mode | Threshold <br> BER | $\boldsymbol{c}_{\boldsymbol{H} \boldsymbol{0}}$ | $\boldsymbol{c}_{\boldsymbol{H} \mathbf{1}}$ |
| :---: | :---: | :---: | :---: |
| Residual | $10^{-2}$ | 0.53 | 8.1 |
| Residual | $5 \times 10^{-3}$ | 0.39 | 10.5 |
| Residual | $10^{-3}$ | 0.21 | 17.5 |
| Residual | $10^{-4}$ | 0.070 | 35.2 |
| Residual | $10^{-5}$ | 0.030 | 55.5 |
| Suppressed | $10^{-2}$ | 0.27 | 15.2 |
| Suppressed | $5 \times 10^{-3}$ | 0.21 | 18.5 |
| Suppressed | $10^{-3}$ | 0.12 | 29.3 |
| Suppressed | $10^{-4}$ | 0.031 | 62.7 |
| Suppressed | $10^{-5}$ | 0.000023 | 244. |

Table 12. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for $(k=7, r=1 / 2)$ Convolutional Code

| Tracking <br> Mode | Threshold <br> BER | $\boldsymbol{c}_{\boldsymbol{H} \boldsymbol{0}}$ | $\boldsymbol{c}_{\boldsymbol{H}}$ |
| :---: | :---: | :---: | :---: |
| Residual | $10^{-2}$ | 0.30 | 17.7 |
| Residual | $5 \times 10^{-3}$ | 0.24 | 21.6 |
| Residual | $10^{-3}$ | 0.21 | 28.7 |
| Residual | $10^{-4}$ | 0.11 | 45.8 |
| Residual | $10^{-5}$ | 0.066 | 64.7 |
| Suppressed | $10^{-2}$ | 0.11 | 34.6 |
| Suppressed | $5 \times 10^{-3}$ | 0.085 | 42.5 |
| Suppressed | $10^{-3}$ | 0.041 | 65.2 |
| Suppressed | $10^{-4}$ | 0.010 | 116. |
| Suppressed | $10^{-5}$ | 0.0030 | 174. |

Table 13. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for $k=15$ Convolutional Codes

| Tracking <br> Mode | Threshold <br> BER | $\boldsymbol{c}_{\boldsymbol{H} \boldsymbol{0}}$ | $\boldsymbol{c}_{\boldsymbol{H} 1}$ |
| :---: | :---: | :---: | :---: |
| Residual | $10^{-2}$ | 0.45 | 16.6 |
| Residual | $5 \times 10^{-3}$ | 0.45 | 18.8 |
| Residual | $10^{-3}$ | 0.34 | 27.3 |
| Residual | $10^{-4}$ | 0.21 | 43.1 |
| Residual | $10^{-5}$ | 0.13 | 61.5 |
| Suppressed | $10^{-2}$ | 0.13 | 38.4 |
| Suppressed | $5 \times 10^{-3}$ | 0.098 | 46.9 |
| Suppressed | $10^{-3}$ | 0.067 | 65.4 |
| Suppressed | $10^{-4}$ | 0.044 | 93.4 |
| Suppressed | $10^{-5}$ | 0.021 | 135. |

Table 14. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for Concatenated Codes

| Concatenated Code | Tracking <br> Mode | $\boldsymbol{C}_{\mathbf{1}}$ | $\boldsymbol{C}_{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: |
| RS with $(k=7, r=1 / 2)$ Convolutional | Residual | 2.07 | 25.4 |
| RS with $(k=15, r=1 / 4)$ <br> or $(k=15, r=1 / 6)$ Convolutional | Residual | 2.92 | 20.6 |
| RS with $(k=7, r=1 / 2)$ Convolutional | Suppressed | 0.88 | 52.1 |
| RS with $(k=15, r=1 / 4)$ <br> or $(k=15, r=1 / 6)$ Convolutional | Suppressed | 1.14 | 46.5 |

Table 15. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for Turbo Codes, Residual Carrier

| Turbo Code | $c_{H 0}$ | $c_{H 1}$ | Turbo Code | $c_{\text {H0 }}$ | $c_{\text {H1 }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ( 1784, 1/2) | 2.14 | 19.4 | ( 7136, 1/2) | 3.25 | 15.7 |
| ( 1784, 1/3) | 2.60 | 17.2 | ( 7136, 1/3) | 2.45 | 18.9 |
| ( 1784, 1/4) | 1.41 | 24.7 | ( 7136, 1/4) | 2.03 | 21.1 |
| ( 1784, 1/6) | 1.74 | 22.2 | ( 7136, 1/6) | 3.51 | 16.0 |
| ( 3568, 1/2) | 2.75 | 16.9 | ( 8920, 1/2) | 3.39 | 15.3 |
| ( 3568, 1/3) | 2.01 | 21.1 | ( 8920, 1/3) | 3.19 | 16.1 |
| ( 3568, 1/4) | 2.36 | 20.9 | ( 8920, 1/4) | 3.29 | 15.6 |
| ( 3568, 1/6) | 2.32 | 19.6 | ( 8920, 1/6) | 3.67 | 14.5 |

Table 16. HRM Coefficients $c_{H 0}$ and $c_{H 1}$ for Turbo Codes, Suppressed Carrier

| Turbo Code | $\boldsymbol{c}_{\boldsymbol{H} 0}$ | $\boldsymbol{c}_{\boldsymbol{H} 1}$ |
| :---: | :---: | :---: |
| $(1784,1 / 2),(1784,1 / 3),(1784,1 / 4),(1784,1 / 6)$ | 0.025 | 182.0 |
| $(3568,1 / 2),(3568,1 / 3),(3568,1 / 4),(3568,1 / 6)$ | 0.22 | 99.8 |
| $(7136,1 / 2),(7136,1 / 3),(7136,1 / 4),(7136,1 / 6)$ | 0.54 | 61.9 |
| $(8920,1 / 2),(8920,1 / 3),(8920,1 / 4),(8920,1 / 6)$ | 0.75 | 50.7 |

Table 17. LRM Coefficients $c_{L 0}$ and $c_{L 1}$ for All Codes

| Tracking Mode | $\boldsymbol{c}_{\mathbf{L 0}}$ | $\boldsymbol{c}_{\boldsymbol{L 1}}$ |
| :---: | :---: | :---: |
| Residual Carrier | 4.0 | 1.1 |
| Suppressed Carrier | 0.56 | 7.3 |

### 5.4 Subcarrier Synchronization

Subcarrier demodulation loss $\eta_{S U B}\left(0<\eta_{S U B} \leq 1\right)$ is a contributor to system loss. It is the result of imperfect subcarrier synchronization. In general, the subcarrier demodulation loss is a function of subcarrier loop signal-to-noise ratio, the coding scheme, the threshold BER or FER, and the type of subcarrier (squarewave or sinewave).

The signal-to-noise ratio $\rho_{S U B}$ in a subcarrier synchronization loop is given by (Reference 10)

$$
\rho_{S U B}=\left\{\begin{array}{cl}
\left(\frac{2}{\pi}\right)^{2} \cdot \frac{S_{S U B}}{W_{S U B} B_{S U B}} \cdot \frac{P_{D}}{N_{0}}, & \text { squarewave subcarrier }  \tag{37}\\
\frac{S_{S U B}}{B_{S U B}} \cdot \frac{P_{D}}{N_{0}}, & \text { sinewave subcarrier }
\end{array}\right.
$$

where $B_{S U B}$ is the (one-sided) noise-equivalent subcarrier loop bandwidth. $S_{S U B}$ is the squaring loss of the subcarrier loop. For a squarewave subcarrier, $P_{D}$ is the power in all the data modulation sidebands; whereas for a sinewave subcarrier, $P_{D}$ is the power in the fundamental data modulation sidebands only. For a squarewave subcarrier, $W_{S U B}$ is the subcarrier loop window factor $\left(W_{S U B}=2^{-n}\right.$, where $n=0,1,2,3$, or 4$)$. A window is not used with sinewave subcarriers. The squaring loss $S_{S U B}$ is, in the case of either squarewave or sinewave,

$$
\begin{equation*}
S_{S U B}=\frac{2 \frac{E_{S}}{N_{0}}}{1+2 \frac{E_{S}}{N_{0}}} \tag{38}
\end{equation*}
$$

It is recommended that the following constraint on subcarrier tracking be observed.

$$
\rho_{S U B}=\left\{\begin{align*}
& 100.0(20 \mathrm{~dB}),  \tag{39}\\
& 50.0(17 \mathrm{~dB}), \\
& \text { squarewave subcarrier } \\
& 5 \text { sinewave subcarrier }
\end{align*}\right.
$$

Subcarrier demodulation loss is modeled as an interpolation between a High-Rate Model (HRM) and a Low-Rate Model (LRM). This interpolation is

$$
\begin{equation*}
\eta_{S U B}^{*}=a \cdot \eta_{H S U B}^{*}+(1-a) \cdot \eta_{L S U B}^{*} \tag{40}
\end{equation*}
$$

where

$$
\begin{aligned}
\eta_{S U B}^{*}= & \text { positive decibel subcarrier demodulator loss } \\
& \left(\eta_{S U B}^{*}=-10 \log \eta_{S U B}\right)
\end{aligned}
$$

$$
\begin{aligned}
\eta^{*}{ }_{H S U B} & =\text { positive decibel HRM subcarrier demodulator loss } \\
\eta^{*}{ }_{L S U B} & =\text { positive decibel LRM subcarrier demodulator loss } \\
a & =\text { interpolation factor }(0 \leq a \leq 1)
\end{aligned}
$$

The interpolation factor depends on the code. For uncoded and convolutionally coded telemetry, the interpolation factor $a$ is given by

$$
\begin{equation*}
a=\frac{1}{4 B_{S U B} T_{S Y M}}\left[1-\frac{1}{8 B_{S U B} T_{S Y M}}\left(1-e^{-8 B_{S U B} T_{S Y M}}\right)\right] \tag{41}
\end{equation*}
$$

where $B_{S U B}$ is the subcarrier loop bandwidth and $T_{S Y M}$ is the symbol period (the reciprocal of symbol rate). For concatenated and turbo codes, the interpolation factor $a$ is given by

$$
\begin{equation*}
a=\frac{1}{1+c_{1}\left(R / B_{S U B}\right)^{-c_{2}}} \tag{42}
\end{equation*}
$$

where $R$ is the bit rate. The coefficients $c_{1}$ and $c_{2}$ depend on the code. Table 18 gives these coefficients for concatenated codes. The coefficients for turbo codes were provided in Table 10.

Table 18. Interpolation Factor Coefficients $c_{1}$ and $c_{2}$ for Concatenated Codes

| Concatenated Code | $\boldsymbol{c}_{\mathbf{1}}$ | $\boldsymbol{c}_{\mathbf{2}}$ |
| :---: | :---: | :---: |
| RS with $(k=7, r=1 / 2)$ Convolutional | $76,000$. | 1.3 |
| RS with $(k=15, r=1 / 4)$ <br> or $(k=15, r=1 / 6)$ Convolutional | $129,000$. | 1.3 |

The HRM subcarrier demodulation loss is modeled with a curve-fit whose form depends on whether the subcarrier is squarewave or sinewave.

$$
\eta_{H S U B}^{*}= \begin{cases}c_{0}\left(\rho_{S U B}\right)^{c_{1}}, & \text { squarewave }  \tag{43}\\ c_{0}\left(e^{c_{1} / \rho_{S U B}}-1\right), & \text { sinewave }\end{cases}
$$

The HRM coefficients $c_{0}$ and $c_{1}$ of Equation (43) depend on the code and the threshold BER as well as the type of subcarrier (squarewave or sinewave). Table 19 provides the coefficients for uncoded and convolutionally coded telemetry using a squarewave subcarrier. Table 20 provides the same information for a sinewave subcarrier. The coefficients given in Tables 19 and 20 for the ( $k=15, r=1 / 6$ ) convolutional code also apply to the ( $k=15, r=1 / 4$ ) code. Tables 21 and 22 provide the coefficients for concatenated codes using squarewave and sinewave
subcarriers at a threshold FER (from Table 7) of $1 \times 10^{-5}$. Tables 23 and 24 provide the coefficients for turbo codes listed in Table 8 at a threshold FER of $1 \times 10^{-4}$ for residual carrier and suppressed carrier.

The LRM subcarrier demodulation loss is independent of the code and is modeled with a curve-fit of the form

$$
\eta_{L S U B}^{*}= \begin{cases}4.6\left(\rho_{S U B}\right)^{-0.50}, & \text { squarewave }  \tag{44}\\ 5.8\left(\rho_{S U B}\right)^{-1.07}, & \text { sinewave }\end{cases}
$$

Table 19. Subcarrier Demodulation HRM Loss Coefficients for Uncoded and Convolutionally Coded Data using Squarewave Subcarriers

| Code | Threshold <br> BER | Subcarrier <br> Demodulation Loss <br> Coefficient $c_{0}$ | Subcarrier Demodulation <br> Loss Coefficient $\boldsymbol{c}_{\mathbf{1}}$ |
| :---: | :---: | :---: | :---: |
| Uncoded | $10^{-2}$ | 6.3 | -0.55 |
| Uncoded | $5 \times 10^{-3}$ | 6.6 | -0.56 |
| Uncoded | $10^{-3}$ | 7.7 | -0.58 |
| Uncoded | $10^{-4}$ | 9.8 | -0.61 |
| Uncoded | $10^{-5}$ | 13. | -0.66 |
| $(k=7, r=1 / 2)$ | $10^{-2}$ | 12. | -0.65 |
| $(k=7, r=1 / 2)$ | $5 \times 10^{-3}$ | 13. | -0.66 |
| $(k=7, r=1 / 2)$ | $10^{-3}$ | 16. | -0.69 |
| $(k=7, r=1 / 2)$ | $10^{-4}$ | 21. | -0.74 |
| $(k=7, r=1 / 2)$ | $10^{-5}$ | 29. | -0.78 |
| $(k=15, r=1 / 6)$ | $10^{-2}$ | 22. | -0.73 |
| $(k=15, r=1 / 6)$ | $5 \times 10^{-3}$ | 25. | -0.76 |
| $(k=15, r=1 / 6)$ | $10^{-3}$ | 31. | -0.79 |
| $(k=15, r=1 / 6)$ | $10^{-4}$ | 40. | -0.83 |
| $(k=15, r=1 / 6)$ | $10^{-5}$ | 53. | -0.87 |

Table 20. Subcarrier Demodulation HRM Loss Coefficients for Uncoded and Convolutionally Coded Data using Sinewave Subcarriers

| Code | Threshold <br> BER | Subcarrier <br> Demodulation Loss <br> Coefficient $c_{0}$ | Subcarrier Demodulation <br> Loss Coefficient $\boldsymbol{c}_{\mathbf{1}}$ |
| :---: | :---: | :---: | :---: |
| Uncoded | $10^{-2}$ | 0.27 | 15.2 |
| Uncoded | $5 \times 10^{-3}$ | 0.21 | 18.5 |
| Uncoded | $10^{-3}$ | 0.12 | 29.3 |
| Uncoded | $10^{-4}$ | 0.031 | 62.7 |
| Uncoded | $10^{-5}$ | 0.000023 | 244. |
| $(k=7, r=1 / 2)$ | $10^{-2}$ | 0.11 | 34.6 |
| $(k=7, r=1 / 2)$ | $5 \times 10^{-3}$ | 0.085 | 42.5 |
| $(k=7, r=1 / 2)$ | $10^{-3}$ | 0.041 | 65.2 |
| $(k=7, r=1 / 2)$ | $10^{-4}$ | 0.010 | 116. |
| $(k=7, r=1 / 2)$ | $10^{-5}$ | 0.0030 | 174 |
| $(k=15, r=1 / 6)$ | $10^{-2}$ | 0.13 | 38.4 |
| $(k=15, r=1 / 6)$ | $5 \times 10^{-3}$ | 0.098 | 46.9 |
| $(k=15, r=1 / 6)$ | $10^{-3}$ | 0.067 | 65.4 |
| $(k=15, r=1 / 6)$ | $10^{-4}$ | 0.044 | 93.4 |
| $(k=15, r=1 / 6)$ | $10^{-5}$ | 0.021 | 135. |

Table 21. Subcarrier Demodulation HRM Loss Coefficients for Concatenated Codes
Using Squarewave Subcarriers

| Concatenated Code | Subcarrier <br> Demodulation Loss <br> Coefficient $c_{0}$ | Subcarrier <br> Demodulation Loss <br> Coefficient $c_{1}$ |
| :---: | :---: | :---: |
| RS with $(k=7, r=1 / 2)$ Convolutional | 56. | -0.69 |
| $R S$ <br> with $(k=15, r=1 / 4)$ <br> or $(k=15, r=1 / 6)$ Convolutional | 50. | -0.65 |

Table 22. Subcarrier Demodulation HRM Loss Coefficients for Concatenated Codes Using Sinewave Subcarriers

| Concatenated Code | Subcarrier <br> Demodulation Loss <br> Coefficient $\boldsymbol{c}_{\mathbf{0}}$ | Subcarrier <br> Demodulation Loss <br> Coefficient $\boldsymbol{c}_{\mathbf{1}}$ |
| :---: | :---: | :---: |
| RS with $(k=7, r=1 / 2)$ Convolutional | 1260. | -1.70 |
| RS with $(k=15, r=1 / 4)$ <br> or $(k=15, r=1 / 6)$ Convolutional | 643. | -1.51 |

Table 23. Subcarrier Demodulation HRM Loss Coefficients for Turbo Codes
Using Squarewave Subcarriers

| Turbo Codes | Subcarrier <br> Demodulation Loss <br> Coefficient $\boldsymbol{c}_{\mathbf{0}}$ | Subcarrier <br> Demodulation Loss <br> Coefficient $\boldsymbol{c}_{\mathbf{1}}$ |
| :---: | :---: | :---: |
| $(1784,1 / 2),(1784,1 / 3)$, <br> $(1784,1 / 4),(1784,1 / 6)$ | 62 | -0.76 |
| $(3568,1 / 2),(3568,1 / 3)$, <br> $(3568,1 / 4),(3568,1 / 6)$ | 53 | -0.71 |
| $(7136,1 / 2),(7136,1 / 3)$, <br> $(7136,1 / 4),(7136,1 / 6)$ | 48 | -0.67 |
| $(8920,1 / 2),(8920,1 / 3)$, <br> $(8920,1 / 4),(8920,1 / 6)$ | 46 | -0.66 |

Table 24. Subcarrier Demodulation HRM Loss Coefficients for Turbo Codes Using Sinewave Subcarriers

| Turbo Codes | Subcarrier <br> Demodulation Loss <br> Coefficient $\boldsymbol{c}_{\mathbf{0}}$ | Subcarrier <br> Demodulation Loss <br> Coefficient $\boldsymbol{c}_{\mathbf{1}}$ |
| :---: | :---: | :---: |
| $(1784,1 / 2),(1784,1 / 3)$, <br> $(1784,1 / 4),(1784,1 / 6)$ | 6490 | -2.23 |
| $(3568,1 / 2),(3568,1 / 3)$, <br> $(3568,1 / 4),(3568,1 / 6)$ | 2450 | -1.97 |
| $(7136,1 / 2),(7136,1 / 3)$, <br> $(7136,1 / 4),(7136,1 / 6)$ | 881 | -1.67 |
| $(8920,1 / 2),(8920,1 / 3)$, <br> $(8920,1 / 4),(8920,1 / 6)$ | 768 | -1.63 |

### 5.5 Symbol Synchronization

Imperfect symbol synchronization results in a finite symbol synchronization loss, $\eta_{S Y M}\left(0<\eta_{S Y M} \leq 1\right)$, which is a contributor to system loss. The symbol synchronization loss is a function of symbol loop signal-to-noise ratio.

The signal-to-noise ratio $\rho_{S Y M}$ in the symbol synchronization loop is given by (Reference 11)

$$
\begin{equation*}
\rho_{S Y M}=\frac{2}{(2 \pi)^{2}} \cdot \frac{S_{S Y M}}{W_{S Y M} B_{S Y M}} \cdot \frac{P_{D}}{N_{0}} \tag{45}
\end{equation*}
$$

where $B_{S Y M}$ is the (one-sided) noise-equivalent symbol loop bandwidth, $W_{S Y M}$ is the symbol loop window factor ( $W_{S Y M}=2^{-n}$, where $n=0,1,2,3$, or 4 ), and $S_{S Y M}$ is the squaring loss of the symbol loop. In the case of QPSK/OQPSK, the $P_{D} / N_{0}$ of Equation (45) should be interpreted as $1 / 2$ ( $P_{T} / N_{0}$ ), since only the power in one of the two quadrature channels assists the symbol synchronization process. $S_{S Y M}$ takes on values from 0 to 1 and asymptotically equals 1 for large values of $E_{S} / N_{0}$. Figure 24 shows $S_{S Y M}(\mathrm{~dB})$ as a function of $E_{S} / N_{0}$. Appendix G gives equations for calculating $S_{S Y M}$.


Figure 24. Symbol Loop Squaring Loss

It is recommended that the following constraint on symbol synchronization be observed.

$$
\begin{equation*}
\rho_{S Y M} \geq 31.6(15 \mathrm{~dB}) \tag{46}
\end{equation*}
$$

The inequality (46) is based on the assumption that the symbol transition density is approximately 0.5 or higher. If the symbol transition density is closer to 0.25 , then it is recommended that $\rho_{S Y M}$ be at least 18 dB .

Symbol synchronization loss is modeled as an interpolation between a High-Rate Model (HRM) and a Low-Rate Model (LRM). This interpolation is

$$
\begin{equation*}
\eta_{S Y M}^{*}=a \cdot \eta_{H S Y M}^{*}+(1-a) \cdot \eta_{L S Y M}^{*} \tag{47}
\end{equation*}
$$

where

$$
\begin{aligned}
\eta_{S Y M}^{*} & =\text { positive decibel symbol synchronizer loss }\left(\eta_{S Y M}^{*}=-10 \log \eta_{S Y M}\right) \\
\eta_{H S Y M}^{*} & =\text { positive decibel HRM symbol synchronizer loss } \\
\eta^{*}{ }_{L S Y M} & =\text { positive decibel LRM symbol synchronizer loss } \\
a & =\text { interpolation factor }(0 \leq a \leq 1)
\end{aligned}
$$

The interpolation factor depends on the code. For uncoded and convolutionally coded telemetry, the interpolation factor $a$ is given by

$$
\begin{equation*}
a=\frac{1}{4 B_{S Y M} T_{S Y M}}\left[1-\frac{1}{8 B_{S Y M} T_{S Y M}}\left(1-e^{-8 B_{S Y M} T_{S Y M}}\right)\right] \tag{48}
\end{equation*}
$$

where $B_{S Y M}$ is the symbol loop bandwidth and $T_{S Y M}$ is the symbol period (the reciprocal of symbol rate). For concatenated and turbo codes, the interpolation factor $a$ is given by

$$
\begin{equation*}
a=\frac{1}{1+c_{1}\left(R / B_{S Y M}\right)^{-c_{2}}} \tag{49}
\end{equation*}
$$

where $R$ is the bit rate. The coefficients $c_{1}$ and $c_{2}$ were provided in Table 18 for concatenated codes and in Table 10 for turbo codes.

The HRM symbol synchronization loss is modeled with a curve-fit of the form

$$
\begin{equation*}
\eta_{H S Y M}^{*}=c_{0}\left(\rho_{S Y M}\right)^{c_{1}} \tag{50}
\end{equation*}
$$

where the HRM coefficients $c_{0}$ and $c_{1}$ depend on the code. For uncoded and convolutionally coded telemetry, the coefficients of Equation (50) are $c_{0}=2.2$ and $c_{1}=-0.62$. In fact, an
excellent approximation for $\eta^{*}{ }_{S Y M}$ may be obtained in this case (without the need for an interpolation) as follows

$$
\begin{equation*}
\eta_{S Y M}^{*}=2.2\left(\rho_{S Y M}\right)^{-0.62} \tag{51}
\end{equation*}
$$

The HRM coefficients $c_{0}$ and $c_{1}$ of Equation (50) are given in Table 25 for concatenated codes at a threshold FER of $1 \times 10^{-5}$ and in Table 26 for the turbo codes listed in Table 8 at a threshold FER of $1 \times 10^{-4}$.

Table 25. Symbol Synchronization HRM Loss Coefficients for Concatenated Codes

| Concatenated Code | Symbol <br> Synchronization Loss <br> Coefficient $\boldsymbol{c}_{\mathbf{0}}$ | Symbol <br> Synchronization <br> Loss Coefficient $\boldsymbol{c}_{\mathbf{1}}$ |
| :---: | :---: | :---: |
| RS with $(k=7, r=1 / 2)$ Convolutional | 9.7 | -0.77 |
| RS with $(k=15, r=1 / 4)$ <br> or $(k=15, r=1 / 6)$ Convolutional | 8.2 | -0.68 |

Table 26. Symbol Synchronization HRM Loss Coefficients for Turbo Codes

| Turbo Codes | Symbol <br> Synchronization Loss <br> Coefficient $c_{0}$ | Symbol <br> Synchronization Loss <br> Coefficient $\boldsymbol{c}_{\mathbf{1}}$ |
| :---: | :---: | :---: |
| $(1784,1 / 2),(1784,1 / 3)$, <br> $(1784,1 / 4),(1784,1 / 6)$ | 6.6 | -0.75 |
| $(3568,1 / 2),(3568,1 / 3)$, <br> $(3568,1 / 4),(3568,1 / 6)$ | 7.3 | -0.75 |
| $(7136,1 / 2),(7136,1 / 3)$, <br> $(7136,1 / 4),(7136,1 / 6)$ | 7.4 | -0.69 |
| $(8920,1 / 2),(8920,1 / 3)$, <br> $(8920,1 / 4),(8920,1 / 6)$ | 6.8 | -0.66 |

The LRM symbol synchronization loss is independent of the code and can be modeled with a curve-fit of the same form (but with different coefficients)

$$
\begin{equation*}
\eta_{L S Y M}^{*}=2.27\left(\rho_{S Y M}\right)^{-0.50} \tag{52}
\end{equation*}
$$

### 5.6 Waveform Distortion

Deviations of either the subcarrier waveform or the symbol waveform from ideal will adversely affect telemetry performance. In general, waveform distortion loss $\eta_{W D}$ (fractional and dimensionless) is the composite loss factor that incorporates both of these deviations. $\eta_{W D}$, in turn, is a contributor to the system loss $\eta_{S Y S}$.

In the case of no subcarrier, only the symbol waveform deviation is of concern.

$$
\begin{equation*}
\eta_{W D}=1-2\left(\frac{\Delta T_{S Y M}}{T_{S Y M}}\right)+2\left(\frac{\Delta T_{S Y M}}{T_{S Y M}}\right)^{2} \tag{53}
\end{equation*}
$$

$T_{S Y M}$ is the symbol period in seconds. The parameter $\Delta T_{S Y M}$ is a measure of the finite risetime is recommended that $\Delta T_{S Y M}$ be less than 2 percent.

In the case of a squarewave subcarrier,

$$
\begin{equation*}
\eta_{W D}=\left[1-\frac{2 \Delta T_{S U B}}{T_{S U B}}\right]^{2} \cdot\left[1-2\left(\frac{\Delta T_{S Y M}}{T_{S Y M}}\right)+2\left(\frac{\Delta T_{S Y M}}{T_{S Y M}}\right)^{2}\right] \tag{54}
\end{equation*}
$$

where $T_{S U B}$ is the subcarrier period in seconds and $\Delta T_{S U B}$ its asymmetry. Equation (54) is not applicable in the case of a sinewave subcarrer. The waveform distortion loss associated with a sinewave subcarrier should normally be negligible.

### 5.7 Amplitude Scintillation at Small Sun-Earth-Probe (SEP) Angles

When the Sun-Earth-Probe (SEP) angle is small and the spacecraft is beyond the sun, Rician fading of the signal occurs due to multipath propagation of the downlink signal within the solar corona. This is called amplitude scintillation. The effect is worse at lower carrier frequencies. For small SEP angels, the BER or FER increases dramatically as a result of amplitude scintillation. Appendix I summarizes the theory of amplitude scintillation. Figures 25, 26 , and 27 illustrate the degradation to FER for a $(1784,1 / 3)$ turbo code due to amplitude scintillation for the cases of S-band, X-band and Ka-band, respectively.

Turbo codes have an error floor in their performance that are not shown in Figures 25 through 27. The error floor is different for each turbo code but, for each of the turbo codes shown here, the error floor lies below a frame error rate of $10^{-5}$ and therefore is not visible in the figures. Great care must be taken in evaluating the performance of these codes for frame error rates less than $10^{-5}$.


Figure 25. (1784, 1/3) Turbo Code Performance at S-Band With Amplitude Scintillation


Figure 26. (1784, 1/3) Turbo Code Performance at X-Band With Amplitude Scintillation


Figure 27. (1784, 1/3) Turbo Code Performance at Ka-Band With Amplitude Scintillation

## Appendix A Baseline BER and FER Performance

The baseline performance is the Bit Error Rate (BER) or Frame Error Rate (FER) when synchronization is perfect (i.e., with a system loss of 0 dB ). For uncoded and convolutionally coded telemetry, BER is the appropriate figure of merit. For concatenated and turbo codes, FER is the appropriate figure of merit.

## A. 1 Uncoded and Convolutionally Coded Telemetry

For uncoded and convolutionally coded telemetry, the functional dependence of BER on $E_{b} / N_{0}$ in the ideal case of no system loss is here denoted

$$
\begin{equation*}
\text { Baseline: } \quad \mathrm{BER}=f\left(E_{b} / N_{0}\right) \tag{A-1}
\end{equation*}
$$

In Equation (A-1), $E_{b} / N_{0}$ is a dimensionless quantity (i.e., it is the true ratio of bit energy to noise spectral density). This performance is never achieved in practice. Nonetheless, this idealized performance is a useful reference (baseline) from which to measure actual performance. For uncoded telemetry,

$$
\begin{equation*}
f(x)=\frac{1}{2} \operatorname{erfc}(\sqrt{x}) \tag{A-2}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{erfc}(x)=1-\operatorname{erf}(x)=1-\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-y^{2}} d y \tag{A-3}
\end{equation*}
$$

For convolutionally coded telemetry, the baseline telemetry performance is approximated as

$$
\begin{equation*}
f(x)=\min \left\{\frac{1}{2}, \exp \left(a_{0}-a_{1} x\right)\right\} \tag{A-4}
\end{equation*}
$$

where the coefficients $a_{0}$ and $a_{1}$ depend on the particular convolutional code, as indicated in Table A-1.

Table A-1. Coefficients $a_{0}$ and $a_{1}$ for Equation (A-4)

| Code | $\boldsymbol{a}_{\mathbf{0}}$ | $\boldsymbol{a}_{\mathbf{1}}$ |
| :---: | :---: | :---: |
| $(k=7, r=1 / 2)$ | 4.4514 | 5.7230 |
| $(k=15, r=1 / 4)$ | 9.8070 | 13.431 |
| $(k=15, r=1 / 6)$ | 9.8070 | 14.064 |

## A. $2 \quad$ Concatenated and Turbo-Coded Telemetry

For concatenated and turbo codes, the functional dependence of FER on $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ in the ideal case of no system loss is here denoted

$$
\begin{equation*}
\text { Baseline: } \quad \text { FER }=f\left(E_{b} / N_{0}\right) \tag{A-5}
\end{equation*}
$$

In Equation (A-5), $E_{b} / N_{0}$ is a dimensionless quantity (i.e., it is the true ratio of bit energy to noise spectral density). This performance is never achieved in practice. Nonetheless, this idealized performance is a useful reference (baseline) from which to measure actual performance.

The baseline telemetry performance for concatenated codes is approximated as

$$
\begin{equation*}
f(x)=\min \left\{1, \exp \left(a_{0}-a_{1} x\right)\right\} \tag{A-6}
\end{equation*}
$$

where the coefficients $a_{0}$ and $a_{1}$ depend on the particular code, as indicated in Table A-2.

Table A-2. Coefficients $a_{0}$ and $a_{1}$ for Equation (A-6), Concatenated Codes

| Concatenated Code | $\boldsymbol{a}_{\mathbf{0}}$ | $\boldsymbol{a}_{\boldsymbol{1}}$ |
| :---: | :---: | :---: |
| RS with $(k=7, r=1 / 2)$ Convolutional | 105.0019 | 67.4242 |
| RS with $(k=15, r=1 / 4)$ Convolutional | 158.2971 | 127.5629 |
| RS with $(k=15, r=1 / 6)$ Convolutional | 158.2971 | 133.5748 |

Simulations performed at JPL have characterized the baseline performance of the turbo codes. Tables A-3 through A-6 give the simulation data for these codes. This results were obtained by using 10 decoding iterations per frame. In this module, the baseline performance of the turbo codes is based on interpolations of the simulation data given below.

Table A-3. Rate $1 / 2$ Turbo Code Baseline Data

| $E_{b} / N_{0}$ | Turbo Code |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1784, 1/2) | (3568, 1/2) | (7136, 1/2) | (8920, 1/2) |
| 0.4 |  | $1.0000 \mathrm{E}+00$ |  |  |
| 0.5 |  | - |  | $1.0000 \mathrm{E}+00$ |
| 0.6 | 7.5000E-01 | $8.0000 \mathrm{E}-01$ |  | 8.8496E-01 |
| 0.7 | - | - | 5.5266E-01 | $5.9524 \mathrm{E}-01$ |
| 0.8 | 3.8931E-01 | 2.6247E-01 | 1.8382E-01 | 1.8939E-01 |
| 0.9 | - | - | $2.5046 \mathrm{E}-02$ | $2.0309 \mathrm{E}-02$ |
| 1.0 | 7.5529E-02 | $2.2411 \mathrm{E}-02$ | 1.4271E-03 | 8.4691E-04 |
| 1.1 | - | - | 7.7270E-05 | 3.5650E-05 |
| 1.2 | 7.9605E-03 | $3.1980 \mathrm{E}-04$ | 7.6700E-06 | $1.5510 \mathrm{E}-05$ |
| 1.3 | - | - |  | 1.2280E-05 |
| 1.4 | 3.2503E-04 | $4.0800 \mathrm{E}-06$ |  | $6.7700 \mathrm{E}-06$ |
| 1.5 | - | - |  |  |
| 1.6 | 1.1620E-05 | $1.5800 \mathrm{E}-06$ |  |  |
| 1.7 | - | - |  |  |
| 1.8 | 3.7500E-06 | $5.8000 \mathrm{E}-07$ |  |  |
| 1.9 | - | - |  |  |
| 2.0 | $2.2500 \mathrm{E}-06$ | $6.0000 \mathrm{E}-08$ |  |  |
| 2.1 | - | - |  |  |
| 2.2 | 7.5000E-07 | $1.1000 \mathrm{E}-07$ |  |  |

Table A-4. Rate 1/3 Turbo Code Baseline Data

| $E_{b} / N_{\boldsymbol{O}}$ | Turbo Code |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{1 7 8 4 , 1 / 3 )}$ | $\mathbf{( 3 5 6 8}, \mathbf{1 / 3 )}$ | $\mathbf{( 7 1 3 6 , \mathbf { 1 } 3 )}$ | $\mathbf{( 8 9 2 0 , 1 / 3 )}$ |
| -0.4 | $9.9020 \mathrm{E}-01$ |  |  |  |
| -0.3 | - |  |  |  |
| -0.2 | $9.0090 \mathrm{E}-01$ |  |  |  |
| -0.1 | - |  | $4.3328 \mathrm{E}-01$ | $4.9505 \mathrm{E}-01$ |
| 0.0 | $6.8493 \mathrm{E}-01$ |  | $1.0761 \mathrm{E}-01$ | $9.7752 \mathrm{E}-02$ |
| 0.1 | - |  | $1.0989 \mathrm{E}-02$ | $8.9847 \mathrm{E}-03$ |
| 0.2 | $2.9762 \mathrm{E}-01$ | $1.8065 \mathrm{E}-01$ | $4.4099 \mathrm{E}-04$ | $2.0755 \mathrm{E}-04$ |
| 0.3 | - | $5.1557 \mathrm{E}-02$ | $1.0050 \mathrm{E}-05$ | $2.8730 \mathrm{E}-05$ |
| 0.4 | $4.7174 \mathrm{E}-02$ | $9.0463 \mathrm{E}-03$ |  | $1.4360 \mathrm{E}-05$ |
| 0.5 | - | $9.5734 \mathrm{E}-04$ |  | $1.1490 \mathrm{E}-05$ |
| 0.6 | $4.4583 \mathrm{E}-03$ | $4.1120 \mathrm{E}-05$ |  |  |
| 0.7 | - | $4.5100 \mathrm{E}-06$ |  |  |
| 0.8 | $9.2350 \mathrm{E}-05$ |  |  |  |
| 0.9 | - |  |  |  |
| 1.0 | $1.9100 \mathrm{E}-06$ |  |  |  |

Table A-5. Rate 1/4 Turbo Code Baseline Data

| $E_{b} / N_{\boldsymbol{O}}$ | Turbo Code |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{( 1 7 8 4 , \mathbf { 1 / 4 } )}$ | $\mathbf{( 3 5 6 8 , \mathbf { 1 / 4 } )}$ | $\mathbf{( 7 1 3 6 , \mathbf { 1 / 4 ) }}$ | $\mathbf{( 8 9 2 0 , 1 / 4 )}$ |
| -0.4 |  |  |  |  |
| -0.3 |  |  |  | $9.9010 \mathrm{E}-01$ |
| -0.2 |  |  | $3.3866 \mathrm{E}-01$ | $3.7594 \mathrm{E}-01$ |
| -0.1 |  |  | $6.7147 \mathrm{E}-02$ | $7.3260 \mathrm{E}-02$ |
| 0.0 | $2.3810 \mathrm{E}-01$ | $1.3508 \mathrm{E}-01$ | $5.5659 \mathrm{E}-03$ | $2.9790 \mathrm{E}-03$ |
| 0.1 | $1.4006 \mathrm{E}-01$ | $3.1327 \mathrm{E}-02$ | $2.9471 \mathrm{E}-04$ | $5.4510 \mathrm{E}-05$ |
| 0.2 | $3.8865 \mathrm{E}-02$ | $4.1032 \mathrm{E}-03$ | $1.0723 \mathrm{E}-04$ | $2.5700 \mathrm{E}-06$ |
| 0.3 | $9.9325 \mathrm{E}-03$ | $4.9503 \mathrm{E}-04$ |  | $2.0300 \mathrm{E}-06$ |
| 0.4 | $2.1765 \mathrm{E}-03$ | $6.0170 \mathrm{E}-05$ |  | $1.7100 \mathrm{E}-06$ |
| 0.5 | $4.9670 \mathrm{E}-04$ |  |  | $7.8000 \mathrm{E}-07$ |
| 0.6 | $7.7840 \mathrm{E}-05$ |  |  |  |
| 0.7 | $1.0430 \mathrm{E}-05$ |  |  |  |
| 0.8 | $3.1900 \mathrm{E}-06$ |  |  |  |
| 0.9 | $1.7100 \mathrm{E}-06$ |  |  |  |
| 1.0 | $9.7000 \mathrm{E}-07$ |  |  |  |
| 1.1 | $5.1000 \mathrm{E}-07$ |  |  |  |
| 1.2 | $6.6000 \mathrm{E}-07$ |  |  |  |

Table A-6. Rate 1/6 Turbo Code Baseline Data

| $E_{\boldsymbol{b}} / \boldsymbol{N}_{\boldsymbol{O}}$ | Turbo Code |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{( 1 7 8 4 , \mathbf { 1 / 6 } )}$ | $\mathbf{( 3 5 6 8 , \mathbf { 1 / 6 } )}$ | $\mathbf{( 7 1 3 6 , \mathbf { 1 / 6 } )}$ | $\mathbf{( 8 9 2 0 , \mathbf { 1 / 6 } )}$ |
| -0.50 |  |  |  | $9.0909 \mathrm{E}-01$ |
| -0.45 |  |  | $4.7659 \mathrm{E}-01$ | $4.7619 \mathrm{E}-01$ |
| -0.40 |  |  | - | $2.8653 \mathrm{E}-01$ |
| -0.35 |  |  | $1.1924 \mathrm{E}-01$ | $9.9701 \mathrm{E}-02$ |
| -0.30 | $2.7855 \mathrm{E}-01$ |  | - | $3.2362 \mathrm{E}-02$ |
| -0.25 | - |  | $1.2559 \mathrm{E}-02$ | $6.6542 \mathrm{E}-03$ |
| -0.20 | $1.4793 \mathrm{E}-01$ | $4.8632 \mathrm{E}-02$ | - | $1.1703 \mathrm{E}-03$ |
| -0.15 | - | - | $6.4147 \mathrm{E}-04$ | $1.3089 \mathrm{E}-04$ |
| -0.10 | $5.1203 \mathrm{E}-02$ | $7.2787 \mathrm{E}-03$ | - | $1.6310 \mathrm{E}-05$ |
| -0.05 | - | - | $4.5750 \mathrm{E}-05$ | $5.5200 \mathrm{E}-06$ |
| 0.0 | $1.1990 \mathrm{E}-02$ | $9.2768 \mathrm{E}-04$ |  | $4.3200 \mathrm{E}-06$ |
| 0.05 | - | - |  | $2.4000 \mathrm{E}-06$ |
| 0.10 | $3.5388 \mathrm{E}-03$ | $5.9720 \mathrm{E}-05$ |  |  |
| 0.15 | - | - |  |  |
| 0.20 | $5.8113 \mathrm{E}-04$ | $9.6500 \mathrm{E}-06$ |  |  |
| 0.25 | - |  |  |  |
| 0.30 | $5.7830 \mathrm{E}-05$ |  |  |  |
| 0.35 | - |  |  |  |
| 0.40 | $9.9500 \mathrm{E}-06$ | - |  |  |
| 0.45 | $2.3400 \mathrm{E}-06$ |  |  |  |
| 0.50 |  |  |  |  |

## Appendix B <br> High-Rate Model (HRM) Radio Loss

The High-Rate Model (HRM) is discussed in this appendix in terms of Bit Error Rate (BER); but for concatenated and turbo codes, Frame Error Rate (FER) is the proper figure of merit. So for these codes, the reader should regard BER in the following equations as being a stand-in for FER.

The HRM radio loss, $\eta_{H R M}$ (fractional and dimensionless), is given by

$$
\begin{equation*}
\eta_{H R M}=\frac{f^{-1}(B E R)}{E_{b} / N_{0}} \tag{B-1}
\end{equation*}
$$

where $f(*)$ is the ideal functional dependence of probability of bit (frame) error on bit SNR (see Appendix A), corresponding to zero decibels of system loss. In the above equation, $E_{b} / N_{0}$ is the actual bit SNR needed to achieve a given threshold BER in the presence of imperfect carrier synchronization; it is the solution of the following equation (Reference 12)

$$
\begin{equation*}
B E R=\int_{-\pi / 2}^{\pi / 2} f\left(\frac{E_{b}}{N_{0}} \cos ^{2} \phi\right) p_{\phi}(\phi) d \phi \tag{B-2}
\end{equation*}
$$

where $p_{\phi}(\phi)$ is the probability density function of the carrier loop phase error $\phi$ and BER is, as before, the threshold bit error rate.

When tracking a residual carrier,

$$
\begin{equation*}
p_{\phi}(\phi)=\frac{\exp \left\lfloor\frac{\cos \phi}{\sigma_{\phi}^{2}}\right\rfloor}{\int_{-\pi / 2}^{\pi / 2} \exp \left[\frac{\cos \psi}{\sigma_{\phi}^{2}}\right] d \psi},|\phi| \leq \pi / 2 \tag{B-3}
\end{equation*}
$$

When tracking suppressed carrier BPSK,

$$
\begin{equation*}
p_{\phi}(\phi)=\frac{\exp \left\lfloor\frac{\cos \phi}{4 \sigma_{\phi}^{2}}\right\rfloor}{\int_{-\pi / 2}^{\pi / 2} \exp \left[\frac{\cos 2 \psi}{4 \sigma_{\phi}^{2}}\right] d \psi},|\phi| \leq \pi / 2 \tag{B-4}
\end{equation*}
$$

For either case, $p_{\phi}(\phi)$ is assumed to be zero for $|\phi|>\pi / 2$. The parameter $\sigma_{\phi}{ }^{2}$ is the carrier loop phase error variance. The presence of $f(*)$ in Equation (B-2) means that the HRM radio loss depends on the coding scheme; it also depends on the threshold BER.

When there is a static phase error caused by Doppler dynamics, $p_{\phi}(\phi)$ has a different form. For a residual-carrier loop

$$
\begin{equation*}
p_{\phi}(\phi)=\frac{\exp \left[\frac{\cos \phi+\phi \sin \xi_{\text {spe }}}{\sigma_{\phi}^{2}}\right]}{\int_{-\pi / 2}^{\pi / 2} \exp \left[\frac{\cos \psi+\psi \sin \xi_{\text {spe }}}{\sigma_{\phi}^{2}}\right] d \psi},|\phi| \leq \pi / 2 \tag{B-5}
\end{equation*}
$$

where $\xi_{\text {spe }}$ is the static phase error.

## Appendix C

## Static Phase Error

The carrier loop, either as type 2 or type 3 , has a very large tracking range; even a Doppler offset of several megahertz can be tracked. With a finite Doppler rate, however, there will be a static phase error in a type 2 loop.

Table C-1 shows the static phase error in the carrier that results from various Doppler dynamics for several different loops. These equations are based on the work reported in Reference 13 where standard underdamped and supercritically damped loops are defined. $B_{L}$ is the (one-sided) noise-equivalent loop bandwidth of the carrier loop. The Doppler dynamics are here defined by the parameters $\alpha, \beta$, and $t$ where $\alpha$ is the Doppler Rate $(\mathrm{Hz} / \mathrm{s}), \beta$ is the Doppler Acceleration (Hz/s ${ }^{2}$ ), and $t$ is the time since the beginning of the Doppler acceleration. (If the Doppler acceleration begins before carrier lock, $t$ is the time since the loop acquired lock.)

The equations of Table C-1 are valid for either residual-carrier or suppressedcarrier BPSK, QPSK or OQPSK. In the presence of a persistent Doppler acceleration, a type 2 loop will periodically slip cycles.

Table C-1. Static Phase Error (rad)

| Loop | Constant <br> Range- <br> Rate | Constant <br> Derivative of <br> Range-Rate | Constant Second <br> Derivative of Range- <br> Rate |
| :---: | :---: | :---: | :---: |
| Dopstant <br> Offset | Constant Doppler <br> Rate | Constant Doppler <br> Acceleration |  |
| type 2, <br> standard underdamped | 0 | $\frac{9 \pi}{16 B_{L}^{2}} \cdot \alpha$ | $\left(\frac{9 \pi \beta}{16 B_{L}^{2}}\right) t-\frac{27 \pi \beta}{64 B_{L}^{3}}$ |
| type 2, <br> supercritically damped | 0 | $\frac{25 \pi}{32 B_{L}^{2}} \cdot \alpha$ | $\left(\frac{25 \pi \beta}{32 B_{L}^{2}}\right) t-\frac{125 \pi \beta}{128 B_{L}}$ |
| type 3, <br> standard underdamped | 0 | 0 | $\frac{12167 \pi}{8000 B_{L}^{3}} \beta$ |
| type 3, <br> supercritically damped | 0 | 0 | $\frac{35937 \pi}{16384 B_{L}^{3}} \beta$ |

## Appendix D Transmitter Phase Noise

Transmitter phase noise contributes to the phase error in the receiver's carrier loop. This contribution is a zero-mean random process, and its variance equals

$$
\begin{equation*}
\sigma_{\phi}^{2}=\int_{0}^{\infty} S_{\theta}(f)|1-H(j 2 \pi f)|^{2} d f, \operatorname{rad}^{2} \tag{D-1}
\end{equation*}
$$

where $S_{\theta}(f)$ is the one-sided power spectral density of the transmitter phase noise and $H(j 2 \pi f)$ is the phase transfer function of the carrier loop. $S_{\theta}(f)$, with units of $\mathrm{rad}^{2} / \mathrm{Hz}$, is related to $L_{\theta}(f)$, the modulation sideband power spectral density relative to the carrier power, measured in the units $\mathrm{dBc} / \mathrm{Hz}$ (Reference 14).

$$
\begin{equation*}
L_{\theta}(f)=10 \log \left(\frac{1}{2} S_{\theta}(f)\right) \tag{D-2}
\end{equation*}
$$

For example, if the transmitter phase noise is flicker-of-frequency (i.e., $L_{6}(f)$ decreases with Fourier frequency $f$ at a rate of 30 decibels per decade) in the frequency range of interest, and if $L_{\theta}(1 \mathrm{~Hz})=-45 \mathrm{dBc} / \mathrm{Hz}$, then $S_{\theta}(f)$ may be modeled as $S_{3} / f^{3}$ with $S_{3}$ given by $2 \times 10^{-45 / 10}=0.000063$.

For a type 2 loop, the phase transfer function $H(j 2 \pi f)$ is given by (Reference 13):

$$
\begin{equation*}
H(j 2 \pi f)=\frac{(j 2 \pi f) K_{1}+K_{2}}{(j 2 \pi f)^{2}+(j 2 \pi f) K_{1}+K_{2}} \tag{D-3}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{1}=\frac{8}{3} B_{L}, \quad K_{2}=\frac{1}{2} K_{1}^{2}, \quad(\text { standard underdamped }) \\
& K_{1}=\frac{16}{5} B_{L}, \quad K_{2}=\frac{1}{4} K_{1}^{2}, \quad(\text { supercritically damped })
\end{aligned}
$$

For a type 3 loop, the phase transfer function $H(j 2 \pi f)$ is given by (Reference 13):

$$
\begin{equation*}
H(j 2 \pi f)=\frac{(j 2 \pi f)^{2} K_{1}+(j 2 \pi f) K_{2}+K_{3}}{(j 2 \pi f)^{3}+(j 2 \pi f)^{2} K_{1}+(j 2 \pi f) K_{2}+K_{3}} \tag{D-4}
\end{equation*}
$$

where

$$
\begin{array}{ll}
K_{1}=\frac{60}{23} B_{L}, & K_{2}=\frac{4}{9} K_{1}^{2}, \quad K_{3}=\frac{2}{27} K_{1}^{3},(\text { standard underdamped }) \\
K_{1}=\frac{32}{11} B_{L}, \quad K_{2}=\frac{1}{3} K_{1}^{2}, \quad K_{3}=\frac{1}{27} K_{1}^{3}(\text { supercritically damped })
\end{array}
$$

Table D-1 lists solutions to Equation (D-1) for several types of carrier loop and for two types of phase noise. These expressions are valid for residual-carrier, suppressed-carrier BPSK, or QPSK/OQPSK. $B_{L}$ is the (one-sided) noise-equivalent carrier loop bandwidth.

Table D-1. Carrier Phase Error Variance, $\sigma_{\phi}^{2}\left(\operatorname{rad}^{2}\right)$

|  | type 2 <br> standard <br> underdamped | type 2 <br> supercritically <br> damped | type 3 <br> standard <br> underdamped | type 3 <br> supercritically <br> damped |
| :---: | :---: | :---: | :---: | :---: |
| $S_{\theta}(f)=\frac{S_{2}}{f^{2}}$ | $\frac{3 \pi^{2}}{8 B_{L}} S_{2}$ | $\frac{5 \pi^{2}}{16 B_{L}} S_{2}$ | $\frac{23 \pi^{2}}{50 B_{L}} S_{2}$ | $\frac{99 \pi^{2}}{256 B_{L}} S_{2}$ |
| $S_{\theta}(f)=\frac{S_{3}}{f^{3}}$ | $\frac{9 \pi^{3}}{32 B_{L}{ }^{2}} S_{3}$ | $\frac{25 \pi^{2}}{32 B_{L}{ }^{2}} S_{3}$ | $\frac{529 \pi^{2}(\pi-\ln 2)}{1000 B_{L}{ }^{2}} S_{3}$ | $\frac{1089 \pi^{3}}{1024 B_{L}{ }^{2}} S_{3}$ |

## Appendix E Solar Phase Noise

When the Sun-Earth-probe angle is small and the spacecraft is beyond the Sun, microwave carriers pick up phase scintillations in passing through the solar corona. There is a resulting contribution to phase error in the carrier loop. The magnitude of the effect is highly variable, depending on the activity of the sun. Equation (E-1) below, based on the work reported in Reference 15 , offers a coarse estimate of the average solar contribution, in units of rad ${ }^{2}$, to carrier loop phase error variance. This equation is valid for residual-carrier, suppressed-carrier BPSK or QPSK/OQPSK, but only for sun-earth-probe angles between $5^{\circ}$ and $27^{\circ}$.

$$
\begin{equation*}
\sigma_{S}^{2}=\frac{C_{\text {band }} \cdot C_{\text {loop }}}{(\sin \beta)^{2.45} \cdot B_{L}^{1.65}}, \quad 5^{\circ} \leq \beta \leq 27^{\circ} \tag{E-1}
\end{equation*}
$$

In Equation (E-1), $\beta$ is the Sun-Earth-probe angle and $B_{L}$ is the (one-sided) noise-equivalent carrier loop bandwidth. $C_{b a n d}$ is a constant for a given set of operating bands.

For one-way or two-way noncoherent operation,

$$
C_{\text {band }}= \begin{cases}2.6 \times 10^{-5}, & \mathrm{~S}-\text { down }  \tag{E-2}\\ 1.9 \times 10^{-6}, & \mathrm{X}-\text { down } \\ 1.3 \times 10^{-7}, & \mathrm{Ka}-\text { down }\end{cases}
$$

For coherent operation,

$$
C_{\text {band }}= \begin{cases}6.1 \times 10^{-5}, & \mathrm{~S}-\text { up } / \mathrm{S}-\text { down }  \tag{E-3}\\ 4.8 \times 10^{-4}, & \mathrm{~S}-\mathrm{up} / \mathrm{X}-\text { down } \\ 5.5 \times 10^{-6}, & \mathrm{X}-\text { up } / \mathrm{X}-\text { down } \\ 5.2 \times 10^{-5}, & \mathrm{X}-\text { up } / \mathrm{Ka}-\text { down } \\ 1.9 \times 10^{-6}, & \mathrm{Ka}-\text { up } / \mathrm{X}-\text { down } \\ 2.3 \times 10^{-7}, & \mathrm{Ka}-\text { up } / \mathrm{Ka}-\text { down }\end{cases}
$$

where $C_{\text {loop }}$ is a constant for a given carrier loop.

$$
C_{\text {loop }}= \begin{cases}5.9, & \text { standard underdamped type } 2 \text { loop }  \tag{E-4}\\ 5.0, & \text { supercritically damped type } 2 \text { loop } \\ 8.2, & \text { standard underdamped type } 3 \text { loop } \\ 6.7, & \text { supercritically damped type } 3 \text { loop }\end{cases}
$$

## Appendix F Subcarrier Demodulation Loss

The subcarrier demodulation loss is discussed in this appendix in terms of Bit Error Rate (BER); but for concatenated and turbo codes, Frame Error Rate (FER) is the proper figure of merit. So for these codes, the reader should regard BER in the following equations as being a stand-in for FER.

The subcarrier demodulation loss $\eta_{S U B}$ (fractional and dimensionless) is

$$
\begin{equation*}
\eta_{S U B}=\frac{f^{-1}(B E R)}{E_{b} / N_{0}} \tag{F-1}
\end{equation*}
$$

where $f(*)$ is the ideal functional dependence of probability of bit (frame) error on bit SNR (see Appendix A), corresponding to zero decibels of system loss. In Equation (F-1) $E_{b} / N_{0}$ is the actual bit SNR needed to achieve a given threshold BER in the presence of imperfect subcarrier synchronization (with the assumption of perfect carrier and symbol synchronization); in the case of a squarewave subcarrier, it is the solution of the following equation

$$
\begin{equation*}
B E R=\int_{-\pi / 2}^{\pi / 2} f\left(\frac{E_{b}}{N_{0}}\left[1-\frac{2}{\pi}|\phi|\right]^{2}\right) p_{\phi}(\phi) d \phi \tag{F-2}
\end{equation*}
$$

where BER is, as before, the threshold bit error rate. The probability density function $p_{\phi}(\phi)$ of squarewave subcarrier loop phase error $\phi$ is modeled as having a Gaussian form within the limits $|\phi| \leq \pi / 2$ and as zero outside those limits.

$$
\begin{equation*}
p_{\phi}(\phi)=\frac{\exp \left(-\rho_{S U B} \phi^{2} / 2\right)}{\int_{-\pi / 2}^{\pi / 2} \exp \left(-\rho_{S U B} \psi^{2} / 2\right) d \psi} \tag{F-3}
\end{equation*}
$$

where $\rho_{S U B}$ is the squarewave subcarrier loop signal-to-noise ratio as computed from Equation (37). Equations (F-1), (F-2), and (F-3) define the subcarrier demodulation loss for a squarewave subcarrier. The presence of $f(*)$ in Equation (F-2) means that the subcarrier demodulation loss depends on the coding scheme; it also depends on the threshold BER.

For a sinewave subcarrier, the subcarrier demodulation loss is governed by Equations (B-1), (B-2), and (B-4), which also characterize the HRM radio loss with suppressed carrier, except that $\sigma_{\phi}^{2}$ is replaced by $1 / \rho_{S U B}$, where $\rho_{S U B}$ is the sinewave subcarrier signal-tonoise ratio as defined in Equation (37).

## Appendix $G$

## Symbol Loop Squaring Loss

Symbol loop squaring loss $S_{S Y M}$ is given by (Reference 11)

$$
\begin{equation*}
S_{S Y M}=\frac{\left[\operatorname{erf}\left(\sqrt{E_{S} / N_{0}}\right)-\frac{W_{S Y M}}{2} \sqrt{\frac{E_{S} / N_{0}}{\pi}} \exp \left(-E_{S} / N_{0}\right)\right]^{2}}{1+\frac{W_{S Y M}}{2} E_{S} / N_{0}-\frac{W_{S Y M}}{2}\left[\frac{1}{\sqrt{\pi}} \exp \left(-E_{S} / N_{0}\right)+\sqrt{E_{S} / N_{0}} \operatorname{erf}\left(\sqrt{E_{S} / N_{0}}\right)\right]^{2}} \tag{G-1}
\end{equation*}
$$

where the error function is given by

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-y^{2}} d y \tag{G-2}
\end{equation*}
$$

$E_{S} / N_{0}$ is the ratio of the energy in one binary symbol to the one-sided noise spectral density. In the case of suppressed-carrier BPSK, this is $\left(P_{T} / N_{0}\right) T_{S Y M}$, where $T_{S Y M}$, is the binary symbol period. In the case of QPSK/OQPSK, only half the total power is available for symbol synchronization but the quaternary symbol period is double the binary symbol period. So for QPSK/OQPSK, the same $E_{S} / N_{0}$ should be used as with suppressed-carrier BPSK, since

$$
\begin{equation*}
\frac{1}{2}\left(P_{T} / N_{0}\right) \cdot 2 T_{S Y M}=\left(P_{T} / N_{0}\right) \cdot T_{S Y M} \tag{G-3}
\end{equation*}
$$

## Appendix H Symbol Synchronization Loss

The symbol synchronization loss is discussed in this appendix in terms of Bit Error Rate (BER); but for concatenated and turbo codes, Frame Error Rate (FER) is the proper figure of merit. So, for these codes, the reader should regard BER in the following equations as being a stand-in for FER.

The symbol synchronization loss $\eta_{S Y M}$ (fractional and dimensionless) is

$$
\begin{equation*}
\eta_{S Y M}=\frac{f^{-1}(B E R)}{E_{b} / N_{0}} \tag{H-1}
\end{equation*}
$$

where $f(*)$ is the ideal functional dependence of probability of bit (frame) error on bit SNR (see Appendix A), corresponding to zero decibels of system loss. In Equation (H-1) $E_{b} / N_{0}$ is the actual bit SNR needed to achieve a given threshold BER in the presence of imperfect symbol synchronization (with the assumption of perfect carrier and subcarrier synchronization); it is the solution of the following equation

$$
\begin{equation*}
B E R=\int_{-\pi / 2}^{\pi / 2} f\left(\frac{E_{b}}{N_{0}}\left[\frac{1}{2}\left\{1+\left(1-\frac{|\phi|}{\pi}\right)^{2}\right\}\right]\right) p_{\phi}(\phi) d \phi \tag{H-2}
\end{equation*}
$$

where BER is, as before, the threshold bit error rate. The probability density function $p_{\phi}(\phi)$ of symbol loop phase error $\phi$ is modeled as having a Gaussian form within the limits $|\phi| \leq \pi / 2$ and as zero outside those limits.

$$
\begin{equation*}
p_{\phi}(\phi)=\frac{\exp \left(-\rho_{S Y M} \phi^{2} / 2\right)}{\int_{-\pi / 2}^{\pi / 2} \exp \left(-\rho_{S Y M} \psi^{2} / 2\right) d \psi} \tag{H-3}
\end{equation*}
$$

In Equation (H-3) $\rho_{S Y M}$ is the symbol loop signal-to-noise ratio as computed from Equation (45).

## Appendix I Rician Fading at Small Sun-Earth-Probe (SEP) Angles

The discussion in this appendix is in terms of Bit Error Rate (BER); but for concatenated and turbo codes, Frame Error Rate (FER) is the proper figure of merit. So for these codes, the reader should regard BER in the following equations as being a stand-in for FER.

The BER of a signal subjected to Rician fading is given by

$$
\begin{equation*}
B E R=\int_{0}^{\infty} f\left(x^{2} E_{b} / N_{0}\right) p_{r}(x) d x \tag{I-1}
\end{equation*}
$$

where $f(*)$ is the ideal functional dependence of probability of bit (frame) error on bit SNR (see Appendix A) in the absence of amplitude scintillation and system loss. Equation (I-1) represents an averaging over the random, normalized amplitude factor $r$, which is governed by the Rician probability density function

$$
\begin{equation*}
p_{r}(x)=2 x(1+K) \exp (-K) \exp \left[-(1+K) x^{2}\right] \mathrm{I}_{0}(2 x \sqrt{K(1+K)}), \quad r \geq 0 \tag{I-2}
\end{equation*}
$$

where $\mathrm{I}_{0}(*)$ is the modified Bessel function of the first kind of order zero and $K$ is the Rice factor $(K>0)$. A smaller Rice factor indicates more severe fading. This Rice factor $K$ is related to the scintillation index $m$ by

$$
\begin{equation*}
K=\left(\frac{1}{m^{2}}-1\right)+\sqrt{\left(\frac{1}{m^{2}}-1\right)^{2}+\left(\frac{1}{m^{2}}-1\right)} \tag{I-3}
\end{equation*}
$$

A coarse approximation for the scintillation index is given by

$$
m= \begin{cases}\frac{0.01}{(\sin \beta)^{1.55}}, & \mathrm{~S}-\text { band }  \tag{I-4}\\ \frac{0.0016}{(\sin \beta)^{1.55}}, & \mathrm{X} \text { - band } \\ \frac{0.00024}{(\sin \beta)^{1.55}}, & \mathrm{Ka}-\text { band }\end{cases}
$$

where $\beta$ is the SEP angle. Equation (I-4) is based on the observations reported in Reference 16. In general, Equation (I-1) must be evaluated numerically.

## Appendix J <br> References

(1) J. B. Berner and K. M. Ware, "An Extremely Sensitive Digital Receiver for Deep Space Satellite Communications," Eleventh Annual International Phoenix Conference on Computers and Communications, pp. 577-584, Scottsdale, Arizona, April 1-3, 1992.
(2) J. P. Costas, "Synchronous Communications," Proceedings of the IRE, Vol. 44, pp. 1713-1718, December 1956.
(3) P. W. Kinman and J. B. Berner, "Two-Way Ranging During Early Mission Phase," 2003 IEEE Aerospace Conference, Big Sky, MT, March 8-15, 2003.
(4) M. Aung, W. J. Hurd, C. M. Buu, J. B. Berner, S. A. Stephens, and J. M. Gevargiz, "The Block V Receiver Fast Acquisition Algorithm for the Galileo S-Band Mission," TDA Progress Report 42-118, pp. 83-114, August 15, 1994.
(5) J. Lesh, "Tracking Loop and Modulation Format Considerations for High Rate Telemetry," DSN Progress Report 42-44, pp. 117-124, April 15, 1978.
(6) M. K. Simon and W. C. Lindsey, "Optimum Performance of Suppressed-Carrier Receivers with Costas Loop Tracking," IEEE Transactions on Communications, Vol. COM-25, No. 2, pp. 215-227, February 1977.
(7) L. C. Palmer and S. A. Klein, "Phase Slipping in Phase-Locked Loop Configurations That Track Biphase or Quadriphase Modulated Carriers," IEEE Transactions on Communications, pp. 984-991, October 1972.
(8) S. Shambayati, L. Tadjpour, and P. Kinman, "Turbo Code Carrier Synchronization Losses (Radio Losses)," AIAA 19 ${ }^{\text {th }}$ International Communications Satellite Systems Conference and Exhibit, Toulouse, France, April 17-20, 2001.
(9) S. Shambayati, "Radio Losses for Concatenated Codes," IPN Progress Report 42-151, November 15, 2002.
(10) W. J. Hurd and S. Aguirre, "A Method to Dramatically Improve Subcarrier Tracking," TDA Progress Report 42-86, pp. 103-110, August 15, 1986.
(11) M. Aung, "Tracking Performance and Cycle Slipping in the All-Digital Symbol Synchronizer Loop of the Block V Receiver," TDA Progress Report 42-111, pp. 179191, November 15, 1992.
(12) J. H. Yuen, editor, Deep Space Telecommunications Systems Engineering, Plenum Press, New York, 1983.
(13) S. A. Stephens and J. B. Thomas, "Controlled-Root Formulation for Digital PhaseLocked Loops," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 1, pp. 78-95, January 1995.
(14) D. Halford, J. H. Shoaf, and A. S. Risley, "Spectral Density Analysis: Frequency Domain Specification and Measurement of Signal Stability," Proceedings of the 27th Annual Symposium on Frequency Control 1973, Cherry Hill, New Jersey, 1973, pp. 421-431. (Also published as NBS Technical Note 632.)
(15) R. Woo and J. W. Armstrong, "Spacecraft Radio Scattering Observations of the Power Spectrum of Electron Density Fluctuations in the Solar Wind," Journal of Geophysical Research, Vol. 84, No. A12, pp. 7288-7296, December 1, 1979.
(16) J. W. Armstrong and R. Woo, "Solar Wind Motion Within $30 R_{\Theta}$ : Spacecraft Radio Scintillation Observations," Astronomy and Astrophysics, Vol. 103, pp. 415-421, 1981.

Deep Space Network

## 208 <br> Telemetry Data Decoding

Document Owner:

Signature Provided
Andrew O'Dea Date
DSN TT\&C System Engineer

Approved by:

Signature Provided
01/09/2013
Timothy. T. Pham Date
DSN Communications Systems Chief Engineer

Released by:

Signature Provided
01/09/2013

DSN Document Release
Date

DSN No. 810-005-208, Rev. B
Issue Date: January 10, 2013
JPL D-19379
Jet Propulsion Laboratory
California Institute of Technology
Users must ensure that they are using the current version in DSN Telecommunications Link Design Handbook website: http://eis.jpl.nasa.gov/deepspace/dsndocs/810-005/
© <2013> California Institute of Technology.
U.S. Government sponsorship acknowledged.

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | $12 / 06$ |
| :--- | :--- |
| Jeff Berner | Date |
| DSN Project Chief Engineer |  |

## Document Change Log

| Rev | Issue Date | Prepared By | Affected Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| Initial | 11/30/2000 | Robert Sniffin | All | Initial Release |
| Chg 1 | 03/31/2004 | Robert Sniffin | Figures 3, 17 | Corrects third generator polynomial hexadecimal representation in Figure 3. Removes implication in Figure 17 that Turbo code performance can be extrapolated below FER $=10^{-5}$ |
| A | 05/18/2009 | Robert Sniffin | All | Deletes obsolete code types. Provides additional information on supported codes. Adds LDPC codes as a proposed capability |
| B | 01/10/2013 | Christine Chang <br> Robert Sniffin | Table 1 <br> Table 3 <br> Table 5 <br> Figure 21 | Corrected the specification of the connection vectors for the (7, $1 / 2$ ) convolutional code in Table 1. <br> Added decoder throughput for the 26 GHz signal path in Table 1. <br> Changed codeblock length from 17949 (rate 1/2) to 17848 (per CCSDS 131.0- <br> B-1 "CCSDS TM Sync and Channel Coding") in Table 3. <br> Changed codeblock length from 76772 (rate 1/3) to 26772 (per CCSDS 131.0- <br> B-1 "CCSDS TM Sync and Channel Coding") in Table 3. <br> Removed distinction of Turbo decoding in Table 5. <br> Added Turbo rate $1 / 2$ codes in Figure 21. |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## Contents

Paragraph Page
1 Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope ..... 6
2 General Information ..... 6
2.1 Telemetry Waveforms ..... 6
2.2 Symbol Transition Density ..... 8
2.3 BPSK, QPSK and SQPSK ..... 9
2.4 Symbol Quantization ..... 9
2.5 Forward Error Correcting Codes ..... 10
2.5.1 Convolutional Codes ..... 11
2.5.2 Frame Synchronization ..... 15
2.5.2.1 Bit Domain Frame Synchronization ..... 15
2.5.2.2 Symbol Domain Frame Synchronization ..... 17
2.5.3 Randomization and De-randomization ..... 19
2.5.4 Reed-Solomon Code ..... 20
2.5.4.1 Reed-Solomon Encoder. ..... 20
2.5.4.2 Concatenated Convolutional and Reed-Solomon Code ..... 20
2.5.4.3 Interleaving ..... 20
2.5.5 Virtual Fill ..... 23
2.5.6 Turbo Codes ..... 25
2.5.6.1 Turbo Code Encoder ..... 26
2.5.6.2 Turbo Code Decoder ..... 28
2.5.7 Code Performance ..... 29
2.6 Time Tagging ..... 31
2.7 Data Formatting ..... 32
2.8 Supported Telemetry Configurations ..... 31
3 Proposed Capability ..... 34
3.1 Low-Density Parity-check (LDPC) Codes ..... 36
References ..... 36

## Illustrations

Figure Page
Figure 1. Telemetry Modulation Waveforms ..... 8
Figure 2. Quantization Effects on Decoder Performance ..... 10
Figure 3. $k=7, r=1 / 2$ Convolutional Encoder Connection Vector Schematics ..... 12
Figure 4. CCSDS Recommended 32-bit Attached Synchronization Marker ..... 15
Figure 5. Attached Synchronization Markers for Turbo Codes ..... 18
Figure 6. CCSDS Pseudo-Randomizer/De-randomizer ..... 19
Figure 7. Berlekamp Architecture Reed-Solomon (255, 223) Encoder ..... 21
Figure 8. Effect of Interleaving on RS Performance ..... 22
Figure 9. Reed-Solomon Symbol Arrangement for Interleave Factor (I) of 5 ..... 24
Figure 10. Illustration of Virtual Fill ..... 25
Figure 11. CCSDS Turbo Encoder ..... 27
Figure 12. Turbo Code Structure in the Physical Channel ..... 27
Figure 13. Cyclic Redundancy Check Generator ..... 28
Figure 14. Relative Performance of Supported Codes ..... 30
Figure 15. Measured Performance of DSN Turbo Decoder Showing Improvement with Code Rate and Error Floor Effects (Block Size $=8920$ Bits) ..... 31
Figure 16. Example of Telemetry Data Flow Using Virtual Channels. ..... 33
Figure 17. Spacecraft and Ground Configuration for BPSK Reed-Solomon, Convolutional, and Concatenated Coding ..... 34
Figure 18. Spacecraft and Ground Configuration for BPSK Turbo Coding ..... 34
Figure 19. Spacecraft and Ground Configuration for QPSK/SQPSK Convolutional and Concatenated Coding. ..... 35
Figure 20. Spacecraft and Ground Configuration for QPSK/SQPSK Turbo Coding ..... 35
Figure 21. LDPC and Turbo Code Comparative Performance ..... 37
Tables
Table ..... Page
Table 1. Convolutional Decoder Characteristics ..... 13
Table 2. Bit Domain Frame Synchronization Parameters ..... 15
Table 3. Turbo Code Information Block and Codeblock Lengths ..... 26
Table 4. DSN Turbo Decoder Characteristics ..... 29
Table 5. DSN Time Tagging ..... 32
Table 6. Codeblock Lengths for LDPC Code Rates ..... 37

## 1 Introduction

### 1.1 Purpose

This module describes the capabilities and performance of the telemetry decoding and frame synchronization equipment used by the Deep Space Network (DSN) in order to assist the telecommunications engineer in designing compatible spacecraft equipment.

### 1.2 Scope

The detailed discussion in this module is limited to the performance of equipment that is currently installed at the Deep Space Communications Complexes (DSCCs) and performs data extraction in real time. Additional factors that affect telemetry performance such as imperfect residual or suppressed carrier synchronization (radio loss), imperfect subcarrier and symbol synchronization, and waveform distortion are discussed in module 207.

## 2 General Information

Extracting data from spacecraft return link telemetry includes those processes that convert radio frequency energy into one or more bit or symbol streams (discussed in module 207) and those processes that convert the received symbol stream to a replica of the data collected onboard the spacecraft that are discussed in this module. Throughout this module, the term bit is used to represent the smallest unit of user data and the term symbol is applied to what is transmitted through the communications channel.

### 2.1 Telemetry Waveforms

All modern spacecraft utilize pulse code modulation (PCM) to transfer binary data between the spacecraft and the mission operations. The data are phase-modulated onto an RF carrier (PCM/PM) or used to switch the phase of a subcarrier by plus or minus 90 -degrees. The subcarrier is then phase modulated on the carrier for transmission via the space link. This modulation scheme is referred to as PCM/PSK/PM. Phase modulation is used because it has a constant envelope that enables non-linear amplifiers to be used. Non-linear amplifiers tend to be more efficient than the linear amplifiers that would be necessary if the envelope (amplitude) were used to carry information. Phase modulation is also immune to most interference that corrupts signal amplitude.

Although these techniques are referred to as pulse code modulation, they do not use pulses in the conventional sense. They use non-return to zero waveforms that can be envisioned as a pulse starting as a transition from a zero voltage to some other voltage and not returning to zero until something happens. That "something" determines the characteristics and
name of the waveform. The simplest case is referred to as non-return to zero-level (NRZ-L) where the cause of the waveform returning to zero is the bit stream level changing from a one to a zero. Thus, the modulation waveform matches the data waveform. This is the most common modulation waveform used but suffers from the problem that it is impossible to tell which of the two levels is a one and which is a zero. It also has the problem that a long string of zeros or ones will prevent phase transitions from occurring that are necessary to keep the receiver symbol synchronizer in-lock.

The first of these problems can be solved by a technique called differential encoding. There are two differential encoding waveforms referred to as non-return to zero-mark (NRZ-M) and non-return to zero-space (NRZ-S). In the first case, the modulating waveform changes whenever the input is a "one" bit (or "mark" from teletypewriter terminology) and remains the same whenever the input is a "zero" bit (or "space" again, from teletypewriter terminology). The second is the opposite. The waveform changes whenever a "zero" bit occurs and remains the same whenever a "one" bit occurs. These waveforms enable the data polarity to be determined even if the detected waveform is inverted. However, a failure to properly detect a bit will always result in second error as the waveform restores itself. This causes an increase in error rate and these waveforms are not normally used for deep space communication where there is another method of determining waveform polarity (see the discussion of synchronization markers) and anything that unnecessarily increases error rate is unacceptable. Similar to NRZ-L, a long string of zeros when using NRZ-M or ones when using NRZ-S will suppress the phase transitions necessary to keep the receiver symbol synchronizer in lock

There are three other PCM modulating waveforms that have been used for spacecraft communication and solve the phase transition problem. These are bi-phase waveforms where every bit interval contains at least one phase transition. There is one bi-phase waveform corresponding to each NRZ waveform and they are referred to as $\mathrm{Bi}-\phi-\mathrm{L}, \mathrm{Bi}-\phi-\mathrm{M}$, and $\mathrm{Bi}-\phi-\mathrm{S}$. $\mathrm{Bi}-$ $\phi$-L is also referred to as Manchester or Split-phase encoding. The result of including a transition in every bit interval is to convert the transmitted spectrum to double-sideband having a total bandwidth twice that of the NRZ waveforms with the peak of each sideband at the bit rate and no energy at the center frequency. This leaves room for a residual carrier that can be detected with minimum interference from the data it carries. However, the increased bandwidth requirements of bi-phase modulation has normally limited its application to forward links where bandwidth requirements are less, the frequency of phase transitions permit a very simple (and low mass) symbol synchronizer onboard the spacecraft, and a residual carrier is useful for metric data measurements.

Figure 1 depicts the six telemetry waveforms discussed above. An inverted NRZM waveform is also included to illustrate its immunity to inversion. It is important to remember that these waveforms are not part of the telemetry encoding and decoding schemes that are used to improve telemetry performance. As mentioned above, differential encoding somewhat reduces telemetry performance. The DSN can receive any of these waveforms but uses hardware algorithms to convert them to NRZ-L either as part of the decoding process or before delivery to the customer.
$\left.\begin{array}{l}\text { DATA } \\ \text { SEQUENCE } \\ \text { NRZ-L } \\ \text { Non-return } \\ \text { to Zero-level }\end{array} \begin{array}{l}\text { NRZ-M } \\ \text { Non-return } \\ \text { to Zero-mark }\end{array}\right)$

Figure 1. Telemetry Modulation Waveforms

## $2.2 \quad$ Symbol Transition Density

The DSN derives symbol timing by observing successive phase transitions in the detected NRZ waveform and refining this estimate from additional phase transitions. This process requires that the received waveform have an adequate symbol transition density despite the nature of NRZ waveforms to produce long periods without transitions when delivering certain bit sequences. Transition density is defined as twice the probability that a symbol will be a one multiplied by the probability that it will be a zero. As, for truly random data both of these probabilities are 0.5 , the transition density can have a value between 0 and 0.5 . The DSN recommends that the transition density be between 0.25 and 0.5 (See Module 207) with the additional constraint that NRZ waveform has at least one phase transition every 64 symbol periods. It is the responsibility of the telecommunications designer to ensure that sufficient phase transitions are present in the transmitted data to maintain symbol synchronization. Several techniques for increasing the transition density are discussed below.

### 2.3 BPSK, QPSK and SQPSK

The binary NRZ waveform is used to shift the phase of the transmitted carrier or subcarrier in equal amounts from its rest phase. If the amount of phase shift is $\pm 90$ degrees, the carrier or subcarrier is fully suppressed and the modulation is referred to Binary Phase Shift Keying (BPSK). BPSK results in a 180-degree phase reversal at each NRZ waveform transition. When PCM/PSK/PM is being used, the phase transitions are normally synchronized with subcarrier zero-crossings. No such synchronization is attempted between the carrier and the data for PCM/PM.

The capacity of the communications channel can be doubled by splitting the data stream into two parts consisting of alternate symbols from the input data stream. These two parts are used to BPSK modulate carriers that are in phase quadrature with each other and the two modulated carriers are summed for transmission. This technique is referred to as Quadrature Phase Shift Keying (QPSK). Like BPSK, QPSK can produce 180-degree phase reversals when the two modulated carriers change phase at the same time. A 90-degree phase change will occur when only one of the two carriers changes phase.

Phase reversals of 180 degrees can be completely eliminated by employing Staggered QPSK (SQPSK), also referred to as Offset QPSK (QPSK). In SQPSK, one of the two waveforms is delayed by $1 / 2$ symbol period so that simultaneous phase transitions never occur and the greatest phase change in the transmitted waveform will be 90 degrees. SQPSK results in less degradation than QPSK in a bandwidth-limited channel.

The Consultative Committee for Space Data Systems (CCSDS) recommends that when a single data stream is being transferred, the stream be separated so that alternate symbols are transmitted on the two quadrature channels. The DSN supports this modulation format for all frequency bands and all supported data rates. The DSN also supports a modulation scheme for use in the near-Earth 26 GHz allocation at data rates in excess of 10 Mbps where the data stream
is split into alternate bit streams, each bit stream is convolutionally coded, and the two symbol streams are delivered to the QPSK modulators. Upon reception, the two streams are separately decoded and then combined to recover the original data stream.

### 2.4 Symbol Quantization

Convolutional and Turbo codes, discussed below under Forward Error Correcting Codes, use decoding algorithms that are able to take into consideration not only that a symbol has been detected to be a one or a zero but also that a symbol is more likely to be a one than a zero. The DSN receivers produce symbol values (referred to as soft symbols) that are quantized as 8-bit values however the standard convolutional decoder only accepts 3-bit quantization. A mapping is provided at the input of the convolutional decoder to convert the 8 -bit values to 3-bits. Figure 2 shows the effects of symbol quantization on convolutional decoder performance. This figure is included to illustrate the need to perform any conversion between NRZ-L and differential encoding prior to convolutional encoding and after convolutional decoding as the DSN does not include a decoder for differential NRZ waveforms nor a method of converting from differential
waveforms to NRZ-L without simultaneously converting them to one-bit quantization (hard symbols) which would result in a significant performance loss.


Figure 2. Quantization Effects on Decoder Performance

### 2.5 Forward Error Correcting Codes

Almost all spacecraft employ forward error correcting (FEC) codes to make more efficient use of the communications channel. Forward error correcting codes add additional symbols to the transmitted data stream that the decoder can use to improve its estimate of the encoded bit stream. The exceptions to FEC use would likely be extremely high data rate transmissions where adequate signal power is available to make the gain achieved by coding unnecessary and any bandwidth needed for the symbols added by coding is unavailable.

The DSN supports two convolutional codes, the Consultative Committee for Space Data Systems (CCSDS) standard Reed-Solomon code, and the CCSDS Turbo codes. Convolutional codes are used because they achieve significant coding gain with simple, highly reliable encoders and their decoders are of reasonable complexity. They also provide low latency and are useful when conditions may prevent a block of symbols from being received. The ReedSolomon code provides excellent performance with minimum bandwidth expansion in a high signal-to-noise environment. It is most often used as an outer code in combination with a
convolutional inner code but may be used by itself under appropriate signal conditions. Turbo codes provide near-Shannon-limit error-correction performance with reasonable encoding and decoding complexity. The DSN presently includes an additional convolutional decoder that is used for the Cassini spacecraft support but it will be removed from service at the end of that mission.

### 2.5.1 Convolutional Codes

Convolutional codes are specified by their constraint length $(K)$ and rate $(r)$. Constraint length is the number of sequential input bits required to define the output symbols at any point in time. Rate is the number of data bits with respect to the number of coded symbols expressed as a fraction. In general, the performance of a convolutional code increases directly with $k$ and inversely with $r$, but codes must be selected carefully because the channel bandwidth also varies inversely with $r$ and decoder complexity increases exponentially with $k$.

The most common convolutional code is the CCSDS $k=7, r=1 / 2(7,1 / 2)$ code. This code falls into a category referred to as transparent codes meaning that if the input to the encoder or decoder is inverted, the output will be inverted. Thus, the phase ambiguity associated with BPSK modulation does not need to be resolved until the coding gain is achieved. A convolutional encoder consists of a $k$-stage shift register with the outputs of selected stages connected by $r$ exclusive-OR connection vectors. The $r$ outputs (in this case 2 ) are transmitted alternately through the communications channel. The recommended code inverts the output of one of the two connection vectors which ensures that sufficient transitions will be available to keep the receiver symbol synchronizer in lock. A diagram of the $\operatorname{CCSDS}(7,1 / 2)$ code is shown in Figure 3. Figure 3 also shows a variation of this code used on some legacy deep space missions. The only difference between the two codes is the order in which symbols from the two connection vector outputs are transmitted. The DSN can decode either variation with or without the alternate symbols being inverted. The capabilities of the DSN convolutional decoder are summarized in Table 1.

a) CCSDS $(7,1 / 2)$ Convolutional Encoder

b) DSN Legacy $(7,1 / 2)$ Convolutional Encoder

Figure 3. $k=7, r=1 / 2$ Convolutional Encoder Connection Vector Schematics

810-005
208, Rev. B

Table 1. Convolutional Decoder Characteristics

| Parameter | Value |
| :---: | :---: |
| Constraint length | 7 |
| Code rate | 1/2 |
| Connection vectors* | $\begin{gathered} C 1=1111001, C 2=1011011 \text { or } \\ C 1=1011011, C 2=1111001 \end{gathered}$ |
| Alternate symbol inversion** | Selectable |
| Input quantization** | 3 bits (8 levels) |
| S, X, and Ka 32 GHz Symbol (Input) rate | $4 \mathrm{~s} / \mathrm{s}$ to 13.2 Ms/s (max.) |
| $\mathrm{S}, \mathrm{X}$, and Ka 32 GHz Bit (Output) rate | 6.6 Mb/s (max.) |
| Node synchronization** | Symbol Error Rate or Metric Normalization Rate |
| Node sync acquisition** | $\leq 5000$ bit times for $\mathrm{Eb} / \mathrm{N} 0 \geq 0.5 \mathrm{~dB}$ (99\% probability) |
| Performance vs. theoretical** (for 3-bit quantization) | $\leq 0.05 \mathrm{~dB}$ |
| Ka 26 GHz Symbol (Input) Rate | The ( $7,1 / 2$ ) Viterbi decoder input rate is limited to $240 \mathrm{Ms} / \mathrm{s}$. Two Viterbi decoders can be used in parallel for QPSK/OQPSK to allow coded data up to $300 \mathrm{Ms} / \mathrm{s}$ (The $300 \mathrm{Ms} / \mathrm{s}$ limit comes from the demodulator, not the decoder.).*** <br> Modulation is limited to $150 \mathrm{Ms} / \mathrm{s}$ (BPSK) or $300 \mathrm{Ms} / \mathrm{s}$ (QPSK/OQPSK). |
| Ka 26 GHz Bit (Output) Rate | Output bit rate is limited to: <br> - $75 \mathrm{Mb} / \mathrm{s}$ for Viterbi-encoded BPSK <br> - $150 \mathrm{Mb} / \mathrm{s}$ for uncoded BPSK <br> - $120 \mathrm{Mb} / \mathrm{s}$ for single Viterbi-encoded QPSK/OQPSK <br> - $150 \mathrm{Mb} / \mathrm{s}$ for dual Viterbi-encoded QPSK/OQPSK <br> - $300 \mathrm{Mb} / \mathrm{s}$ for uncoded QPSK/OQPSK |

Note:

[^1]** Except for Ka 26 GHz reception.
*** The limitation of the upper range of the input rate is on how fast an instance of the convolutional decoder can decode. The implementation of the ( $7,1 / 2$ ) Viterbi decoder runs at a maximum symbol rate of $240 \mathrm{Ms} / \mathrm{s}$. For higher symbol rates, the spacecraft needs to use QPSK/OQPSK and run two separate Viterbi encoders, one on "I" and one on "Q" channel. Each of these Viterbi decoders handles half of the symbols. For example at 300 $\mathrm{Ms} / \mathrm{s}$ OQPSK, two Viterbi decoders would be running in parallel, with each decoder handling $150 \mathrm{Ms} / \mathrm{s}$.

A convolutional decoder must establish node synchronization in order to correctly decode the incoming symbols. That is, which symbol of each received symbol pair represents the first symbol that was transmitted. For an $r=1 / 2$, transparent code, there are only two possibilities. The DSN decoder provides two methods for doing this, symbol error rate (SER) node synchronization and metric normalization rate (MNR) control.

The first method relies on the fact that when the decoder is operating properly the probability of the decoder falsely decoding a bit is at least two orders of magnitude less than the probability of a channel symbol error. The output can therefore be re-encoded and the resultant symbols compared with a delayed copy of the received symbols (to account for decoder delay). The number of differences between these two symbol streams will be an almost true count of the number of symbol errors received by the decoder. The maximum number of symbol errors and the interval over which these symbol errors are counted may be set over the range of 1 to 65535 at decoder initialization. Engineering research suggests that the decoder should obtain proper node sync alignment when the maximum number of symbol errors is set to 420 and the number of decoded bits in which this count is reached is set to 2000 provided the symbol SNR is greater than or equal to -2.5 dB . This same technique of re-encoding the output bits and comparing them to a suitably delayed version of the input symbol stream is used to provide an estimate of the $E_{b} / N_{0}$ with an accuracy of 0.1 dB provided that symbol errors are occurring. Under signal level conditions greater than $E_{b} / N_{0}=12 \mathrm{~dB}$ (where there are few symbol errors), the estimate of $E_{b} / N_{0}$ becomes unreliable.

The second method relies on the fact that decoders based on the Viterbi algorithm maintain state metrics that need to be normalized periodically to prevent register overflow. If normalizations are occurring more frequently than a preset interval, the decoder will switch to the alternate node sync and attempt reacquisition. Both the permitted number of normalizations and the interval (as a number of decoded bits) over which this permitted number is accumulated may be set during encoder initialization. The maximum number of normalizations may be set over the range from 4 to 2036 , modulo $8(4,12,20, \ldots, 2036)$ and the interval used to detect this threshold may be set to the greater of 256 or 1 to 65535 , modulo 256 bits. Engineering research suggests that the decoder should obtain proper node sync alignment with the maximum number of normalizations set to 180 and the interval set to 2048 bits provided the symbol SNR is greater than or equal to -2.5 dB .

For extremely low signal-to-noise ratios or if the received symbol stream is invalid, there is a possibility that the decoder will choose the wrong node sync position. If this is detected, the decoder can be commanded to attempt resynchronization but there is no guarantee that the resynchronization will result in the alternate node sync being chosen.

The output stage of the convolutional decoder can be set to perform the conversion to NRZ-L should another telemetry waveform have been employed on the RF channel. The decoder can be operated in a pass-through mode (no decoding) so the waveform conversion capability can be used for data that are not convolutionally coded.

The convolutional decoder presently used for the Cassini spacecraft support is capable of decoding constraint lengths up to $k=15$ and rates to $r=1 / 6$. As noted earlier, this decoder will be removed at the end of the Cassini project.

### 2.5.2 Frame Synchronization

Frame synchronization must be established before processing any block code such as Reed-Solomon or Turbo codes or before formatting the data for delivery. Synchronization is accomplished by preceding each codeblock or transfer frame with a fixed-length Attached Synchronization Marker (ASM). This known bit pattern can be recognized to determine the start of the codeblocks or transfer frames. It also can be used to resolve the phase ambiguity associated with BPSK or QPSK (SQPSK or OQPSK) modulation. The DSN contains two frame synchronizers. The first of these operates in the bit domain and is used with convolutionally coded, Reed-Solomon coded, or uncoded data. The second operates in the symbol domain and is used with Turbo coded data.

### 2.5.2.1 Bit Domain Frame Synchronization

The Consultative Committee for Space Data Systems has adopted the 32-bit ASM shown in Figure 4 for synchronization in the bit domain. The pattern is represented in hexadecimal as 1ACFFC1D but any pattern having a length of 8 to 64 bits such as the Inter-range Instrumentation Group (IRIG) patterns can be accommodated.


Figure 4. CCSDS Recommended 32-bit Attached Synchronization Marker

The DSN bit-domain frame synchronizer operation is defined by four operating modes: Search, Verify, Lock, and Flywheel. Parameters that affect the operation of the synchronizer are discussed in the following paragraphs and summarized in Table 2.

Table 2. Bit Domain Frame Synchronization Parameters

810-005
208, Rev. B

| Parameter | Value |
| :---: | :---: |
| Frame length | $8-65536$ bits in multiples of 8 |
| ASM length | $8-64$ bits |
| ASM search direction | Forward, Reverse, or Both |
| Bit-slip window | 0 to 3 bits |
| In-lock bit error tolerance <br> (permissible ASM bit errors while achieving lock) | 0 to 31 bits |
| Number of verify frames | 0 to 31 |
| Automatic polarity correction | Enable or Disable |
| Out-of-lock bit error tolerance <br> (permissible ASM bit errors while in-lock) | 0 to 31 bits |
| Maximum flywheel frames | 0 to 31 |
| Maximum time to achieve lock | 4 frames provided BER(99.6\% probability) |
| 2 |  |

In the Search mode, the synchronizer assembles all received bits into blocks of the specified length while it attempts to find a pattern in the data that differs from the known ASM by less than a specified number of bit errors. The specified number of bit errors from the synchronization marker is called the In-lock Bit Error Tolerance (IL_BET) and can have a value from 0 to 31. It does this for the ASM as specified, the inverse of the ASM as specified and, if requested, both the normal and inverse of the ASM with the bit order reversed. When a suitable pattern is found, the block being assembled is flagged as a short block ending with the assumed sync marker and the subsequent received bits are collected into a new data block of the specified length for delivery to the next step in the telemetry processing process. At this point, the synchronizer advances to the Verify mode. Should an inverse of the ASM have been detected, the polarity of all bits is inverted at they are assembled in the data block. Thus, the ambiguity associated with BPSK modulation is automatically resolved.

In the Verify mode, the synchronizer starts looking for an acceptable ASM a few bit periods (referred to as the bit-slip window) before the specified length of the data block. An "acceptable" marker is one that has no more than IL_BET bit errors from the one previously detected. Should it find the pattern, it increments a counter towards declaring synchronization to be in-lock. Should it not find the pattern, it places the bits that it expected to be a sync maker at the front of the next data block and reverts to the Search mode until a suitable marker is found. The synchronizer remains in the Verify mode until the required number of sequential frames has been found at which time the synchronizer advances to the Lock mode. This number of frames that must be successfully detected before declaring lock can be set over the range of 0 to 31 with zero meaning that the Verify mode is skipped.

In the Lock mode, the synchronizer continues to examine the data stream for an acceptable ASM within the bit slip window using a bit error tolerance referred to as the Out-oflock Bit Error Tolerance (OOL_BET) that can be set independently of IL_BET over the range of 0 to 31. The synchronizer remains in the Lock mode until no acceptable ASM is detected. Should this occur, the synchronizer places itself in the Flywheel mode.

In the Flywheel mode, the synchronizer discards the received bits that occurred where the ASM was anticipated and continues to place the remaining received bits into blocks of the specified frame size. It will continue this process until from 0 to 31 ASMs have been missed at which point it will switch to the Search mode. Should a frame with less than IL_BET errors be recognized at the appropriate place and before the maximum number of flywheel frames has occurred, the synchronizer will return to the Lock mode.

### 2.5.2.2 Symbol Domain Frame Synchronization

The symbol domain bit synchronizer is part of the DSN Turbo decoder and includes automatic polarity correction to resolve the BPSK phase ambiguity. Although the operation is essentially similar to the bit domain frame synchronizer, the parameters have been optimized through simulations and are not available for user modification.

Synchronization in the symbol domain requires longer synchronization markers because the lack of coding gain before synchronization can result in enough symbol errors occurring during a 32-bit sequence to prevent reliable recognition. In addition, the performance gain that is achieved by increasing the code rate comes at the expense of a further reduction of symbol signal to noise ratio resulting in a further increase in symbol errors. To accommodate these factors, the CCSDS has recommended synchronization markers having a length of 32 symbols divided by the code rate, $r$. The recommended CCSDS synchronization markers for Turbo codes are illustrated in Figure 5.

FIRST TRANSMITTED
SYMBOL (SYMBOL 0)

Rate $=1 / 2 \quad 034776$ C 7272895 B 0

LAST TRANSMITTED
SYMBOL (SYMBOL 64)


Rate $=1 / 4$

Rate $=1 / 6$

FIRST TRANSMITTED
SYMBOL (SYMBOL 0)

034776 C 7272895 B 0
FCB88938D8D76A4F
LAST TRANSMITTED
SYMBOL (SYMBOL 128)

FIRST TRANSMITTED
SYMBOL (SYMBOL 0)
25 D 5 C OCE 8990 F6C9461 BF79C
DA 2 A 3 F 31766 F 0936 B 9 E 40863
LAST TRANSMITTED SYMBOL (SYMBOL 192)

Figure 5. Attached Synchronization Markers for Turbo Codes

810-005
208, Rev. B

### 2.5.3 Randomization and De-randomization

The transition density of data may not be adequate for the receiver to maintain symbol synchronization if the data have not been convolutionally coded or when convolutional coding is used without alternate symbol inversion. This is especially true with NRZ-L uncoded data or when Reed-Solomon coding is used by itself as a sequence of consecutive ones or zeros for some period will provide no transitions.

The required transition density can be achieved for all data streams by modulotwo adding a standard pseudo-random, 255-bit sequence to the stream as it is formed into codeblocks or transfer frames for transmission and then modulo-two adding the same sequence to the received data in the received codeblocks. The code is arranged so that the first bit of the code is added to the first bit in the codeblock or transfer frame and the code is repeated as many times as necessary until the codeblock or transfer frame is completed. The DSN provides the capability to de-randomize uncoded, convolutionally coded, and Reed-Solomon coded data using the CCSDS pseudo-randomizer illustrated in Figure 6.


Modulo 2 Adder (XOR)

A Reset each bit to 1 during ASM insertion (transmit) or detection (receive)
B Randomized Symbols (transmit) or de-randomized symbols (receive)

Figure 6. CCSDS Pseudo-Randomizer/De-randomizer

### 2.5.4

## Reed-Solomon Code

Reed-Solomon (RS) codes are linear block codes for hard-coded (one-bit digitized) data streams. They are often used in combination with a convolutional inner code that is applied between the point at which the RS coding is complete and the communications channel and then removed prior to RS decoding. In high signal-to-noise environments the RS and convolutional codes can be used independently. The code is systematic, meaning that the input bits appear, unchanged, in the output stream followed by parity information that is used by the decoder to correct errors. This property can be useful in forensic analysis of corrupted data. The codes, themselves, are also transparent however, the DSN implementation will always resolve the BPSK phase ambiguity prior to RS decoding. This is important because use of virtual fill, described below, renders the code non-transparent.

The RS code adopted by the DSN is one of the two RS codes recommended by the CCSDS and is referred to as the RS $(255,223)$ code. The code divides the input bits into 8 -bit sequences to form symbols that are concatenated into a 255 symbol codeword. The RS encoder creates parity symbols from these information symbols that enable the decoder to correct any combination of $E$ or fewer symbol errors in each codeword. The value $E$ is referred to as the code redundancy and, for the supported code, has a value of 16 . The output of the encoder consists of the 255 information symbols followed by $32(2 E)$ parity symbols. A complete description of this code is contained in references 3 and 4.

### 2.5.4.1 Reed-Solomon Encoder

The most common architecture for an RS encoder is named the Berlekamp Architecture, after its inventor. This architecture, in combination with appropriate selection of the RS code generator polynomial, enables parity symbols to be calculated using bit-serial multipliers constructed with a matrix of exclusive OR gates. Figure 7 shows the design of a Berlekamp encoder for producing the DSN/CCSDS standard RS code that includes support for interleaving and virtual fill as discussed below.

### 2.5.4.2 Concatenated Convolutional and Reed-Solomon Code

Errors in convolutionally coded channels tend to occur in bursts that result when noise causes the decoder to momentarily follow the wrong path through the decoding trellis. The combination of an outer Reed-Solomon (RS) code with an inner convolutional code provides good burst-error correction with minimal bandwidth expansion.

### 2.5.4.3 Interleaving

The burst errors associated with Viterbi decoding can be as long as several constraint lengths and equivalent to several consecutive RS symbols. Thus, several closely spaced error bursts can exceed an RS decoder's error correction capability. Interleaving is a technique that spreads the effects of burst errors across several RS codewords. The effect of interleaving RS coding performance is illustrated in Figure 8.


Figure 7. Reed-Solomon Encoder for RS $(223,255)$ Code


Figure 8. Effect of Interleaving on RS Performance

Interleaving is accomplished by storing partially completed parity symbols in 31, $8 I$-bit shift registers for parity symbols ( $I-1$ ) through $32 I$ and one $8(I-1)$-bit shift register, where $I$ is the interleave factor so that the parity symbols from any codeblock are not transmitted consecutively. The first 8 bits of input data are collected to form an RS symbol as these bits are being delivered to the convolutional encoder or the information channel. When the symbol is complete, it is transferred into the parity computer that computes the first bit of partial parity "instantaneously" so an output of the parity registers is available for modulo two addition (XOR) with the first bit of the next input symbol. This output will either be the result of the parity calculation if $I=1$ or a zero if $I>1$. As the remaining 7-bits of the second symbol are being collected, seven additional bits of partial parity are calculated from the first symbol and pushed into the parity registers resulting in additional bits being supplied for modulo two addition as the input bits are formed into symbols. This process continues until 223I symbols have been processed When I symbols have been processed, the output of the parity registers ceases to be the zeroes and each output bit includes the partial parity computed at all prior $8 I$ intervals.

When 223I input symbols have been processed but before the last symbol is transferred to the parity calculation matrix, the input bit stream is set to all zeroes, guaranteeing that there will be no further changes to the collected parity symbols, and the output of the parity register array is connected to the convolutional encoder or the information channel. The last symbol is then processed resulting in the first parity symbol being delivered to the convolutional encoder or the information channel and the remaining symbols are clocked from the array while the array is filled with zeroes in preparation for processing the next codeblock.

Since the input data are passed directly to the convolutional encoder or information channel as the parity symbols are being calculated, the code remains systematic - independent of the interleave factor. The 32 parity symbols from the 223 I blocks of information symbols are dispersed across the entire $32 I$ parity symbol portion of the codeblock at $I$-symbol intervals. Figure 9 illustrates the symbol arrangement for an interleave factor of 5.

When the data are received, they are written into an array from which the parity symbols associated with each of the I RS codewords can be separated. DSN supports interleaving for values of $I$ between 1 (no interleaving) and 8.

### 2.5.5 Virtual Fill

The maximum amount of input data that can be transmitted in a codeblock varies from 1784 bits (with no interleaving) to 14,272 bits (with an interleaving depth of 8 ). If a transfer frame has less data than $1784 I$ bits (where $I$ is the interleave factor), the codeblock can be completed by inserting virtual fill (all-zero RS symbols) between the ASM and the start of the input data. The amount of virtual fill (in units of 8-bits) must be fixed for a tracking pass and is inserted into the parity generator by the encoder and into the received symbol stream before it is decoded however these extra symbols are not transmitted. It is the fact that zeroes are inserted into the received data stream by the decoder that renders the code non-transparent because,


Figure 9. Reed-Solomon Symbol Arrangement for Interleave Factor (/) of 5
should an inversion have occurred, it would be necessary to insert ones instead of zeroes and this cannot be known. The efficiency of RS coding will decrease as the amount of virtual fill increases as the number of parity symbols remains fixed while the number of data symbols decreases. An illustration of virtual fill is shown in Figure 10.

RS Encoder


Figure 10. Illustration of Virtual Fill

### 2.5.6 Turbo Codes

Turbo codes provide error correction performance within approximately 0.8 dB of the theoretical limit at a BER of $10^{-6}$. This performance is achieved using encoders and decoders of reasonable complexity but at the expense of increased latency. A turbo code is a systematic block code where two sets of parity symbols from independent recursive convolutional encoders are provided. The encoders employ trellis termination so that the codeblock both begins and ends in a known state.

The use of recursive convolutional encoders is one feature of turbo codes. The second is the presence of an interleaver at the input of one of the convolutional encoders that changes the order of the information bits before they are encoded. It is the presence of the interleaver that establishes the minimum latency as equaling the block size as an entire block of data must be assembled before the parity generation process can begin. Although the information bits appear, unchanged, in the encoded output, they do not appear contiguously as is the case with Reed Solomon codes.

The DSN provides support for the turbo code specified in CCSDS
Recommendation 131.0-B-1 for information block lengths ( $k$ ) of 1784, 3568, 7136, 8920 bits and nominal code rates $(r)$ of $1 / 2,1 / 3,1 / 4$, and $1 / 6$. The recommendation also permits an information block length of 16,384 bits however the encoder for this block length has not been completely specified and it is not supported by the DSN, The four supported block lengths are the same as would be required for Reed-Solomon encoding using an interleave factor $(I)$ of $1,2,4$, or 5 .

### 2.5.6.1 Turbo Code Encoder

Figure 11 illustrates the design of a CCSDS compliant turbo encoder. In actual practice, either the entire encoder or the information block buffer and interleaver (with appropriate changes to the input switching) must be duplicated to ensure a constant flow of symbols in the information channel. An actual implementation would also include the capability to preface each codeblock with the synchronization marker described above.

A block of information bits is entered into the information block buffer and the interleaver that stores them in accordance with the permutation algorithm defined by the recommendation. When the buffer and interleaver are full, the information is clocked into the encoders and the resultant symbols are transferred to the information channel in the order shown on the figure. When the last information bit has been transferred into each encoder, the switches at their inputs are placed in position 2 and the encoders permitted to run for four additional clock cycles. This causes four zeros to be entered into the encoders terminating the trellis. The encoder continues to output nonzero encoded symbols during trellis termination producing four extra symbols from the feedback line in addition to the $k$ information bits.

The presence of the trellis termination symbols results in the channel code rates being slightly smaller than the nominal code rates. The information block and codeblock lengths for the 5 supported turbo codes are shown in Table 3. The structure of the turbo encoded data in the physical channel is illustrated in Figure 12.

Table 3. Turbo Code Information Block and Codeblock Lengths

| Information block length, $k$, bits | Corresponding <br> Reed-Solomon <br> Interleave depth, $I$ | Codeblock length |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Rate $1 / 2$ | Rate $1 / 3$ | Rate $1 / 4$ | Rate ${ }^{1 / 6}$ |
| 1784 | 1 | 3576 | 5364 | 7152 | 10728 |
| 3568 | 2 | 7144 | 10716 | 14288 | 21432 |
| 7136 | 4 | 14280 | 21420 | 28560 | 42840 |
| 8920 | 5 | 17848 | 26772 | 35696 | 53544 |
| 16384* | N/A | 32776 | 49164 | 65552 | 98328 |

* Note: This information block length is not supported by the DSN.

810-005
208, Rev. B


Figure 11. CCSDS Turbo Encoder

$k=$ information block size ( $1784,3568,7136,8920$, or 16384 bits)

$$
r=\text { code rate }(1 / 2,1 / 3,1 / 4 \text {, or } 1 / 6)
$$

Figure 12. Turbo Code Structure in the Physical Channel

### 2.5.6.2 Turbo Code Decoder

Upon recognizing the end of the synchronization marker, the turbo decoder uses a demultiplexer to separate the information symbols from the two sets of parity symbols and direct the information symbols and each of the parity streams into separate decoders. Each decoder makes a Maximum A posteriori Probability (MAP) estimate for each bit from the uncoded information symbols (in normal or permuted form, as appropriate) and the parity symbols generated by its corresponding encoder. The decoders exchange their MAP estimates via the appropriate permutation matrix to be used by the opposite decoder as a priori estimates for a second iteration. The exchange of MAP estimates continues for a specified number of times or until a satisfactory convergence is reached. Engineering research recommends 10 iterations and values as low as 6 have been successfully used in high data rate applications. The final output is a hard-quantized version of the likelihood estimates from either one of the decoders.

Unlike a Reed-Solomon decoder, there comes a point where a further increase in the $E_{b} / N_{0}$ does not significantly increase a turbo decoder's performance. This region is referred to as the turbo decoder error floor and, for the recommended codes, occurs at a BER of less than $10^{-7}$. For operation near this region it is recommended that the data content of each information block be reduced to allow for a cyclic redundancy check (CRC) as an independent check on the decoding process to be inserted at the end of the codeblock. The DSN supports the 16-bit CRC specified in CCSDS Recommendation 132.0-B-1. A diagram of the CRC generator is shown in Figure 13. When CRC checking is enabled, the DSN decoder flags frames that are not successfully decoded but delivers all bits to the user.


Figure 13. Cyclic Redundancy Check Generator

In addition to the latency required to create turbo-encoded data onboard the spacecraft, the DSN requires time to perform the iterative decoding process. The DSN turbo decoder is actually a set of parallel decoder modules where each module is filled with symbols while previously filled modules are either iterating or delivering their decoded results. The
decoder provides control over the number of iterations performed and a dimensionless convergence confidence threshold normally set at 100 . The decoding process is considered complete if the confidence level at the end of an iteration exceeds the selected confidence threshold or if the specified maximum number of iterations is reached. The characteristics of the DSN Turbo Decoder are summarized in Table 4.

Table 4. DSN Turbo Decoder Characteristics

| Parameter | Value |
| :---: | :---: |
| Code Supported | CCSDS |
| Information Block Lengths $(K)$ | $1784,3568,7136,8920$ |
| Code Rates $(r)$ | $1 / 2,1 / 3,1 / 4,1 / 6$ |
| ASM patterns | CCSDS compliant |
|  | Rate $1 / 2,3.2 \mathrm{Msps}$ |
| Rate $1 / 3,4.8 \mathrm{Msps}$ |  |
| Maximum Input Symbol Rates | Rate $1 / 4,6.4 \mathrm{Msps}$ |
|  | Rate $1 / 6,6.0 \mathrm{Msps}$ |
| Number of Iterations | 1 to 20 (nominal = 10) |
| Stopping Rule Threshold | 0 (no confidence) to 32767 |
|  | Nominal value = 100 |
| Cyclic Redundancy Check | CCSDS 16-bit, Optional |

### 2.5.7 Code Performance

The performance of a digital communications channel is expressed in the form of an error rate that is a function of the bit energy to noise spectral density ratio $E_{b} / N_{(0)}$. The two most common error rates used are the bit error rate (BER) and the frame error rate (FER). The FER, while being often the more significant of the two measures for judging performance, does not lend itself to comparison between code types because of its dependency on the code and the characteristics of the communications channel. On the other hand, BER is easily modeled for the additive white Gaussian noise (AWGN) channel which is a reasonable approximation for the deep space communications channel. Figure 14 provides a comparison of the BER performance for the codes supported by the DSN. Figure 15 shows the measured performance of the DSN Turbo Decoder for the same 8920 bit block size as Figure 14 but showing both the effects of increased code rate and the error floor.


Figure 14. Relative Performance of Supported Codes


Figure 15. Measured Performance of DSN Turbo Decoder Showing Improvement with Code Rate and Error Floor Effects (Block Size $=8920$ Bits)

### 2.6 Time Tagging

The DSN annotates every frame of data delivered to the user with its Earthreceived time. The time may be specified as the beginning or end of each data frame depending on spacecraft data processing requirements. The time is calculated by determining the exact time the synchronization marker is recognized and adding a time delay measured when the equipment was installed to move the reference point to the input of the antenna's low noise amplifier. The normal precision of the time tag is 1 ms however additional precision can be provided by agreement between the DSN and users. Time tagging capability is summarized in Table 5.

Table 5. DSN Time Tagging

| Parameter | Value |
| :---: | :---: |
| Normal Delivered Accuracy | Nearest ms |
| Station Reference | Test input port before LNA |
| Reference as Delivered | Leading edge of first bit of frame or <br> trailing edge of last bit in frame |
| Accuracy | $\pm 5$ usec (for symbol rates $>2000 \mathrm{sps}$ <br> and carrier loop SNR $\geq 20 \mathrm{~dB}$ ) |

### 2.7 Data Formatting

The result of the previously described processing is a series of fixed-length frames of telemetry data. The content of these frames may represent a single stream of telemetry data or a portion of several streams of telemetry data referred to as virtual channels, Virtual channels allocate the physical channel on a frame by frame basis identified by a virtual channel identifier. The DSN separates the frames based on the virtual channel identifier and creates independent streams of telemetry data. The use of virtual channels enables portions of the data stream to be delivered to different locations or with different latencies. Two types of telemetry frames are supported. Version I Frames, originally specified in CCSDS Recommendation 102.0-B, have the capability to support up to eight virtual channels numbered from 0 to 7. Version II Frames, originally specified in CCSDS Recommendation 701.0-B, have the capability to support up to sixty-four virtual channels. The DSN can combine from 1 to 16 of these channels into virtual data streams and the same virtual channel may appear in multiple virtual data streams. The number of virtual data streams that can be created for any one project is limited to 16 .

Figure 16 provides an example of telemetry data flow when virtual channels are used. As shown in the figure, the contents of a virtual channel may be created by combining packets from multiple sources. The packets from each source are identified by a header that contains an Application Process ID (APID) and a packet length. This enables the user to separate the packets from each source. Since the virtual channel identifier and packet header fields within the transfer frames are not protected from errors, it is recommended that virtual channels not be used unless frames are known to be decoded correctly as can be determined if Reed-Solomon coding or a CRC field is used.

The DSN annotates each frame delivered to a user with received time and accountability information for each channel being delivered as opposed to the physical channel. The structure and detailed content of the data blocks as delivered is beyond the scope of this document but several standard formats are available and deviations to these formats can be negotiated as part of the establishment of detailed mission requirements.

Functions


Figure 16. Example of Telemetry Data Flow Using Virtual Channels

### 2.8 Supported Telemetry Configurations

Figures 17 through 20 illustrate the telemetry coding configurations for spacecraft and ground equipment that are supported by the DSN. The order in which the steps in the coding and decoding process are performed are those recommended by the CCSDS and are fixed by hardware design.


Figure 17. Spacecraft and Ground Configuration for BPSK Reed-Solomon, Convolutional, and Concatenated Coding


Figure 18. Spacecraft and Ground Configuration for BPSK Turbo Coding


Figure 19. Spacecraft and Ground Configuration for QPSK/SQPSK Convolutional and Concatenated Coding


Figure 20. Spacecraft and Ground Configuration for QPSK/SQPSK Turbo Coding

## 3 Proposed Capability

The following paragraphs discuss capabilities that have not yet been implemented by the DSN but have adequate maturity to be considered for spacecraft mission and equipment design. Telecommunications engineers are advised that any capabilities discussed in this section cannot be committed to except by negotiation with the DSN System Engineering and Commitments Office.

### 3.1 Low-Density Parity-check (LDPC) Codes

Low-Density Parity-Check (LDPC) codes have been developed that provide neartheoretical limit performance at high code rates to complement the similar performance provided by Turbo codes at low code rates. They promise to be especially useful in applications where the bandwidth required to use a Turbo code is not available or would complicate spacecraft equipment design. LDPC codes have an additional benefit that their decoder structure is more appropriate for high-speed hardware implementation and, on the average, requires fewer computations per decoded bit.

LDPC codes were originally invented by R. Gallager in 1961 but were largely forgotten for 30 years. The discovery of an iterative decoding algorithm, now referred to as Belief Propagation (BP) decoding, in the mid 1990s coupled with advances in digital processing technology revived interest in the coding technique. LDPC codes are similar to turbo codes in that they are binary block codes with large code blocks of hundreds to thousands of bits. The codes selected for deep space applications are members of a class of LDPC codes referred to as quasi-cyclic. This class of codes has an advantage that encoder implementation can be accomplished with shift registers.

The particular codes selected for deep space application are described in the CCSDS Experimental Specification 131.1-0-2. They are systematic and non transparent requiring that phase ambiguities be resolved using the frame markers that are required for codeblock synchronization. Although these codes theoretically have error floors, they are typically at least two decades below those of Turbo codes so the CRC that is recommended with Turbo codes is unnecessary with LDPC codes. The codes cannot guarantee sufficient bit transitions to keep receiver symbol synchronizers in lock so the pseudo-randomizer described in section 2.5.3 of this document is required unless the system designer verifies that sufficient symbol transition density is assured by other means. Codeblock lengths for the supported code rates are provided in Table 6.

Figure 21 is included to show how LDPC codes compliment Turbo codes. The figure is in the symbol domain to make the effects of code rate more apparent and to prevent the curves from over-writing each other if they were presented in the bit domain in a single figure.

Table 6. Codeblock Lengths for LDPC Code Rates

| Information <br> Block Length, $k$ | Codeblock Length, $n$ |  |  |
| :---: | :---: | :---: | :---: |
|  | Rate $=1 / 2$ | Rate $=2 / 3$ | Rate $=4 / 5$ |
| 1024 | 2048 | 1536 | 1280 |
| 4096 | 8192 | 6144 | 5120 |
| 16384 | 32768 | 24576 | 20480 |



Figure 21. LDPC and Turbo Code Comparative Performance

## References

2 CCSDS 102.0-B-5-S, Telemetry Channel Coding, Blue Book. Issue 5, November 2000.

3 CCSDS 130.0-G-1, Informational Report, TM Synchronization and Channel Coding - Summary of Concept and Rationale, June 2006

4 CCSDS 131.0-B-1, Recommendation, TM Synchronization and Channel Coding
5 CCSDS 131.1-O-2, Experimental Specification, Low Density Parity Check Codes for Use in Near-Earth and Deep Space Applications, September, 2007
6 CCSDS 701.0-B-2, Recommendation, Advanced Orbiting Systems, Networks and Data Links: Architectural Specification

Deep Space Network

## 209

Open-Loop Radio Science

Document Owner:

| Signature provided | $11 / 14 / 2023$ |
| :--- | :--- |
| Dong Shin | Date |
| OBD System Engineer |  |

Prepared By

| Signature provided | $11 / 19 / 2023$ |
| :--- | :--- |
| Stephen Rogstad | Date |
| OLR Software CDE |  |

Approved by:

| Signature provided | $11 / 13 / 2023$ |
| :--- | :--- |
| Timothy Pham | Date |
| Communications Systems Chief |  |
| Engineer |  |

Released by:
Signature provided 01/09/2024
Christine Chang
DSN Document Release Authority

DSN No. 810-005, 209, Rev. F
Issue Date: January 11, 2024
JPL D-19379; CL\#24-0315
Jet Propulsion Laboratory
California Institute of Technology

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature provided | $11 / 14 / 2023$ |  | Signature provided | 11/14/2023 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Jeff Berner Date  Sue Finley <br> DSN Project Chief Engineer   OLR Subsystem Engineer | Date |  |  |  |

## Document Change Log

| Rev | Issue Date | Prepared By | Affected <br> Sections or <br> pages | Change Summary |
| :---: | :---: | :---: | :---: | :--- |
| A | $6 / 1 / 2010$ | A. Kwok | All | Adll <br> and VLBI Science Receiver (VSR). Eliminated the <br> Rev. E designation for the document series. |
| B | $02 / 09 / 2015$ | A. Bedrossian <br> S. Finley <br> D. Shin | Section 2 | Add DSS-35 |
| C | $11 / 17 / 2016$ | A. Bedrossian <br> D. Shin | Section 2 | Add DSS-36 <br> Remove DSS-45 <br> Updated Figures <br> Some minor editorial corrections throughout the <br> document |
| D | $02 / 14 / 2019$ | S. Rogstad <br> A. Bedrossian | All | Updates for OLR Delivery <br> Remove DSS-15 |
| E | $02 / 05 / 2021$ | S. Rogstad <br> A. Bedrossian <br> S. Finley | Section 2 | Added DSS-56 and DSS-53 <br> Updated Table 2 and Table 3 information <br> Some minor editorial corrections |
| F | $01 / 11 / 2024$ | D. Shin <br> S. Rogstad | Section 2 | Updated DSS-53 status and added DDA <br> annotation in Table 2 |
|  |  |  |  |  |

## Contents

Paragraph Page
1 Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope ..... 6
2 General Information ..... 6
2.1 Functions ..... 6
2.2 Hardware Configuration ..... 7
2.3 OLR Signal Processing ..... 8
2.4 Available IF Inputs ..... 11
2.5 OLR Signal Detection ..... 11
2.6 OLR Operation ..... 12
2.7 Data Delivery ..... 13
2.7.1 Ancillary Data ..... 13
2.8 Performance ..... 13
2.8.1 Frequency Stability ..... 15
2.8.2 Phase Noise ..... 15
2.8.3 Amplitude Stability ..... 16

## Figures

Figure
Page
Figure 1. OLR Signal Flow.................................................................................................... 7
Figure 2. Relationships between Processing Bands for OLR ................................................ 9

## Tables

Table Page
Table 1 - Sample of OLR Supported Bandwidths ..... 10
Table 2 - Available IF Inputs at each complex ..... 12
Table 3. Open Loop Receiver Characteristics ..... 14
Table 4. Two-Way (Uplink and Downlink) Allan Deviation Estimates ..... 16
Table 5. Uplink and Downlink Phase Noise Estimates ..... 16

## 1 Introduction

### 1.1 Purpose

This module describes the capabilities and performance of the Deep Space Network (DSN) open-loop receiving equipment used for supporting radio science (RS) experiments. Radio science experiments use the Open Loop Receiver (OLR) Subsystem.

### 1.2 Scope

This module discusses the open-loop radio science receiving equipment functions, architecture, operation, and performance. Although some RS experiments require uplink support and closed-loop Doppler and ranging data, this module only describes the open-loop recording capability that is used during radio science experiments. Open-loop recording is carried out by the OLR Subsystem. Details of the closed-loop Doppler tracking system can be found in module 202, Doppler Tracking. Details of the uplink functions can be found in the 70-m, the 34-m High Efficiency (HEF), and the 34-m Beam Waveguide (BWG) telecommunications interface modules 101, 103, and 104 respectively.

## 2 General Information

Radio science experiments involve measurements of small changes in the phase, frequency, amplitude, and polarization of the radio signal propagating from an interplanetary spacecraft to an Earth receiving station. By properly analyzing these data, investigators can infer characteristic properties of the atmosphere, ionosphere, and planetary rings of planets and satellites, measure gravitational fields and ephemerides of planets, monitor the solar plasma and magnetic fields activities, and test aspects of the theory of general relativity. Details of Radio Science System applications may be found in the JPL Publication 80-93, Rev. 1, written by S.W. Asmar and N.A. Renzetti, titled: The Deep Space Network as an Instrument for Radio Science Research. (https://ntrs.nasa.gov/search.jsp?R=19950015039).

## $2.1 \quad$ Functions

The functions of the DSN with respect to conducting radio science experiments can be summarized as follows:

- Providing uplink carrier signals to the spacecraft with a pure spectrum, including low phase noise and stable frequency.
- Acquisition, down conversion, digitization, and recording of the downlink carrier with minimal changes to its frequency, phase, amplitude stability, and polarization.
- Assuring that the expected signals are being acquired and recorded.


### 2.2 Hardware Configuration

All radio science experiments require use of the antenna, microwave, antennamounted receiving equipment, and frequency and timing equipment at the stations, as well as the receivers in the signal processing center (SPC). They also require the Ground Communications Network (GCN) to deliver data from the stations to users at JPL, where experiments are monitored. A block diagram of the open-loop receiving capability is shown in Figure 1.

The receiving equipment on each DSN antenna produces one or more intermediate frequency (IF) signals with S-band producing an IF in the range 200 to 300 MHz ; X-band $100-500 \mathrm{MHz}$ and Ka-band $100-600 \mathrm{MHz}$. These IF signals are routed to an IF Gain Control (IGC) assembly and then digitized by the IF Digitizer (IFD). The IF digitizer channelizes the IF band and sends digital packets through the Digital IF Switch (DIS) to the OLR receivers.

Each of the 8 station OLRs can support up to 16 different IF inputs and each of the 16 possible configurable recording channels (see Table 1) can have a different BW, bit depth and static/predicted frequency configuration. However, limitations to this should be noted. An OLR should not be shared between users during a track, due to concerns about interference and having to divide up the available 16 channels. Users usually need multiple channels to record a given IF. Also, the total aggregate input bit rate of each OLR cannot exceed the 10 Gbps Ethernet pipe.


Figure 1. OLR Signal Flow

### 2.3 OLR Signal Processing

The IF signal is sampled in the IF Digitizer (IFD) where it is digitized and downconverted to $0-800 \mathrm{MHz}$ complex with a center frequency of 400 MHz . However, the IF Gain Control (IGC) assembly filters the signal before entering the IFD to limit its bandwidth to the range of $85-609 \mathrm{MHz}$. This corresponds to a received frequency range of $2085-2609 \mathrm{MHz}$ at S-band, $8185-8709 \mathrm{MHz}$ at X-band, and $31785-32309 \mathrm{MHz}$ at Ka-band. However, the actual effective received frequency range will depend on the filter characteristics of the equipment on the selected antenna and may be narrower. Figure 2 illustrates the processing bandwidth through the OLR Subsystem.

The filtered IF signal is digitized at $3200 \mathrm{Ms} / \mathrm{s}$ with a 12-bit resolution, then downconverted to $0-800 \mathrm{MHz}$ complex with a center frequency of 400 MHz and an equivalent resolution of 14 bits.

The recording channel filters are specified by their bandwidths, the desired resolution (bits/sample) and an offset from the predicted sky frequency predict file. This frequency predicts file is created by the DSN network support function and contains the spacecraft frequency altered by spacecraft trajectory and Earth-rotation. Table 1 lists a sample of the supported OLR filter bandwidths and resolutions. The OLR provides many other bandwidths and bit rates, however this table shows only those typically required by RS users. For a more exhaustive list of supported OLR channel bandwidths, see Section 3.2 of 820-013 0222-Science.

IGC 1600 MHz Analog IF


Figure 2. Relationships between Processing Bands for OLR

810-005 209, Rev. F

Table 1 - Sample of OLR Supported Bandwidths

| Category | Bandwidth | Resolution (b/sample) | Upper Data Rate (b/s) |
| :---: | :---: | :---: | :---: |
| Narrowband | 200 Hz | 8,16 | 6400 |
|  | 250 Hz | 8,16 | 8000 |
|  | 500 Hz | 8,16 | 16000 |
|  | 1 kHz | 8,16 | 32,000 |
|  | 2 kHz | 8,16 | 64,000 |
|  | 4 kHz | 8,16 | 128,000 |
|  | 8 kHz | 8,16 | 256,000 |
|  | 16 kHz | 8,16 | 512,000 |
|  | 25 kHz | 8,16 | 800,000 |
|  | 50 kHz | 8,16 | $1,600,000$ |
|  | 80 kHz | 8,16 | $2,560,000$ |
|  | 100 kHz | 8,16 | $3,200,000$ |
|  | 250 kHz | 8,16 | $8,000,000$ |
|  | 500 kHz | 8,16 | $16,000,000$ |
|  |  |  | $32,000,000$ |
|  | 1 MHz | 8,16 | $64,000,000$ |
|  | 2 MHz | 8,16 | $8,000,000$ |
|  | 1 MHz | 2,4 | $16,000,000$ |
|  | 2 MHz | 2,4 | $32,000,000$ |
|  | 4 MHz | 2,4 | $32,000,000$ |
|  | 8 MHz | 2 | $64,000,000$ |
|  | 16 MHz | 2 | $128,000,000$ |
|  | 32 MHz | 2 | $160,000,000$ |
|  | 40 MHz | 2 | $200,000,000$ |
|  | 50 MHz | 2 |  |

### 2.4 Available IF Inputs

Using a single client on a server, the OLR is capable of tracking and recording channels from up to 16 IF inputs at one time. These IF inputs available at each of the 3 DSN complexes are shown in Table 2.

### 2.5 OLR Signal Detection

The OLR does not have a mechanism to align its passband to (establish lock with, or track) the received signal. Instead, it relies on predicts to position its passband. This creates a risk that a predict error might result in the wrong portion of the received spectrum being processed. To assist in recognizing this, the OLR analyzes the data in each channel and provides a detected signal indication on the main display for that channel for diagnostic purposes only.

In addition to the detected signal indication, the OLR provides a frequencydomain representation of the bandpass being recorded in each channel using a Fast-Fourier Transform (FFT). Characteristics of the FFT such as number of points, averaging, and update rate are under user control.

Table 2 - Available IF Inputs at each complex

| Goldstone IF Inputs | Madrid IF Inputs | Canberra IF Inputs |
| :---: | :---: | :---: |
| 14_S1 | 63_S1 | 43_S1 |
| 14_-S2 | 63_S2 | 43_S2 |
| 14-X1 | 63-X1 | 43-X1 |
| 14_X2 | $63-\mathrm{X} 2$ | 43-X2 |
| 24 _S1 | 65 _S1 | 34 _S 1 |
| 24 - X1 | 65 _X1 | $34-\mathrm{X1}$ |
|  |  | 34_K1* |
| 25 -X1 | 54 -S1 | 34_K2* |
| 25_X2 | 54_X1 |  |
| 25_K1* | 54_K1* | 35_X1 |
| 25_K2* | 54_K2* | 35-X2 |
|  |  | 35_K1* |
| 26 _S1 | 55_X1 | 35_K2* |
| 26 -X1 | 55_X2 |  |
| 26_X2 | 55_K1* | 36_S1 |
| 26-K1* | 55_K2* | $36^{-} \times 1$ |
| 26_K2* |  | $36-\times 2$ |
| DDA1** | $56 \ldots$ S1 | 36_K1* |
|  | 56 - X1 | 36_K2* |
|  | 56_X2 |  |
|  | 56_K1* | DDA1** |
|  | 56_K2* |  |
|  | 53_X1 |  |
|  | 53-X2 |  |
|  | 53_K1 |  |
|  | 53_K2 |  |
|  | DDA1*** |  |

*Software currently processes ' K ' as ' Ka ', Radio Science does not use K-band ( $25.5-26.0 \mathrm{GHz}$ ), only Ka-band.
**DDA1 is the downlink array subsystem, used occasionally by Radio Science. It will be replaced by DDA3 and DDA4 in middle of 2024 for dual array capability.

### 2.6 OLR Operation

Of the 8 OLRs per station, six operate in a connection (link-assigned) mode and two in a stand-alone mode. In the connection mode, the Network Monitor and Control (NMC) function receives monitor data from the OLR for displays at the NMC and provides a workstation from which the OLR can be operated. OLRs that are not assigned to a link are operated in a stand-alone mode without interference to any activities in process at the complex. Monitor data is not forwarded to the NMC by OLRs operating in the stand-alone mode.

The OLR employs a client-server architecture where each one acts as a server capable of accepting multiple connections from users operating the appropriate receiver client software at any time. In the link-assigned mode, one of these clients is the NMC workstation.

The OLR does not recognize any remote client as being superior to the others so it is up to the user to assign responsibility for control to one client with the other clients operating in a passive mode. NMC clients, on the other hand, have priority over remote clients and will terminate remote clients when brought up in a connection. Users who want to remotely monitor linkassigned OLR activities should bring up a remote client after it is put in the link.

All functions of the OLR may be performed from the OLR client in real time. Of special interest to the RS experimenter is the ability to adjust the predicted frequency profile, to slew the individual channel frequencies, to adjust FFT parameters, and to enable or disable recording for each channel.

### 2.7 Data Delivery

When recording is enabled, baseband samples and ancillary information, discussed below, are formatted into a file of one-second data records and stored on an OLR server for delivery via network playback to JPL or other users. A separate data file is created for each channel. Data delivery is via file transfer using Secure Shell (SSH) protocol. Data also may be obtained via Secure File Transfer Protocol (SFTP). The OLR is capable of playing data back in legacy 0159-Science format as well as 0222-Science format.

### 2.7.1 Ancillary Data

The following ancillary data are included as a header in each data record. A detailed description of the data is contained in DSN Document 820-013, module 0222-Science. The users will need to include the last two items in the filename for each channel to properly identify the supporting station, tracking pass, and spacecraft.

- Data record version
- Receiver configuration
- Channel identification
- Time tag for first sample in block
- Station and pass identification
- Spacecraft identification


### 2.8 Performance

The principal characteristics of the OLR are summarized in Table 3. In addition, radio science experiments are influenced by the overall stability of equipment at the stations. The following sections provide information on performance characterization in terms of frequency stability, phase noise, and amplitude stability for the ground stations.

Table 3. Open Loop Receiver Characteristics

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| Frequency Ranges Covered |  |  |
| At OLR Input (MHz) | 100-600 |  |
| Referenced to S-band (MHz) | 2,085-2,609 | S-band downlink allocation is 2,2002,290 MHz for near Earth application and $2,290-2,300 \mathrm{MHz}$ for deep space applications |
| Referenced to X-band (MHz) | 8,185-8,709 | X-band downlink allocation is 8,400$8,450 \mathrm{MHz}$ for deep space application and $8,450-8,500 \mathrm{MHz}$ for near Earth applications |
| Referenced to Ka-band (MHz) | 31,785-32,309 | Ka-band downlink allocation is 31,800$32,300 \mathrm{MHz}$ for deep space applications. |
| IF Attenuation |  | Applied by IGC |
| Range (dB) | 0-31.75 |  |
| Resolution (dB) | 0.25 |  |
| Doppler Compensation |  |  |
| Maximum Doppler Shift (km/s) | 30 | At all downlink frequencies |
| Maximum Doppler Rate ( $\mathrm{m} / \mathrm{s}^{2}$ ) | 17 | At all downlink frequencies |
| Maximum Doppler Acceleration (m/s ${ }^{3}$ ) | 0.3 | At all downlink frequencies |
| Maximum Tuning Error (Hz) | 0.5 | At all downlink frequencies |
| Maximum Bitrate ( $\mathrm{Mb} / \mathrm{sec}$ ) | 512 | Maximum recordable data rate per OLR with no performance degradation, assuming all 8 station OLRs are running at this rate. |

Table 3. OLR Characteristics (Continued)

| Parameter | Value | Remarks |
| :--- | :---: | :--- |
| Baseband Resolution (MHz) | 1 |  |
| Configurable Recording <br> Channels | 16 | Available on each of the 8 OLRs |
| Narrow Channel Tuning | $\pm 262$ |  |
| Tuning (MHz) | $<1$ |  |
| Resolution (Hz) | $200 \mathrm{~Hz} \mathrm{-50} \mathrm{MHz}$ |  |
| Recording Bandwidths | $1,2,4,8,16$ |  |
| Resolutions (bits/sample) | 1 |  |
| Time Tagging | 1 | Data is time tagged once per second |
| Resolution (s) |  | With respect to station clock |
| Accuracy ( $\mu \mathrm{s}$ ) | $128-131,072$ | Default is 1024 |
| Signal Detection Display | $1-1000$ | Default is 10 |
| Number of points in FFT | $1-10,000$ | Default is 10 |
| Spectra Averaging |  |  |
| FFT Interval (s) |  |  |

### 2.8.1 Frequency Stability

DSN stations are designed to meet radio science requirements for stability. Frequency stability of the ground station is characterized by means of Allan deviation. RS System Performance Testing (SPT) has been conducted with the exciter, transmitter, the low noise amplifier (LNA), and the OLR receiving equipment. In this test configuration, an uplink signal generated by the exciter is frequency shifted via the test translator to a downlink frequency. The downlink signal is injected at the front-end of the LNA and passed through the RF-IF downconverter IGC and IFD which provides the IF signal to the OLR. SPT excludes instability in the frequency and timing equipment and the mechanical vibrations of the antenna. This is because frequency and timing instability is cancelled out, while the mechanical vibrations of the antenna are not included in the test configuration. Measurements of these items can be obtained via other means, making it possible to provide an estimate of the overall frequency stability for the stations.

Repeated SPT measurements have provided the basis of estimating the Allan deviation over a specified integration time for the ground station. Table 4 shows the 2-way Allan deviation numbers that any DSN ground station can achieve. These estimates include all elements in the ground station that constitutes the measurement path through which the OLR data are obtained. The values shown are meant to be the upper bound for performance (i.e., the not-to-exceed numbers). The measurements and analysis have accounted for the various station types (HEF, BWG, 70m), the different frequency band combinations (S, X, and Ka ), and various system configurations.

### 2.8.2 Phase Noise

Phase stability (Spectral Purity) testing characterizes stability over very short integration times. The region of the frequency band where phase noise measurements are
performed can be as far as 10 kHz off the carrier frequency. Such measurements are reported in dB relative to the carrier $(\mathrm{dBc})$, in a 1 Hz band at a specified distance from the carrier.

Phase noise data have also been captured as part of the SPT measurements. Table 5 shows the not-to-exceed phase noise levels for the different frequency bands, at specified offsets. As is the case with frequency stability testing, these numbers have been obtained through many repeated SPT measurements. They represent what the DSN can achieve under normal operation conditions.

### 2.8.3 Amplitude Stability

Amplitude stability tests measure the amplitude fluctuations produced by the open-loop receiving system relative to a constant (mean) amplitude input signal. The amplitude stability performance is specified in terms of a threshold on the amplitude fluctuations relative to the mean amplitude, and the corresponding probability that such fluctuations will not exceed such a threshold. Analyses with the collected data indicate that the 1 -sigma number ( $67 \%$ of the time) of the amplitude stability at a given DSN station over a 30 -minute observation at any frequency bands is less than 0.2 dB . This number includes the gain variation due to antenna pointing errors.

Table 4. Two-Way (Uplink and Downlink) Allan Deviation Estimates

| Averaging Time, s | Allan Deviation |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ | $\mathbf{1 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 0 0 0}$ |
| Station |  |  |  |  |
| $34-\mathrm{m} \mathrm{HEF} / 34-\mathrm{m} \mathrm{BWG} / 70-\mathrm{m}$ |  |  |  |  |
|  | $7.0 \times 10^{-13}$ | $2.0 \times 10^{-13}$ | $3.0 \times 10^{-14}$ | $5.0 \times 10^{-15}$ |

Table 5. Uplink and Downlink Phase Noise Estimates

| Offset from Carrier, Hz | Phase Noise, dBc-Hz |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ | $\mathbf{1 0}$ | $\mathbf{1 0 0}$ |
| Frequency Band |  |  |  |
| S-band (Uplink or Downlink) | -63 | -69 | -70 |
| X-band (Uplink or Downlink) | -63 | -69 | -70 |
| Ka-band (Uplink or Downlink) | -50 | -55 | -57 |
|  |  |  |  |

Deep Space Network

## 210 <br> Delta Differential One-way Ranging

Document Owner:

| Signature Provided | $11 / 16 / 2023$ |
| :--- | :--- |
| Chris Volk | Date |
| Delta-DOR System Engineer |  |

Prepared By:

| Signature Provided | $11 / 28 / 2023$ |
| :--- | :--- |
| Dong Shin | Date |
| OBD System Engineer |  |

Approved By:

| Signature Provided | 11/28/2023 |
| :--- | :--- |
| Timothy Pham | Date |
| Communications Systems Chief |  |
| Engineer |  |

Released by:

| Signature Provided | $12 / 20 / 2023$ |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 210, Rev. E
Issue Date: January 11, 2024
JPL D-19379; CL\#23-7139
Jet Propulsion Laboratory
California Institute of Technology

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | $08 / 23 / 2023$ |
| :--- | :--- |
| Jeff Berner | Date |
| DSN Project Chief Engineer |  |

810-005
210, Rev. E

## Document Change Log

| Rev | Issue Date | Prepared By | Affected <br> Sections or <br> pages | Change Summary |
| :---: | :---: | :---: | :---: | :--- |
| Initial | $07 / 15 / 2004$ | P. W. Kinman | All | New Module |
| A | $02 / 09 / 2015$ | A. Bedrossian <br> J. S. Border <br> D. Shin | All | Replaced description of VSR with description of <br> WVSR. Added DSS-35 interface. Updated error <br> budget. |
| B | $02 / 10 / 2017$ | J. S. Border <br> D. Shin | Section 2 | Add DSS-36 interface. Remove DSS-45 interface. |
| C | $06 / 06 / 2019$ | J. S. Border | Section 2 | Replaced description of WVSR with description of <br> OLR in Section 2.1. Updated stations shown in <br> Fig. 2. Updated error budget in Section 2.5. |
| D | $02 / 05 / 2021$ | A. Bedrossian <br> J. S. Border <br> D. Shin | Figure 2 | Added DSS-53 and DSS-56. Added DSS-65 <br> decommission date. |
| E | $01 / 11 / 2024$ | D. Shin | Figure 2 | Updated DSS-53 and DSS-65 status. |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## Contents

Paragraph Page
1 Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope ..... 6
2 General Information. ..... 6
2.1 Description of the Measurement ..... 6
2.1.1 Differential One-Way Ranging ..... 7
2.1.2 $\Delta \mathrm{DOR}$ ..... 8
2.1.3 DSN Equipment for $\triangle$ DOR Support ..... 9
2.1.4 Data Acquisition ..... 13
2.2 Downlink Signal Structure and Power Allocation ..... 16
2.3 DOR Tones and Phase Ambiguity ..... 16
2.4 DDOR Measurement Error Models ..... 18
2.5 DDOR Measurement Error Budget ..... 19

## Illustrations

Figure Page
Figure 1. Geometry of Differential One-Way Ranging ..... 8
Figure 2. DSN Equipment for $\triangle$ DOR Support ..... 10
Figure 3. Phase Ambiguity with One DOR Tone ..... 17
Figure 4. Resolution of Phase Ambiguity with a Second DOR Tone ..... 18

## Tables

Table Page
Table 1. Microwave Sky Frequency Ranges for $\triangle$ DOR Tones ..... 9
Table 2. Supported Bandwidths and Resolutions with Resulting Data Rate ..... 11
Table 3. Channel Assignments for Example 1 ..... 14
Table 4. Channel Assignments for Example 2. ..... 14
Table 5. Channel Assignments for Example 3 ..... 15
Table 6. Channel Assignments for Example 4. ..... 15
Table 7. Nominal Parameter Values for Evaluation of X-band $\triangle$ DOR Error Budget ..... 20
Table 8. Delta-DOR Error Budget (1 Sigma)—Both Random and Systematic Effects ..... 22
Table 9. Delta-DOR Error Budget (1 Sigma)—Random Effects Only ..... 22
Table 10. Common Parameters for Modeling Systematic Effects (1 Sigma) ..... 23

## 1 Introduction

### 1.1 Purpose

This module describes the capabilities and identifies the performance parameters for Delta-Differential One-way Ranging ( $\triangle \mathrm{DOR}$ ) measurements at the Deep Space Network (DSN) 34-m and 70-m stations.

### 1.2 Scope

The document provides information on the Delta-Differential One-way Ranging ( $\triangle \mathrm{DOR}$ ) technique. This document describes those parameters and operational considerations that are independent of the particular antennas being used. For antenna-dependent parameters, refer to the appropriate telecommunications interface module in DSN Document 810-005, modules 101, 103 and 104 of this handbook. The interpretation of any particular $\triangle D O R$ measurement is dependent on the precise locations of the tracking antennas. Station locations are provided in module 301, Coverage and Geometry. $\triangle$ DOR signals are received by the Open Loop Receiver (OLR). The quality of a $\triangle \mathrm{DOR}$ measurement depends in part on solar wind velocity that is discussed in module 106, Solar Corona and Solar Wind Effects. Modules of 810-005 that cover DSN capabilities related to $\triangle$ DOR are listed in Appendix A.

## 2 General Information

Delta-Differential One-way Ranging is a radio-tracking technique that has proved very useful in the orbit determination of some spacecraft (References 1 and 2). A comprehensive review of $\triangle$ DOR development in the DSN is given in Reference 3. A comprehensive technical description including fundamentals, design trade-offs, and performance is given in Reference 4. Delta-DOR is an interferometric technique and therefore requires two Deep Space Stations located at different complexes for a single measurement.

### 2.1 Description of the Measurement

$\Delta \mathrm{DOR}$ uses the differential one-way range technique to provide information about the angular location of a target spacecraft relative to a reference direction where the reference direction is defined by the direction of arrival of radio waves from a source whose direction is well known. This is the origin of the " $\Delta$ " in the name " $\Delta \mathrm{DOR}$ ". The term reference source is applied to the distant source of radio waves that define the reference direction. Typically, the reference source is a quasar whose angular position in the sky is well known and cataloged, having been previously measured and studied. Sometimes, the reference source is a second spacecraft whose position in the sky is better known than that of the target spacecraft.

DSN Document 810-005, Module 107 contains the current X-band radio source catalog. Work is in progress to publish the Ka-band radio source catalog as module 108. For further information on radio source catalog development, see References 5 and 6.

Since $\triangle$ DOR provides a direct geometric determination of spacecraft angular position, it is especially useful for cases where line-of-sight measurements have weaknesses such as spacecraft near zero declination and spacecraft with small, unmodeled dynamic forces affecting their motion. It can also provide an independent cross-check of orbits determined by other methods and, in combination with these methods, can improve the accuracy of trajectory determination. Further, $\triangle$ DOR measurements are of relatively short duration when compared to other orbit determination methods such as Doppler and two-way ranging (typically one hour or less compared with many hours). Thus, they can be used to reduce the total amount of tracking time necessary to attain the desired level of trajectory accuracy. The main disadvantages of $\triangle \mathrm{DOR}$ are that it requires two stations for each measurement and, in most cases, will disrupt telemetry when the reference source is being viewed.

### 2.1.1 Differential One-Way Ranging

The name, differential one-way ranging, comes from the fact that only a range difference, rather than an absolute range, is determined and that only the downlink is used. It is because only a range difference is being measured that it is possible to make this measurement one-way. (Absolute range measurement requires a highly-accurate clock at the target spacecraft as any clock error would translate directly into a range measurement error. This is the reason that ordinary ranging measurements send a ranging code derived from the station clock to the spacecraft, see modules 203 and 214.)

The geometry of differential one-way range is depicted in Figure 1. The radio waves from the target spacecraft arrive in approximately parallel rays at the interferometer. An imaginary line that connects the two antennas forming the interferometer is called the baseline and is denoted $B$ in Figure 1. Since the antennas of the interferometer are located in different complexes on separate continents, the baseline $B$ passes through the Earth. Also in Figure 1, an imaginary line segment $L$ is drawn that is perpendicular to the arrival direction of the incoming rays. The shaded area around $L$ represents the $a$-priori uncertainty in angle $A$ and, because $L$ is perpendicular to $R$, the uncertainty of the angle of the incoming radio waves with respect to the baseline. The interferometer measures the path length difference, also known as differential oneway range and indicated as $\delta R$ in the figure. This enables the accuracy of $A$ to be significantly improved. It is important to note that this is not a complete solution for the angular position in the sky of the target spacecraft. A single measurement only provides information about the location of the target spacecraft in the plane defined by the interferometer baseline and the target spacecraft.

The path length distance $(\delta R)$ is determined by recording the signals arriving at each station using an open-loop receiver. Later, when the signals from both stations are available at a common location, the two signals are correlated. The difference in group delay associated with the paths followed by the target spacecraft signal in propagating to the two stations is determined $\left(\tau_{g}\right)$ and converted into a path length difference by multiplying by the speed of electromagnetic waves in space (c). The path length difference and knowledge of the baseline orientation is used to refine the angular position of the of the target spacecraft in the sky. The errors inherent in the DOR and $\triangle$ DOR process are discussed in Paragraph 2.4 and summarized in

Paragraph 2.5. In discussing these errors, it is customary to use time units - that is, the units of differential group delay.


Figure 1. Geometry of Differential One-Way Ranging
( $B=$ Baseline; $L=$ perpendicular to incoming rays; $A=$ angle between $B$ and $L$; $\delta R=$ differential one-way range, $\varepsilon_{A}=$ uncertainty in angle A$)$

The signals transmitted by the spacecraft should be high frequency sinewave or pseudo-noise (PN) waveforms to provide the best precision. These signals are commonly referred to as "DOR Tones". Lower frequency subcarrier harmonics can be substituted for DOR tones, with some loss of precision, if DOR tones are not available. The subcarrier harmonics may be pure tones or spread by telemetry. The lowest possible symbol rate is preferred to reduce the squaring loss that occurs during signal processing. Uplinked range tones provide even less precision, but may be used if no other components are available. Subcarrier harmonics or additional DOR tones may also be required in order to resolve the phase ambiguity, see Paragraph 2.3

### 2.1.2 $\quad \triangle D O R$

$\triangle \mathrm{DOR}$ is a much more useful measurement for orbit determination than is plain DOR. In principle, a DOR measurement provides information about the angular position of the target spacecraft (within the plane of the interferometer plus target spacecraft). However, there are a number of measurement errors that prevent this form of measurement from being useful in
the solution of the typical deep space orbit determination problem. The sources of these measurement errors are (among others) station clock offsets, instrumental group delays, and media effects. To calibrate these effects, a plain DOR measurement is made on a reference source that is near the target spacecraft in an angular sense. The antennas are quickly moved to the target spacecraft and a similar measurement is made. Finally, the antennas are returned to the reference source to verify the calibration. This technique enables the effects of station clock offsets, instrumental group delay errors, and most of the media effects to be cancelled when the individual DOR results are differenced (which is a $\triangle$ DOR measurement). The result is that the errors in a $\triangle$ DOR measurement are much smaller than those for a plain DOR measurement and the technique becomes sufficiently accurate for orbit determination.

A number of missions have used $\triangle$ DOR measurements as part of their orbit determination. $\triangle$ DOR measurements played an important role in the orbit determination of 2001 Mars Odyssey (Reference 2) and the Mars Exploration Rovers (MER) (Reference 7). Those $\triangle$ DOR measurements were performed at X band. Delta-DOR measurements were also performed in the Ka band for the Mars Reconnaissance Orbiter using beam-waveguide stations (Reference 8). It should be noted that a VLBI measurement will always use two stations at different complexes; therefore stations 25 and 26 would not be used in the same measurement nor would stations 54 and 55.

### 2.1.3 DSN Equipment for $\triangle$ DOR Support

Differential one-way ranging is supported by the $34-\mathrm{m}$ and $70-\mathrm{m}$ antennas. Other equipment includes the OLRs in the complex Signal Processing Center (SPC), the ground communications infrastructure, and the DOR Correlators at Jet Propulsion Laboratory (JPL) and Goldstone Deep Space Communication Complex (GDSCC). Figure 2 depicts the DSN equipment used for $\triangle$ DOR support.

The input to the OLR is one or two digital Intermediate-Frequency (IF) signals that have been downconverted from the microwave sky frequency, also referred to as the radio frequency (RF). The IF signals cover the full usable signal bandwidth. The RF passbands are fixed and, in combination with the RF to IF downconverters, place restrictions on the frequency ranges in which the $\triangle \mathrm{DOR}$ tones can be received. These restrictions, in terms of microwave sky frequency, are listed in Table 1. Additional restrictions based on the bandwidths of the antenna low noise amplifiers can be found in DSN Document 810-005, space link interfaces modules 101, 103, and 104.

Table 1. Microwave Sky Frequency Ranges for $\triangle$ DOR Tones

| Band | Acceptable Frequency Range | Remarks |
| :---: | :---: | :---: |
| S-band | $2,200-2,310 \mathrm{MHz}$ | Deep Space Allocation is $2,290-2,300 \mathrm{MHz}$ |
| X-band | $8,200^{*}-8,600 \mathrm{MHz}$ | Deep Space Allocation is $8,400-8,450 \mathrm{MHz}$ |
| Ka-band | $31,800-32,300 \mathrm{MHz}$ | Deep Space Allocation is $31,800-32,300 \mathrm{MHz}$ |

* DSS-35 X-band range is from $8,225 \mathrm{MHz}-8,600 \mathrm{MHz}$


Figure 2. DSN Equipment for $\triangle$ DOR Support

The digital IF signals input to the OLR are in the range of 100 to 600 MHz . The OLR further downconverts and filters these IF signals to baseband channels for recording. Up to 16 baseband channels can be defined. The IF is downconverted to a specified center frequency and filtered to a specified bandwidth for each baseband channel. The downconversion can either be at a fixed frequency or can be optionally steered by predicts of the expected spacecraft sky frequency. Complex I/Q samples with 1 to 16 bit resolution are recorded. The supported bandwidths and sample resolutions are shown in Table 2. The OLR is capable of recording at other bandwidths also. Only the bandwidths and sample resolutions shown in Table 2 have been validated for use with the Delta-DOR processing system. The maximum aggregate record rate is $512 \mathrm{Mb} / \mathrm{s}$.

Channels are typically defined for areas of interest that may include the carrier, the DOR tones and their harmonics, and harmonics of subcarriers. The composite data volume for all selected channels at each of the two stations involved in the measurement must be routed to one of the $\triangle$ DOR correlators at either JPL or GDSCC for processing. This is a large amount of data and the capability of the ground communications infrastructure is often a key factor in determining the overall time required to complete a $\triangle$ DOR measurement. At current effective transmission rates of about $80 \mathrm{Mb} / \mathrm{s},(288 \mathrm{~Gb} / \mathrm{hr})$, the data from a typical one hour $\triangle \mathrm{DOR}$ pass ( 32 minutes of six channels of 2-bit quantized quasar data with an 8 MHz bandwidth, and the associated narrower bandwidth channels for spacecraft signals), can be delivered to the correlator in about 1.3 hours.

Table 2. Supported Bandwidths and Resolutions with Resulting Data Rate

| Type Filter | Bandwidth | Resolution <br> (bits per sample) | Resultant Data Rate <br> $(\mathrm{b} / \mathrm{s})$ |
| :---: | :---: | :---: | :---: |
| Narrowband | 1 kHz | 16 | 32,000 |
|  | 2 kHz | 16 | 64,000 |
|  | 4 kHz | 16 | 128,000 |
|  | 8 kHz | 16 | 256,000 |
|  | 16 kHz | 16 | 512,000 |
|  | 25 kHz | 16 | 800,000 |
|  | 50 kHz | 16 | $1,600,000$ |
|  | 100 kHz | 16 | $3,200,000$ |
|  | 200 kHz | 16 | $6,400.000$ |
|  | 500 kHz | 16 | $16,000,000$ |
|  | 1 kHz | 8 | 16,000 |
|  | 2 kHz | 8 | 32,000 |
|  | 4 kHz | 8 | 64,000 |
|  | 8 kHz | 8 | 128,000 |

Table 2. Supported Bandwidths and Resolutions with Resulting Data Rate (Continued)

| Type Filter | Bandwidth | Resolution (bits per sample | Resultant Data Rate (b/s) |
| :---: | :---: | :---: | :---: |
|  | 16 kHz | 8 | 256,000 |
|  | 25 kHz | 8 | 512,000 |
|  | 50 kHz | 8 | 800,000 |
|  | 100 kHz | 8 | 1,600,000 |
|  | 200 kHz | 8 | 3,200,000 |
|  | 500 kHz | 8 | 8,000,000 |
| Wideband | 1 MHz | 8 | 16,000,000 |
|  | 2 MHz | 8 | 32,000,000 |
|  | 4 MHz | 8 | 64,000,000 |
|  | 8 MHz | 8 | 128,000,000 |
|  | 16 MHz | 8 | 256,000,000 |
|  | 1 MHz | 4 | 8,000,000 |
|  | 2 MHz | 4 | 16,000,000 |
|  | 4 MHz | 4 | 32,000,000 |
|  | 8 MHz | 4 | 64,000,000 |
|  | 16 MHz | 4 | 128,000,000 |
|  | 32 MHz | 4 | 256,000,000 |
|  | 1 MHz | 2 | 4,000,000 |
|  | 2 MHz | 2 | 8,000,000 |
|  | 4 MHz | 2 | 16,000,000 |
|  | 8 MHz | 2 | 32,000,000 |
|  | 16 MHz | 2 | 64,000,000 |
|  | 32 MHz | 2 | 128,000,000 |
|  | 1 MHz | 1 | 2,000,000 |
|  | 2 MHz | 1 | 4,000,000 |
|  | 4 MHz | 1 | 8,000,000 |
|  | 8 MHz | 1 | 16,000,000 |
|  | 16 MHz | 1 | 32,000,000 |
|  | 32 MHz | 1 | 64,000,000 |

### 2.1.4 Data Acquisition

$\Delta$ DOR measurements are conducted using either the Goldstone-Madrid baseline or the Goldstone-Canberra baseline. Two baselines with orthogonal components are needed to measure both the right ascension and declination coordinates of angular position. The GoldstoneMadrid baseline is oriented east-west and is most sensitive to right ascension for spacecraft near the ecliptic plane. The Goldstone-Canberra baseline is canted and has most sensitivity in the direction that splits the axes of right ascension and declination. Since declination is usually the most difficult component of spacecraft state to extract from line-of-sight measurements, the Goldstone-Canberra baseline may provide information that cannot otherwise be obtained. The Goldstone-Madrid baseline is still useful to evaluate small dynamic force modeling and improve overall trajectory accuracy.

Planning a measurement involves scheduling the stations, selecting DOR tones or signal frequencies to be used, and identifying the appropriate reference source(s). Each OLR can process up to 16 signal components. Spacecraft tones are typically recorded in narrow channels, while quasar noise and spacecraft PN signals must be recorded in wide channels.

Narrow channels range in bandwidth from 1 to 500 kHz . Sample resolution of 1 to 16 bits may be selected. Channels are centered on the predicted received frequency of the spacecraft signal component to be recorded. Channel bandwidth must be chosen wide enough to include margin for errors in prediction of the spacecraft transmitter frequency and Doppler shift. Enough bits should be used to protect against radio frequency interference and avoid loss of Signal-to-Noise ratio. The spacecraft data volume is usually much smaller than the quasar data volume. As a result, a wider bandwidth or greater sampling resolution may be selected for the narrow channels without significantly increasing the total amount of data.

Quasar channels range from 1 to 32 MHz . A sample resolution of 1 to 2 bits is usually selected. Channel bandwidth must be chosen wide enough to provide sensitivity to detect the faint signals from extra-galactic radio sources that are used to calibrate the DSN as an interferometer. A channel bandwidth of 8 MHz with 2 bit samples is adequate to detect a significant number of the sources in the JPL radio source catalog using a pair of DSN 34m antennas. A narrower bandwidth may be selected, and only stronger quasars observed, in order to reduce the volume of data that must be recorded.

To perform a measurement, the two Deep Space Stations forming the very long baseline interferometer make a series of observations to determine the differential one-way range to the target spacecraft and the reference source(s) that preferably has a small angular separation from the target spacecraft. (Differential one-way ranging with a quasar is similar to what has been described above for a target spacecraft; however, there are important differences since the nature of the quasar "signal" is quite different from that of a spacecraft with DOR tones.) Each observation is referred to as a scan. In a typical $\triangle$ DOR tracking pass of approximately one hour, the spacecraft and reference are alternately observed and a total of 5 to 10 scans, each lasting 5 to 10 minutes, are typically recorded. Some sources of measurement error can be reduced by making more observations, using shorter scans, and by more frequent switching between spacecraft and quasar. Only a slight improvement in the overall measurement accuracy can be obtained by increasing the measurement time beyond 1 hour in order to repeat the observations.

The following four scenarios are provided as examples of typical $\triangle D O R$ measurements made by the DSN.

### 2.1.4. $\quad$ Example 1, Spacecraft With One DOR Tone and Subcarrier Harmonics

- Tone frequency: 19.1 MHz
- Subcarrier frequency: 375 kHz
- Number of channels: 6 spacecraft and 6 quasar
- Narrow channel bandwidth: 50 kHz sampled with 8-bit resolution
- Wide channel bandwidth: 8 MHz sampled with 2-bit resolution

Table 3. Channel Assignments for Example 1

| Channel | Spectral Component |
| :---: | :--- |
| 1 | Carrier |
| 2 | Upper 3 |
| 3 | Lower $~^{\text {st }}$ harmonic of subcarrier |
| 4 | Upper 1 $^{\text {st }}$ harmonic of DOR DOR tone |
| 5 | Lower $^{\text {nd }}$ harmonic of DOR tone |
| 6 | Upper 2 $^{\text {nd }}$ harmonic of DOR tone |

### 2.1.4.2 Example 2, Two Spacecraft With One DOR Tone and Subcarrier Harmonics

- Tone frequency: 19.1 MHz
- Subcarrier frequency: 375 kHz
- Number of channels: 4 for each spacecraft and 8 quasar
- Narrow channel bandwidth: 50 kHz sampled with 8-bit resolution
- Wide channel bandwidth: 2 MHz sampled with 2-bit resolution

Table 4. Channel Assignments for Example 2

| Channel | Spectral Component |
| :---: | :--- |
| 1 | Carrier of spacecraft 1 |
| 2 | Carrier of spacecraft 2 |
| 3 | Upper 3 ${ }^{\text {rd }}$ harmonic of spacecraft 1 subcarrier |
| 4 | Upper 3 ${ }^{\text {rd }}$ harmonic of spacecraft 2 subcarrier |
| 5 | Lower $1^{\text {st }}$ harmonic of spacecraft 1 DOR tone |
| 6 | Lower $1^{\text {st }}$ harmonic of spacecraft 2 DOR tone |

810-005
210, Rev. E

| 7 | Upper $1^{\text {st }}$ harmonic of spacecraft 1 DOR tone |
| :--- | :--- |
| 8 | Upper $1^{\text {st }}$ harmonic of spacecraft 2 DOR tone |

### 2.1.4.3 Example 3, Spacecraft With Only Subcarrier Harmonics

- Subcarrier frequency: 262 kHz
- Number of channels: 4 spacecraft and 4 quasar
- Narrow channel bandwidth: 50 kHz sampled with 8 -bit resolution
- Wide channel bandwidth: 2 MHz sampled with 2-bit resolution

Table 5. Channel Assignments for Example 3

| Channel | Spectral Component |
| :---: | :--- |
| 1 | Carrier |
| 2 | Lower $30^{\text {th }}$ harmonic of subcarrier |
| 3 | Upper $26^{\text {th }}$ harmonic of subcarrier |
| 4 | Upper $30^{\text {th }}$ harmonic of subcarrier |

In practice, squarewave subcarriers with finite risetimes have discrete spectral lines at the even harmonics of the subcarrier frequency whereas the odd harmonics may have data modulation. Therefore, even harmonics may be better choices for $\triangle \mathrm{DOR}$ assuming they have sufficient power. It also may be necessary to select even harmonics if the telemetry symbol rate cannot be reduced sufficiently to be processed by the $\triangle$ DOR correlator.

### 2.1.4.4 Example 4, Spacecraft With Uplinked Range Tone

- Range Tone frequency: 1 MHz
- Number of channels: 3 spacecraft and 3 quasar
- Narrow channel bandwidth: 50 kHz sampled with 8-bit resolution
- Wide channel bandwidth: 2 MHz sampled with 2-bit resolution

Table 6. Channel Assignments for Example 4

| Channel | Spectral Component |
| :---: | :--- |
| 1 | Carrier |
| 2 | Lower $1^{\text {st }}$ harmonic of range tone |
| 3 | Upper $1^{\text {st }}$ harmonic of range tone |

### 2.2 Downlink Signal Structure and Power Allocation

The target spacecraft may use one or two DOR tones, phase-modulated onto the downlink carrier, for a $\triangle$ DOR measurement. For sinusoidal DOR tones, the mathematical form of the downlink carrier may generally be modeled as

$$
\sqrt{2 P_{T}} \sin \left[\begin{array}{ll}
2 & \left.f_{c} t+d(t)+{ }_{1} \sin \left(2 f_{1} t\right)+{ }_{2} \sin \left(2 f_{2} t\right)\right] \tag{1}
\end{array}\right.
$$

where $P_{T}$ is the total downlink power, $f_{c}$ is the carrier frequency, $d(t)$ is the telemetry and $\theta$ its modulation index. The DOR tones will have frequencies $f_{1}$ and $f_{2}$, and modulation indices of $\theta_{l}$, and $\theta_{2}$ if two tones are present, however the second DOR tone will sometimes be absent.

A detailed description of spacecraft signal structure used for $\triangle D O R$ observations is given in Section 3.2 of Reference 4.

Recommendations for DOR modulation are given in Reference 9. The recommendations include the number of DOR tones, DOR tone frequency, and DOR tone power.

### 2.3 DOR Tones and Phase Ambiguity

For each DOR tone that phase-modulates the downlink carrier, an upper and a lower fundamental harmonic are created. Thus, a (differential) group delay can be measured even when only one DOR tone modulates the carrier. However, it is sometimes advantageous to have two DOR tones. The DOR tones will normally be coherently related and may be coherently related to the carrier. Furthermore, if carrier-aided detection is to be used, the DOR tones must be coherently related to the carrier (Reference 9). If a DOR tone of about 20 MHz is used in the X band, then it is preferred for the downlink carrier to be assigned a channel near the center of the allocated band, in order that the upper and lower fundamental harmonics of the DOR tone lie within the allocated band.

When two DOR tones are present, the purpose of the additional DOR tone is to resolve the phase ambiguity that is inherent in any range (or differential range) measurement. For example, in two-way sequential ranging, the phase ambiguity associated with the range clock is resolved by sequentially sending a set of range components of decreasing frequency, see 810005 , module 203. With differential one-way ranging, the DOR tones are sent simultaneously rather than sequentially.

In order to make clear why two DOR tones are sometimes necessary, it is well to consider first the case of a single DOR tone. Corresponding to the single DOR tone, there are two fundamental harmonics (an upper and a lower). After each harmonic has been downconverted and recorded at the two stations, the differential phase between the two received copies of each harmonic may be plotted as indicated in Figure 3. The abscissa is the frequency of the observed harmonic as recorded at intermediate frequency. The ordinate is the differential phase. The column of points on the left side of Figure 3 represents the differential phase for the lower fundamental harmonic. The column of points on the right side of Figure 3 represents the differential phase for the upper fundamental harmonic. The horizontal separation between the
two columns of points is the spanned bandwidth, which equals twice the frequency of the DOR tone. The slope of the line labeled "True" is the differential group delay for the DOR tone.


Figure 3. Phase Ambiguity with One DOR Tone

In Figure 3, there is a phase ambiguity since the DOR tone is a periodic signal. If the differential phase is regarded as having an integer number of cycles plus a fraction of one cycle, differential one-way ranging only measures the fractional part. That is why there is a column of points for the lower fundamental harmonic (and also for the upper fundamental harmonic). The points in each column are spaced by one cycle of phase. For the purpose of a $\Delta$ DOR measurement, it is not necessary to determine which point in the first column of points represents the true differential phase for the lower fundamental harmonic. However, it is necessary to distinguish the true slope, representing the actual differential group delay, from the false slope shown as a dashed line in Figure 3. The difference between these two slopes equals the reciprocal of the spanned bandwidth. (There are other false slopes than the one shown in Figure 3, but these other false slopes have a value at least as far from the true slope as the reciprocal of the spanned bandwidth.) If the a priori knowledge of the differential group delay is good enough to rule out a false slope corresponding to a delay that differs from the true differential group delay by the reciprocal of the spanned bandwidth, then there is no need for a second DOR tone.

Figure 4 illustrates how differential group delay is determined when there are two DOR tones. The leftmost column of Figure 4 represents the differential phase for the lower fundamental harmonic of the higher-frequency DOR tone. The rightmost column represents the differential phase for the upper fundamental harmonic of the higher-frequency DOR tone. The middle columns represent differential phase for the lower and upper fundamental harmonics of the other (lower-frequency) DOR tone. The horizontal separation between the two outermost columns of points is the spanned bandwidth, which equals twice the frequency of the higherfrequency DOR tone. The true and false slopes shown in Figure 3 are reproduced in Figure 4. It is now clear how the second (lower-frequency) DOR tone helps resolve phase ambiguity. The
true slope passes through legitimate points in the middle columns, whereas the false slope does not. On this basis, the false slope can be ruled out.


Figure 4. Resolution of Phase Ambiguity with a Second DOR Tone

It is important to use the largest possible spanned bandwidth because several measurement-limiting errors are inversely proportional to the spanned bandwidth. When selecting DOR tone frequencies, however, it is necessary to consider the problem of ambiguity resolution. Ambiguity resolution requires two signal components that are not widely separated in frequency. These two goals, achieving a large spanned bandwidth and resolving the ambiguity, are not contradictory. Generally, one DOR tone frequency is selected large enough that the desired measurement accuracy can be achieved. It will often be the case that the reciprocal of twice this frequency is smaller than the uncertainty in the a priori knowledge of differential group delay. This need not be a problem. The ambiguity can still be resolved by including one or more of the following in the measurement: a second (lower-frequency) DOR tone, the residual carrier, or telemetry subcarrier harmonics. The choice of how many signal components to use must be carefully considered because every signal that modulates the carrier consumes link power and produces intermodulation products that waste link power. These considerations are explored in Reference 4 and have been used to derive the recommendations in Reference 9.

## $2.4 \quad \Delta$ DOR Measurement Error Models

There are a number of important error sources for $\triangle \mathrm{DOR}$ measurements. Precision for spacecraft delay depends on the power and spanned bandwidth of the DOR tones. Precision for quasar delay depends on the channel bandwidth and spanned bandwidth used to record the quasar signal. Instrumental error depends on clock stability, instrumental phase linearity, and spanned bandwidth. Errors in baseline length and orientation and errors in media delays scale with the angular separation between spacecraft and quasar. There is a natural tradeoff between selecting a stronger source that might be at a larger angular separation from the spacecraft, or a weaker source that is angularly closer to the spacecraft. A denser radio source catalog provides more options to improve measurement geometry.

Section 3.4 of Reference 4 describes the significant error sources and gives quatitative models for estimating errors. Assumptions for model parameter values are presented that represent current DSN capabilities. The error budget presented in Reference 4 is summarized below in Paragraph 2.5 of this document. Section 4 of Reference 4 provides the trade-offs to consider when designing a measurement system and planning measurements.

It is important to note that these models assume that the measurements are in fact $\triangle \mathrm{DOR}$, and not plain DOR. (Some of the following errors would be much larger for plain DOR, since common-mode errors would then not be canceled.) Units of time delay are employed here to characterize $\triangle \mathrm{DOR}$ measurement error.

The errors of $\triangle$ DOR measurement can be dramatically reduced if a spacecraft defines the reference direction and if this reference spacecraft and the target spacecraft are close in an angular sense. If the two spacecraft are close enough to be observed simultaneously in common receive antennas, then this is called Same-beam Interferometry. Many of the error models discussed in Reference 4 and summarized below either do not apply or must be drastically modified for the case of Same-beam Interferometry. For more information on this technique and the errors associated with it, the reader may wish to see References 1 and 10 .

### 2.5 $\quad$ DDOR Measurement Error Budget

An example error budget based on current DSN capability and good observing geometry is given here. Note that DSN observing geometry is generally good for spacecraft near the ecliptic plane, if the Sun-Earth-Spacecraft angle is greater than 10 deg , and either
(i) observed from Goldstone-Canberra baseline; or
(ii) geocentric angular declination above -15 deg and observed from GoldstoneMadrid baseline.

The 3-complex DSN has a geometric weakness when spacecraft are at far southern declinations. Delta-DOR cross-support from Agencies with antennas at other sites may be required to support highly accurate navigation for this case.

The assumptions used for the error budget are given in Table 7. The reader is referred to Reference 4 for context of these parameters. The $\triangle$ DOR error budget based on these assumptions is given in Table 8, showing both random and systematic effects. Table 8 provides 1 -sigma error estimates that are representative of geometric and atmospheric conditions typically encountered with DSN $\triangle$ DOR measurements. The full error models provided in Reference 4 can be used to estimate the $\triangle \mathrm{DOR}$ error for other conditions, geometries or assumptions.

For navigational analysis it is common to break out errors into random and systematic models. Table 9 shows only the random error components for $\triangle D O R$, that is the random error in the difference between the spacecraft and quasar delay measurements. The root-sum-square (RSS) random error is less than 0.06 ns , corresponding to an angular error of 1.9 nrad on an 8000 km baseline. This angular error projects to a cross-position error of 281 m in the plane-of-sky at a distance of 1 AU .

There are known systematic errors that affect all radiometric data types. It is common for navigation analysis software to include explicit models and parameters for systematic effects. Table 10 shows parameters based on current DSN capability, for systematic error models in common use. If $\triangle$ DOR data are used for estimation purposes, and these systematic effects are explicitly included in the analysis, then only the random error component should be used for deriving the $\triangle \mathrm{DOR}$ data weight.

The DSN $\triangle$ DOR system performed very well for the Mars Science Laboratory cruise phase and final approach to Mars. The root-mean-square (RMS) of the $\triangle$ DOR residuals to the final reconstructed trajectory was 0.038 ns (Reference 11).

Table 7. Nominal Parameter Values for Evaluation of X-band $\triangle$ DOR Error Budget

| Term | Description | Nominal Value |
| :--- | :--- | :--- |
| $T_{Q U}$ | Total quasar observation time | 960 s |
| $T_{S C}$ | Total spacecraft observation time | 480 s |
|  | Angular separation between spacecraft and quasar | 0.1 rad |
|  | Component of spacecraft-quasar angular separation in <br> direction of baseline projection | 0.1 rad |
| $S_{i}$ | Spacecraft elevation angle at station $i$ | 20 deg |
| $Q_{i}$ | Quasar elevation angle at station $i$ | 25 deg |
| $S E P$ | Minimum angle between Sun and spacecraft or quasar | 20 deg |
| $f_{B W}$ | Spanned bandwidth | $38.25 \times 10^{6} \mathrm{~Hz}$ |
| $(G / T)_{i}$ | G/T for antenna $i$ | $52.56 \mathrm{~dB} \mathrm{~K}{ }^{-1}$ |
| $D$ | Channel sampling rate | $16 \times 10^{6} \mathrm{samples} / \mathrm{s}$ |
| $S_{c}$ | Quasar correlated flux density | 0.4 Jy |
| $K_{L}$ | System loss factor | 0.8 |
| $k$ | Boltzman constant | $1.38 \times 10^{-23} \mathrm{Joules} / \mathrm{K}$ |
|  | Radio Frequency wavelength | 0.0356 m |
| $S N R_{Q U}$ | Quasar voltage SNR (derived) | 261 |
| $P_{t r a n}$ | Effective transmitted tone power | 108 Watts |
| $R$ | Distance from spacecraft to receiver | $150 \times 10^{9} \mathrm{~m}$ |
| $F L$ | Spacecraft tone flux (derived) | $3.981 \times 10^{-22} \mathrm{~W} / \mathrm{m}^{2}$ |
| $\left(P_{D O R} / N_{0}\right)_{i}$ | DOR tone power to noise spectral density, station $i$ <br> $($ derived $)$ | $27 \mathrm{~dB} \cdot \mathrm{~Hz}$ |

810-005
210, Rev. E

| Term | Description | Nominal Value |
| :---: | :---: | :---: |
| $S N R_{S C_{i}}$ | Spacecraft voltage SNR (derived) | 695 |
| $T_{S C-Q U}$ | Time between centers of spacecraft and quasar scans | 600 s |
| $f / f$ | Instrument frequency stability at 600 s | $10^{-14}$ |
|  | Instrument phase ripple (nonlinearity across channel of few MHz bandwidth) | 0.2 deg |
| BL | Baseline coordinate uncertainty, each component | 0.02 m |
| UTPM | Baseline orientation uncertainty, each component (1 day prediction) | 0.02 m |
| $z_{\text {wet }}$ | Zenith wet troposphere delay uncertainty, station $i$ | 0.005 m |
| $z_{d y_{i}}$ | Zenith dry troposphere delay uncertainty, station $i$ | 0.002 m |
| trop $_{\text {fuct }}$ | Fluctuating troposphere uncertainty for 10 deg separation | 0.01 m |
| ${\text { iono }{ }_{\text {day }}}$ | Daytime ionosphere model uncertainty (X-band level), station $i$ | 0.04 m |
| iono $_{\text {night }}$ | Nighttime ionosphere model uncertainty (X-band level), station $i$ | 0.01 m |
| iono $_{\text {fuct }}$ | Fluctuating ionosphere uncertainty for 10 deg separation (increase by $\times 2$ near solar max) | 0.01 m |
| $f_{\text {RF }}$ | Signal Radio Frequency | 8.42 GHz |
| $B_{s}$ | Separation of raypaths from radio source to two stations, at plane of signal closest approach to Sun | $6 \times 10^{6} \mathrm{~m}$ |
| SW | Solar wind velocity | $4 \times 10^{5} \mathrm{~m} / \mathrm{s}$ |
|  | Quasar coordinate uncertainty | $0.75 \times 10^{-9} \mathrm{rad}$ |
| $B_{p}$ | Length of baseline projection onto plane-of-sky | $8 \times 10^{6} \mathrm{~m}$ |

Table 8. Delta-DOR Error Budget (1 Sigma)—Both Random and Systematic Effects

| Component | Random/Systematic | Delay Error (ns) |
| :--- | :---: | :---: |
| Quasar thermal noise | Random | 0.023 |
| Spacecraft thermal noise | Random | 0.012 |
| Clock instability | Random | 0.006 |
| Dispersive phase | Random | 0.029 |
| Station location | Systematic | 0.007 |
| Earth orientation | Systematic | 0.007 |
| Zenith troposphere | Systematic | 0.012 |
| Fluctuating troposphere | Random | 0.019 |
| Ionosphere shell | Systematic | 0.019 |
| Fluctuating ionosphere | Random | 0.019 |
| Solar plasma | Random | 0.006 |
| Quasar coordinate | Systematic | 0.020 |
| RSS total |  | $\mathbf{0 . 0 5 7}$ |

Table 9. Delta-DOR Error Budget (1 Sigma)—Random Effects Only

| Component | Delay Error (ns) |
| :--- | :---: |
| Quasar thermal noise | 0.023 |
| Spacecraft thermal noise | 0.012 |
| Clock instability | 0.006 |
| Dispersive phase | 0.029 |
| Fluctuating troposphere | 0.019 |
| Fluctuating ionosphere | 0.019 |
| Solar plasma | 0.006 |
| RSS random | $\mathbf{0 . 0 4 8}$ |

Table 10. Common Parameters for Modeling Systematic Effects (1 Sigma)

| Component | Model Error |
| :---: | :---: |
| Station Location ${ }^{*}$ | 2 cm with correlations |
| Earth Orientation |  |
| UT1 1-day prediction | 2 cm |
| UT1 after the fact | 1 cm |
| Polar Motion | 1 cm |
| Zenith Troposphere |  |
| Wet | 0.5 cm |
| Dry | 0.2 cm |
| Ionosphere Shell |  |
| Day (X-band level) | 4 cm |
| Night (X-band level) | 1 cm |
| Quasar Coordinate | 0.75 nrad |
| *Correlations among station coordinates may be accounted for in a covariance matrix. |  |

# Appendix A DSN Document 810-005 

Module 101, 70-m Subnet Telecommunications Interfaces
Module 103, 34-m HEF Subnet Telecommunications Interfaces
Module 104, 34-m BWG Antennas Telecommunications Interfaces
Module 106, Solar Corona and Solar Wind Effects
Module 107, X-band Radio Source Catalog
Module 203, Sequential Ranging
Module 214, Pseudonoise and Regenerative Ranging
Module 301, Coverage and Geometry

## References

1. C. L. Thornton and J. S. Border, Radiometric Tracking Techniques for DeepSpace Navigation, Wiley-Interscience, Hoboken, NJ, 2003.
2. P. G. Antreasian, et al., "2001 Mars Odyssey Orbit Determination During Interplanetary Cruise," AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, CA, August 5-8, 2002.
3. David W. Curkendall and James S. Border, "Delta-DOR: The One-Nanoradian Navigation Measurement System of the Deep Space Network - History, Architecture, and Componentry," The Interplanetary Network Progress Report, vol. 42-193, Jet Propulsion Laboratory, Pasadena, California, pp. 1-46, May 15, 2013.
https://ipnpr.jpl.nasa.gov/progress_report/42-193/193D.pdf
4. Delta-DOR -- Technical Characteristics and Performance, Report Concerning Space Data System Standards, CCSDS 500.1-G-2, Green Book, Issue 2. Washington, D.C.: CCSDS, November 2019.
https://public.ccsds.org/Pubs/500x1g2.pdf
5. C. Ma, Chairman, "The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry," IERS Technical Note No. 35, Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main 2009.
6. C. Jacobs, et al., "The JPL Extragalactic Radio Reference Frame: Astrometric Results of 1978-96 Deep Space Network VLBI," TMO Progress Report 42-133, Jet Propulsion Laboratory, Pasadena, CA, May 15, 1998.
https://ipnpr.jpl.nasa.gov/progress_report/42-133/133E.pdf
7. T. P. McElrath, W. M. Watkins, B. M. Portock, E. J. Graat, D. T. Baird, G. G. Wawrzyniak, A. A. Attiyah, J. R. Guinn, P. G. Antreasian, R. C. Baalke, and W. L. Taber, "Mars Exploration Rovers Orbit Determination Filter Strategy," AIAA-2004-4982, paper presented at the AIAA/AAS Astrodynamics Conference, Providence, Rhode Island, August 15-20, 2004.
8. Shervin Shambayati, David Morabito, James S. Border, and Faramaz Davarian, Mars Reconnaissance Orbiter Ka-Band Demonstration: Cruise Phase Operations, Chapter 15 in Space Operations: Mission Management, Technologies, and Current Applications, Edited by Loredana Bruca, J. Paul Douglas, Trevor Sorensen, Progress in Astronautics and Aeronautics, Frank K. Lu, Editor-inChief, Volume 220, American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, 2007.
9. Radio Frequency and Modulation Systems-Part 1: Earth Stations and Spacecraft, Recommendation for Space Data System Standards, CCSDS 401.0-B-32, Blue Book, Issue 24, Washington, D.C.: CCSDS, October 2021.
https://public.ccsds.org/Pubs/401x0b32.pdf)
10. J. S. Border, et al., "Precise Tracking of the Magellan and Pioneer Venus Orbiters by Same-Beam Interferometry, Part I: Data Accuracy Analysis," TDA Progress Report 42-110, Jet Propulsion Laboratory, Pasadena, CA, August 15, 1992.
https://ipnpr.jpl.nasa.gov/progress_report/42-110/110A.PDF
11. T. J. Martin-Mur, G. L. Kruizinga,_P. D. Burkhart, F. Abilleira_ M. C. Wong, and J. A. Kangas, "Mars Science Laboratory Interplanetary Navigation," Journal of Spacecraft and Rockets, Vol. 51, Issue 4, pp. 1014-1028, July 2014.

Deep Space Network

## 211 <br> Wideband Very-Long Baseline Interferometry

Document Owner:

| Signature provided | $11 / 28 / 2023$ |
| :--- | :--- |
| Lisa Mauger | Date |
| VRA Software CDE |  |

Prepared By:

| Signature provided | $11 / 18 / 2023$ |
| :--- | :--- |
| Dong Shin | Date |
| OBD System Engineer |  |

Approved By:

| Signature provided | $11 / 13 / 2023$ |
| :--- | :--- |
| Timothy Pham | Date |
| Communications Systems Chief |  |
| Engineer |  |

Released by:

| Signature provided | 01/09/2024 |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 211, Rev. G
Issue Date: January 11, 2024, 2023
JPL D-19379; CL\# 24-0314
Jet Propulsion Laboratory
California Institute of Technology

810-005
211, Rev. G

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature provided | $10 / 27 / 2023$ |  | Signature provided | 12/20/2023 |
| :--- | :--- | :--- | :--- | :--- |
| Jeff Berner <br> DSN Project Chief Engineer | Date |  | Harvey Soldan <br> Group Supervisor, DSN System <br> Engineering | Date |

## Document Change Log

| Rev | Issue Date | Prepared By | Affected <br> Sections or <br> pages | Change Summary |
| :--- | :--- | :--- | :---: | :--- |

810-005
211, Rev. G

| Rev | Issue Date | Prepared By | Affected <br> Sections or <br> pages | Change Summary |
| :---: | :---: | :---: | :---: | :--- |
| G | $01 / 11 / 2024$ | D. Shin | Figure 2 <br> Table 1 | • Table 2: Added supported bandwidths <br> • Table 3: Updated and add DSS-53/56 <br> K-band <br> - Table 1: Added DSS-24 X-band and DSS-36 DSS-24 X-band and DSS-36 K- <br> band |
|  |  |  |  |  |
|  |  |  |  |  |

## Contents

Paragraph Page
1 Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope ..... 6
2 General Information. ..... 6
2.1 Description of Very-Long Baseline Interferometry ..... 6
2.2 Bandwidth Synthesis ..... 8
2.3 DSN VLBI Support Equipment ..... 9
2.3.1 Signal Reception ..... 11
2.3.2 Subreflector Position ..... 11
2.3.3 Data Acquisition ..... 12
2.3.4 Phase Calibration Tones ..... 12
2.3.5 Correlation ..... 14
2.4 Experiment Design ..... 14
Appendix A References ..... 17
Figures
Figure Page
Figure 1. Very-Long Baseline Interfereometry ..... 7
Figure 2. DSN Equipment for Wideband VLBI Support ..... 10
Tables
Table Page
Table 1. Frequency and Polarization Support Capabilities for VLBI ..... 11
Table 2. Supported Bandwidths ..... 12
Table 3. Tone Generator Availability ..... 14
Table 4. Typical Channels (S- and X-Bands) for Wideband VLBI ..... 16
Table 5. Typical Channels (X- and Ka-Bands) for Wideband VLBI ..... 16

## 1 Introduction

### 1.1 Purpose

This module introduces the Very-Long Baseline Interferometry (VLBI) astrometric measurement technique and identifies the capabilities and performance of Deep Space Network (DSN) equipment used to support wideband VLBI measurements.

### 1.2 Scope

The content of this module is limited to a discussion of the data gathering and data processing equipment used by the DSN to support VLBI. Experiment design and the quality of the results are influenced by many other factors that are discussed in Section 2.4. Among these factors are antenna performance parameters discussed in modules 101, 103 and 104, and frequency reference performance discussed in module 304 . VLBI experimenters may also be interested in station locations discussed in module 301 and extra-galactic radio source positions provided in module 107 and 108. It should be noted that the equipment discussed in this module is the major contributor to the information content of modules 301, 107, and 108.

## 2 General Information

The DSN uses its VLBI capability to measure the earth orientation parameters that establish the relationship of the Terrestrial Reference Frame containing its stations to the Celestial Reference Frame used for spacecraft navigation. VLBI is also used to determine the relative locations of its stations and the locations of extra-galactic radio sources (EGRSs). The EGRSs are used as reference points for delta-differential one-way ranging ( $\triangle \mathrm{DOR}$ ) spacecraft navigation (see module 210). Because the DSN uses equipment that is compatible with that used by the international VLBI community, other agencies can coordinate their observation schedules with DSN scheduled activities and the resultant data can be shared between the DSN and external experimenters.

### 2.1 Description of Very-Long Baseline Interferometry

Very-Long Baseline Interferometry is a technique for measuring the precise time difference between the arrivals of waveforms originating from an EGRS at two (or more) stations. Figure 1 provides an illustration of the technique. The stations simultaneously observe an EGRS. As they are widely separated, their baseline, $B$, passes through the Earth. At each station, the instantaneous voltage of the received signal (a random Gaussian process) is recorded in each of several channels; this is known as VLBI data acquisition. The measured difference in arrival time can be converted to an approximate path length difference by multiplying by $c$, the speed of electromagnetic waves in a vacuum. In actuality, the conversion is much more complex as the wave front must pass through several layers of the Earth's atmosphere - each of which has a different propagation speed.


Figure 1. Very-Long Baseline Interferometry

The recorded data from the participating antennas are brought together at a correlator. The data from matching channels at the different radio telescopes are cross-correlated to determine the geometric time delay, $\tau_{g}$; this is known as VLBI data correlation. After converting the time delay to a path length by a process that accounts for atmospheric delay and other effects, the angular relationship between the baseline of the two stations and the radio source can be determined by the relationship $b=\cos ^{-1}(\Delta l / B)$. It is important to note that this is not a complete solution for the angular position in the sky of the radio source. This calculation only provides information about the location of the radio source in the plane defined by the interferometer baseline and the direction of arrival. The correlation of data from the observation of additional radio sources is necessary to completely define the baseline. By making sufficient
observations and assuming some reference, it is possible to calculate a singular solution that estimates each station's coordinates, the angular positions of all observed sources, the offset and rate differences between the two station frequency references, and several parameters relating to propagation. Additional observations above the minimum enable statistical uncertainties in the estimation to be reduced. A complete discussion of the process is contained in Reference 1.

The precision of a VLBI measurement improves with the length of the baseline. The location of the DSN stations provides baselines of $66 \%$ (Goldstone to Madrid) and $83 \%$ (Goldstone to Canberra) of the Earth's diameter. The third baseline, Canberra to Madrid, is 98\% of the Earth's diameter but provides very limited mutual visibility (see module 301). To mitigate mutual visibility effects, additional antennas are often involved in VLBI measurements allowing a station between DSN locations to serve as a "relay" to tie-together observations made in different portions of the sky during an observation session.

### 2.2 Bandwidth Synthesis

The signal-to-noise ratio obtained by correlating the signals from two observing stations depends on the characteristics of the stations, the bandwidth of the channel being correlated and the observation time. It can be calculated from the following expression.

$$
\begin{equation*}
S N R_{C H}=2.05 \times 10^{-4}\left(\gamma_{v} S\right) D_{1} D_{2} \sqrt{\frac{\eta_{1} \eta_{2} B_{C H} T}{T_{S y s 1} T_{S y s 2}}} \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\left(\gamma_{\nu} S\right) & =\text { correlated flux density where } S \text { is the total flux density (jansky) } \\
D_{1}, D_{2} & =\text { antenna diameters (m) } \\
\eta_{1}, \eta_{2} & =\text { antenna efficiencies } \\
B_{C H} & =\text { channel bandwidth }(\mathrm{Hz}) \\
T & =\text { observation time (s) } \\
T_{\mathrm{Sys} 1}, T_{\mathrm{Sys} 2} & =\text { antenna system noise temperatures (K) }
\end{array}
$$

The factor $2.05 \times 10^{-4}$ includes all normalization constants and allowances for degradation due to one-bit quantization and the fact that only one polarization is received.

When multiple channels are being correlated simultaneously and they have approximately the same $S N R_{C H}$, the post-correlation SNR for use in equation (3) can be calculated by

$$
\begin{equation*}
S N R=\sqrt{n} \cdot S N R_{C H} \tag{2}
\end{equation*}
$$

where $n$ is the number of channels in the correlation.

The error in delay measurement resulting from the correlation of data from two VLBI stations is expressed by

$$
\begin{equation*}
\sigma=\frac{c}{2 \pi \cdot S N R \cdot B W} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& c=\text { the speed of electromagnetic propagation } \\
& S N R=\text { the post-correlation signal-to-noise ratio } \\
& B W=\text { the observation bandwidth }
\end{aligned}
$$

It can be seen from equation (3) that an extremely large data volume for transport to the common correlation site would be needed if the entire bandwidth were recorded. For example, if a postcorrelation SNR of $40(16 \mathrm{~dB})$ is available, a bandwidth of 125 MHz would be required to achieve a delay error of 1 cm .

The data volume is significantly reduced by the technique of bandwidth synthesis (Reference 2). This technique uses several narrow channels spread across the observation bandwidth to achieve an RMS bandwidth of

$$
\begin{equation*}
B W_{R M S}=\sqrt{\frac{\sum_{C H=1}^{n}\left(f_{C H}-f_{A V G}\right)^{2}}{n}} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
f_{C H} & =\text { center frequency of each channel used in the bandwidth synthesis } \\
f_{A V G}= & \text { the average of all channel center frequencies used in the bandwidth } \\
& \text { synthesis } \\
n & =\text { the number of channels }
\end{aligned}
$$

As an example of the efficiency gained by bandwidth synthesis, a typical Ka-band VLBI measurement will use the eleven 32-MHz double-sided channels shown in Table 4 corresponding to an RMS bandwidth of 168.314 MHz . By employing hard limiting, two-bit quantization, and a sampling rate equal to twice the bandwidth of each channel, the total recorded bandwidth is reduced to 128 MHz .

### 2.3 DSN VLBI Support Equipment

A diagram showing the major items of DSN equipment used to support wideband VLBI is provided by Figure 2. DSN 34-m BWG antennas and 70-m antennas are available for VLBI data acquisition. Note that 70-m antenna is not recommended for VLBI observations due to its slow slew rate.


Figure 2. DSN Equipment for Wideband VLBI Support

Received signals are processed by the Deep Space Communication Complex (DSCC) VLBI Radio Astronomy Recorder (VRA). The VLBI data is electronically transmitting to the Electronic JPL VLBI correlator (EJVC) for the correlation. The VRA interfaces directly with the DSN Network Monitor and Control (NMC) Subsystem.

### 2.3.1 Signal Reception

Signals that are collected by the antenna are amplified by a cryogenically-cooled low-noise amplifier (LNA). For every observation band, the LNA is followed by a downconverter that translates the radio-frequency signal to an intermediate frequency (IF) to be forwarded to the Signal Processing Center (SPC). The downconverters are located on the antenna and are derived from the station frequency standard. Their local oscillator (LO) frequencies are 2.0 GHz for S-band, 8.1 GHz for X-band, variable $25.503 \mathrm{GHz}+/-487.5 \mathrm{MHz}$ for K-band, and 31.7 GHz for Ka-band.

The frequency and polarization capabilities of the DSN for VLBI are summarized in Table 1.

| Subnet | DSS | S-band | X-band | K-band | Ka-band |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 70-m | $14,43, \& 63$ | $\begin{gathered} \text { RCP and LCP } \\ (2200-2300 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { RCP and LCP } \\ (8200-8600 \mathrm{MHz}) \end{gathered}$ | - | - |
| $\begin{aligned} & 34-\mathrm{m} \\ & \text { BWG } \end{aligned}$ | 24 | $\begin{gathered} \text { RCP or LCP } \\ (2200-2300 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { RCP or LCP } \\ (8200-8600 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { RCP or LCP } \\ (25.5-27.0 \mathrm{GHz}) \end{gathered}$ | - |
|  | 25, 35, 53, 55 | - | $\begin{gathered} \text { RCP and LCP } \\ (8200-8600 \mathrm{MHz}) \end{gathered}$ | - | $\begin{gathered} \mathrm{RCP} \text { and LCP } \\ (31.8-32.3 \mathrm{GHz}) \end{gathered}$ |
|  | 26, 36, 56 | $\begin{gathered} \text { RCP or LCP } \\ (2200-2300 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { RCP and LCP } \\ (8200-8600 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { RCP or LCP } \\ (25.5-27.0 \mathrm{GHz}) \end{gathered}$ | $\begin{gathered} \mathrm{RCP} \text { and LCP } \\ (31.8-32.3 \mathrm{GHz}) \end{gathered}$ |
|  | 34, 54 | $\begin{gathered} \text { RCP or LCP } \\ (2200-2300 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { RCP or LCP } \\ (8200-8600 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \text { RCP or LCP } \\ (25.5-27.0 \mathrm{GHz}) \end{gathered}$ | $\begin{gathered} \text { RCP and LCP } \\ (31.8-32.3 \mathrm{GHz}) \end{gathered}$ |

Table 1. Frequency and Polarization Support Capabilities for VLBI

### 2.3.2 Subreflector Position

Gravity deformation of the primary reflector and the structure that supports the subreflector as the antenna moves in elevation causes a change in the antenna focal position. To compensate for this, the subreflector undergoes a programmed motion relative to the feed to achieve the maximum antenna gain at every elevation angle. However, this motion introduces a time-varying phase delay to the received signal that is undesirable for wideband VLBI.

During wideband VLBI data acquisition at the $70-\mathrm{m}$ antennas, the subreflector motion is usually disabled and the subreflector placed in a position that gives the best gain for a $45^{\circ}$ elevation angle. This eliminates the time-varying phase delay associated with subreflector motion. However, it also causes some loss of antenna gain when the antenna is not at $45^{\circ}$.

Subreflector motion should not be disabled when a BWG antenna is used for wideband VLBI observations in the Ka-band. This is because gravity deformation also affects antenna pointing by an amount that is significant at Ka-band although not so at S- or X-bands and subreflector motion must be enabled in order to have the antenna point as commanded. The resultant phase delay changes can be modeled and removed in post processing.

### 2.3.3 Data Acquisition

The analog IF signals from each antenna are routed to an IF Gain Control (IFG) assembly and then digitized by the IF Digitizer (IFD). The IFD channelizes the IF band and sends digital packets through the Digital IF Switch (DIS) to the VRA. The VRA converts digital packets into digital baseband channels which are recorded to disk. The VRA can output up to 16 baseband channels. The VRA can record digital channels as either complex in-phase and quadrature (IQ) samples or real upper sideband and lower sideband (USB/LSB) samples.

The outputs of the baseband channel are placed into recording frames along with timing and parity data, and sent to the EJVC via internet. Supported channel bandwidths vary from 200 Hz to 100 MHz as shown in Table 2. Allowed channel bandwidths are enumerated by combining the multiplier in the top row and the first column, with units for each row in the right column. The x 1 channel bandwidth column is shaded gray to indicate that these values are redundant with the final column.

Table 2. Supported Bandwidths

| Multiplier | X 1 | X 1.25 | X 1.6 | X 2 | X 2.5 | X 3.2 | X 4 | X 5 | X 6.4 | X 8 | X 10 | Unit |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 10 MHz | 10 | 12.5 | 16 | 20 | 25 | 32 | 40 | 50 | 64 | 80 | 100 | MHz |
| 1 MHz | 1 | 1.25 | 1.6 | 2 | 2.5 | 3.2 | 4 | 5 | 6.4 | 8 | 10 | MHz |
| 100 kHz | 100 | 125 | 160 | 200 | 250 | 320 | 400 | 500 | 640 | 800 | 1000 | kHz |
| 10 kHz | 10 | 12.5 | 16 | 20 | 25 | 32 | 40 | 50 | 64 | 80 | 100 | kHz |
| 1 kHz | 1 | 1.25 | 1.6 | 2 | 2.5 | 3.2 | 4 | 5 | 6.4 | 8 | 10 | kHz |
| 100 Hz | -- | -- | -- | 200 | 250 | 320 | 400 | 500 | 640 | 800 | 1000 | Hz |

The maximum supported data rate is currently $2.048 \mathrm{Gbit} / \mathrm{sec}$. For example, 16 complex channels with 32 MHz bandwidth and 2-bit sample resolution could be recorded. Bit configurations of 4 and 8 are also supported, as long as the maximum supported bitrate is not exceeded. For example, 4 complex channels with 8 bits is supported for channel bandwidth up to 32 MHz .

### 2.3.4 Phase Calibration Tones

The 70-m antennas include "S-band and X-band" tone generators (Reference 4). The tone generators inject a set of tones, uniformly spaced in frequency, into the receive signal path ahead of the LNA. The purpose of these tones is to permit calibration of irregularities in phase delay occurring along the signal path to the VRA. The tones are spaced 1.0 MHz apart and are derived from the station frequency reference. The power in the phase calibration tones is less than $1 \%$ of the signal power in any given bandwidth. With such a small power, the phase calibration tones do not interfere with the VLBI measurements. The 1.0 MHz spacing guarantees that at least one tone will be present in each 2-MHz or greater bandwidth normally used for VLBI. Selection of channel center frequencies will assure that one tone will be present in one sideband of each channel for narrower bandwidths.

The $34-\mathrm{m}$ BWG antennas, DSS-25, $-35,-53$, and -55 have X/Ka (X-band and Kaband) tone generators. The other BWG antennas, DSS-26, -34, -54, and -56 have both S/X (Sband and X -band) and $\mathrm{X} / \mathrm{Ka}$ tone generators. The $\mathrm{X} / \mathrm{Ka}$ tone generators have a tone spacing of 4.0 MHz. The tones are derived from the station frequency reference.

There is no simultaneous $S / X$ and $X / K a-b a n d$ tones available at any antennas. DSS tone generator availability is shown in Table 3.

Table 3. Tone Generator Availability

| DSS | Tone Generator Availability |  |
| :---: | :---: | :---: |
|  | S/X | X/Ka |
| 14 | $\checkmark$ |  |
| $24^{* *}$ |  |  |
| 25 |  | $\checkmark$ |
| 26 | $\checkmark *$ | $\checkmark$ |
| 34 | $\checkmark$ | $\checkmark *$ |
| 35 |  | $\checkmark$ |
| 36 | $\checkmark$ |  |
| 43 | $\checkmark$ |  |
| 53 |  | $\checkmark$ |
| 54 | $\checkmark *$ | $\checkmark$ |
| 55 |  | $\checkmark$ |
| 56 | $\checkmark *$ | $\checkmark$ |
| 63 | $\checkmark$ |  |

Note: * Preselected (default) configuration ** It does not have a tone generator

In the VLBI correlator, a measurement is made of the relative phase delay of the calibration tone in each channel. This is accomplished by correlating the recorded channel with a local (baseband) model of the individual calibration tone. These phase delay measurements enable the phase slope of the entire instrumentation system to be estimated and any phase offsets introduced across the analog RF and IF input to be removed. The result is a group delay calibration with a precision of 0.0015 ns for a 100-s integration time.

In addition to the precise measurement of phase delay in post processing at the VLBI correlator, the phase calibration tones are also monitored in near real-time by the VRA to detect instrument and configuration problems.

### 2.3.5 Correlation

The EJVC accepts VLBI data in Raw Data Exchange Format (RDEF) as specified in DSN external interface document 820-13, 0222-Science. The recorded data from two antennas may be cross-correlated. When the recorded data from one antenna are cross-correlated with that of another antenna, an interferometer is formed and the differential delay for that interferometer is determined. These correlated VLBI data are used for several purposes including navigation support, and reference frame support.

### 2.4 Experiment Design

The configuration and sequence of events for any wideband VLBI experiment are defined in a VLBI experiment (VEX) file as specified in DSN external interface document 820-

013, 0200-Science-VLBI. The VEX file is a format invented by members of the VLBI community to prescribe a complete description of a VLBI experiment, including scheduling, data-taking and correlation. For more information regarding these interface specifications users may contact their DSN Mission Interface Manager. Parameters from the VEX file are read by the EJVC, and the EJVC generates a recording script for the VRA and a .nmc file for antenna controller. The VRA creates an experiment log file and controls data recording.

The two observation bands (S, X, K, or Ka) for the experiment are chosen subject to the band availability on the antenna being used. A set of channels is defined for each observation band. In order to achieve high precision, the span of channel frequencies (within the band) should be wide. The two outermost channels determine this precision. The other channels are needed to resolve the phase ambiguity. Simultaneous measurements at "S- and X-band" or "X- and Ka-band" enable the differential delay in the ray path to the two observing stations caused by the Earth's ionosphere to be calibrated (Reference 1).

Baseband channels can be recorded as complex samples or as real samples from the corresponding pair of upper and lower sidebands. A lower sideband/upper sideband (LSB/USB) channel pair is created from an individual complex (I/Q) channel. At each complex, 16 complex channels may be used simultaneously resulting in a maximum of 32 real channels. Each of the 16 complex channels can be placed independently in either of the observational bands. A typical set of channel-pair frequencies is shown in Table 4 and Table 5 for simultaneous observation in the S- and X-bands or X- and Ka-bands. Also shown in Table 4 and 5 is the IF center frequency for complex channel that corresponds to the channel pair frequency. It may be noticed that the channel pair frequency equals the IF center frequency plus that of the first downconverter ( 2.0 GHz for S-band, 8.1 GHz for X-band, and 31.7 GHz for Ka-band).

Each channel is digitized with a selected depth of 2 bits per sample resolution. The sampling rate is at the nominal Nyquist rate ( 2 samples per period). The resultant parallel digital streams are formatted, time-tagged and recorded in the RDEF. The RDEF data can be translated to VLBI Data Interchange Format (VDIF), as specified in DSN external interface document 820-013 0200-Science-VLBI, for non-DSN correlators.

810-005
211, Rev. G

Table 4. Typical Channels (S- and X-Bands) for Wideband VLBI

| Channel Pair | IF Center Frequency |
| :---: | :---: |
| 2204.49 MHz LSB \& USB | 204.49 MHz |
| 2212.49 MHz LSB \& USB | 212.49 MHz |
| 2239.49 MHz LSB \& USB | 239.49 MHz |
| 2259.51 MHz LSB \& USB | 259.51 MHz |
| 2295.51 MHz LSB \& USB | 295.51 MHz |
| 8214.49 MHz LSB \& USB | 114.49 MHz |
| 8222.49 MHz LSB \& USB | 122.49 MHz |
| 8238.49 MHz LSB \& USB | 138.49 MHz |
| 8270.49 MHz LSB \& USB | 170.49 MHz |
| 8353.51 MHz LSB \& USB | 253.51 MHz |
| 8424.51 MHz LSB \& USB | 324.51 MHz |
| 8520.51 MHz LSB \& USB | 420.51 MHz |
| 8567.51 MHz LSB \& USB | 467.51 MHz |
| 8575.51 MHz LSB \& USB | 475.51 MHz |

Table 5. Typical Channels (X- and Ka-Bands) for Wideband VLBI

| Channel Pair | IF Center Frequency |
| :---: | :---: |
| 8218.01 MHz LSB \& USB | 118.01 MHz |
| 8262.01 MHz LSB \& USB | 162.01 MHz |
| 8346.01 MHz LSB \& USB | 246.01 MHz |
| 8514.01 MHz LSB \& USB | 414.01 MHz |
| 8598.01 MHz LSB \& USB | 498.01 MHz |
| 31818.01 MHz LSB \& USB | 118.01 MHz |
| 31850.01 MHz LSB \& USB | 150.01 MHz |
| 31882.01 MHz LSB \& USB | 182.01 MHz |
| 31914.01 MHz LSB \& USB | 214.01 MHz |
| 31942.01 MHz LSB \& USB | 242.01 MHz |
| 32014.01 MHz LSB \& USB | 314.01 MHz |
| 32158.01 MHz LSB \& USB | 458.01 MHz |
| 32190.01 MHz LSB \& USB | 490.01 MHz |
| 32222.01 MHz LSB \& USB | 522.01 MHz |
| 32254.01 MHz LSB \& USB | 554.01 MHz |
| 32286.01 MHz LSB \& USB | 586.01 MHz |

## Appendix A References

1. O. J. Sovers, J. L. Fanselow, and C. S. Jacobs, "Astrometry and Geodesy with Radio Inteferometry: Experiments, Models, Results," Reviews of Modern Physics, Vol. 70, No. 4, The American Physical Society, October, 1998
2. A. E. E. Rogers, "Very long baseline interferometry with large effective bandwidth for phase-delay measurements," Radio Science Volume 5, Number 10, pp. 1239-1247, October 1970.
3. A. R. Whitney, "Mark 5 Disk-Based Gbps VLBI Data System," in New Technologies in VLBI, edited by Y. C. Minh, ASP Conference Series, Vol. 306, Astronomical Society of the Pacific, San Francisco, CA, 2003.
4. R. Hamell, B. Tucker, M. Calhoun, "Phase Calibration Generator," IPN Progress Report 42-154, Jet Propulsion Laboratory, Pasadena, CA, October 15, 2003.
https://ipnpr.jpl.nasa.gov/progress_report/42-154/154H.pdf

Deep Space Network

## 214 <br> Pseudo-Noise and Regenerative Ranging

Document Owner:
$\left.\begin{array}{llllll}\text { Signature Provided } & \text { 07/10/2023 } & & \text { Signature Provided } & \text { 5/17/2023 } \\ \begin{array}{lll}\text { Andrew O'Dea } \\ \begin{array}{l}\text { Telemetry, Tracking, and Command } \\ \text { System Engineer }\end{array} & \text { Date } & \end{array} & \text { Date } \\ \text { Timothy Pham } \\ \text { Communications Systems Chief }\end{array}\right)$

Approved by:

DSN Document Release Authority

DSN No. 810-005, 214, Rev. C
Issue Date: August 03, 2023
JPL D-19379; CL\#23-3965
Jet Propulsion Laboratory
California Institute of Technology

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | $04 / 25 / 2023$ |  | Signature Provided | 05/10/2023 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | Date |  |
| Jeff Berner | Date |  | Scott Bryant <br> DSN Ranging Cognizant Development <br> Engineer |  |

214, Rev. C

## Document Change Log

| Rev | Issue Date | Prepared By | Affected Sections or pages | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| Initial | 10/7/2003 | P. W. Kinman | All | New Module |
| A | 10/28/2015 | P. W. Kinman | All | Added CCSDS range codes. Added curve fits for probability of acquisition. Added model for turnaround ranging channel with SDST AGC. Added performance comparison of PN and sequential ranging. |
| B | 7/17/2019 | P. W. Kinman | Many | Rewrote "Allocation of Link Power" section, including new models for downlink phase deviation for each of two types of turn-around ranging channels. Added new equation for chip rate. Added new information on DSS delay. Added glossary. Rewrote many paragraphs for improved clarity. |
| C | 08/03/2023 | P. W. Kinman | $\begin{aligned} & \hline \text { Sections 2.1, } \\ & \text { 2.2.1, 2.3, 2.3.2.1, } \\ & \text { 2.3.2.2, 2.5.2, } \\ & \text { 2.5.3, 2.5.3.1, } \\ & \text { 2.5.3.2, 2.5.4, } \\ & \text { 2.5.8 } \\ & \text { Figures } 4,10,11 \end{aligned}$ | Modified Equation (34) of 214B, which is now Equation (40) of 214C. Added equations for filtering of feedthrough command by ranging channel. Added models for effect of interference on range measurement. |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## Contents

Section Page

1. Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope .....  6
2. General Information .....  6
2.1 System Description ..... 7
2.2 Parameters Specified for Ranging Operations ..... 9
2.2.1 Chip Rate and Range-Clock Frequency ..... 9
2.2.2 Ranging Signal Structure ..... 10
2.2.3 Integration Time ..... 15
2.2.4 Uplink Ranging Modulation Index ..... 15
2.2.5 Tolerance ..... 16
2.3 Allocation of Link Power ..... 17
2.3.1 Uplink ..... 19
2.3.2 Downlink ..... 21
2.4 Uplink Spectrum ..... 30
2.5 Range Measurement Performance ..... 31
2.5.1 Cross-Correlation Factors ..... 32
2.5.2 Downlink Ranging Signal Power to Noise Spectral Density ..... 33
2.5.3 Effect of Interference ..... 33
2.5.4 Range Measurement Error Due to Thermal Noise ..... 40
2.5.5 Probability of Acquisition ..... 44
2.5.6 Processing a Set of Range Measurements ..... 48
2.5.7 Comparison of PN Ranging and Sequential Ranging ..... 48
2.5.8 Comparison of the Different PN Ranging Techniques ..... 50
2.5.9 Non-Coherent Operation ..... 50
2.6 Range Corrections ..... 51
2.6.1 DSS Delay ..... 52
2.6.2 Z-Correction ..... 53
2.7 Total Error for Range Measurement ..... 54
Appendix: Glossary of Parameters ..... 55
References ..... 58

## Illustrations

Figure Page
Figure 1. The DSN Ranging System Architecture ..... 8
Figure 2. PN Ranging Signal When Third Harmonic of Range Clock is Blocked ..... 16
Figure 3. Bessel Functions of the First Kind of Order 0 and 1 ..... 20
Figure 4. Fraction of Command Power Passing Ranging Channel ..... 24
Figure 5. Downlink rms Phase Deviation by Ranging Signal (No Command Feedthrough) ..... 26
Figure 6. Downlink rms Phase Deviation by Noise (No Command Feedthrough) ..... 26
Figure 7. Downlink Ranging-Signal Power to Total Power (No Telemetry, No Command) ..... 28
Figure 8. Downlink Carrier Suppression (No Telemetry, No Command) ..... 29
Figure 9. Uplink Spectrum for the DSN Range Code Ranging Signal ..... 31
Figure 10. Curve-Fit Function for Modeling Increase in Quadrature-Channel Noise Floor ..... 38
Figure 11. Increase (dB) in Range-Measurement Noise Floor Due to NRZ Telemetry ..... 39
Figure 12. Standard Deviation of Range Measurement Error for the DSN and T4B Codes ..... 42
Figure 13. Standard Deviation of Range Measurement Error for the T2B Code ..... 43
Figure 14. Probability of Acquisition for the DSN Range Code and the T4B Code ..... 46
Figure 15. Probability of Acquisition for the T2B Code ..... 47
Figure 16. Comparison of Sequential Ranging and PN Ranging ..... 49
Figure 17. DSS Delay Calibration ..... 52
Figure 18. DSS Delay as a Function of Downlink Frequency ..... 53
Tables
Table Page
Table 1. CCSDS Chip Rates ..... 11
Table 2. Component Codes ..... 12
Table 3. Cross-Correlation Factors, DSN Range Code ..... 32
Table 4. Cross-Correlation Factors, T4B (Reference 4) ..... 32
Table 5. Cross-Correlation Factors, T2B (Reference 4) ..... 33
Table 6. Interpolation Table ..... 45
Table 7. Parameters for Equation (93) ..... 47

## 1. Introduction

### 1.1 Purpose

This module describes capabilities of the Deep Space Network (DSN) for pseudonoise (PN) ranging. These capabilities are available within the 70-m, the 34-m High Efficiency (HEF), and the 34-m Beam Waveguide (BWG) subnets. Performance depends on whether the spacecraft transponder uses a turn-around (non-regenerative) ranging channel or a regenerative ranging channel. Performance parameters are provided for both cases.

### 1.2 Scope

The material contained in this module covers the PN ranging system that may be utilized by both near-Earth and deep-space missions. This document describes those parameters and operational considerations that are independent of the particular antenna being used to provide the telecommunications link. For antenna-dependent parameters, refer to Module 101, 103 , or 104 of this handbook. The other ranging scheme employed by the DSN is sequential ranging, described in Module 203.

An overview of the ranging system is given in Section 2.1. The parameters to be specified for ranging operations are explained in Section 2.2. The distribution of link power is characterized in Section 2.3. The spectrum of an uplink carrier modulated by a PN ranging signal is discussed in Section 2.4. The performance of turn-around and regenerative ranging is summarized in Section 2.5. Non-coherent ranging is also discussed there. Section 2.6 describes the corrections required to determine the actual range to a spacecraft. The total error for a range measurement is discussed in Section 2.7.

## 2. General Information

The ranging signal of interest in this module is a logical combination of a range clock and several PN codes; this signaling technique is called PN ranging. A different signaling technique, sequential ranging, is also supported by the DSN. The same instrumentation within the DSN supports both PN ranging and sequential ranging. However, there are performance differences between these two signaling techniques. This module only discusses PN ranging. Sequential ranging is discussed in Module 203.

A spacecraft transponder may have either a turn-around ranging channel or a regenerative ranging channel. The DSN processes a PN ranging signal in the same way for both types of transponder ranging channel. The performance of a PN range measurement will generally be better when the transponder uses a regenerative ranging channel. This module characterizes the performance of both regenerative ranging and non-regenerative (turn-around) ranging when the PN-ranging signaling technique is employed.

The range clock is coherently related to the carrier. The uplink carrier is often tuned during a tracking pass, in order to compensate for the Doppler effect on the uplink carrier, thereby reducing stress on the transponder's carrier-tracking loop. As the uplink carrier is tuned, the range-clock frequency varies proportionately.

In two-way ranging, one Deep Space Station (DSS) both transmits the uplink and receives the downlink. For two-way ranging, the user may calculate the round-trip light time (RTLT) from data provided by the DSN: phase measurements of the ranging signal and a record of the transmitted uplink carrier frequency.

Three-way ranging is also supported, for which one DSS transmits the uplink and a different DSS receives the downlink. As with two-way ranging, the DSN reports phase measurements of the ranging signal and a record of the uplink-carrier frequency. From these data, the user may calculate the light time for the travel of the ranging signal from the uplink DSS, through the spacecraft, to the downlink DSS.

To put matters in perspective, the measurements discussed here are phase measurements and the resulting data permit the user to calculate time delays. Range cannot be calculated directly and accurately from the time delays because the range changes significantly over the course of the signal travel time. Similar measurement techniques employed in terrestrial applications, where the distances and measurement times are much smaller, typically permit the calculation of the range as the two-way time delay times the speed of an electromagnetic wave divided by 2. That has been the justification for using the term range measurement for this class of measurement technique. The two-way and three-way time delays calculated for deep-space missions are useful in the orbit determination process. These calculated delays assist in the improvement of trajectory models; and so, indirectly, the delays assist in the estimation of range as a function of time.

It is customary to quote range measurement error in units of meters. For two-way ranging, the range error is defined as the error in the two-way time delay times the speed of electromagnetic waves in vacuum divided by 2. (The division by two accounts for the fact that range is a one-way distance but the time delay is two-way.)

### 2.1 System Description

The DSN ranging system records the phase of the ranging signal that is transmitted and measures the phase of the ranging signal that returns. For two-way ranging, both recorded phase values (that of the uplink ranging signal and that of the downlink ranging signal) apply to a common instant in time, an epoch of the 1-pulse per second timing reference, which becomes the common time tag. From the difference between the uplink and downlink phases and from the history of the transmitted range-clock frequency (which can be calculated from the history of the uplink-carrier frequency), a user may compute the RTLT (Reference 1). This twoway time delay applies to a signal arriving at the DSS at the instant specified by the time tag.

The architecture for the DSN ranging system is shown in Figure 1. The ranging signal originates in the Uplink Subsystem (UPL). The returned signal is processed in the Downlink Tracking and Telemetry Subsystem (DTT). Both the UPL and the DTT are located at the Deep Space Communications Complex (DSCC).

The signal processing in the UPL may be summarized as follows. The Uplink Signal Generator (USG) synthesizes the range clock such that it is coherently related to the uplink carrier. The range-clock frequency equals a rational factor times the uplink carrier frequency. The USG generates the ranging signal, which is the range clock modified by additional signal structure that makes possible resolution of the phase ambiguity. A sample of
the uplink phase, which is required for the delay measurement, is passed from the USG to the Uplink Processor Assembly (UPA). The USG modulates the uplink carrier with the ranging signal. The klystron supplies the final stage of power amplification for the uplink carrier.

The downlink carrier, after amplification within the Low-Noise Amplifier (LNA), passes to the DTT. Frequency down-conversion to an intermediate frequency (IF) takes place in the RF-to-IF Downconverter (RID). The IF signal is sent to an IF-to-Digital Converter (IDC). Demodulation of the IF carrier occurs in the Receiver, Ranging and Telemetry (RRT) processor. Also within the RRT, the correlation of the received, baseband ranging signal with a local model produces a measurement of the downlink phase. This downlink phase is passed to the Downlink Channel Controller (DCC).


Figure 1. The DSN Ranging System Architecture

Uplink phase samples, each corresponding to an epoch of the 1-PPS (pulse per second) clock, are passed from the UPA, via the Data Capture and Delivery (DCD) software, to the Tracking Data Delivery Subsystem (TDDS), located in Pasadena. The DCC passes the downlink phase measurement and its time tag (an epoch of the 1-PPS clock), via the DCD, to the TDDS. A history of the uplink range clock's frequency is also needed for the calculation of the two-way time delay. Since the uplink range clock is coherently related to the uplink carrier, this necessary information can be derived from the history of the uplink carrier frequency, which is supplied by the UPA to the TDDS. All data required for the two-way delay calculation are archived by the TDDS for later use by a navigation team or other users.

The IDC, RRT, and DCC required for the processing of a downlink carrier are located within a Downlink Channel Processing Cabinet (DCPC). Each DCPC supports a single channel. For spacecraft with multiple channels (for example, X-band and Ka-band), or for
multiple spacecraft within a single antenna beamwidth, multiple DCPCs will be assigned to that antenna.

The DSN uses the Range Unit (RU) to deliver the difference of the ranging signal's uplink phase and downlink phase. Since the range clock and the carrier are coherently related, it is permissible to define the RU in terms of carrier phase. For an S-band uplink, the RU is defined as two cycles of the carrier. For an X-band uplink, one RU is $(749 / 221)$ times two cycles of the carrier. For a Ka-band uplink, one RU is $(3599 / 221)$ times two cycles of the carrier. Because the RU is defined with a factor (1 for an S-band uplink, 749/221 for an Xband uplink, and $3599 / 221$ for a Ka-band uplink) that is proportional to frequency, the RU is proportional to time delay. (But the RU is a dimensionless unit.) One RU corresponds to approximately 0.94 ns of time delay.

A user may convert a two-way phase delay in RU into a two-way time delay as follows:

$$
\text { Two-way Time Delay }=\left\{\begin{array}{cl}
\frac{2 \times R U}{f_{S}}, & \text { S-band uplink }  \tag{1}\\
\frac{749}{221} \cdot \frac{2 \times R U}{f_{X}}, & \text { X-band uplink } \\
\frac{2407}{221} \cdot \frac{2 \times R U}{f_{K}}, & \text { K-band uplink } \\
\frac{3599}{221} \cdot \frac{2 \times R U}{f_{K a}}, & \text { Ka-band uplink }
\end{array}\right.
$$

where $f_{S}$ is the frequency of an S-band uplink carrier, $f_{X}$ is the frequency of an X -band uplink carrier, $f_{K}$ is the frequency of a K-band uplink carrier, and $f_{K a}$ is the frequency of a Ka-band uplink carrier. For example, if the uplink carrier is in the X band with a frequency of 7.16 GHz and the two-way phase delay is reported as $6,500,000 \mathrm{RU}$, then the two-way time delay is 6,153,467 ns.

### 2.2 Parameters Specified for Ranging Operations

The following subsections present the parameters that are required in ranging operations.

### 2.2.1 Chip Rate and Range-Clock Frequency

In the PN ranging system, the PN ranging signal is created by filtering a composite code, where timing is defined by the range clock. The chip rate $f_{\text {chip }}$ for the composite code is defined in terms of a rational factor $A / B$ (a ratio of two positive integers).

$$
f_{\text {chip }}=\left\{\begin{array}{cl}
\frac{A}{B} \times f_{S}, & \text { S-band uplink }  \tag{2}\\
\frac{221}{749} \times \frac{A}{B} \times f_{X}, & \text { X-band uplink } \\
\frac{221}{2407} \times \frac{A}{B} \times f_{K}, & \text { K-band uplink } \\
\frac{221}{3599} \times \frac{A}{B} \times f_{K a}, & \text { Ka-band uplink }
\end{array}\right.
$$

$f_{S}$ is the frequency of an S-band uplink carrier, $f_{X}$ is the frequency of an X-band uplink carrier, $f_{K}$ is the frequency of a K-band uplink carrier, and $f_{K a}$ is the frequency of a Ka-band uplink carrier. $A / B$ is defined, in turn, by the whole numbers $l_{C R}$ and $k_{C R}$ (Reference 2).

$$
\begin{equation*}
\frac{A}{B}=\frac{l_{C R}}{128 \cdot 2^{k_{C R}}} \tag{3}
\end{equation*}
$$

The chip rate is coherently related to the uplink carrier frequency, as suggested by Equation (2). $l_{C R}$ and $k_{C R}$ are whole numbers that together determine the rational factor $A / B$ relating $f_{\text {chip }}$ to the uplink carrier frequency. Table 1 lists the selections for $l_{C R}$ and $k_{C R}$. This table also indicates the approximate value of the chip rate that corresponds to each pair of whole numbers $l_{C R}$ and $k_{C R}$. The exact chip rate depends, as indicated in Equation (2), on the uplink carrier frequency (and, therefore, on the channel assignment and on any Doppler compensation that may be done on the uplink).

The range clock is a periodic signal. Each half-cycle of the range clock corresponds to one chip. Therefore, the range-clock frequency $f_{R C}$ equals one-half of the the chip rate $f_{\text {chip }}$.

$$
\begin{equation*}
f_{R C}=\frac{f_{\text {chip }}}{2} \tag{4}
\end{equation*}
$$

The approximate value of $f_{R C}$ is given in Table 1 for numbers pairs $l_{C R}$ and $k_{C R}$ of that table. The exact value of $f_{R C}$ depends on the uplink carrier frequency.

The DTT receiver uses the range clock in two ways. First, the phase of the range clock is measured; this determines the accuracy of the range measurement. Second, the receiver achieves chip synchronization using the range clock; this is a necessary precursor to resolving the ambiguity.

### 2.2.2 Ranging Signal Structure

In the PN ranging system, a filtered composite code is used for ranging. The timing of the composite code is set by the range clock. Three different composite codes are available: the DSN range code, the CCSDS T4B code, and the CCSDS T2B code. Each of these composite codes is built from a common set of component codes. The three composite codes differ from each other because of the manner in which the component codes are combined.

214, Rev. C

Table 1. CCSDS Chip Rates

| $l_{C R}$ | $k_{C R}$ | $A / B$ | Approximate value of $f_{\text {chip }}$ | Approximate value of $f_{R C}$ |
| :---: | :---: | :---: | :---: | :---: |
| $94 *$ | 6 | $47 / 4096$ | 24 MHz | 12 MHz |
| 64 | 6 | $1 / 128$ | 16 MHz | 8 MHz |
| 32 | 6 | $1 / 256$ | 8 MHz | 4 MHz |
| 16 | 6 | $1 / 512$ | 4 MHz | 2 MHz |
| 12 | 6 | $3 / 2048$ | 3 MHz | 1.5 MHz |
| 11 | 6 | $11 / 8192$ | 2.8 MHz | 1.4 MHz |
| 10 | 6 | $5 / 4096$ | 2.6 MHz | 1.3 MHz |
| 9 | 6 | $9 / 8192$ | 2.3 MHz | 1.15 MHz |
| 8 | 6 | $1 / 1024$ | 2 MHz | 1 MHz |
| 7 | 6 | $7 / 8192$ | 1.8 MHz | 900 kHz |
| 6 | 6 | $3 / 4096$ | 1.5 MHz | 750 kHz |
| 5 | 6 | $5 / 8192$ | 1.3 MHz | 650 kHz |
| 4 | 6 | $1 / 2048$ | 1 MHz | 500 kHz |
| 3 | 6 | $3 / 8192$ | 750 kHz | 375 kHz |
| 2 | 6 | $1 / 4096$ | 500 kHz | 250 kHz |
| 1 | 6 | $1 / 8192$ | 250 kHz | 125 kHz |
| 2 | 8 | $1 / 16384$ | 128 kHz | 64 kHz |
| 2 | 9 | $1 / 32768$ | 64 kHz | 32 kHz |
| 2 | 10 | $1 / 65536$ | 32 kHz | 16 kHz |

*This rate is used by the Bepi-Colombo mission and is outside defined CCSDS rates

### 2.2.2.1 Component Codes

Table 2 lists the component codes. In this table, a component code is represented as a finite-length sequence of bits. The length of the $n$-th component code is denoted $\lambda_{n}$ for $1 \leq$ $n \leq 6$. The lengths are: $\lambda_{1}=2, \lambda_{2}=7, \lambda_{3}=11, \lambda_{4}=15, \lambda_{5}=19$, and $\lambda_{6}=23$. (The first component code is the 2 -bit sequence representing the range clock.) The $n$-th component code is denoted $b_{n}(i)$, where $i$ represents a discrete-time index, $0 \leq i<\lambda_{n}$. The proper order of each of
these component codes is determined by reading the bits in each row from left to right. So, for example, the first three bits of $b_{3}(\cdot)$ are all 1 s and the final bit is a 0 .

It is also useful to represent each component code as a sequence of chips (with the bi-polar values $\pm 1$ ).

$$
\begin{equation*}
c_{n}(i)=2 b_{n}(i)-1 \tag{5}
\end{equation*}
$$

where $c_{n}(i)= \pm 1$. Equation (5) translates a binary 1 into +1 and a logical 0 into -1 .

Table 2. Component Codes

| $b_{n}$ | code | $\lambda_{n}$ |
| :---: | :--- | :---: |
| $b_{1}$ | 1,0 | 2 |
| $b_{2}$ | $1,1,1,0,0,1,0$ | 7 |
| $b_{3}$ | $1,1,1,0,0,0,1,0,1,1,0$ | 11 |
| $b_{4}$ | $1,1,1,1,0,0,0,1,0,0,1,1,0,1,0$ | 15 |
| $b_{5}$ | $1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,1,1,0,0$ | 19 |
| $b_{6}$ | $1,1,1,1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0,0,0$ | 23 |

### 2.2.2.2 DSN Range Code

The DSN range code (also called the JPL range code) was the first composite code to be implemented and validated with the current ranging instrumentation in the DSN. Following is an explanation of how this composite code is generated from the component codes listed in Table 2.

For each finite-length PN code $b_{n}(i)$, a periodic code $b_{n}{ }^{\prime}(i)$ of period $\lambda_{n}$ is formed by endless repetition:

$$
\begin{equation*}
b_{n}{ }^{\prime}(i)=b_{n}\left(i \bmod \lambda_{n}\right) \tag{6}
\end{equation*}
$$

where $b_{n}{ }^{\prime}(i)$ is binary valued. In this document, the prime $\left({ }^{\prime}\right)$ indicates a periodic sequence (made from a finite-length sequence by periodic extension).

The composite code is

$$
\begin{equation*}
b^{\prime}(i)=b_{1}{ }^{\prime}(i) \cup\left[b_{2}^{\prime}(i) \cap b_{3}{ }^{\prime}(i) \cap b_{4}{ }^{\prime}(i) \cap b_{5}{ }^{\prime}(i) \cap b_{6}{ }^{\prime}(i)\right] \tag{7}
\end{equation*}
$$

where $U$ and $\cap$ are the logical OR and logical AND operators, respectively. Since the component code lengths $\lambda_{n}(1 \leq n \leq 6)$ are relatively prime, the period $L$ (in bits) of the composite code is the product of the component code lengths. That is,

$$
\begin{equation*}
b^{\prime}(i+L)=b^{\prime}(i) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
L=\prod_{n=1}^{6} \lambda_{n}=1,009,470 \tag{9}
\end{equation*}
$$

The periodic chip sequence corresponding to the periodic bit sequence $b^{\prime}(i)$ is

$$
\begin{equation*}
c^{\prime}(i)=2 b^{\prime}(i)-1 \tag{10}
\end{equation*}
$$

where $b^{\prime}(i)$ is the periodic bit sequence of Equation (7). $c^{\prime}(i)$ is bi-polar, $c^{\prime}(i)= \pm 1$.
In this design a large $L$ is obtained from relatively small component code lengths. A large $L$ is necessary for resolution of the range ambiguity, yet small $\lambda_{n}$ are needed for a practical implementation of the correlators at the receiver. The ambiguity resolution of this code is given by

$$
\begin{equation*}
\text { ambiguity resolution }=\frac{c \cdot L}{4 f_{R C}} \tag{11}
\end{equation*}
$$

where $f_{R C}$ is the range-clock frequency and $c$ is the speed of electromagnetic waves in vacuum. For a range clock of approximately 1 MHz , the ambiguity resolution is $75,660 \mathrm{~km}$.

An important property of this composite code is that it approximates a sequence of period 2 bits. The composite code equals $b_{1}{ }^{\prime}(i)$, the first component with a period of 2 bits, most of the time. The effect of the other 5 component codes is to invert a small fraction $(1 / 32)$ of the logical 0 s in $b_{1}{ }^{\prime}(i)$. Since $b_{1}{ }^{\prime}(i)$ corresponds to the range clock, the composite code may be viewed as the range clock with an occasional inversion of a logical 0 .

Most of this ranging signal's power lies at the range-clock frequency. This is desirable, since the accuracy of the range measurement is set by a correlation against a local model of the range clock. The occasional inversion is necessary to resolve the range ambiguity, but for this purpose the inversions need not be frequent.

### 2.2.2.3 CCSDS T4B Code

The Consultative Committee for Space Data Systems (CCSDS) recommends a composite code called T4B for use in deep-space ranging (Reference 2). The T4B code employs the same set of component codes that are used by the DSN range code (Table 2). The T4B code is constructed from the component chip sequences:

$$
\begin{equation*}
c_{n}{ }^{\prime}(i)=c_{n}\left(i \bmod \lambda_{n}\right) \tag{12}
\end{equation*}
$$

where $c_{n}(\cdot)= \pm 1$ is the chip sequence of length $\lambda_{n}$ for the $n$-th component code, as given by Equation (5), and $c_{n}{ }^{\prime}(\cdot)$ is its periodic extension. The periodic, composite chip sequence $c^{\prime}(i)$ is computed from the components $c_{n}{ }^{\prime}(i)$ as follows:

$$
\begin{equation*}
c^{\prime}(i)=\operatorname{sign}\left[4 c_{1}{ }^{\prime}(i)+c_{2}{ }^{\prime}(i)-c_{3}{ }^{\prime}(i)-c_{4}{ }^{\prime}(i)+c_{5}{ }^{\prime}(i)-c_{6}{ }^{\prime}(i)\right] \tag{13}
\end{equation*}
$$

where $c^{\prime}(i)= \pm 1$ and where sign $[\cdot]$ is the algebraic sign of its argument. The period of the composite code $c^{\prime}(i)$ equals $L$, as given in Equation (9). The ambiguity resolution of this code is the same as that for the DSN range code; this resolution is given in Equation (11).

As suggested by Equation (13), the range clock $c_{1}{ }^{\prime}(i)$ has a disproportionate influence on the composite code $c^{\prime}(i)$. The composite code may be viewed as the range clock with an occasional inversion of a chip. (With the T4B code, unlike the DSN range code, the inversion may go in either direction: $-1 \rightarrow+1$ or $+1 \rightarrow-1$.) As with the DSN range code, most of the ranging signal's power lies at the range-clock frequency. As shown in Section 2.5, the performance of the T4B code is close to that of the DSN range code.

### 2.2.2.4 CCSDS T2B Code

The CCSDS recommends a second composite code, called T2B, which provides an alternative to the T4B code in performance trade-off space (Reference 2). The T2B code employs the same set of component codes (Table 2) that are used by the DSN range code and the T4B code. The periodic, composite chip sequence $c^{\prime}(i)$ for the T2B code is computed from the components $c_{n}{ }^{\prime}(i)$ as follows:

$$
\begin{equation*}
c^{\prime}(i)=\operatorname{sign}\left[2 c_{1}^{\prime}(i)+c_{2}^{\prime}(i)-c_{3}^{\prime}(i)-c_{4}^{\prime}(i)+c_{5}^{\prime}(i)-c_{6}^{\prime}(i)\right] \tag{14}
\end{equation*}
$$

The period of the T2B code equals $L$, as given in Equation (9). The ambiguity resolution of this code is the same as that for the T4B code and the DSN range code; this resolution is given in Equation (11).

In the construction of the T2B code, using Equation (14), the range clock $c_{1}{ }^{\prime}(i)$ gets only 2 "votes", whereas in the construction of the T4B code, using Equation (13), the range clock gets 4 "votes". As a result, the T2B code places less power in the range clock. The T2B code will therefore generally produce a less accurate range measurement than the T4B code; however, the T2B code will achieve a better probability of acquisition for smaller received power levels.

### 2.2.2.5 PN Ranging Signal

The PN ranging signal is created by filtering the composite code. This is accomplished with the uplink ranging filter, which is digitally implemented within the USG. The uplink ranging filter is a low-pass filter with a configurable bandwidth. The default (and minimum) bandwidth is 1.2 MHz . The PN ranging signal, available at the output of the uplink ranging filter, is used to phase-modulate the uplink carrier. This modulation also happens in the USG.

The purpose of the uplink ranging filter is to limit the bandwidth of the modulated uplink carrier. Because phase modulation is a non-linear modulation, the bandwidth of a carrier that is phase-modulated by the PN ranging signal can be much wider than twice the bandwidth of the PN ranging signal. If the composite code were not low-pass filtered, but instead sent directly to the phase modulator, the bandwidth of the uplink carrier would, in general, be much wider yet. (The command signal, if present, also contributes to the bandwidth of the uplink carrier, but typically the command signal has a much smaller bandwidth than the PN ranging signal. The PN ranging signal, when present, is therefore the modulating signal that plays the dominant role in determining the bandwidth of the uplink carrier.)

The bandwidth of the uplink ranging filter has a default value of 1.2 MHz . This is also the minimum bandwidth. This filter can be configured for a larger bandwidth. For a rangeclock frequency larger than 1 MHz , it will be necessary to use a larger bandwidth. The decision about what bandwidth to use will be based, in part, on the effect of the filter on the PN ranging signal but also must account for spectral occupancy of the uplink carrier.

The composite code, as it appears at the input to the uplink ranging filter, is a sequence of bi-polar chips, where each chip is represented by a rectangular pulse. The uplink ranging filter will remove the highest-frequency content from this chip stream, so the PN ranging signal at the filter output will have slower transitions and smooth features. In the case where the uplink ranging filter passes the fundamental harmonic of the range clock but blocks third and higher-order harmonics of the range clock, a square-wave range clock on the filter input becomes a sinewave range clock on the filter output. The composite code on the filter input becomes on the filter output, in this case, a sequence of bi-polar chips, where each chip may be represented approximately by a half-cycle of a sinewave. This is illustrated in Figure 2 for the first eight chips of the DSN range code. The parameter $T_{c}$ is the chip period. The range-clock frequency equals $1 /\left(2 T_{c}\right)$. This is the desired situation for the purpose of minimizing the spectral occupancy of the uplink carrier.

The range clock is modeled, in this module, as a sinewave. The PN ranging signal is modeled as the composite code but with each chip a half-cycle of a sinewave, as depicted in Figure 2. These models are good approximations when the uplink ranging filter passes the fundamental harmonic of the range clock but blocks the third harmonic (and higherorder harmonics) of the range clock. Even if this condition is not strictly met, these models are useful as first-order approximations; they lead to performance equations that may be easily calculated. Trying to get more accurate results would typically involve computer simulations.

There is also the limiting case where the bandwidth of the uplink ranging filter is much larger than the range-clock frequency. In this limit, the range clock is a square-wave and the PN ranging signal is the composite code (with chips represented by rectangular pulses). This limiting case is only approached when the range-clock frequency is much smaller than 400 kHz (one-third of 1.2 MHz ). Since the accuracy of the range measurement improves with increasing range-clock frequency, this scenario is not common.

### 2.2.3 Integration Time

The integration time $T$ should be large enough that the probability of range measurement acquisition is close to 1.0 and the range error due to downlink thermal noise is small (see Section 2.5). In the special case of non-coherent ranging, the presence of a frequency mismatch between the received ranging signal and the local model means that there is also reason to keep $T$ relatively small, so that an optimum $T$ should be carefully chosen for noncoherent ranging.

### 2.2.4 Uplink Ranging Modulation Index

The uplink ranging modulation index is chosen to get a suitable distribution of power among the ranging and command sidebands and the residual carrier on the uplink (see Section 2.3). With turn-around (non-regenerative) ranging, the uplink ranging modulation index also affects the distribution of power on the downlink carrier. The analysis appearing below
employs an rms phase deviation of the uplink carrier. This rms phase deviation equals the peak modulation index divided by $\sqrt{2}$ for the usual case of a sinewave range clock.


Figure 2. PN Ranging Signal When Third Harmonic of Range Clock is Blocked

### 2.2.5 <br> Tolerance

The tolerance plays a role in deciding whether to judge range acquisitions as "in lock" or "out of lock". The ranging process does not use a phase-locked loop, so ranging lock status is estimated using the ranging probability of acquisition. For any given range acquisition, the ratio $P_{R} / N_{0}$ of the downlink ranging signal power to the noise spectral density is measured. From this measured $P_{R} / N_{0}$, an estimate of the probability of acquisition $P_{\text {acq }}$ is calculated. Section 2.5 describes the calculation of the $P_{\text {acq }}$ from $P_{R} / N_{0}$.

Tolerance may be selected over the range of $0.0 \%$ to $100.0 \%$. The default value for tolerance is $99 \%$. An acquisition lock status depends upon the following criteria:

$$
\begin{aligned}
& P_{\mathrm{acq}}(\%) \geq \text { Tolerance results in Acquisition declared "in lock" } \\
& P_{\mathrm{acq}}(\%)<\text { Tolerance results in Acquisition declared "out of lock" }
\end{aligned}
$$

This procedure is explained for the example where the tolerance has the default value of $99 \%$. For a given acquisition, $P_{R} / N_{0}$ is measured. From this measured value, the probability of acquisition $P_{\text {acq }}$ is calculated; this number is the probability that the ambiguity is correctly resolved for this particular acquisition. Treating $P_{\text {acq }}$ as a percentage, it is compared with the tolerance of $99 \%$. If $P_{\text {acq }}$ (\%) equals or exceeds $99 \%$, the acquisition is declared "in lock". Otherwise, it is declared "out of lock". Note that the "out of lock" ranging data may be valid data, with a probability of $P_{\text {acq }}(\%)$ of being correct.

214, Rev. C

### 2.3 Allocation of Link Power

The power allocation for a link is the distribution of power among the important link components: the residual carrier, the ranging sidebands, and the data (command or telemetry) sidebands. The following notation is used here for both the uplink and downlink:

$$
\begin{aligned}
P_{C} & =\text { power in residual carrier } \\
P_{R} & =\text { usable power in ranging sidebands } \\
P_{D} & =\text { usable power in data sidebands } \\
P_{T} & =\text { total link power }
\end{aligned}
$$

$P_{C}$ is the power in a single spectral line at the carrier frequency. When $P_{C}$ is finite (greater than zero), carrier synchronization may be obtained at the receiver using a phase-locked loop that tracks this residual carrier. (Carrier synchronization may also be obtained with a Costas loop tracking the data sidebands, which are symmetrically located about the nominal carrier frequency.)
$P_{R}$ is that portion of the power in the ranging sidebands that is used in the range measurement. $P_{R}$ includes both the spread-spectrum content arising from the PN code components as well as the two discrete spectral lines (at $f_{R C} \mathrm{~Hz}$ above and at $f_{R C} \mathrm{~Hz}$ below the residual carrier) that correspond to the range clock's fundamental harmonic. Higher-order harmonics (beyond the fundamental harmonic) of the range clock are not used in a range measurement and are not included in $P_{R}$. The range measurement error is determined by the discrete spectral lines of the range clock's fundamental harmonic. Ambiguity resolution is achieved using the spread-spectrum content.

For the uplink, $P_{D}$ is that portion of the power in the command sidebands that is employed in command detection in the transponder. In the most common signal design for a deep-space uplink, command data modulate a sinewave subcarrier and $P_{D}$ only accounts for the power in the sidebands associated with the upper and lower fundamental harmonic of the subcarrier frequency. In the case of a sinewave subcarrier, the higher-order harmonics of the subcarrier frequency are not employed in command detection in the typical transponder and are not included in $P_{D}$.

For some missions, the command signal is bi-polar. The term "bi-polar" can mean either NRZ or bi-phase (Manchester encoded) pulses; for both of these pulse shapes, each symbol is conveyed using one of two algebraically opposite (antipodal) pulse shapes. An example of bi-polar commanding is when the command symbols, represented as NRZ or biphase pulses, directly phase-modulate the uplink carrier. In this case, the uplink $P_{D}$ accounts for all power in command sidebands, since the command detection process in the typical transponder utilizes all command sidebands arising from a bi-polar command signal.

For the downlink, $P_{D}$ is that portion of the power in the telemetry sidebands that is employed in telemetry detection at the station. Commonly, the telemetry signal is bi-polar. The term "bi-polar" can mean either NRZ or bi-phase (Manchester encoded) pulses; for both of these pulse shapes, each symbol is conveyed using one of two algebraically opposite (antipodal) pulse shapes. An example of bi-polar telemetry is when the telemetry symbols, represented as NRZ or
bi-phase pulses, directly phase-modulate the downlink carrier or when these symbols modulate a square-wave subcarrier that, in turn, phase-modulates the downlink carrier. In such cases, all of the power in the telemetry sidebands is employed in telemetry detection. This is a result of both the data and the subcarrier (if present) being bi-polar.

For some missions, the telemetry signal modulates a sinewave subcarrier and this composite signal phase-modulates the downlink carrier. In such a case, the downlink $P_{D}$ is that portion of the power in the telemetry sidebands that is employed in telemetry detection at the station. Not included is the power in the higher-order harmonics of the subcarrier frequency.
$P_{T}$ is not, in general, the sum of $P_{C}, P_{R}$, and $P_{D}$. In general, $P_{T}$ is larger than that sum. There are multiple reasons for this. First, $P_{R}$ does not account for power in the higherorder harmonics of the sinewave range clock. Second, when multiple signals (for example, a ranging signal and a telemetry signal) simultaneously phase-modulate a carrier, intermodulation products arise. These intermodulation products consume link power but do not contribute to either the range measurement or telemetry detection. Moreover, for the downlink, noise sidebands are present (in the case of turn-around ranging).

In calculating power allocations for a modulated carrier, it is necessary to characterize the level of the modulation. In this document, the root-mean-square (rms) phase deviation of the carrier will be used for this purpose. The following symbols are used in this module to represent rms phase deviation of the carrier:

$$
\begin{array}{lcll}
\text { uplink: } & \phi_{r} & =\text { rms phase deviation by ranging signal, rad rms } \\
\text { uplink: } & \phi_{c m d} & =\text { rms phase deviation by command signal, rad rms } \\
\text { downlink: } & \theta_{r s} & =\text { rms phase deviation by ranging signal (strong signal), rad rms } \\
\text { downlink: } & \theta_{r} & =\text { rms phase deviation by ranging signal, rad rms } \\
\text { downlink: } & \theta_{c m d} & =\text { rms phase deviation by feedthrough command signal, rad rms } \\
\text { downlink: } & \theta_{n} & =\text { rms phase deviation by noise, rad rms } \\
\text { downlink: } & \theta_{t l m} & =\text { rms phase deviation by telemetry signal, rad rms }
\end{array}
$$

On the uplink, $\phi_{r}$ and $\phi_{c m d}$ are parameters, constant for any given tracking pass. For a sinewave range clock, $\phi_{r}$ is related to the peak modulation index for uplink ranging by:

$$
\begin{equation*}
\phi_{r}=(\text { peak modulation index for uplink ranging, rad }) / \sqrt{2} \tag{15}
\end{equation*}
$$

When a sinewave subcarrier is used with command, $\phi_{c m d}$ is related to the peak modulation index for command by:

$$
\phi_{c m d}=(\text { peak modulation index for command }, \mathrm{rad}) / \sqrt{2}, \quad \begin{align*}
& \text { sinewave }  \tag{16}\\
& \text { subcarrier }
\end{align*}
$$

However, for a bi-polar command signal, $\phi_{c m d}$ equals the peak modulation index for command.
On the downlink, $\theta_{r s}$ is a constant parameter that is determined by the AGC in the turn-around ranging channel. $\theta_{r s}$ is the rms phase deviation of the downlink carrier by the ranging signal in a strong-signal scenario. In such a scenario, the noise in the transponder's ranging channel is negligible compared with the ranging signal and there is no command. This
scenario occurs in a test facility before flight and in the early phase of flight when the ranging signal-to-noise ratio in the transponder's ranging channel is large. For a sinewave range clock, $\theta_{r s}$ is related to the peak modulation index (strong signal) by:

$$
\begin{equation*}
\theta_{r s}=(\text { strong-signal peak modulation index for downlink ranging, rad }) / \sqrt{2} \tag{17}
\end{equation*}
$$

When PN ranging is done with a turn-around (non-regenerative) ranging channel, the variables $\theta_{r}, \theta_{\text {cmd }}$ and $\theta_{n}$ become important. Within a turn-around channel the uplink carrier is demodulated, and the baseband signal plus noise that is the result of this demodulation is presented to a filter. The filter output is applied to an automatic gain control (AGC) circuit. The signal plus noise that exits the turn-around ranging channel is phase-modulated onto the downlink carrier.

For an arbitrary signal-to-noise ratio in a turn-around ranging channel, the rms phase deviation by ranging signal on the downlink, denoted $\theta_{r}$, is less than or equal to $\theta_{r s}$. Thus, $\theta_{r}$ is a variable, depending on both the parameter $\theta_{r s}$ and the ranging signal-to-noise ratio in the ranging channel. $\theta_{r s}$ is the limiting value of $\theta_{r}$, corresponding to the strong-signal case. If command is present on the uplink and that command passes through the transponder's ranging channel, then $\theta_{r}$ also depends on the command signal-to-noise ratio in the ranging channel.

Uplink noise passes through the ranging channel and is phase-modulated onto the downlink carrier. $\theta_{n}$ is the rms phase deviation by this ranging-channel noise. $\theta_{n}$, like $\theta_{r}$, is a variable that depends on both the parameter $\theta_{r s}$ and the ranging signal-to-noise ratio (and, possibly, also the command signal-to-noise ratio) in the ranging channel.
$\theta_{t l m}$ is the rms phase deviation of the downlink carrier due to telemetry. When the telemetry signal is bi-polar, the rms phase deviation and the peak modulation index for telemetry are identical. When a sinewave subcarrier is used with telemetry, $\theta_{\text {tlm }}$ is related to the peak modulation index for telemetry by:

$$
\theta_{t l m}=(\text { peak modulation index for telemetry }, \mathrm{rad}) / \sqrt{2}, \quad \begin{align*}
& \text { sinewave }  \tag{18}\\
& \text { subcarrier }
\end{align*}
$$

### 2.3.1 Uplink

The equations of this subsection represent the case where a ranging signal and a command signal are simultaneously present on the uplink carrier. The range clock is taken here to be a sinewave. The ratio of $P_{C}$ to $P_{T}$, the carrier suppression, is

$$
\begin{equation*}
\left.\frac{P_{C}}{P_{T}}\right|_{\mathrm{U} / \mathrm{L}}=J_{0}{ }^{2}\left(\sqrt{2} \phi_{r}\right) \cdot S_{c m d}\left(\phi_{c m d}\right) \tag{19}
\end{equation*}
$$

The ratio of $P_{R}$ to $P_{T}$ is

$$
\begin{equation*}
\left.\frac{P_{R}}{P_{T}}\right|_{\mathrm{U} / \mathrm{L}}=2 J_{1}^{2}\left(\sqrt{2} \phi_{r}\right) \cdot S_{c m d}\left(\phi_{c m d}\right) \tag{20}
\end{equation*}
$$

The ratio of the fundamental command sideband power to $P_{T}$ is

$$
\begin{equation*}
\left.\frac{P_{D}}{P_{T}}\right|_{\mathrm{U} / \mathrm{L}}=J_{0}^{2}\left(\sqrt{2} \phi_{r}\right) \cdot M_{c m d}\left(\phi_{c m d}\right) \tag{21}
\end{equation*}
$$

where $J_{0}(\cdot)$ and $J_{1}(\cdot)$ are Bessel functions of the first kind of order 0 and 1 , respectively. These functions are plotted in Figure 3. When the argument $x$ of $J_{0}(x)$ and $J_{1}(x)$ is small and positive, the following approximations may be used:

$$
\begin{array}{cc}
J_{0}(x) \cong 1, & 0 \leq x \ll 1 \\
J_{1}(x) \cong x / 2, & 0 \leq x \ll 1 \tag{23}
\end{array}
$$



Figure 3. Bessel Functions of the First Kind of Order 0 and 1

The suppression factor $S_{c m d}\left(\phi_{c m d}\right)$ in Equations (19) and (20) and the modulation factor $M_{c m d}\left(\phi_{c m d}\right)$ in Equation (21) depend on whether the command signal is bipolar or uses a sinewave subcarrier. These two factors are given by:

$$
S_{c m d}\left(\phi_{c m d}\right)=\left\{\begin{array}{cc}
\cos ^{2}\left(\phi_{c m d}\right), & \text { bi-polar }  \tag{24}\\
J_{0}{ }^{2}\left(\sqrt{2} \phi_{c m d}\right), & \text { sinewave subcarrier }
\end{array}\right.
$$

$$
M_{c m d}\left(\phi_{c m d}\right)=\left\{\begin{array}{cc}
\sin ^{2}\left(\phi_{c m d}\right), & \text { bi-polar }  \tag{25}\\
2 J_{1}^{2}\left(\sqrt{2} \phi_{c m d}\right), & \text { sinewave subcarrier }
\end{array}\right.
$$

In the event that command is absent from the uplink, the factor $S_{c m d}\left(\phi_{c m d}\right)$ in Equations (19) and (20) can be omitted, since $S_{c m d}(0)=1$.

### 2.3.2 Downlink

The equations for power allocation on the downlink depend on whether the transponder has a turn-around (non-regenerative) ranging channel or a regenerative ranging channel.

### 2.3.2.1 Turn-Around (Non-Regenerative) Ranging

A turn-around ranging channel demodulates the uplink carrier, filters the baseband signal, applies automatic gain control, and then re-modulates the baseband signal onto the downlink carrier. The AGC serves the important purpose of ensuring that the downlink carrier suppression is approximately constant, independent of received uplink signal level. The bandwidth $B_{R}$ of the transponder's ranging channel must be larger (typically about $50 \%$ larger) than the range-clock frequency, in order to pass the ranging signal with minimal distortion. For example, $B_{R}$ is typically about 1.5 MHz when the transponder is intended to accommodate a range clock of 1 MHz . Substantial thermal noise from the uplink also passes through this channel. In many deep space scenarios, the thermal noise dominates over the ranging signal in this wideband, turn-around channel. Moreover, command signal from the uplink may pass through this ranging channel. In general, then, noise and command signal as well as the desired ranging signal are modulated onto the downlink carrier whenever the ranging channel is active (Reference 3).

The equations of this subsection represent the case where a ranging signal, a (feedthrough) command signal and noise are simultaneously present in the ranging channel, so that all three of these components, plus telemetry, phase-modulate the downlink carrier. The range clock is taken here to be a sinewave. The ratio of $P_{C}$ to $P_{T}$, the carrier suppression, is

$$
\begin{equation*}
\left.\frac{P_{C}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=J_{0}^{2}\left(\sqrt{2} \theta_{r}\right) \cdot S_{f t h}\left(\theta_{c m d}\right) \cdot e^{-\theta_{n}{ }^{2}} \cdot S_{t l m}\left(\theta_{t l m}\right) \tag{26}
\end{equation*}
$$

The ratio of $P_{R}$ to $P_{T}$ is

$$
\begin{equation*}
\left.\frac{P_{R}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=2 J_{1}^{2}\left(\sqrt{2} \theta_{r}\right) \cdot S_{f t h}\left(\theta_{c m d}\right) \cdot e^{-\theta_{n}^{2}} \cdot S_{t l m}\left(\theta_{t l m}\right) \tag{27}
\end{equation*}
$$

The ratio of the telemetry sideband power to $P_{T}$ is

$$
\begin{equation*}
\left.\frac{P_{D}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=J_{0}{ }^{2}\left(\sqrt{2} \theta_{r}\right) \cdot S_{f t h}\left(\theta_{c m d}\right) \cdot e^{-\theta_{n}{ }^{2}} \cdot M_{t l m}\left(\theta_{t l m}\right) \tag{28}
\end{equation*}
$$

The ratio of the command-feedthrough power to $P_{T}$ is

$$
\begin{equation*}
\left.\frac{P_{f t h}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=J_{0}^{2}\left(\sqrt{2} \theta_{r}\right) \cdot M_{f t h}\left(\theta_{c m d}\right) \cdot e^{-\theta_{n}{ }^{2}} \cdot S_{t l m}\left(\theta_{t l m}\right) \tag{29}
\end{equation*}
$$

where $J_{0}(\cdot)$ and $J_{1}(\cdot)$ are Bessel functions of the first kind of order 0 and 1 , respectively.
The command-feedthrough suppression factor $S_{f t h}\left(\theta_{c m d}\right)$ that appears in each of Equations (26), (27) and (28) depends on whether the command signal is bi-polar or uses a sinewave subcarrier. This factor is given by:

$$
S_{f t h}\left(\theta_{c m d}\right)=\left\{\begin{array}{cc}
\cos ^{2}\left(\theta_{c m d}\right), & \text { bi-polar }  \tag{30}\\
J_{0}{ }^{2}\left(\sqrt{2} \theta_{c m d}\right), & \text { sinewave subcarrier }
\end{array}\right.
$$

In the event that command feedthrough is absent from the ranging channel, the factor $S_{f t h}\left(\theta_{c m d}\right)$ in each of Equations (26), (27) and (28) can be omitted, since $S_{f t h}(0)=1$.

The command-feedthrough modulation factor $M_{f t h}\left(\theta_{c m d}\right)$ in Equation (29) depends on whether the command is bi-polar or uses a sinewave subcarrier. This factor is given by:

$$
M_{f t h}\left(\theta_{c m d}\right)=\left\{\begin{array}{cc}
\sin ^{2}\left(\theta_{c m d}\right), & \text { bi-polar }  \tag{31}\\
2 J_{1}{ }^{2}\left(\sqrt{2} \theta_{c m d}\right), & \text { sinewave subcarrier }
\end{array}\right.
$$

The telemetry suppression factor $S_{t l m}\left(\phi_{t l m}\right)$ in Equations (26), (27), and (29) and the telemetry modulation factor $M_{t l m}\left(\phi_{t l m}\right)$ in Equation (28) depend on whether the telemetry signal is bi-polar or uses a sinewave subcarrier. These two factors are given by:

$$
\begin{align*}
S_{t l m}\left(\theta_{t l m}\right) & =\left\{\begin{array}{cc}
\cos ^{2}\left(\theta_{t l m}\right), & \text { bi-polar } \\
J_{0}^{2}\left(\sqrt{2} \theta_{t l m}\right), & \text { sinewave subcarrier }
\end{array}\right.  \tag{32}\\
M_{t l m}\left(\theta_{t l m}\right) & =\left\{\begin{array}{cc}
\sin ^{2}\left(\theta_{t l m}\right), & \text { bi-polar } \\
2 J_{1}^{2}\left(\sqrt{2} \theta_{t l m}\right), & \text { sinewave subcarrier }
\end{array}\right.
\end{align*}
$$

For a turn-around ranging channel, the downlink rms phase deviations $\theta_{r}, \theta_{n}$, and (if command feedthrough is present) $\theta_{c m d}$ depend on the ranging signal-to-noise ratio $\rho_{r}$ and (if command feedthrough is present) the command signal-to-noise ratio $\rho_{c m d}$ in the ranging channel.

$$
\begin{gather*}
\rho_{r}=\left.\left.\frac{P_{R}}{P_{T}}\right|_{\mathrm{U} / \mathrm{L}} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{U} / \mathrm{L}} \cdot \frac{1}{B_{R}}  \tag{34}\\
\rho_{c m d}=\left.\left.\frac{P_{D}}{P_{T}}\right|_{\mathrm{U} / \mathrm{L}} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{U} / \mathrm{L}} \cdot \frac{1}{B_{R}} \cdot C_{R}\left(B_{R} T_{c m d}\right) \tag{35}
\end{gather*}
$$

where

$$
\begin{array}{cl}
P_{T} /\left.N_{0}\right|_{\mathrm{U} / \mathrm{L}} & =\text { uplink total power to noise spectral density ratio, } \mathrm{Hz} \\
B_{R} & =\text { noise-equivalent (one-sided) bandwidth of ranging channel, } \mathrm{Hz} \\
C_{R}\left(B_{R} T_{c m d}\right) & =\text { fraction of command-signal power passing through ranging channel } \\
T_{c m d} & =\text { command symbol period (reciprocal of command symbol rate), } \mathrm{s}
\end{array}
$$

The factor $C_{R}\left(B_{R} T_{c m d}\right)$, which is limited by $0 \leq C_{R}\left(B_{R} T_{c m d}\right) \leq 1$, accounts for the fact that some of the command-signal power might not pass through the transponder's ranging channel. This factor is a function of the product $B_{R} T_{c m d}$. If most of the command signal passes through the ranging channel, then the factor $C_{R}\left(B_{R} T_{c m d}\right)$ may be approximated as 1 .

With high-rate command, the factor $C_{R}\left(B_{R} T_{c m d}\right)$ can be significantly less than 1. Models are given here for $C_{R}\left(B_{R} T_{c m d}\right)$ in the case of bi-polar command (with either NRZ or biphase pulses) that directly phase-modulates the uplink carrier.

When high-rate command signaling consists of NRZ pulses that directly phasemodulate the uplink carrier, $C_{R}\left(B_{R} T_{c m d}\right)$ may be modeled as

$$
\begin{equation*}
C_{R}\left(B_{R} T_{c m d}\right)=2 T_{c m d} \int_{0}^{B_{R}} \frac{\sin ^{2}\left(\pi f T_{c m d}\right)}{\left(\pi f T_{c m d}\right)^{2}} d f \quad \mathrm{NRZ} \tag{36}
\end{equation*}
$$

Equation (36) has no closed-form expression in terms of elementary functions. When the product $B_{R} T_{c m d} \ll 1, C_{R}\left(B_{R} T_{c m d}\right) \cong 2 B_{R} T_{c m d}$. When $B_{R} T_{c m d} \gg 1, C_{R}\left(B_{R} T_{c m d}\right) \cong 1$. A general, approximate expression for $C_{R}\left(B_{R} T_{c m d}\right)$ that is valid for high-rate command with NRZ pulses follows below. This approximation was obtained as a curve-fit of Equation (36) for intermediate values of the product $B_{R} T_{c m d}$.

$$
C_{R}\left(B_{R} T_{c m d}\right)=\left\{\begin{array}{cl}
2 B_{R} T_{c m d}, & B_{R} T_{c m d} \leq 0.2  \tag{37}\\
\frac{1}{1+\exp \left[-2.32-1.68 \cdot \ln \left(B_{R} T_{c m d}\right)\right]}, & B_{R} T_{c m d}>0.2
\end{array} \quad\right. \text { NRZ }
$$

When high-rate command signaling consists of bi-phase (Manchester encoded) pulses that directly phase-modulate the uplink carrier, $C_{R}\left(B_{R} T_{c m d}\right)$ may be modeled as

$$
\begin{equation*}
C_{R}\left(B_{R} T_{c m d}\right)=2 T_{c m d} \int_{0}^{B_{R}} \frac{\sin ^{4}\left(\pi f T_{c m d} / 2\right)}{\left(\pi f T_{c m d} / 2\right)^{2}} d f \quad \text { bi } \phi \tag{38}
\end{equation*}
$$

Equation (38) has no closed-form expression in terms of elementary functions. When the product $B_{R} T_{c m d} \ll 1, C_{R}\left(B_{R} T_{c m d}\right) \cong\left(\pi^{2} / 6\right) \cdot\left(B_{R} T_{c m d}\right)^{3}$. When $B_{R} T_{c m d} \gg 1$, $C_{R}\left(B_{R} T_{c m d}\right) \cong 1$. A general, approximate expression for $C_{R}\left(B_{R} T_{c m d}\right)$ that is valid for high-rate command with bi-phase pulses follows below. This approximation was obtained as a curve-fit of Equation (38) for intermediate values of the product $B_{R} T_{c m d}$.

$$
C_{R}\left(B_{R} T_{c m d}\right)=\left\{\begin{array}{cl}
\frac{\pi^{2}}{6} \cdot\left(B_{R} T_{c m d}\right)^{3}, & B_{R} T_{c m d} \leq 0.6  \tag{39}\\
\frac{1}{1+\exp \left[-0.35-2.10 \cdot \ln \left(B_{R} T_{c m d}\right)\right]}, & B_{R} T_{c m d}>0.6
\end{array}\right.
$$

$C_{R}\left(B_{R} T_{c m d}\right)$ is plotted as a function of $B_{R} T_{c m d}$ in Figure 4. This figure is for high-rate command that directly phase-modulates the uplink carrier. There is a curve for the case of NRZ pulses and second curve for the case of bi-phase pulses.


Figure 4. Fraction of Command Power Passing Ranging Channel

In some transponders with a turn-around ranging channel, the AGC is designed to keep constant the average of the absolute value of the voltage at the AGC output. In other transponders, the AGC is designed to keep constant the rms voltage at the AGC output. For both types of AGC, the downlink rms phase deviations $\theta_{r}, \theta_{n}$, and $\theta_{c m d}$ depend on $\rho_{r}$ and $\rho_{c m d}$ (as well as the parameter $\theta_{r s}$ ). Turn-around ranging channels with both types of AGC are treated below.

### 2.3.2.1.1 $\quad$ AGC with Constant Average of Absolute Value of Voltage

When the transponder's ranging channel has an AGC that keeps constant the average of the absolute value of the channel voltage, there are no exact, analytical expressions for the rms phase deviations $\theta_{r}, \theta_{c m d}$, and $\theta_{n}$. However, these rms phase deviations may be obtained by computer simulation. Curve fits to the simulations appear below.

$$
\theta_{r}=\left\{\begin{array}{cc}
\theta_{r s} \cdot \frac{2 \sqrt{2}}{\pi} \cdot \sqrt{\frac{\rho_{r}}{\rho_{c m d}}}, & \rho_{c m d} \geq 1 \text { and } 0<\rho_{r} \leq \rho_{c m d} / 10  \tag{40}\\
\frac{\theta_{r s}}{1+\exp \left[\gamma-0.79 \cdot \ln \left(\rho_{r}\right)\right]}, & \text { otherwise }
\end{array}\right.
$$

where

$$
\gamma=\left\{\begin{array}{cc}
-1.2, & \rho_{c m d}=0  \tag{41}\\
\ln \left[0.3+0.27 \cdot \rho_{c m d} 0.88\right], & \rho_{c m d}>0
\end{array}\right.
$$

Here $\exp (\cdot)$ and $\ln (\cdot)$ are the exponential function and natural logarithm, respectively. In the event that there is no command feedthrough, $\rho_{c m d}=0$ and $\theta_{r}$ depends only on the constant parameter $\theta_{r s}$ and the ranging signal-to-noise ratio $\rho_{r}$. The asymptotes for Equation (40) are $\lim _{\rho_{r} \rightarrow 0} \theta_{r}=0$ and $\lim _{\rho_{r} \rightarrow \infty} \theta_{r}=\theta_{r s}$.

A similar set of equations are valid (approximately) for $\theta_{c m d}$

$$
\begin{equation*}
\theta_{c m d}=\frac{\theta_{r s}}{1+\exp \left[\chi-0.79 \cdot \ln \left(\rho_{c m d}\right)\right]} \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi=\ln \left[0.3+0.27 \cdot \rho_{r}{ }^{0.88}\right] \tag{43}
\end{equation*}
$$

The asymptotes for Equation (42) are $\lim _{\rho_{c m d} \rightarrow 0} \theta_{c m d}=0$ and $\lim _{\rho_{c m d} \rightarrow \infty} \theta_{c m d}=\theta_{r s}$.
A curve-fit to the simulation data for $\theta_{n}$ as a function of $\rho_{r}$ and $\rho_{c m d}$ is:

$$
\begin{equation*}
\theta_{n}=\frac{\theta_{r s} \cdot(2 / \sqrt{\pi})}{1+\exp \left[-0.87+0.81 \cdot \ln \left(\rho_{r s s}\right)\right]} \tag{44}
\end{equation*}
$$

where $\rho_{r s s}$ is the root-sum-square of $\rho_{r}$ and $\rho_{c m d}$ :

$$
\begin{equation*}
\rho_{r s s}=\sqrt{\rho_{r}^{2}+\rho_{c m d}^{2}} \tag{45}
\end{equation*}
$$

The asymptotes for this curve are $\lim _{\rho_{r s s} \rightarrow 0} \theta_{n}=\theta_{r s} \cdot(2 / \sqrt{\pi})$ and $\lim _{\rho_{r s s} \rightarrow \infty} \theta_{n}=0$.
Since $\theta_{r}$ is directly proportional to the parameter $\theta_{r s}$, the ratio $\theta_{r} / \theta_{r s}$ may be plotted as a function of $\rho_{r}$ (and $\rho_{r}$ alone when $\rho_{c m d}=0$ ). This appears in Figure 5 for the case of no command feedthrough: $\rho_{c m d}=0$ and $\theta_{c m d}=0$. The solid curve labeled AAV is valid for a turn-around ranging channel whose AGC keeps constant the average of the absolute voltage (AAV). Figure 5 shows that the ratio $\theta_{r} / \theta_{r s}$ increases monotonically as a function of $\rho_{r}$ with a limiting value of 1 . (In other words, the strong-signal value of $\theta_{r}$ is $\theta_{r s}$.) The AAV curve of Figure 5 comes from Equations (40) and (41) with $\rho_{c m d}=0$.

The ratio $\theta_{n} / \theta_{r s}$ may also be plotted as a function of $\rho_{r}$ when $\rho_{c m d}=0$. This appears in Figure 6. The solid curve labeled AAV is valid for a turn-around ranging channel whose AGC keeps constant the average of the absolute voltage (AAV). Figure 6 shows that the ratio $\theta_{n} / \theta_{r s}$ decreases monotonically as a function of $\rho_{r}$. The AAV curve of Figure 6 comes from Equations (44) and (45) with $\rho_{c m d}=0$.


Figure 5. Downlink rms Phase Deviation by Ranging Signal (No Command Feedthrough)


Figure 6. Downlink rms Phase Deviation by Noise (No Command Feedthrough)

### 2.3.2.1.2 $\quad$ AGC with Constant Root-Mean-Square Voltage

In some transponders, especially older designs, the ranging channel has an AGC that enforces a constant rms voltage at the AGC output. Since an unchanging rms voltage corresponds to an unchanging power, this type of AGC is also called a power-controlled AGC.

An AGC that enforces constant rms voltage (equivalently, constant power) at the AGC output is characterized by the following relationship among the rms phase deviations $\theta_{r}$, $\theta_{c m d}, \theta_{n}$, and $\theta_{r s}$.

$$
\begin{equation*}
\theta_{r}{ }^{2}+\theta_{c m d}{ }^{2}+\theta_{n}{ }^{2}=\theta_{r s}{ }^{2} \tag{46}
\end{equation*}
$$

In other words, the total power in the turn-around ranging channel, which equals the ranging signal power plus the feedthrough command signal power plus the noise power in the channel bandwidth, equals a constant value. The rms phase deviations are given by

$$
\begin{gather*}
\theta_{r}=\theta_{r s} \cdot \sqrt{\frac{\rho_{r}}{1+\rho_{r}+\rho_{c m d}}}  \tag{47}\\
\theta_{c m d}=\theta_{r s} \cdot \sqrt{\frac{\rho_{c m d}}{1+\rho_{r}+\rho_{c m d}}}  \tag{48}\\
\theta_{n}=\frac{\theta_{r s}}{\sqrt{1+\rho_{r}+\rho_{c m d}}} \tag{49}
\end{gather*}
$$

The ratio $\theta_{r} / \theta_{r s}$ is plotted as a function of $\rho_{r}$ in Figure 5 for the case of no command feedthrough: $\rho_{c m d}=0$ and $\theta_{c m d}=0$. The dashed curve labeled RMS is valid for a turn-around ranging channel whose AGC enforces a constant rms voltage at the AGC output. The RMS curve of Figure 5 comes from Equation (47) with $\rho_{c m d}=0$.

The ratio $\theta_{n} / \theta_{r s}$ is plotted as a function of $\rho_{r}$ in Figure 6 for the case of no command feedthrough: $\rho_{c m d}=0$ and $\theta_{c m d}=0$. The dashed curve labeled RMS is valid for a turn-around ranging channel whose AGC enforces a constant rms voltage at the AGC output. The RMS curve of Figure 6 comes from Equation (49) with $\rho_{c m d}=0$.

### 2.3.2.1.3 Comparison of Two AGC Types

As explained above, there are two types of AGC that have been employed in transponders with turn-around ranging channels. These two AGCs differ in the quantity that is kept constant: either the average of the absolute voltage (AAV) or the root-mean-square (RMS).

Figure 7 plots $P_{R} /\left.P_{T}\right|_{D / L}$ as a function of $\rho_{r}$ for each of the two AGC types. For all curves in this figure, there is no telemetry and there is no command feedthrough. For each AGC type, there are two curves: one for $\theta_{r s}=0.2 \mathrm{rad} \mathrm{rms}$ and a second for $\theta_{r s}=0.4 \mathrm{rad} \mathrm{rms}$. $P_{R} /\left.P_{T}\right|_{D / L}$ was calculated using Equation (27). The phase deviations $\theta_{r}$ and $\theta_{n}$ needed within

Equation (27) were calculated using the equations of Subsection 2.3.2.1.1 for the AAV curves and Subsection 2.3.2.1.2 for the RMS curves.


Figure 7. Downlink Ranging-Signal Power to Total Power (No Telemetry, No Command)

Figure 8 plots the carrier suppression $P_{C} /\left.P_{T}\right|_{D / L}$ as a function of $\rho_{r}$ for each of the two AGC types. For all curves in this figure, there is no telemetry and there is no command feedthrough. For each AGC type, there are two curves: one for $\theta_{r s}=0.2 \mathrm{rad} \mathrm{rms}$ and a second for $\theta_{r s}=0.4 \mathrm{rad} \mathrm{rms} . P_{C} /\left.P_{T}\right|_{D / L}$ was calculated using Equation (26). The phase deviations $\theta_{r}$ and $\theta_{n}$ needed within Equation (26) were calculated using the equations of Subsection 2.3.2.1.1 for the AAV curves and Subsection 2.3.2.1.2 for the RMS curves.

### 2.3.2.2 Regenerative Ranging

A regenerative ranging channel demodulates the uplink carrier, tracks the range clock, detects the range code, and modulates a ranging signal on the downlink. A regenerative ranging channel produces a clean ranging signal, free of command feedthrough and with little noise, because this channel has a small bandwidth. (This bandwidth is orders-of-magnitude smaller than the $1.5-\mathrm{MHz}$ bandwidth of the typical turn-around ranging channel.)

A transponder that supports regenerative ranging will, of necessity, be designed to track a specific PN range code. This could be the DSN range code, the T4B range code, or the T2B range code. The equations appearing in this subsection are applicable to any of these three PN range codes, as long as the transponder in question is designed to support regenerative ranging with that particular range code.


Figure 8. Downlink Carrier Suppression (No Telemetry, No Command)

For the purpose of calculating the distribution of power on the downlink in the case of regenerative ranging, the following equations may be used. There will, in general, be phase jitter on the downlink ranging signal that is caused by uplink thermal noise and this jitter is an error source for the two-way range measurement. This error is considered in Section 2.5.

The carrier suppression is

$$
\begin{equation*}
\left.\frac{P_{C}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=J_{0}^{2}\left(\sqrt{2} \theta_{r s}\right) \cdot \cos ^{2}\left(\theta_{t l m}\right) \tag{50}
\end{equation*}
$$

The ratio of available ranging signal power to total power is

$$
\begin{equation*}
\left.\frac{P_{R}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=2 J_{1}^{2}\left(\sqrt{2} \theta_{r s}\right) \cdot \cos ^{2}\left(\theta_{t l m}\right) \tag{51}
\end{equation*}
$$

The ratio of available telemetry (data) signal power to total power is

$$
\begin{equation*}
\left.\frac{P_{D}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=J_{0}{ }^{2}\left(\sqrt{2} \theta_{r s}\right) \cdot \sin ^{2}\left(\theta_{t l m}\right) \tag{52}
\end{equation*}
$$

In these equations, $\theta_{r s}$ is the (strong-signal) rms phase deviation of the downlink carrier by the ranging signal, and $\theta_{\text {tlm }}$ is the telemetry modulation index.

### 2.4 Uplink Spectrum

The spectrum of the uplink carrier is of some concern because of the very large transmitter powers used on the uplink for deep space missions. A mathematical model for this spectrum is given here for the case of a sinewave range clock and no command.

A PN ranging signal is periodic, so its spectrum consists of discrete spectral lines. The spectrum of an uplink carrier that has been phase modulated by only a PN ranging signal also consists of discrete spectral lines.

As described in Section 2.2, the composite chip sequence $c^{\prime}(\cdot)$ is similar to the range clock $c_{1}^{\prime}(\cdot)$, except that some chips are inverted. A discrepancy signal $d^{\prime}(\cdot)$ is defined by

$$
\begin{equation*}
d^{\prime}(i)=c_{1}^{\prime}(i) \cdot c^{\prime}(i) \tag{53}
\end{equation*}
$$

$d^{\prime}(i)$ equals +1 when the range clock and the composite code agree, which is most of the time. When the range clock and the composite code disagree, $d^{\prime}(i)$ equals -1 . The PN ranging signal may be mathematically modeled as $d(i) \sin \left(\pi t / T_{c}\right)$ for $i T_{c} \leq t<(i+1) T_{c}$, where $T_{c}$ is the chip period. In words, the PN ranging signal is a sinewave (range clock) of frequency $1 /\left(2 T_{c}\right)$ except that there is an occasional inversion of a half-cycle. When this signal phase modulates the uplink carrier with an rms phase deviation $\phi_{r}$ (radians rms), the fractional power in each discrete spectral line is given by

$$
\frac{P_{k}}{P_{T}}=\left|X_{k}\right|^{2}=\left\{\begin{array}{c}
\text { fraction of uplink total power in the }  \tag{54}\\
\text { discrete spectral line with frequency } \\
f_{C}+\frac{k}{L T_{C}}
\end{array}\right.
$$

where $P_{T}$ is the total uplink power, $f_{C}$ is the uplink carrier frequency, $L$ is the period in chips of the composite code, $k$ is an integer harmonic number, and $X_{k}$ is given by

$$
\begin{equation*}
X_{k}=\frac{1}{L} \sum_{m=-\infty}^{\infty} \operatorname{sinc}\left(\frac{m}{2}-\frac{k}{L}\right) \sum_{n=0}^{L-1} J_{m}\left(\sqrt{2} \phi_{r} d^{\prime}(n)\right) \exp \left[j \pi\left(n+\frac{1}{2}\right)\left(m-\frac{2 k}{L}\right)\right] \tag{55}
\end{equation*}
$$

where $J_{m}(\cdot)$ is the Bessel function of the first kind of order $m$, and

$$
\begin{equation*}
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x} \tag{56}
\end{equation*}
$$

Equation (55) may be evaluated numerically. The values of the Bessel functions decrease very rapidly with increasing $|m|$, so in practice it is possible to get good accuracy while including only a few terms from the sum over the integer $m$. In evaluating Equation (55), the following identity is useful.

$$
J_{-m}(x)=\left\{\begin{array}{lc}
J_{m}(x), & m \text { even }  \tag{57}\\
-J_{m}(x), & m \text { odd }
\end{array}\right.
$$

There is a symmetrical power distribution about the carrier. So for every discrete spectral line at $f_{C}+k /(L T)$ whose power is given by Equation (54), there is also a discrete spectral line at $f_{C}-k /(L T)$ with the same power.

Figure 9 illustrates the uplink spectrum for a sinewave range clock with the DSN range code and an rms phase deviation $\phi_{r}=0.2 \mathrm{rad} \mathrm{rms}$. The horizontal axis represents the ratio of the frequency offset from the residual carrier to the range-clock frequency. The vertical axis is the ratio of the power in a discrete-spectral line to the total signal power, expressed in decibels. The residual carrier is located at the horizontal coordinate 0 , and it has a power of -0.2 dB relative to $P_{T}$. In other words, the carrier suppression is -0.2 dB . The lower fundamental harmonic has a horizontal coordinate of -1 (a frequency of $f_{C}-f_{R C}$ ), and the upper fundamental harmonic has a horizontal coordinate of +1 (a frequency of $f_{C}+f_{R C}$ ); each of these has a power of -17.5 dB relative to $P_{T}$. The lower second harmonic has a horizontal coordinate of -2 (a frequency of $f_{C}-2 f_{R C}$ ), and the upper second harmonic has a horizontal coordinate of +2 (a frequency of $f_{C}+2 f_{R C}$ ); each of these has a power of -39.7 dB relative to $P_{T}$. The smaller spectral lines that lie between $f_{C}-2 f_{R C}$ and $f_{C}+2 f_{R C}$ arise from the occasional inversions of half-cycles as represented by $d^{\prime}(i)$; this is the spectrum spreading that permits the amibiguity to be resolved.


Figure 9. Uplink Spectrum for the DSN Range Code Ranging Signal

### 2.5 Range Measurement Performance

Thermal noise has two effects on range measurements. First, there is a standard deviation of range measurement error due to thermal noise. Second, there is a probability of acquisition of the range measurement that is less than $100 \%$ due to the presence of thermal noise. The cross-correlation factors of a composite code plays a role in the performance of PN ranging in the presence of thermal noise.

The cross-correlation factors $R_{n}$ (with zero delay) are defined by

$$
\begin{equation*}
R_{n}=\frac{1}{L} \sum_{i=0}^{L-1} c^{\prime}(i) c_{n}^{\prime}(i) \tag{58}
\end{equation*}
$$

where $L$ is the period (in chips) of the composite code, $c^{\prime}(i)= \pm 1$ is the chip sequence, and $c_{n}{ }^{\prime}(i)= \pm 1$ is the (periodic extension of the) chip sequence for the $n$-th component code. The cross-correlation factors are given in tables that follow: Table 3 for the DSN range code, Table 4 for the T4B code, and Table 5 for the T2B code.

Table 3. Cross-Correlation Factors, DSN Range Code

| $n$ | $\lambda_{n}$ | $R_{n}$ |
| :---: | :---: | :---: |
| 1 | 2 | 0.9544 |
| 2 | 7 | 0.0456 |
| 3 | 11 | 0.0456 |
| 4 | 15 | 0.0456 |
| 5 | 19 | 0.0456 |
| 6 | 23 | 0.0456 |

Table 4. Cross-Correlation Factors, T4B (Reference 4)

| $n$ | $\lambda_{n}$ | $R_{n}$ |
| :---: | :---: | :---: |
| 1 | 2 | 0.9387 |
| 2 | 7 | 0.0613 |
| 3 | 11 | 0.0613 |
| 4 | 15 | 0.0613 |
| 5 | 19 | 0.0613 |
| 6 | 23 | 0.0613 |

Table 5. Cross-Correlation Factors, T2B (Reference 4)

| $n$ | $\lambda_{n}$ | $R_{n}$ |
| :---: | :---: | :---: |
| 1 | 2 | 0.6274 |
| 2 | 7 | 0.2447 |
| 3 | 11 | 0.2481 |
| 4 | 15 | 0.2490 |
| 5 | 19 | 0.2492 |
| 6 | 23 | 0.2496 |

### 2.5.2 Downlink Ranging Signal Power to Noise Spectral Density

$P_{R} / N_{0}$, the ratio of the downlink ranging signal power to noise spectral density, is given by

$$
\begin{equation*}
\frac{P_{R}}{N_{0}}=\left.\left.\frac{P_{R}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \tag{59}
\end{equation*}
$$

Equation (59) is applicable when there are no significant sources of interference (beyond the downlink thermal noise). Considered in the next subsection is the scenario where additional interference is present. $P_{T} /\left.N_{0}\right|_{D / L}$ is the downlink total signal to noise spectral density ratio. $P_{R} /\left.P_{T}\right|_{D / L}$ is the ratio of downlink ranging signal power to total power. $P_{R} /\left.P_{T}\right|_{D / L}$ is given by Equation (27) for turn-around (non-regenerative) ranging and by Equation (51) for regenerative ranging.

### 2.5.3 Effect of Interference

In addition to the thermal noise that arises on the downlink, which is characterized by the noise spectral density $\left.N_{0}\right|_{\mathrm{D} / \mathrm{L}}$, there are sources of interference to the range measurement. Often the most important interference to the range measurement is telemetry; this interference occurs when there is spectral overlap of telemetry sidebands with the PN code components. When a non-regenerative (turn-around) ranging channel is used, the uplink noise and command signal can pass through the ranging channel and become modulated onto the downlink carrier. Finally, there are intermodulation products on the downlink.

In quantifying the effect of interference on range measurement, one considers the quadrature channel of the downlink receiver. It is in this quadrature receiver channel that the range correlations occur. The model employed here regards the interference in the quadrature channel as folding into the downlink thermal noise, so that the effective downlink noise spectral density is $\left.N_{0}\right|_{\mathrm{D} / \mathrm{L}} \cdot \Gamma_{Q}$, where $\Gamma_{Q} \geq 1$. In other words, $\Gamma_{Q}$ is the factor by which the downlink noise floor increases in the downlink receiver's quadrature channel due to the presence of
telemetry, command feedthrough, uplink noise (that has been transponded to the downlink), and intermodulation products. This is the model used in Reference 3.

Another, equivalent way of stating the above is to define an effective $P_{R} / N_{0}$.

$$
\begin{equation*}
\text { effective } \frac{P_{R}}{N_{0}}=\left.\left.\frac{P_{R}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{1}{\Gamma_{Q}} \tag{60}
\end{equation*}
$$

When significant interference is present, the effective $P_{R} / N_{0}$ is smaller than that given by Equation (59). In this case, the effective $P_{R} / N_{0}$ should be calculated from Equation (60).

The various sources of interference in the quadrature channel may be taken into account in this manner:

$$
\begin{equation*}
\Gamma_{Q}=1+\mathrm{K}_{N Q}+\mathrm{K}_{t l m}+\mathrm{K}_{f t h} \tag{61}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{K}_{N Q}=\text { contribution from intermodulation products and transponded uplink noise } \\
& \mathrm{K}_{t l m}=\text { contribution from telemetry } \\
& \mathrm{K}_{f t h}=\text { contribution from feedthrough command }
\end{aligned}
$$

For a non-regenerative ranging channel, $\mathrm{K}_{N Q}$ may be approximated as

$$
\begin{equation*}
\mathrm{K}_{N Q}=\left.\left.\frac{1}{B_{R}} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{N Q}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \tag{62}
\end{equation*}
$$

where $P_{T} /\left.N_{0}\right|_{D / L}$ is the downlink total signal to noise spectral density ratio and $B_{R}$ is the bandwidth of the transponder's ranging channel. The new term $P_{N Q} /\left.P_{T}\right|_{D / L}$ is the power in uplink noise (transponded to the downlink) and quadrature-channel intermodulation products, relative to the total downlink power.

$$
\begin{gather*}
\left.\frac{P_{N Q}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}}=\theta_{n}^{2} \\
\cdot e^{-\theta_{n}{ }^{2}} \\
\times\left[J_{0}{ }^{2}\left(\sqrt{2} \theta_{r}\right) \cdot \cos ^{2}\left(\theta_{c m d}\right) \cdot \cos ^{2}\left(\theta_{t l m}\right)\right.  \tag{63}\\
+2 J_{1}^{2}\left(\sqrt{2} \theta_{r}\right) \cdot \cos ^{2}\left(\theta_{c m d}\right) \cdot \sin ^{2}\left(\theta_{t l m}\right) \\
\left.+J_{0}^{2}\left(\sqrt{2} \theta_{r}\right) \cdot \sin ^{2}\left(\theta_{c m d}\right) \cdot \sin ^{2}\left(\theta_{t l m}\right)\right]
\end{gather*}
$$

The variables $\theta_{r}, \theta_{\text {tlm }}, \theta_{c m d}$, and $\theta_{n}$ have been defined previously. They are the rms phase deviations of the downlink carrier due to a ranging signal $\left(\theta_{r}\right)$, telemetry $\left(\theta_{t l m}\right)$, command feedthrough $\left(\theta_{c m d}\right)$, and transponded uplink noise $\left(\theta_{n}\right)$.

The following subsections provide models for $\mathrm{K}_{t l m}$ and $\mathrm{K}_{f t h}$ that are applicable to bi-polar telemetry and bi-polar command. As before, "bi-polar" means either NRZ or biphase pulses that directly phase-modulate the carrier. These models for $\mathrm{K}_{t l m}$ and $\mathrm{K}_{f t h}$, in their most general form, are complicated. Therefore, curve-fit approximations are also given below; these curve-fit approximations should ease the task of implementing interference models in a spreadsheet.

### 2.5.3.1 Interference from Telemetry and Feedthrough Command (Bi-Polar Signaling)

The models for $\mathrm{K}_{t l m}$ and $\mathrm{K}_{f \text { th }}$ given here are applicable to bi-polar telemetry and bi-polar command. In other words, it is assumed here that NRZ or bi-phase symbols directly phase-modulate the carrier.

For each PN code component, the effect of the interference on that component's correlation is calculated. $K^{(n)}{ }_{t l m}$ characterizes the telemetry interference to the correlation of component $n$, for $n=1,2,3,4,5$, or 6 . Similarly, $K^{(n)}{ }_{f \text { th }}$ characterizes the feedthroughcommand interference to the correlation of component $n$. The six PN code components are listed in Table 2. All three of the range codes-DSN, T4B, and T2B-are built from this common set of PN code components. (The differences among the DSN, T4B, and T2B range codes arise from how the PN code components are combined.) Because the models given below are based on the correlations with the 6 PN code components and because these PN code components are the same for all three range codes-DSN, T4B, and T2B-these models are applicable to all three range codes.
$\mathrm{K}_{t l m}$ is taken to be the maximum of the six $K^{(n)}{ }_{t l m}, n=1,2,3,4,5$, or 6 .

$$
\begin{equation*}
\mathrm{K}_{t l m}=\max _{n} K^{(n)}{ }_{t l m} \tag{64}
\end{equation*}
$$

Equation (64) is an approximation; it is based on the idea that the weakest correlation defines, approximately, the performance of the range measurement in the presence of thermal noise plus telemetry interference.

In the model for the effect of command feedthrough, $\mathrm{K}_{f t h}$ is taken to be the maximum of the $\operatorname{six} K^{(n)}{ }_{f t h}, n=1,2,3,4,5$, or 6 .

$$
\begin{equation*}
\mathrm{K}_{f t h}=\max _{n} K^{(n)}{ }_{f t h} \tag{65}
\end{equation*}
$$

Equation (65) is an approximation; it is based on the idea that the weakest correlation defines, approximately, the performance of the range measurement in the presence of thermal noise plus command-feedthrough interference.

The individual $K^{(n)}{ }_{t l m}$ are calculated as

$$
K^{(n)}{ }_{t l m}=\left.\left.\frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{D}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \cdot\left\{\begin{array}{cc}
S_{t l m}\left(f_{1,1}\right), & n=1  \tag{66}\\
\sum_{k=0}^{\infty} P_{n, k} S_{t l m}\left(f_{n, k}\right), & 2 \leq n \leq 6
\end{array}\right.
$$

$P_{T} /\left.N_{0}\right|_{D / L}$ is the downlink total signal to noise spectral density ratio. $P_{D} /\left.P_{T}\right|_{D / L}$ is the ratio of telemetry power to total power, as given by Equation (28). $S_{\text {tlm }}(\cdot)$ is the one-sided, unity-power, power spectral density of telemetry, an expression for which appears below. The variables $f_{n, k}$ and $P_{n, k}$ are the frequencies and relative powers of discrete spectral lines associated with component PN code $n$.

The individual $K^{(n)}{ }_{f t h}$ are calculated as

$$
K^{(n)}{ }_{f t h}=\left.\left.\frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{f t h}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \cdot\left\{\begin{array}{cc}
S_{c m d}\left(f_{1,1}\right), & n=1  \tag{67}\\
\sum_{k=0}^{\infty} P_{n, k} S_{c m d}\left(f_{n, k}\right), & 2 \leq n \leq 6
\end{array}\right.
$$

$P_{f t h} /\left.P_{T}\right|_{D / L}$ is the ratio of feedthrough-command power to total power, which is given by Equation (29). $S_{c m d}(\cdot)$ is the one-sided, unity-power, power spectral density of command, an expression for which appears below. The variables $f_{n, k}$ and $P_{n, k}$ are the frequencies and relative powers of discrete spectral lines associated with component PN code $n$.

The one-sided, unity-power, power spectral density of telemetry is

$$
S_{t l m}(f)=\left\{\begin{array}{cc}
2 T_{t l m} \cdot \frac{\sin ^{2}\left(\pi f T_{t l m}\right)}{\left(\pi f T_{t l m}\right)^{2}}, & \text { NRZ }  \tag{68}\\
2 T_{t l m} \cdot \frac{\sin ^{4}\left(\pi f T_{t l m} / 2\right)}{\left(\pi f T_{t l m} / 2\right)^{2}}, & \mathrm{Bi}-\text { phase }
\end{array}\right.
$$

where $T_{t l m}$ is the telemetry symbol period.
The one-sided, unity-power, power spectral density of command is

$$
S_{c m d}(f)=\left\{\begin{array}{cc}
2 T_{c m d} \cdot \frac{\sin ^{2}\left(\pi f T_{c m d}\right)}{\left(\pi f T_{c m d}\right)^{2}}, & \text { NRZ }  \tag{69}\\
2 T_{c m d} \cdot \frac{\sin ^{4}\left(\pi f T_{c m d} / 2\right)}{\left(\pi f T_{c m d} / 2\right)^{2}}, & \mathrm{Bi}-\text { phase }
\end{array}\right.
$$

where $T_{c m d}$ is the command symbol period.
Each PN code component $c_{n}{ }^{\prime}$ has a period of $\lambda_{n}$. The spectrum of $c_{n}{ }^{\prime}$ consists of discrete spectral lines. The $k$-th spectral line of $c_{n}{ }^{\prime}$ is denoted here by the ordered pair $(n, k)$. The frequency of the $(n, k)$ spectral line is denoted $f_{n, k}$. For example, the $(1,1)$ spectral line is the fundamental $(k=1)$ harmonic of the first code component; in other words, $f_{1,1}$ is the rangeclock frequency. The general expression for $f_{n, k}$ is
where $f_{\text {chip }}$ is the chip rate of the range code. The discrete Fourier transform (DFT) $\tilde{C}_{n}(k)$ of each $c_{n}{ }^{\prime}$ is required. The DFT of $c_{n}{ }^{\prime}$ is calculated using $\lambda_{n}$ samples. The fractional power $P_{n, k}$ in the discrete spectral line at frequency $f_{n, k}$ is given by

$$
\begin{equation*}
P_{n, k}=2 \cdot \frac{\sin ^{2}\left(\pi k / \lambda_{n}\right)}{(\pi k)^{2}} \cdot\left|\tilde{C}_{n}(k)\right|^{2} \quad k \geq 0 ~ 子 2 \leq n \leq 6 ~ \$ \tag{71}
\end{equation*}
$$

The equations of this subsection permit calculation of $\mathrm{K}_{t l m}$ and $\mathrm{K}_{f t h}$. The only $S_{t l m}(f)$ and $S_{c m d}(f)$ models provided here are for the cases of NRZ or bi-phase pulses directly phase-modulated on the carrier.

### 2.5.3.2 Curve-Fit Approximations for Interference Models

The interference models of Subsection 2.5.3.1 are approximate models, but even those approximate models are rather complicated. Curve-fits to those models are given below. Of course, the curve-fits represent an additional layer of approximation.

The curve-fit for the telemetry interference model is accomplished by first rewriting Equations (64) and (66) as

$$
\begin{equation*}
\mathrm{K}_{t l m}=\left.\left.\frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{D}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \cdot T_{t l m} \cdot \hat{S}_{t l m}\left(f_{\text {chip }} T_{t l m}\right) \tag{72}
\end{equation*}
$$

where

$$
\hat{S}_{t l m}\left(f_{\text {chip }} T_{t l m}\right)=\frac{1}{T_{t l m}} \cdot \max _{n}\left\{\begin{array}{cc}
S_{t l m}\left(f_{1,1}\right), & n=1  \tag{73}\\
\sum_{k=0}^{\infty} P_{n, k} S_{t l m}\left(f_{n, k}\right), & 2 \leq n \leq 6
\end{array}\right.
$$

$\hat{S}_{\text {tlm }}\left(f_{\text {chip }} T_{\text {tlm }}\right)$ is the maximum (over the six PN code components) of the weighted average of the one-sided, unity-power, telemetry power spectral density, normalized by the telemetry symbol period. The weighted average occurs over the frequencies $\left(f_{n, k}\right)$ associated with the discrete spectral lines of each PN code component.

$$
\hat{S}_{t l m}\left(f_{\text {chip }} T_{t l m}\right) \text { is a function of the product of the chip rate } f_{\text {chip }} \text { and the telemetry }
$$ symbol period $T_{t l m}$. Both the input $f_{\text {chip }} T_{t l m}$ and the output of the function $\hat{S}_{t l m}\left(f_{\text {chip }} T_{t l m}\right)$ are dimensionless. $\hat{S}_{t l m}\left(f_{\text {chip }} T_{\text {tlm }}\right)$ also depends on the nature of the telemetry spectrum. A curvefit appears below both for NRZ telemetry symbols and for bi-phase telemetry symbols (directly phase-modulating the downlink carrier). For NRZ telemetry,

$$
\begin{equation*}
\hat{S}_{t l m}\left(f_{\text {chip }} T_{t l m}\right) \cong 0.090+1.88 \exp \left(-0.46 f_{\text {chip }} T_{t l m}\right) \quad \text { NRZ } \tag{74}
\end{equation*}
$$

For bi-phase telemetry,

$$
\hat{S}_{\text {tlm }}\left(f_{\text {chip }} T_{\text {tlm }}\right) \cong\left\{\begin{array}{cc}
2 \cdot \sin ^{4}\left(\pi f_{\text {chip }} T_{\text {tlm }} / 4\right) /\left(\pi f_{\text {chip }} T_{\text {tlm }} / 4\right)^{2}, & f_{\text {chip }} T_{\text {tlm }} \leq 2.25  \tag{75}\\
0.090+0.77 \exp \left(-0.20 f_{\text {chip }} T_{\text {tlm }}\right), & f_{\text {chip }} T_{\text {tlm }}>2.25
\end{array}\right.
$$

Equation (72) can also be written as

$$
\begin{equation*}
\mathrm{K}_{t l m}=\left.\frac{E_{S}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \hat{S}_{t l m}\left(f_{\text {chip }} T_{t l m}\right) \tag{76}
\end{equation*}
$$

where $E_{S} /\left.N_{0}\right|_{\mathrm{D} / \mathrm{L}}$ is the ratio of the telemetry symbol energy to the noise spectral density, and where this noise spectral density only accounts for thermal noise originating on the downlink.
$\hat{S}_{t l m}\left(f_{\text {chip }} T_{t l m}\right)$ is plotted as a function of $f_{\text {chip }} T_{t l m}$ for both NRZ telemetry and for bi-phase telemetry in Figure 10. For the bi-phase curve, there is a slope discontinuity at $f_{\text {chip }} T_{t l m}=2.25$. This slope discontinuity originates with the approximation of Equation (64).

For $f_{\text {chip }} T_{\text {tlm }} \leq 2.25$, the largest term is that associated with the range clock; this dominant term is $K^{(1)}{ }_{t l m}$. For $f_{\text {chip }} T_{t l m}>2.25$, the largest term is one of the others: $K^{(n)}{ }_{t l m}$ for $2 \leq n \leq 6$.


Figure 10. Curve-Fit Function for Modeling Increase in Quadrature-Channel Noise Floor

Once $\hat{S}_{\text {tlm }}\left(f_{\text {chip }} T_{\text {tlm }}\right)$ is determined from a curve-fit, Equation (72) or (76) can be used to calculate $\mathrm{K}_{\text {tlm }}$. In general, there can be other sources of interference (in addition to telemetry) that must be taken into account. Equation (61) is used to calculate $\Gamma_{Q}$.

Figure 11 plots $\Gamma_{Q}$, in decibels, as a function of $f_{\text {chip }} T_{t l m}$ with $E_{S} /\left.N_{0}\right|_{\mathrm{D} / \mathrm{L}}$ as a parameter. This figure represents a scenario where telemetry is the only source of interference to the range measurement and the telemetry symbols are NRZ. The three curves in this figure correspond to the following values of $E_{S} /\left.N_{0}\right|_{\mathrm{D} / \mathrm{L}}:-3 \mathrm{~dB}, 0 \mathrm{~dB}$, and +3 dB . The larger the $E_{S} /\left.N_{0}\right|_{\mathrm{D} / \mathrm{L}}$, the larger is $\Gamma_{Q}$. Also, for NRZ telemetry, $\Gamma_{Q}$ becomes larger as $f_{\text {chip }} T_{t l m}$ decreases.

The upper bound on $K_{t l m}$ for NRZ telemetry is

$$
\begin{equation*}
\mathrm{K}_{t l m} \leq\left.\left. 2 T_{t l m} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{D}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \quad \mathrm{NRZ} \tag{77}
\end{equation*}
$$

$P_{T} /\left.N_{0}\right|_{D / L}$ is the downlink total signal to noise spectral density ratio. $P_{D} /\left.P_{T}\right|_{D / L}$ is the ratio of telemetry power to total power, as given by Equation (28). When the telemetry symbol rate is large compared with the range-code chip rate (that is, when $f_{\text {chip }} T_{\text {tlm }} \ll 1$ ), this upper bound on $\mathrm{K}_{t l m}$ for NRZ telemetry is tight and the upper bound is a good approximation for $\mathrm{K}_{t l m}$.


Figure 11. Increase (dB) in Range-Measurement Noise Floor Due to NRZ Telemetry

The upper bound on $\mathrm{K}_{\text {tlm }}$ for bi-phase telemetry is

$$
\begin{equation*}
\mathrm{K}_{t l m} \leq\left.\left. 1.1 \cdot T_{t l m} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{D}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \quad \text { bi-phase } \tag{78}
\end{equation*}
$$

For bi-phase telemetry when $f_{\text {chip }} T_{\text {tlm }} \ll 1$, the telemetry interference to a range measurement may be negligible.

The procedure for calculating $\mathrm{K}_{f t h}$, which is needed to estimate the effect of command-feedthrough interference on the range measurement, is very similar to the calculation of $\mathrm{K}_{t l m}$. In order to take advantage of curve-fits, $\mathrm{K}_{f t h}$ can be calculated by

$$
\begin{equation*}
\mathrm{K}_{f t h}=\left.\left.\frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{f t h}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \cdot T_{c m d} \cdot \hat{S}_{c m d}\left(f_{\text {chip }} T_{c m d}\right) \tag{79}
\end{equation*}
$$

where $P_{T} /\left.N_{0}\right|_{D / L}$ is the downlink total signal to noise spectral density ratio and $P_{f t h} /\left.P_{T}\right|_{D / L}$ is the ratio of feedthrough-command power to total power, as given by Equation (29). The dimensionless function $\hat{S}_{c m d}\left(f_{\text {chip }} T_{c m d}\right)$ is given by:

$$
\hat{S}_{c m d}\left(f_{c h i p} T_{c m d}\right)=\frac{1}{T_{c m d}} \cdot \max _{n}\left\{\begin{array}{cc}
S_{c m d}\left(f_{1,1}\right), & n=1  \tag{80}\\
\sum_{k=0}^{\infty} P_{n, k} S_{c m d}\left(f_{n, k}\right), & 2 \leq n \leq 6
\end{array}\right.
$$

Equation (80) is of the same form as Equation (73). The differences are that Equation (80) uses the command symbol period $T_{c m d}$ and the one-sided, unity-power, power spectral density $S_{c m d}(\cdot)$ that is appropriate for command.

The curve-fits for $\hat{S}_{c m d}\left(f_{\text {chip }} T_{c m d}\right)$ are of the same form as those for $\hat{S}_{\text {tlm }}\left(f_{\text {chip }} T_{t l m}\right)$. Of course, these curve-fits use the product of the chip rate $f_{\text {chip }}$ and the command symbol period $T_{c m d}$. For NRZ command symbols,

$$
\begin{equation*}
\hat{S}_{c m d}\left(f_{\text {chip }} T_{c m d}\right) \cong 0.090+1.88 \exp \left(-0.46 f_{\text {chip }} T_{c m d}\right) \quad \text { NRZ } \tag{81}
\end{equation*}
$$

Whereas for bi-phase command symbols,

$$
\hat{S}_{c m d}\left(f_{\text {chip }} T_{c m d}\right) \cong\left\{\begin{array}{cl}
2 \cdot \sin ^{4}\left(\pi f_{\text {chip }} T_{c m d} / 4\right) /\left(\pi f_{\text {chip }} T_{c m d} / 4\right)^{2}, & f_{\text {chip }} T_{c m d} \leq 2.25  \tag{82}\\
0.090+0.77 \exp \left(-0.20 f_{\text {chip }} T_{c m d}\right), & f_{\text {chip }} T_{c m d}>2.25
\end{array}\right.
$$

The upper bound on $\mathrm{K}_{f t h}$, for NRZ command, is

$$
\begin{equation*}
\mathrm{K}_{f t h} \leq\left.\left. 2 T_{c m d} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{f t h}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \quad \mathrm{NRZ} \tag{83}
\end{equation*}
$$

$P_{T} /\left.N_{0}\right|_{D / L}$ is the downlink total signal to noise spectral density ratio. $P_{f t h} /\left.P_{T}\right|_{D / L}$ is the ratio of feedthrough-command power to total power, as given by Equation (29). When the command symbol rate is large compared with the range-code chip rate (that is, when $f_{\text {chip }} T_{c m d} \ll 1$ ), this upper bound on $\mathrm{K}_{f t h}$ is tight and the upper bound is a good approximation for $\mathrm{K}_{f t h}$.

The upper bound on $\mathrm{K}_{f t h}$ for bi-phase command is

$$
\begin{equation*}
\mathrm{K}_{f t h} \leq\left.\left. 1.1 \cdot T_{c m d} \cdot \frac{P_{T}}{N_{0}}\right|_{\mathrm{D} / \mathrm{L}} \cdot \frac{P_{f t h}}{P_{T}}\right|_{\mathrm{D} / \mathrm{L}} \quad \text { bi-phase } \tag{84}
\end{equation*}
$$

For bi-phase command when $f_{\text {chip }} T_{c m d} \ll 1$, the command-feedthrough interference to a range measurement may be negligible.

### 2.5.4 Range Measurement Error Due to Thermal Noise

The standard deviation $\sigma_{\rho}$ of range measurement error, in meters rms, due to downlink thermal noise is given by

$$
\begin{equation*}
\sigma_{\rho}=\frac{c}{f_{R C} \cdot A_{c} \cdot R_{1} \cdot \sqrt{32 \pi^{2} \cdot T \cdot\left(P_{R} / N_{0}\right)}} \tag{85}
\end{equation*}
$$

where
$c=$ speed of electromagnetic waves in vacuum, $299,792,458 \mathrm{~m} / \mathrm{s}$
$A_{c}=$ fractional loss of correlation amplitude due to frequency mismatch ( $A_{c} \leq 1$ )
$R_{1}=$ cross-correlation factor for the correlation against the range clock
$T$ = range measurement integration time
$f_{R C}=$ frequency of the range clock
$A_{c}=1$ under the normal circumstances, in which the range clock is coherently related to the carrier. In the special case of non-coherent ranging, $A_{c}<1$.
$P_{R} / N_{0}$, the ratio of the downlink ranging signal power to the downlink noise spectral density, is given by Equation (59) when there is no significant interference present or by Equation (60) when interference must be taken into account.
$P_{R}$, as it appears in $P_{R} / N_{0}$, is that portion of the power in the downlink ranging sidebands that is used in the range measurement, either in the correlation that determines the range measurement error or in the resolution of the ambiguity. The power $R_{1}{ }^{2} P_{R}$ is utilized in the correlation that determines the range measurement error. It may be noted that $\sigma_{\rho}{ }^{2}$, the square of the standard deviation given in Equation (85), is inversely proportional to $R_{1}{ }^{2} P_{R}$. In the spectrum of the modulated downlink carrier, the power $R_{1}{ }^{2} P_{R}$ is evenly divided between the discrete spectral line $f_{R C}$ hertz below the residual carrier and the discrete spectral line $f_{R C}$ hertz above the residual carrier.

For the DSN and T4B codes, the standard deviation of range measurement error (meters) due to thermal noise is plotted in Figure 12 against the product $T \cdot\left(P_{R} / N_{0}\right)$, expressed in decibels: $10 \log \left(T \cdot P_{R} / N_{0}\right)$. These curves were calculated from Equation (85) using the cross-correlation factor $R_{1}$ given in Table 3 for the DSN range code and Table 4 for the T4B code. Also, the range clock was taken to be a $1-\mathrm{MHz}$ sinewave and $A_{c}$ was taken to be 1 . The factor $R_{1}$ depends on the range code. For the DSN range code, $R_{1}=0.9544$. For the T4B code, $R_{1}=0.9387$. This difference is the reason the two curves in Figure 12 do not overlap.

The T2B code was designed to operate at smaller values of $T \cdot\left(P_{R} / N_{0}\right)$. For the T2B code, the standard deviation of range measurement error (meters) due to thermal noise is plotted in Figure 13. This curve was calculated from Equation (85) using the cross-correlation factor $R_{1}$ given in Table 5. The range clock was taken to be a $1-\mathrm{MHz}$ sinewave, and $A_{c}$ was taken to be 1. The factor $P_{R}$ in the product $T \cdot\left(P_{R} / N_{0}\right)$ is that portion of the power in the downlink ranging sidebands that is used in the range measurement, either in the correlation that determines the range measurement error or in the resolution of the ambiguity.

The standard deviation of the two-way time delay $\sigma_{\tau}$, in seconds, is related to $\sigma_{\rho}$, as given in Eq. (85), by

$$
\begin{equation*}
\sigma_{\tau}=\frac{2}{c} \cdot \sigma_{\rho} \tag{86}
\end{equation*}
$$

The factor of 2 in Eq. (86) accounts for the fact that $\sigma_{\rho}$ characterizes the error in the one-way range, while $\sigma_{\tau}$ characterizes the error in a $t w o$-way time delay. The standard deviation of the two-way phase delay $\sigma_{R U}$, as measured in range units, is related to $\sigma_{\tau}$ by

$$
\sigma_{R U}=\left\{\begin{array}{cl}
\frac{f_{S}}{2} \cdot \sigma_{\tau}, & \text { S-band uplink }  \tag{87}\\
\frac{221}{749} \cdot \frac{f_{X}}{2} \cdot \sigma_{\tau}, & \text { X-band uplink } \\
\frac{221}{2407} \cdot \frac{f_{X}}{2} \cdot \sigma_{\tau}, & \text { K-band uplink } \\
\frac{221}{3599} \cdot \frac{f_{K a}}{2} \cdot \sigma_{\tau}, & \text { Ka-band uplink }
\end{array}\right.
$$

where $f_{S}$ is the frequency of an S-band uplink carrier, $f_{X}$ is the frequency of an X-band uplink carrier, $f_{K}$ is the frequency of a K-band uplink carrier, and $f_{K a}$ is the frequency of a Ka-band uplink carrier.


Figure 12. Standard Deviation of Range Measurement Error for the DSN and T4B Codes

### 2.5.4.1 Range Measurement Error for Turn-Around (Non-Regenerative) Ranging

For turn-around ranging, Equation (85) accounts for both uplink and downlink thermal noise. In this case, $P_{R}$ is reduced by the effect of uplink noise and any command feedthrough. This can be understood from Equation (27) by noting that $P_{R} /\left.P_{T}\right|_{D / L}$ depends on the rms phase deviations $\theta_{r}, \theta_{c m d}$, and $\theta_{n}$.


Figure 13. Standard Deviation of Range Measurement Error for the T2B Code

### 2.5.4.2 Range Measurement Error for Regenerative Ranging

For regenerative ranging, the standard deviation $\sigma_{R R}$ of range measurement error, in meters rms, due to uplink and downlink thermal noise is given by

$$
\begin{equation*}
\sigma_{R R}=\sqrt{\sigma_{\rho}^{2}+\sigma_{\mathrm{U} / \mathrm{L}}{ }^{2}} \tag{88}
\end{equation*}
$$

$\sigma_{\rho}{ }^{2}$ is the square of the standard deviation $\sigma_{\rho}$ of the range measurement error due to downlink thermal noise. $\sigma_{\rho}$ is calculated from Equation (85). In the case of regenerative ranging, this calculation uses the $P_{R} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}}$ that is defined in Equation (51). This (regenerative-ranging) $P_{R} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}}$ contains no contribution from uplink thermal noise.

Uplink thermal noise causes phase jitter on the regenerated ranging signal. This phase jitter arises in the tracking loop that is part of the regeneration signal processing (Reference 5). This tracking jitter is a potential error source for the two-way range measurement. The standard deviation $\sigma_{\mathrm{U} / \mathrm{L}}$ of range measurement error, meters rms, for this error source is given by

$$
\begin{equation*}
\sigma_{\mathrm{U} / \mathrm{L}}=\frac{c}{4 \pi R_{1} f_{R C}} \sqrt{\frac{B_{R L}}{P_{R} /\left.P_{T}\right|_{\mathrm{U} / \mathrm{L}} \cdot P_{T} /\left.N_{0}\right|_{\mathrm{U} / \mathrm{L}}}} \tag{89}
\end{equation*}
$$

where $B_{R L}$ is the bandwidth of the loop that tracks the uplink range clock. The error $\sigma_{\mathrm{U} / \mathrm{L}}$ only applies in the case of regenerative ranging. The range measurement error for a two-way, regenerative ranging measurement is computed as the root-sum-square of $\sigma_{\mathrm{U} / \mathrm{L}}$ and $\sigma_{\rho}$, as indicated in Equation (88). For some missions it will be typical that $\sigma_{\mathrm{U} / \mathrm{L}} \ll \sigma_{\rho}$, in which case $\sigma_{R R}$ can be approximated as $\sigma_{\rho}$.

Regenerative ranging has better performance than turn-around ranging. A difference in bandwidth is the reason for this. With regenerative ranging, the bandwidth of the transponder's range-clock loop, $B_{R L}$ in Equation (89), is typically small, perhaps a few hertz. With turn-around ranging, the bandwidth $B_{R}$ of the transponder's ranging channel is typically about 1.5 MHz .

### 2.5.5 Probability of Acquisition

A correct determination of the range can only happen if the ambiguity is correctly resolved. This is accomplished with a set of correlations within the RRT between the received baseband ranging signal and local models of the component codes. A range measurement is successfully acquired when every code component is correctly acquired. The probability of acquisition $P_{\mathrm{acq}}$ for the range measurement is the product of the five probabilities $P_{n}, 2 \leq n \leq 6$.

$$
\begin{equation*}
P_{\mathrm{acq}}=\prod_{n=2}^{6} P_{n} \tag{90}
\end{equation*}
$$

$P_{n}$ is the probability of acquiring the $n$-th component code $(2 \leq n \leq 6)$. Each $P_{n}$ is calculated by

$$
\begin{equation*}
P_{n}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^{2}}\left(\frac{1+\operatorname{erf}\left(x+A_{c} R_{n} \sqrt{T \cdot\left(P_{R} / N_{0}\right)}\right)}{2}\right)^{\lambda_{n}-1} d x \tag{91}
\end{equation*}
$$

where $\lambda_{n}$ and $R_{n}$ are the code length (in chips) and cross-correlation factor for the $n$-th component code. Numerical integration is required to evaluate Equation (91). The error function $\operatorname{erf}(\cdot)$ is defined by

$$
\begin{equation*}
\operatorname{erf}(y)=\frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{-t^{2}} d t \tag{92}
\end{equation*}
$$

The value that Equation (90) gives for $P_{\mathrm{acq}}$ is, in general, greater than 0 and less than 1. $P_{\mathrm{acq}}$ is often characterized as a percentage (between $0 \%$ and $100 \%$ ).

When interpreting Equation (91), it should be remembered that $P_{R}$ is that portion of the power in the downlink ranging sidebands that is used in the range measurement. Not all of the power $P_{R}$ is employed in acquisition (the resolution of the ambiguity). The power that helps with the code-component $n$ correlation is $R_{n}{ }^{2} P_{R}$, where $2 \leq n \leq 6$.

Table 6 lists required values for $\left(A_{c} R_{n}\right)^{2} \cdot T \cdot P_{R} / N_{0}$ (in decibels) as a function of $\lambda_{n}$ (the code length) and $P_{n}$ (the probability of acquiring the $n$-th component code). This table is based on Equation (91). The first column of Table 6 is $\log \left(P_{n}\right)$, where $\log (\cdot)$ is the common logarithm (the base-10 logarithm).

Table 6. Interpolation Table
Required $\left(A_{c} R_{n}\right)^{2} \cdot T \cdot P_{R} / N_{0}$ (in decibels) for Given $\lambda_{n}$ and $P_{n}$

| $\log \left(P_{n}\right)$ | $\lambda_{n}=7$ | $\lambda_{n}=11$ | $\lambda_{n}=15$ | $\lambda_{n}=19$ | $\lambda_{n}=23$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -0.050 | 5.7 | 6.5 | 6.9 | 7.1 | 7.4 |
| -0.040 | 6.2 | 6.9 | 7.2 | 7.5 | 7.7 |
| -0.030 | 6.7 | 7.3 | 7.7 | 7.9 | 8.1 |
| -0.020 | 7.4 | 7.9 | 8.3 | 8.5 | 8.7 |
| -0.010 | 8.3 | 8.8 | 9.1 | 9.3 | 9.4 |
| -0.009 | 8.4 | 8.9 | 9.2 | 9.4 | 9.5 |
| -0.008 | 8.6 | 9.0 | 9.3 | 9.5 | 9.7 |
| -0.007 | 8.7 | 9.2 | 9.4 | 9.6 | 9.8 |
| -0.006 | 8.9 | 9.3 | 9.6 | 9.8 | 9.9 |
| -0.005 | 9.1 | 9.5 | 9.8 | 9.9 | 10.1 |
| -0.004 | 9.3 | 9.7 | 10.0 | 10.1 | 10.3 |
| -0.003 | 9.6 | 10.0 | 10.2 | 10.4 | 10.5 |
| -0.002 | 9.9 | 10.3 | 10.5 | 10.7 | 10.8 |
| -0.001 | 10.5 | 10.8 | 11.0 | 11.1 | 11.3 |

Here is an example of how Table 6 can be used. If the desired $P_{n}$ for a component code of length 19 is 0.99 , then $\log \left(P_{n}\right)=-0.0044$. From Table 6, the decibel values 9.9 dB and 10.1 dB are found for $\log \left(P_{n}\right)=-0.005$ and $\log \left(P_{n}\right)=-0.004$, respectively. An interpolation suggests that $\left(A_{c} R_{n}\right)^{2} \cdot T \cdot P_{R} / N_{0}$ must be about 10.0 dB in order to correctly acquire with probability $P_{n}=0.99$ the component code having $\lambda_{n}=19$. Of course, it is important to recall that $P_{n}=0.99$ is not the probability of acquisition of the composite code. There are several component codes that must be correctly acquired before the range measurement is successfully acquired. $P_{\text {acq }}$ is given by Equation (90), and it will be less than the value of any individual $P_{n}$.

For the DSN range code and the T4B code, $P_{\text {acq }}$ is plotted in Figure 14 as a function of the product $T \cdot\left(P_{R} / N_{0}\right)$, in decibels: $10 \log \left(T \cdot P_{R} / N_{0}\right)$. For the T2B code, $P_{\text {acq }}$ is plotted in Figure 15 as a function of the product $T \cdot\left(P_{R} / N_{0}\right)$, in decibels. The curves in these

810-005
214, Rev. C
two figures were calculated from Equations (90) and (91) using $A_{c}=1$ and cross-correlation factors from Table 3, Table 4, and Table 5.


Figure 14. Probability of Acquisition for the DSN Range Code and the T4B Code

An approximation of $P_{\text {acq }}$ may be calculated using the following curve fit:

$$
P_{\mathrm{acq}}=\left\{\begin{array}{cc}
c_{3} Z^{3}+c_{2} Z^{2}+c_{1} Z+c_{0}, & Z_{1} \leq Z \leq Z_{2}  \tag{93}\\
1.00, & Z>Z_{2}
\end{array}\right.
$$

where $Z$ is the product $T \cdot\left(P_{R} / N_{0}\right)$ in units of decibels,

$$
\begin{equation*}
Z=10 \log \left[T \cdot\left(P_{R} / N_{0}\right)\right] \quad \mathrm{dB} \tag{94}
\end{equation*}
$$

The parameters for the model of Equation (93) are given in Table 7. The correct set of parameters depends on the code (DSN range code, T4B, or T2B), as indicated in Table 7. The model of Equation (93) is not reliable for $Z<Z_{1} \mathrm{~dB}$. For $Z>Z_{2} \mathrm{~dB}$, the approximation $P_{\text {acq }}=1$ may be used.


Figure 15. Probability of Acquisition for the T2B Code

Table 7. Parameters for Equation (93)

|  | DSN range code | T4B | T2B |
| :---: | :---: | :---: | :---: |
| $Z_{1}$ | 30 dB | 28 dB | 16 dB |
| $Z_{2}$ | 37 dB | 35 dB | 23 dB |
| $c_{3}$ | -0.0039916 | -0.0038441 | -0.0037013 |
| $c_{2}$ | 0.400534 | 0.356736 | 0.208431 |
| $c_{1}$ | -13.2253 | -10.8645 | -3.7427 |
| $c_{0}$ | 144.154 | 109.048 | 21.833 |

Comparing Figure 12 and Figure 14, it becomes clear that the DSN range code was designed to give a $\sigma_{\rho}$ of about 0.2 to 0.3 meter when the product $T \cdot P_{R} / N_{0}$ is just large enough (about 37 to 38 dB ) to assure a high probability of acquisition. The T4B code has better acquisition performance than the DSN range code. Comparing Figure 13 and Figure 15, it can
be seen that the T2B code achieves a high $P_{\text {acq }}$ for considerably smaller $T \cdot P_{R} / N_{0}$, but the price paid is a larger $\sigma_{\rho}$, about 2 meters.

### 2.5.6 Processing a Set of Range Measurements

For a given PN range code, a minimum $T \cdot\left(P_{R} / N_{0}\right)$ product is needed to achieve a high $P_{\text {acq }}$, and there is an approximate range measurement error (standard deviation) corresponding to this $T \cdot\left(P_{R} / N_{0}\right)$. In the example discussed above, the DSN range code ordinarily requires that $T \cdot\left(P_{R} / N_{0}\right)$ be about 37 to 38 dB in order to assure a high $P_{\text {acq }}$, and the corresponding range measurement error is about 0.2 to 0.3 meter.

Sometimes the available $T \cdot\left(P_{R} / N_{0}\right)$ is smaller than the minimum value for which a range code was designed to work. It is still possible to acquire range measurements with the correct resolution of the ambiguity even under the circumstance of a low $T \cdot\left(P_{R} / N_{0}\right)$. This is accomplished by using a large set of range measurements (obtained from one station tracking one spacecraft).

Reference 6 describes the "Plurality Voting Method" for accomplishing range acquisitions for a large measurement data set when $T \cdot\left(P_{R} / N_{0}\right)$ is low. This method employs range residuals for the given set of range measurements. A range residual is the difference between the measured two-way delay and the predicted two-way delay, where the predicted value is computed from a spacecraft ephemeris. Doppler velocity residuals can also be used. The Plurality Voting Method, making use of a large set of range measurements, increases the acquisition probability beyond that given in Eq. (90). This method does not, however, improve the standard deviation of acquired range measurements. The Plurality Voting Method has value in scenarios where $T \cdot\left(P_{R} / N_{0}\right)$ is adequate for the required range accuracy (standard deviation) but is inadequate (in the absence of this special method) for the required acquisition probability.

### 2.5.7 Comparison of PN Ranging and Sequential Ranging

It is instructive to compare the performance of turn-around PN ranging with sequential ranging (Reference 7). For both techniques, a minimum integration time $T$ can be calculated as a function of $P_{R} / N_{0}$ for a given range measurement error $\sigma_{\rho}$ (due to thermal noise) and a given $P_{\mathrm{acq}}$. For the purpose of the present comparison, $\sigma_{\rho}$ is taken to be 0.2 m and $P_{\text {acq }}$ is taken to be 0.99 . Furthermore, the range-clock frequency $f_{R C}$ is taken to be 1 MHz .

For the analysis presented here, the minimum $T$ is calculated for the DSN range code by finding, for a given $P_{R} / N_{0}$, the smallest $T$ that satisfies the two constraints: $\sigma_{\rho}<0.2 \mathrm{~m}$, as calculated with Equation (85), and $P_{\text {acq }}>0.99$, as calculated with Equations (90) and (91).

For sequential ranging, the number of sinewaves in the sequence is taken to be 20 ; this gives an ambiguity resolution of $78,590 \mathrm{~km}$, comparable with the $75,660 \mathrm{~km}$ ambiguity resolution offered by the DSN range code. The minimum $T$ for sequential ranging is the minimum cycle time consistent with a range error (due to thermal noise) of 0.2 m and a probability of acquisition of 0.99 . The cycle time includes the range-clock integration time $T_{1}$ plus 19 times the ambiguity integration time $T_{2}$ plus the required deadtime seconds.

Figure 16 shows the ratio of the minimum $T$ (cycle time) for sequential ranging to the minimum $T$ (integration time) for PN ranging as a function of $P_{R} / N_{0}$. This figure is intended
as a performance comparison of sequential ranging and turn-around PN ranging. The underlying assumption is that $P_{R} / N_{0}$ is approximately the same for these two ranging techniques for a given set of link parameters.

In principle, a plot like this also applies to regenerative PN ranging. However, $P_{R} / N_{0}$ will not be the same for regenerative PN ranging and (non-regenerative) sequential ranging. In general, it is expected that regenerative PN ranging will out-perform (nonregenerative) sequential ranging.

The results of Figure 16 suggest that sequential ranging has a small performance advantage over turn-around PN ranging for small $P_{R} / N_{0}$ (less than about $12 \mathrm{~dB}-\mathrm{Hz}$ for the parameters used here) but that PN ranging has a performance advantage for $P_{R} / N_{0}$ larger than this. When the sequential ranging minimum $T$ is larger than the PN ranging minimum $T$ (that is, when $P_{R} / N_{0}$ is larger than about $12 \mathrm{~dB}-\mathrm{Hz}$ ), the choice to use PN ranging means that more range measurements can be made in a given period than can be made with sequential ranging.


Figure 16. Comparison of Sequential Ranging and PN Ranging

PN ranging has an operational advantage over sequential ranging. With sequential ranging, a large increase in the RTLT during the tracking pass forces a measurement restart. This is not an issue for PN ranging. The PN range code has a period of approximately 0.5 second when the range clock has its typical frequency of about 1 MHz . (The measurement integration time $T$ is larger, as the measurement comprises multiple periods of the PN range code.) With PN ranging, the downlink can start processing at any 1 -second boundary.

### 2.5.8 Comparison of the Different PN Ranging Techniques

There are three PN range codes supported by the Deep Space Network: the heritage DSN range code and the T4B and T2B range codes. The CCSDS recommends the T4B and the T2B range codes. These three range codes are all built from the same set of component PN codes. (See Table 2.) The differences between these three range codes arise because each combines the component PN codes in its own way. For all three of these range codes (DSN, T4B, and T2B), the range-clock equals one-half of the chip rate. A turn-around ranging channel within a spacecraft transponder is compatible with all three of these range codes, assuming its bandwidth is sufficiently large.

The DSN range code and the T4B range code offer similar range-measurement precision as a function of downlink $T \cdot P_{R} / N_{0}$. (See Figure 12.) However, the T4B range code outperforms the DSN range code in acquisition. For example, the DSN range code requires that the downlink $T \cdot P_{R} / N_{0}$ be 37.9 dB for an acquisition probability of $99 \%$, whereas the T4B range code only requires 35.3 dB for the same acquisition probability. (See Figure 14.)

Compared to the DSN and T4B range codes, the T2B range code can be reliably acquired with a much smaller downlink $T \cdot P_{R} / N_{0}$. For example, the T2B range code only requires a downlink $T \cdot P_{R} / N_{0}$ of 23.2 dB for an acquisition probability of $99 \%$. (See Figure 15.) The disadvantage of the T2B range code is that it cannot achieve the same range-measurement precision as the other two range codes. (Compare Figure 12 and Figure 13.)

Regenerative ranging offers, in principle, a performance improvement over nonregenerative (turn-around) ranging for a given range code. Whether this performance improvement is significant depends on the link parameters. The performance advantage of regenerative ranging comes at the expense (to the mission) of needing special regenerative signal processing in the ranging channel of the transponder. The signal processing in a regenerativeranging transponder is specific to the exact range code being used. Within the Deep Space Network, the processing of a range measurement is independent of whether the transponder employs regenerative or non-regenerative ranging.

### 2.5.9 Non-Coherent Operation

A non-coherent ranging technique has been described in Reference 8. For the sake of economy, this technique employs a transceiver, rather than a transponder, at the spacecraft. With such a technique, the downlink carrier is not coherent with the uplink carrier, and the downlink range clock is not coherent with the downlink carrier. This means that there will ordinarily be a frequency mismatch between the received downlink range clock and its local model. This mismatch is to be minimized by Doppler compensation of the uplink carrier, but it will not be possible, in general, to eliminate completely the frequency mismatch. With this noncoherent technique, range measurement performance will not be as good as that which can be achieved with coherent operation using a transponder. Nonetheless, non-coherent range measurement performance is expected to be adequate for some mission scenarios.

The frequency mismatch inherent in non-coherent ranging has two effects on performance. One is a loss $A_{c}$ of correlation amplitude, which increases the thermal noise contribution to measurement error. The other is a direct contribution to range measurement error. This direct contribution is much the more important of these two effects.

The loss of correlation amplitude is represented by $A_{c}$ where $0<A_{c}<1$. The standard deviation $\sigma_{\rho}$ of range measurement error due to thermal noise is given by Equation (85), and the probability of acquisition (considering the effect of thermal noise) is given by Equations (90) and (91). The amplitude loss factor $A_{c}$ is, for non-coherent operation, given by

$$
\begin{equation*}
A_{c}=\left|\operatorname{sinc}\left(2 \Delta f_{R C} T\right)\right| \tag{95}
\end{equation*}
$$

where $\Delta f_{R C}$ is the frequency mismatch between the received range clock and its local model. The function $\operatorname{sinc}(\cdot)$ is defined by Equation (56). For coherent operation, $\Delta f_{R C}=0$ and $A_{c}=1$.

The direct contribution of frequency mismatch to range measurement error is given by

$$
\begin{equation*}
\text { range error due to } \Delta f_{R C}=\frac{c}{4} \cdot \frac{\Delta f_{R C}}{f_{R C}} \cdot T, \quad \mathrm{~m} \tag{96}
\end{equation*}
$$

The range error given by Eq. (96) is in meters (with $c$ in $\mathrm{m} / \mathrm{s}, T$ in seconds, and with $\Delta f_{R C}$ and $f_{R C}$ sharing the same units). It is worth noting that this measurement error is directly proportional to both the fractional frequency mismatch $\Delta f_{R C} / f_{R C}$ and the measurement integration time $T$. The fractional frequency error will, in general, comprise two terms: a fractional frequency error due to uncertainty in the spacecraft oscillator frequency and a fractional frequency error due to imperfect uplink Doppler predicts.

Non-coherent ranging measurements should be done with regenerative ranging using PN signals. The reason for this follows. The direct error contribution due to frequency mismatch is directly proportional to the measurement integration time, as can be seen in Equation (96). So, for non-coherent operation, it is important to make $T$ as small as possible. This is achieved with regenerative ranging, and regenerative ranging is only available with a PN ranging signal.

With non-coherent operation, the range error due to frequency mismatch increases with $T$ and the range error due to thermal noise decreases with $T$. Therefore, it is important to seek an optimal value for $T$, in order to get the best possible performance. Reference 8 offers guidance in this matter.

### 2.6 Range Corrections

Range is defined to be the distance from the reference point on the DSS antenna to the reference point on the spacecraft antenna. The reference point of a DSS antenna is the intersection of the azimuth and elevation axes. When the two-way time delay is measured, the result includes more than just the two-way delay between the reference points of the DSS and spacecraft antennas. The measured two-way delay also includes station delay and spacecraft delay. These extra delays must be determined through calibration and then removed from the measured two-way time delay. The spacecraft delay is measured during DSN compatibility testing prior to launch. The station delay is determined in two parts: the DSS delay and the Zcorrection.

A range measurement (that has not yet been corrected) provides the two-way delay through the station uplink path, starting from the USG, to and from the spacecraft, and through the station downlink path, ending in the RRT. Figure 17 illustrates the two-way signal
path at the station. It is necessary to determine the uplink station delay for the path from the USG to the antenna reference point, to determine the downlink station delay for the path from the antenna reference point to the RRT, and to remove these delays from the measured two-way delay.


Figure 17. DSS Delay Calibration

### 2.6.1 DSS Delay

The DSS delay is obtained by a calibration that mimics an actual two-way range measurement, except that the signal path lies entirely within the station. A portion of the uplink carrier is diverted through a coupler to a test translator. The test translator shifts the carrier to the downlink frequency (while not altering the modulation) and feeds this frequency-shifted carrier to a coupler that places it on the downlink path within the station. The DSS delay contains most of the station delay. To be precise, the DSS delay comprises the delay from the USG to the ranging coupler on the uplink, the delay through the test translator (and its cables), and the delay from the ranging coupler on the downlink to the RRT.

Figure 17 is a somewhat abstract representation of the configuration. The microwave instrumentation shown in this figure is not an official subsystem, rather it is a conceptual grouping of microwave signal paths and microwave devices. On the uplink, the uplink carrier that is output from the klystron passes through the microwave instrumentation on its way to the reference point of the antenna. On the downlink, the downlink passes through the microwave instrumentation on its way to the LNA. Along the uplink path, a portion of the uplink carrier is coupled to the test translator. The portion of the carrier that has been frequency shifted to the downlink band inside the test translator is then coupled to the downlink path. The specific details of the microwave instrumentation are generally different at different DSSs and for different bands within a given DSS. Modules 101, 103 and 104 should be consulted for those details.

The DSS delay is station and configuration dependent. It should be measured for every ranging pass. This measurement is called precal for pre-track calibration and postcal for post-track calibration. The former is done at the beginning of a ranging pass; the latter is only
needed when there is a change in equipment configuration during the track or precal was not performed due to a lack of time.

The DSS delay varies significantly as a function of carrier frequency. This is illustrated in Figure 18 for an X-band (uplink and downlink) calibration at DSS 63. The vertical axis on this plot is the DSS delay, labeled STDL in this plot. The difference between the largest and smallest delays over the $8400-8450 \mathrm{MHz}$ band is about 18 ns in this case. On both the lower and upper ends of this band, the rise in station delay originates in the klystron on the uplink side of the station. The ripple in the station delay arises from impedance mismatches; every transmission line that has some mismatch at both ends will introduce ripple in the group delay.


Figure 18. DSS Delay as a Function of Downlink Frequency

### 2.6.2 Z-Correction

The DSS delay itself must be corrected. This is accomplished with the Zcorrection. The DSS delay includes the delay through the test translator (and its cables), but the test translator is not in the signal path of an actual range measurement. Moreover, the DSS delay does not include, but should include, the delays between the ranging couplers and the antenna reference point.

The Z-correction is defined as the delay through the test translator (and its cables) minus the uplink and downlink delays between the ranging couplers and the antenna reference point. The DSS delay minus the Z-correction therefore gives the delay between the USG and the antenna reference point plus the delay between the antenna reference point and the RRT. This is exactly the quantity that must be subtracted from a range measurement in order to produce a twoway delay relative to the antenna reference point.

The test translator delay is measured by installing a zero delay device (ZDD) in place of the test translator. Since the ZDD delay is measured in the laboratory, the signal delay contributed by the test translator can be calculated to a known precision. This measurement is made approximately once each year or when there are hardware changes in this portion of the signal path. The delays between the ranging couplers and the antenna reference point are stable and need not be updated often; they are determined by a combination of calculation and measurement.

### 2.7 Total Error for Range Measurement

Several error sources contribute to the total error for a range measurement. For two-way range measurement, the two most important error sources are typically thermal noise and station calibration error. The error due to thermal noise is discussed in Section 2.5. The error in calibrating and removing the station delay is often the dominant error source for twoway ranging. For two-way range measurements in the X band, there is typically about 6 ns of station calibration error in the two-way delay, corresponding to a (one-way) range error of about 1 meter.

The error in calibrating and removing the spacecraft delay is stable for a given spacecraft and a given band pairing (for example, $X$ band on the uplink and $X$ band on the downlink). The orbit determination program can, given enough range measurements for this spacecraft and band pairing, solve for this error.

There are error contributions, usually small compared to the station calibration error, due to the passage of the uplink and downlink through the troposphere, ionosphere and solar corona (Reference 9). When the angle between the sun and the spacecraft, as seen from the station, is small and the spacecraft is beyond the sun, the error contribution from the solar corona can become the dominant contributor to error in the range measurement.

For three-way ranging (in which one station transmits the uplink and a second station receives the downlink), the total delay measurement error is larger than for two-way. There are two reasons for this. First, there is a clock offset between the transmitting and receiving stations. Second, the calibration of the station delays is more difficult to achieve accurately in this case.

## Appendix: Glossary of Parameters

$P_{T} /\left.N_{0}\right|_{\mathrm{U} / \mathrm{L}} \quad$ ratio of uplink total power to noise spectral density, Hz
$P_{C} /\left.P_{T}\right|_{\mathrm{U} / \mathrm{L}} \quad$ ratio of uplink residual-carrier to total power
$P_{R} /\left.P_{T}\right|_{\mathrm{U} / \mathrm{L}} \quad$ ratio of uplink ranging-signal to total power
$P_{D} /\left.P_{T}\right|_{\mathrm{U} / \mathrm{L}} \quad$ ratio of uplink command-signal to total power
$P_{T} /\left.N_{0}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of downlink total power to noise spectral density, Hz
$P_{C} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of downlink residual-carrier to total power
$P_{R} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of downlink ranging-signal to total power
$P_{D} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of downlink telemetry to total power
$P_{f t h} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of command-feedthrough power to total power on downlink
$E_{S} /\left.N_{0}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of telemetry symbol energy to noise spectral density
$P_{R} / N_{0} \quad$ ratio of downlink ranging-signal power to noise spectral density, Hz
$P_{k} / P_{T} \quad$ ratio of discrete spectral line power to total power
$Z \quad T \cdot\left(P_{R} / N_{0}\right)$ in decibels
$\rho_{\rho} \quad$ ranging signal-to-noise ratio in transponder's ranging channel
$\rho_{c m d} \quad$ command-feedthrough signal-to-noise ratio in transponder's ranging channel
$C_{R}\left(B_{R} T_{c m d}\right)$
$T_{c m d}$
$T_{t l m}$
$B_{R} \quad$ noise-equivalent bandwidth of transponder's ranging channel, Hz
$B_{R L} \quad$ noise-equivalent bandwidth of uplink code-tracking loop, Hz
$T$ integration time for range measurement, s
$T_{C} \quad$ chip period, s
$f_{\text {chip }} \quad$ chip rate, Hz
$f_{R C} \quad$ range-clock frequency, Hz
$f_{C} \quad$ frequency of residual carrier, Hz
$f_{S} \quad$ S-band carrier frequency, Hz
$f_{X} \quad$ X-band carrier frequency, Hz
$f_{K} \quad$ K-band carrier frequency, Hz
$f_{K a} \quad$ Ka-band carrier frequency, Hz
$\Delta f_{R C} \quad$ difference between the received range-clock frequency and its local model, Hz
$A / B \quad$ rational factor that, together with the uplink carrier frequency, sets the chip rate
c speed of electromagnetic waves in vacuum, $\mathrm{m} / \mathrm{s}$
$\lambda_{n} \quad$ period of $n$-th component code
$L \quad$ length of composite code
$R_{n} \quad$ cross-correlation factor of code component $n$ against composite code
$A_{c} \quad$ fractional loss of correlation amplitude due to non-coherent frequency mismatch
$\phi_{r} \quad$ phase deviation of uplink carrier by ranging signal, rad rms
$\phi_{c m d} \quad$ phase deviation of uplink carrier by command signal, rad rms
$\theta_{r s}$
$\theta_{r} \quad$ phase deviation of downlink carrier by ranging signal, rad rms
$\theta_{\text {cmd }} \quad$ phase deviation of downlink carrier by command feedthrough, rad rms
$\theta_{n} \quad$ phase deviation of downlink carrier by noise, rad rms
$\theta_{\text {tlm }} \quad$ telemetry modulation index, rad
$S_{c m d}\left(\phi_{c m d}\right)$ suppression factor on uplink due to command
$M_{c m d}\left(\phi_{c m d}\right)$ modulation factor on uplink for command
$S_{f t h}\left(\theta_{c m d}\right)$ suppression factor on downlink due to command feedthrough
$M_{f t h}\left(\theta_{c m d}\right)$ modulation factor on downlink for command feedthrough
$S_{t l m}\left(\theta_{t l m}\right)$ suppression factor on downlink due to telemetry
$M_{\text {tlm }}\left(\theta_{\text {tlm }}\right) \quad$ modulation factor on downlink for telemetry
$P_{n} \quad$ probability of acquiring the $n$-the component code
$P_{\text {acq }} \quad$ probability of acquisition
$\sigma_{\rho} \quad$ standard deviation of range measurement error due to downlink noise, m
$\sigma_{\mathrm{U} / \mathrm{L}} \quad$ standard deviation of range measurement error due to uplink noise, m

[^2]810-005
214, Rev. C

## References

1. J. B. Berner, S. H. Bryant, and P. W. Kinman, "Range Measurement as Practiced in the Deep Space Network," Proceedings of the IEEE, Vol. 95, No. 11, November 2007.
2. Consultative Committee for Space Data Systems, "Pseudo-Noise (PN) Ranging Systems," CCSDS 414.1-B-2, February 2014.
3. P. W. Kinman and J. B. Berner, "Two-Way Ranging During Early Mission Phase," 2003 IEEE Aerospace Conference, March 8-15, 2003, Big Sky, MT.
4. J. L. Massey, G. Boscagli, and E. Vassallo, "Regenerative Pseudo-Noise (PN) Ranging Sequences for Deep-Space Missions," Int. J. Satellite Communications and Networking, Vol. 25, No. 3, pp. 285-304, May/June 2007.
5. J. B. Berner, J. M. Layland, P. W. Kinman, and J. R. Smith, "Regenerative Pseudo-Noise Ranging for Deep-Space Applications," TMO Progress Report 42-137, Jet Propulsion Laboratory, Pasadena, CA, May 15, 1999.
6. J. R. Jensen, "A Plurality Voting Method for Acquisition of Regenerative Ranging Measurements," 2013 IEEE Aerospace Conference, March 2-9, 2013, Big Sky, MT.
7. J. B. Berner and S. H. Bryant, "Operations Comparison of Deep Space Ranging Types: Sequential Tone vs. Pseudo-Noise," 2002 IEEE Aerospace Conference, March 9-16, 2002, Big Sky, MT.
8. M. K. Reynolds, M. J. Reinhart, R. S. Bokulic, and S. H. Bryant, "A Two-Way Noncoherent Ranging Technique for Deep Space Missions," 2002 IEEE Aerospace Conference, March 9-16, 2002, Big Sky, MT.
9. C. L. Thornton and J. S. Border, Radiometric Tracking Techniques for Deep-Space Navigation, Monograph 1 of the Deep-Space Communications and Navigation Series, Jet Propulsion Laboratory, Pasadena, CA, 2000.

## 301 <br> Coverage and Geometry

Document Owner:

| Signature Provided | $02 / 28 / 2022$ |  | Signature Provided | $03 / 31 / 2022$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Stephen D. Slobin <br> Antenna System Engineer | Date |  | Timothy Pham <br> Communications Systems Chief <br> Engineer | Date |
| Prepared by: |  |  | Released by: |  |
| Signature Provided | $02 / 28 / 2022$ |  | Signature Provided | $04 / 15 / 2022$ |
| Stephen D. Slobin <br> Antenna System Engineer | Date |  | Christine Chang <br> DSN Document Release Authority | Date |

Approved by:

DSN Document Release Authority

DSN No. 810-005, 301, Rev. N
Issue Date: April 15, 2022
JPL D-19379; CL\#22-1842
Jet Propulsion Laboratory
California Institute of Technology

810-005
301, Rev. N

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | $02 / 26 / 2022$ |  | Signature Provided | $02 / 27 / 2022$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Jeff Berner | Date |  | John Cucchissi | Date |  |
| DSN Project Chief Engineer |  |  |  | Antenna System Engineer |  |

Signature Not Provided

| Harvey Soldan | Date |
| :--- | :--- |
| Technical Group Supervisor, DSN |  |
| System Engineering Group |  |

## Document Change Log

| Rev | Issue Date | Prepared By | Affected Sections or Pages | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| Initial | 11/30/2000 | Robert Sniffin | All | New Module |
| A | 4/15/2003 | Robert Sniffin | $\begin{aligned} & \text { 2.1.1, 2.1.4, } \\ & \text { 2.2.3, } 3 . \end{aligned}$ | Identified 11-m subnet as non-operational. Corrected equations 4, and 7. Added DSS 55. Documented improved coverage for MDSCC antennas. Expressed Geodetic coordinates in terms of WGS84 ellipsoid. Revised Proposed Capabilities. |
| B | 2/5/2004 | Robert Sniffin | $\begin{aligned} & \text { 2.1.2, 2.1.2.1, } \\ & \text { 2.11.2.2, 2.1.5, } \\ & \text { 2.2.3.6, } \\ & \text { 2.2.3.10, 2.2.4 } \end{aligned}$ | Corrects locations of DSS 26, 54 and DSS 55. Revises locations of other stations. Adds Table 7 (location uncertainties). Provides final receive and transmit masks for DSS 55. Adds Figure 8 and renumbered subsequent figures. |
| C | 8/20/2005 | Robert Sniffin | Tables 2, 5,\& 6. | Documents new location and masking of DSS 65. |
| D | 9/19/2008 | Robert Sniffin | $\begin{gathered} \hline \text { 2.1.1, 2.2.3.7- } \\ \text { 2.2.3.10, } \\ \text { Tables 1, 2, } \\ 5-7, \text { Figures } \\ 9 \& 10 \end{gathered}$ | Deleted references to 11-m antenna subnet stations and DSS 16 that have been decommissioned. Revised Figures 9 and 10 and titles of Figures 11 and 12. Deleted Figure 15 and renumbered subsequent figures. |
| E | 12/15/2009 | Robert Sniffin | Tables 1, 2, 5 7, Figures 9 , 10, 22, \& 27 | Deleted references, the affected Figures, and information in the Tables due to the $26-\mathrm{m}$ stations decommissioning. Renumbered the Figures. |
| F | 6/1/2010 | Andrew Kwok | Page 18 | Corrected DSS-27 cable wrap limits in Table 8. Eliminated the Rev. E designation for the document series. |
| G | 10/1/2011 | Robert Sniffin Christine Chang | 2.2.2, 2.2.3, 2.2.4, Figures 5 and 11-23 | Corrected transmit mask of DSS-65 and revised 34-m HEF transmit coverage chart. Revised all horizon masks to show wrap limits and locations of nearby antennas. Merged 2.2.2.1 into 2.2.2. Added explanation of difference between land mask and mask used for calculating spacecraft rise and set times. Updated discussion of Spacecraft Visibility plot program in 2.2.3. |
| H | 10/17/2012 | Robert Sniffin Christine Chang | $\begin{gathered} \text { 2.2.3.6, Figures } 7, \\ 8,10,20 \text { and } 21 \end{gathered}$ | Incorporated changes in transmit limits at DSS-54 and DSS-55. |
| I | 6/12/2014 | Stephen Slobin Christine Chang Robert Sniffin | Figure 16 <br> Figure 17 <br> Tables 2, 5, 6, 7 <br> Table 8 | Removed references to DSS 27 and DSS 65 (old). Added new transmit horizon mask for DSS-34. <br> Added new figure for DSS-35. <br> Added coordinates for DSS-35. <br> Added wrap limits for DSS-35. |
| $J$ | 9/10/2014 | Stephen Slobin Christine Chang Robert Sniffin | $\begin{gathered} \hline 2.2 .4 \\ \text { Figure } 17 \end{gathered}$ | Clarified description of horizon mask plotted values. <br> Updated receive horizon mask for DSS-35. Added L/P transmit horizon mask for DSS-35. |

810-005
301, Rev. N

| $\operatorname{Rev}$ | Issue Date | Prepared By | Affected Sections or Pages | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| K | 9/13//2016 | Stephen Slobin Christine Chang | Tables 1, 8 <br> Tables 2, 5, 6, 7 <br> Tables 2, 5, 6, 7 <br> Figure 16 <br> Figure 17 <br> Figure 18 <br> Figures 18-23 <br> Sec. 2.2.4 | DSS-36 added. <br> Updated position values for DSS-35. <br> New position values for DSS-36. <br> New transmit and receive horizon masks for DSS-34. <br> New receive horizon mask for DSS-35. <br> New DSS-36 horizon masks. <br> Renumbered 19-24. <br> Expanded description of DSS-34, -35, -36 horizon masks. |
| L | 07/3/2018 | Stephen Slobin Christine Chang | Table 1 Tables 2, 5, 6, 7 <br> Table 8 <br> Figure 15 <br> Figure 16 <br> Download Spreadsheet | Future antennas DSS-53 and DSS-56 added. Added coordinates for DSS-53 and DSS-56. New cable wrap limits for all antennas. Added high power transmit mask for DSS-26. New transmit horizon mask for DSS-34. <br> Updated with new DSS-34 transmit horizon mask. |
| M | 09/04/2020 | Stephen Slobin Christine Chang | 810-005 Downloads 810-005 Downloads <br> Figures 11-24 <br> Sec. 2.2.3 <br> Sec. 2.2.4 <br> Sec. 2.2.1 \& 2.2.4 <br> Tables 2, 5, 6, 7 | New Download Spreadsheet for Spacecraft Coverage and Visibility. <br> New Download Spreadsheet for Antenna Horizon Masks. <br> New for DSN antenna horizon masks. <br> Update to coverage charts. <br> Update to horizon masks. <br> Updated references to DSS-43 100 kW S-band and 80 kW X-band transmitters. <br> Updated with latest DSS-56 location. |
| N | 04/15/2022 | Stephen Slobin Christine Chang | Sec. 2.2.4 <br> Tables 2, 5, 6, 7 <br> Table 8 | Description of new DSS-53 location on masks and blockages. <br> Updated with latest DSS-53 location. Notes added regarding station location accuracy. <br> Updated DSS-53 cable wrap limits. |

## Contents

Paragraph Page
1 Introduction ..... 8
1.1 Purpose ..... 8
1.2 Scope ..... 8
2 General Information. ..... 8
2.1 Station Locations ..... 8
2.1.1 Antenna Reference Point ..... 8
2.1.2 IERS Terrestrial Reference Frame ..... 9
2.1.2.1 Cartesian Coordinates ..... 10
2.1.2.2 Estimated DSN Site Velocities. ..... 10
2.1.3 Geodetic Coordinates ..... 10
2.1.4 Geocentric Coordinates ..... 14
2.1.5 Station Location Uncertainties ..... 14
2.2 Coverage and Mutual Visibility ..... 18
2.2.1 Use of Transmitters Below Designated Elevation Limits ..... 18
2.2.1.1 Spacecraft Emergencies ..... 18
2.2.1.2 Critical Mission Support ..... 18
2.2.2 Mechanical Limits on Surveillance Visibility ..... 18
2.2.3 Coverage Charts ..... 20
2.2.3.1 $\quad 70-\mathrm{m}$ Receive Coverage of Planetary Spacecraft ..... 21
2.2.3.2 $\quad 70-\mathrm{m}$ Transmit Coverage of Planetary Spacecraft ..... 21
2.2.3.3 34-m HEF Receive Coverage of Planetary Spacecraft ..... 21
2.2.3.4 34-m HEF Transmit Coverage of Planetary Spacecraft ..... 21
2.2.3.5 $34-m$ BWG Receive Coverage of Planetary Spacecraft ..... 22
2.2.3.6 34-m BWG Transmit Coverage of Planetary Spacecraft ..... 22
2.2.3.7 $34-m$ BWG Receive Coverage of Near Earth Spacecraft ..... 22
2.2.3.8 34-m BWG Transmit Coverage of Near Earth Spacecraft ..... 22
2.2.4 Horizon Masks and Antenna Limits ..... 22
Appendix A References ..... 48
$810-005$
301, Rev. N

## Illustrations

Figure Page
Figure 1. Cartesian and Geocentric Coordinate System Relationships ..... 11
Figure 2. DSN 70-m Subnet Receive Coverage, Planetary Spacecraft ..... 25
Figure 3. DSN 70-m Subnet Transmit Coverage, Planetary Spacecraft. ..... 26
Figure 4. DSN 34-m HEF Subnet Receive Coverage, Planetary Spacecraft. ..... 27
Figure 5. DSN 34-m Subnet Transmit Coverage, Planetary Spacecraft ..... 28
Figure 6. DSN 34-m BWG Antennas Receive Coverage, Planetary Spacecraft, Using DSS 26, 34, and 55 ..... 29
Figure 7. DSN 34-m BWG Antennas Transmit Coverage, Planetary Spacecraft, Using DSS 26, 34 , and 55 ..... 30
Figure 8. DSN 34-m BWG Antennas Transmit Coverage, Planetary Spacecraft, Using DSS 26,34 , and 5431
Figure 9. DSN 34-m BWG Antennas Receive Coverage, Near-Earth Spacecraft. ..... 32
Figure 10. DSN 34-m BWG Antennas Transmit Coverage, Near Earth Spacecraft. ..... 33
Figure 11. DSS-14, 70-m, Receive, Low-Power Transmit, and High-Power Transmit Horizon Masks ..... 34
Figure 12. DSS-24, BWG, Receive and Low-Power Transmit Horizon Masks ..... 35
Figure 13. DSS-25, BWG, Receive and Low-Power Transmit Horizon Masks ..... 36
Figure 14. DSS-26, BWG, Receive, Low-Power Transmit, and High-Power Transmit Horizon Masks ..... 37
Figure 15. DSS-34, BWG, Receive and Low-Power Transmit Horizon Masks ..... 38
Figure 16. DSS-35, BWG, Receive and Low-Power Transmit Horizon Masks ..... 39
Figure 17. DSS-36, BWG, Receive and Low-Power Transmit Horizon Masks ..... 40
Figure 18. DSS-43, 70-m, Receive, Low-Power Transmit, and High-Power Transmit Horizon Masks ..... 41
Figure 19. DSS-53, BWG, Receive and Low-Power Transmit Horizon Masks. ..... 42
Figure 20. DSS-54, BWG, Receive and Low-Power Transmit Horizon Masks ..... 43
Figure 21. DSS-55, BWG, Receive and Low-Power Transmit Horizon Masks. ..... 44
Figure 22. DSS-56, BWG, Receive and Low-Power Transmit Horizon Masks ..... 45
Figure 23. DSS-63, 70-m, Receive, Low-Power Transmit, and High-Power Transmit Horizon Masks ..... 46
Figure 24. DSS-65, HEF, Receive and Low-Power Transmit Horizon Masks ..... 47

## Tables

Table Page
Table 1. DSN Antenna Types ..... 9
Table 2. Cartesian Coordinates for DSN Stations in ITRF93 Reference Frame, Epoch 2003.0 . 12
Table 3. Site Velocities for DSN Stations ..... 13
Table 4. Average Geoidal Separations for the DSN Complexes ..... 13
Table 5. Geodetic Coordinates for DSN Stations With Respect to the WGS 84 Ellipsoid ..... 15
Table 6. Geocentric Coordinates for DSN Stations ..... 16
Table 7. DSN Stations Location Uncertainties ..... 17
Table 8. Approximate Cable Wrap Limits for Azimuth-Elevation Antennas ..... 19

## 1 Introduction

### 1.1 Purpose

This module describes the geometry and coverage visibility provided by the DSN for support of spacecraft telecommunications.

### 1.2 Scope

This module provides the Deep Space Network (DSN) station coordinates that are required for spacecraft navigation and to locate the stations with respect to other points on the Earth's surface. Coverage charts are provided to illustrate areas of coverage and non-coverage from selected combinations of stations for spacecraft at selected altitudes. Horizon masks are included so the effects of terrain masking and antenna blockage can be anticipated.

## 2 General Information

### 2.1 Station Locations

The following paragraphs discuss the important concepts relating to establishing the location of the DSN antennas.

### 2.1.1 Antenna Reference Point

The coordinates provided by this module refer to a specific point on each antenna. For antennas where the axes intersect (AZ/EL antennas), the reference point is the intersection of the axes. For antennas for which the axes do not intersect (HA/DEC antennas), the reference point is the intersection of the primary (lower) axis with a plane perpendicular to the primary axis and containing the secondary (upper) axis. This antenna type has an axis offset, which must be accounted for in the range observable as a function of antenna positioning. There are currently no operational HA/DEC antennas in the DSN. Table 1 lists the DSN antennas by type.

Although the antenna reference point is fixed, the path length between this point and a spacecraft normally increases as the antenna elevation is changed from the horizon to zenith. This results from the antenna subreflector being moved to provide maximum gain as gravity distorts the antenna geometry. The effect can be modeled as a decrease in antenna height and a latitude/longitude position change as a function of azimuth and elevation angle for orbit determination purposes. The effect is greatest on the $70-\mathrm{m}$ antennas (approximately 6.7 cm ) and is discussed in the appropriate Telecommunications Interface modules of this handbook. Subreflector movement can be disabled for activities such as very-long baseline interferometry (VLBI) where a constant path length is more important than maximum gain.

Table 1. DSN Antenna Types

| Antenna Type | Station Identifiers | Primary and <br> Secondary Axes |
| :---: | :---: | :---: |
| $70-\mathrm{m}$ | $14,43,63$ | $\mathrm{AZ} / \mathrm{EL}$ |
| 34-m High Efficiency (HEF) | $15,45,65$ | $\mathrm{AZ} / \mathrm{EL}$ |
| 34-m Beam Waveguide |  |  |
| (BWG) | $24,25,26,34,35,36$, | $\mathrm{AZ} / \mathrm{EL}$ |
| $53,54,55,56$ |  |  |

### 2.1.2 IERS Terrestrial Reference Frame

To use station locations with sub-meter accuracy, it is necessary to clearly define a coordinate system that is global in scope. The International Earth Rotation and Reference Systems Service (IERS) has been correlating station locations from many different services and has established a coordinate frame known as the IERS Terrestrial Reference Frame (ITRF). The IERS also maintains a celestial coordinate system and coordinates delivery of Earth-orientation measurements that describe the motion of station locations in inertial space. The DSN has adopted the IERS terrestrial system to permit its users to have station locations consistent with widely available Earth-orientation information.

The IERS issues a new list of nominal station locations each year, and these locations are accurate at the few-cm level. At this level of accuracy, one must account for ongoing tectonic plate motion (continental drift), as well as other forms of crustal motion. For this reason ITRF position coordinates are considered valid for a specified epoch date, and one must apply appropriate velocities to estimate position coordinates for any other date. Relative to the ITRF, even points located on the stable part of the North American plate move continuously at a rate of about $2.5 \mathrm{~cm} / \mathrm{yr}$.

The coordinates in this module are based on the 1993 realization of the ITRF, namely ITRF93, documented in IERS Technical Note 18 (Reference 1). ITRF93 was different from earlier realizations of the ITRF in that it was defined to be consistent with the Earth Orientation Parameters (EOP) distributed through January 1, 1997. Earlier realizations of the ITRF were known to be inconsistent (at the $1-3 \mathrm{~cm}$ level) with the Earth orientation distributions.

After ITRF93 was published, the IERS decided to improve the accuracy of the EOP series and make it consistent with the ITRF effective January 1, 1997. This date was chosen because it enabled a defect in the definition of universal time to be removed at a time when its contribution was zero. In anticipation of this change, ITRF94 and ITRF95 were made consistent with the pre-ITRF93 definition of the terrestrial reference frame, and all prior EOP series were recomputed in accordance with the new system.

The DSN continues to deliver Earth-orientation calibrations to navigation teams that are consistent with the earlier definition and using the ITRF93 reference frame because it is impractical for planetary navigators to adopt an IERS standard that changes approximately every
year. Users interested in precise comparison with other systems should keep in mind the small systematic differences.

Position values and uncertainties for the all DSN antennas are given in Tables 2, 5, 6, and 7. Position values for decommissioned antennas are given for historical reference only.

### 2.1.2.1 Cartesian Coordinates

Figure 1 illustrates the relationship between the Cartesian coordinates and geocentric coordinates discussed below. The Cartesian coordinates of the DSN station locations are fits to many years of tracking and Very-Long Baseline Interferometry data and are expressed in the ITRF93 reference system in Table 2.

### 2.1.2.2 Estimated DSN Site Velocities

The locations given in Table 2 are for the epoch 2003.0. To transform these locations to any other epoch, the site velocities should be used. Table 3 gives the site velocities for the DSN stations, in both Cartesian ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) and east-north-vertical (e, n, v) components.

### 2.1.3 Geodetic Coordinates

Locations on the Earth's surface are defined with respect to the geoid, the surface around or within the Earth that is normal to the direction of gravity at all points and coincides with mean sea level (MSL) in the oceans. The geoid is not a regular surface because of variations in the Earth's gravitational force. To avoid having to make computations with respect to this nonmathematical surface, computations are made with respect to an ellipsoid, the surface created by rotating an ellipse around one of its two axes. The ellipsoid is uniquely defined by specifying the equatorial radius and the flattening (that is, the amount that the ellipsoid deviates from a perfect sphere). The relationship between the polar and equatorial axes is given by the following expression:

$$
\begin{equation*}
(\text { polar axis })=(\text { equatorial axis }) \times(1-1 / \text { flattening }) \tag{1}
\end{equation*}
$$

In the past, the ellipsoid used was chosen to be a best fit to the geoid in the area of interest. However, the presence of the Global Positioning System (GPS) has resulted in a single ellipsoid, named the WGS 84 Ellipsoid, being adopted for most geodetic measurements. This ellipsoid, while providing a good fit to the entire Earth, results in larger differences between the
geoid and the ellipsoid than could be obtained when ellipsoids were chosen to fit only a

$Z=$ Height above ( +z ) or below ( -z ) equatorial plane.
$\mathrm{Y}=$ Distance in front of $(+\mathrm{y})$ or behind $(-\mathrm{y})$ plane (Hour Angle plane)
established by spin axis and Greenwich meridian.
$\mathrm{X}=$ Distance from spin axis towards Greenwich meridian $(+\mathrm{x})$ or towards 180 -degree meridian (-x).

Figure 1. Cartesian and Geocentric Coordinate System Relationships

810-005
301, Rev. N

Table 2. Cartesian Coordinates for DSN Stations in ITRF93 Reference Frame, Epoch $2003.0^{3}$

| Antenna |  | Cartesian Coordinates |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Name | Description | $\mathrm{x}(\mathrm{m})$ | y(m) | z(m) |
| DSS 13 | $34-m$ R \& D | -2351112.659 | -4655530.636 | +3660912.728 |
| DSS 14 | 70-m | -2353621.420 | -4641341.472 | +3677052.318 |
| DSS $15^{2}$ | 34-m HEF | -2353538.958 | -4641649.429 | +3676669.984 |
| DSS 24 | 34-m BWG | -2354906.711 | -4646840.095 | +3669242.325 |
| DSS 25 | 34-m BWG | -2355022.014 | -4646953.204 | +3669040.567 |
| DSS 26 | 34-m BWG | -2354890.797 | -4647166.328 | +3668871.755 |
| DSS $34{ }^{1}$ | 34-m BWG | -4461147.093 | +2682439.239 | -3674393.133 |
| DSS $35{ }^{1}$ | 34-m BWG | -4461273.090 | +2682568.925 | -3674152.093 |
| DSS $36{ }^{1}$ | 34-m BWG | -4461168.415 | +2682814.657 | -3674083.901 |
| DSS 43 | 70-m | -4460894.917 | +2682361.507 | -3674748.152 |
| DSS 45² | 34-m HEF | -4460935.578 | +2682765.661 | -3674380.982 |
| DSS 531 | 34-m BWG | +4849338.209 | -360657.812 | +4114746.173 |
| DSS 54 | 34-m BWG | +4849434.488 | -360723.8999 | +4114618.835 |
| DSS 55 | 34-m BWG | +4849525.256 | -360606.0932 | +4114495.084 |
| DSS $56{ }^{1}$ | 34-m BWG | +4849421.679 | -360549.659 | +4114646.987 |
| DSS 63 | 70-m | +4849092.518 | -360180.3480 | +4115109.251 |
| DSS 65 | 34-m HEF | +4849339.634 | -360427.6637 | +4114750.733 |
| NOTES: <br> 1. Position absolute accuracy estimated to be $+/-3 \mathrm{~cm}(0.030 \mathrm{~m})$ (1-sigma) for each coordinate. <br> 2. Decommissioned. For historical reference only. <br> 3. See NOTE, Table 7. |  |  |  |  |

Table 3. Site Velocities for DSN Stations

| Complex | $\mathbf{x ( m / y r )}$ | $\mathbf{y}(\mathbf{m} / \mathbf{y r})$ | $\mathbf{z ( m / \mathbf { y r } )}$ | $\mathbf{e}(\mathbf{m} / \mathbf{y r})$ | $\mathbf{n}(\mathbf{m} / \mathbf{y r})$ | $\mathbf{v}(\mathbf{m} / \mathbf{y r})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Goldstone <br> (Stations 1x \& 2x) | -0.0180 | 0.0065 | -0.0038 | -0.0190 | -0.0045 | -0.0003 |
| Canberra <br> (Stations 3x \& 4x) | -0.0335 | -0.0041 | 0.0392 | 0.0208 | 0.0474 | -0.0012 |
| Madrid <br> (Stations 5x \& 6x) | -0.0100 | 0.0242 | 0.0156 | 0.0234 | 0.0195 | 0.0012 |

portion of the Earth. This difference, the Geoidal Separation, must be subtracted from the WGS 84 height measurements to give the height with respect to mean sea level.

Geoidal separations are typically determined from satellite altimetry and gravity measurements and maintained as a grid of points in longitude and latitude. Modern GPS equipment uses a sixteen point interpolation routine to estimate the surface curvature in the gridsquare of interest and the geoidal separation at the specific point within the grid-square. Table 4 provides the average geoidal separation for the three DSN complexes. These numbers do not take into consideration such things as topography within the complex and grading that was done when the antennas were installed.

Table 4. Average Geoidal Separations for the DSN Complexes

| Complex | Geoidal Separation (m) |
| :---: | :---: |
| Goldstone <br> (Stations $1 \times \& 2 x)$ | -30.6 |
| Canberra <br> (Stations 3x \& 4x) | 19.3 |
| Madrid <br> (Stations $5 \times \& 6 x)$ | 54.1 |

Once the Cartesian coordinates ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) are known, they can be transformed to geodetic coordinates in longitude, latitude, and height ( $\lambda, \phi, \mathrm{h}$ ) with respect to the ellipsoid by the following non-iterative method (Reference 2):

$$
\begin{align*}
& \lambda=\tan ^{-1} \frac{y}{x}  \tag{2}\\
& \phi=\tan ^{-1}\left(\frac{z(1-\mathrm{f})+e^{2} \mathrm{a}^{3} \mu}{(1-\mathrm{f})\left(p-e^{2} \operatorname{acos}^{3} \mu\right)}\right) \tag{3}
\end{align*}
$$

$$
\begin{equation*}
h=p \cos \phi+z \sin \phi-a\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

where:

$$
\begin{align*}
& \mathrm{f}=\frac{1}{\text { flattening }}  \tag{5}\\
& e^{2}=2 \mathrm{f}-\mathrm{f}^{2}  \tag{6}\\
& p=\left(x^{2}+y^{2}\right)^{\frac{1}{2}}  \tag{7}\\
& r=\left(p^{2}+z^{2}\right)^{\frac{1}{2}}  \tag{8}\\
& \mu=\tan ^{-1} \frac{z}{p}\left[(1-\mathrm{f})+\frac{e^{2} \mathrm{a}}{r}\right] \tag{9}
\end{align*}
$$

Table 5 provides geodetic coordinates derived by the preceding approach using the WGS84 ellipsoid that has a semi-major axis (a) of 6378137 m and a flattening of 298.2572236. In this table, for stations in the southern hemisphere (negative latitude) the tabular values for latitude (degrees, minutes, seconds) are ALL negative, although the minus sign is shown associated only with the degree value, as is conventionally done.

### 2.1.4 Geocentric Coordinates

Geocentric coordinates are used by navigation analysts when corrections to station locations are being investigated. They relate the station location to the Earth's center of mass in terms of the geocentric radius and the angles between the station and the equatorial and hour angle planes. Geocentric coordinates for the DSN stations are provided in Table 6.

### 2.1.5 Station Location Uncertainties

The primary reference antennas at each complex in the past have been the 34-m HEF antennas. Their location has been established by very-long baseline Interferometry (VLBI) measurements over a period of many years and their location uncertainty is that of the VLBI technique. With the decommissioning of DSS-15 and DSS-45, and the future decommissioning of DSS-65, the location references are being migrated to BWG antennas at the same complexes. The uncertainty of station locations depends on the method used to link their position to that of the reference antennas. The estimated location uncertainties for all stations are provided in Table 7.

810-005
301, Rev. N

Table 5. Geodetic Coordinates for DSN Stations With Respect to the WGS 84 Ellipsoid $^{5}$

| Antenna |  | latitude ( $\phi$ ) ${ }^{3}$ |  |  | longitude ( $\lambda$ ) |  |  | height $(h)^{\mathbf{1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Description | deg | min | sec | deg | min | sec | (m) |
| DSS 13 | $34-m$ R \& D | 35 | 14 | 49.79131 | 243 | 12 | 19.94761 | 1070.444 |
| DSS 14 | 70-m | 35 | 25 | 33.24312 | 243 | 6 | 37.66244 | 1001.390 |
| DSS $15{ }^{4}$ | 34-m HEF | 35 | 25 | 18.67179 | 243 | 6 | 46.09762 | 973.211 |
| DSS 24 | 34-m BWG | 35 | 20 | 23.61416 | 243 | 7 | 30.74007 | 951.499 |
| DSS 25 | 34-m BWG | 35 | 20 | 15.40306 | 243 | 7 | 28.69246 | 959.634 |
| DSS 26 | 34-m BWG | 35 | 20 | 8.48118 | 243 | 7 | 37.14062 | 968.686 |
| DSS $34{ }^{2}$ | 34-m BWG | -35 | 23 | 54.52383 | 148 | 58 | 55.07191 | 692.020 |
| DSS $35^{2}$ | 34-m BWG | -35 | 23 | 44.86387 | 148 | 58 | 53.24088 | 694.897 |
| DSS $36{ }^{2}$ | 34-m BWG | -35 | 23 | 42.36634 | 148 | 58 | 42.75912 | 685.503 |
| DSS 43 | 70-m | -35 | 24 | 8.72724 | 148 | 58 | 52.56231 | 688.867 |
| DSS $45{ }^{4}$ | 34-m HEF | -35 | 23 | 54.44766 | 148 | 58 | 39.66828 | 674.347 |
| DSS 53 ${ }^{2}$ | 34-m BWG | 40 | 25 | 37.50154 | 355 | 44 | 47.74405 | 842.806 |
| DSS 54 | 34-m BWG | 40 | 25 | 32.23805 | 355 | 44 | 45.25141 | 837.051 |
| DSS 55 | 34-m BWG | 40 | 25 | 27.46525 | 355 | 44 | 50.52012 | 819.061 |
| DSS 56² | 34-m BWG | 40 | 25 | 33.47285 | 355 | 44 | 52.58149 | 835.746 |
| DSS 63 | 70-m | 40 | 25 | 52.35510 | 355 | 45 | 7.16924 | 864.816 |
| DSS 65 | 34-m HEF | 40 | 25 | 37.94289 | 355 | 44 | 57.48397 | 833.854 |

## NOTES:

1. Geoidal separation must be subtracted from WGS 84 height to get MSL height.
2. Latitude, longitude, and height absolute accuracy estimated to be $+/-0.001 \mathrm{sec}$ and $+/-3 \mathrm{~cm}$ ( 0.030 m ) (1-sigma)
3. For southern hemisphere antennas deg, min, sec should all be treated as negative numbers.
4. Decommissioned. For historical reference only.
5. See NOTE, Table 7.

$$
810-005
$$

301, Rev. N

Table 6. Geocentric Coordinates for DSN Stations ${ }^{3}$

| Antenna |  | Geocentric Coordinates |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Description | Spin Radius (m) | Latitude (deg) | Longitude (deg) | Geocentric <br> Radius (m) |
| DSS 13 | $34-m$ R \& D | 5215524.541 | 35.0660180 | 243.2055410 | 6372125.096 |
| DSS 14 | 70-m | 5203996.968 | 35.2443523 | 243.1104618 | 6371993.267 |
| DSS $15{ }^{2}$ | 34-m HEF | 5204234.338 | 35.2403129 | 243.1128049 | 6371966.511 |
| DSS 24 | 34-m BWG | 5209482.543 | 35.1585346 | 243.1252056 | 6371973.601 |
| DSS 25 | 34-m BWG | 5209635.569 | 35.1562591 | 243.1246368 | 6371982.537 |
| DSS 26 | 34-m BWG | 5209766.354 | 35.1543409 | 243.1269835 | 6371992.264 |
| DSS $34{ }^{1}$ | 34-m BWG | 5205508.011 | -35.2169824 | 148.9819644 | 6371693.538 |
| DSS $35{ }^{1}$ | 34-m BWG | 5205682.820 | -35.2143051 | 148.9814558 | 6371697.358 |
| DSS $36{ }^{1}$ | 34-m BWG | 5205719.750 | -35.2136127 | 148.9785442 | 6371688.208 |
| DSS 43 | 70-m | 5205251.840 | -35.2209189 | 148.9812673 | 6371688.998 |
| DSS 45² | 34-m HEF | 5205494.965 | -35.2169608 | 148.9776856 | 6371675.873 |
| DSS 531 | 34-m BWG | 4862731.241 | 40.2372333 | 355.7465956 | 6370030.706 |
| DSS 54 | 4-m BWG | 4862832.157 | 40.2357726 | 355.7459032 | 6370025.490 |
| DSS 55 | 34-m BWG | 4862913.938 | 40.2344478 | 355.7473667 | 6370007.988 |
| DSS $56{ }^{1}$ | 34-m BWG | 4862806.461 | 40.2361152 | 355.7479393 | 6370024.058 |
| DSS 63 | 70-m | 4862450.835 | 40.2413554 | 355.7519915 | 6370051.198 |
| DSS 65 | 34-m HEF | 4862715.598 | 40.2373555 | 355.7493011 | 6370021.709 |
| NOTES: <br> 1. Latitude, longitude, and radius absolute accuracy estimated to be $+/-0.0000003$ deg and $+/-3 \mathrm{~cm}(0.030 \mathrm{~m})(1$-sigma) for each coordinate. <br> 2. Decommissioned. For historical reference only. <br> 3. See NOTE, Table 7. |  |  |  |  |  |

Table 7. DSN Stations Location Uncertainties

| Antenna |  | Location Uncertainties (m, 1-sigma)) |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Name | Description | Spin Radius | Longitude | z |
| DSS 13 | 34-m R \& D | 0.025 | 0.036 | 0.031 |
| DSS 14 | $70-\mathrm{m}$ | 0.024 | 0.035 | 0.030 |
| DSS 15 | 34-m HEF | 0.023 | 0.035 | 0.030 |
| DSS 24 | 34-m BWG | 0.029 | 0.036 | 0.033 |
| DSS 25 | 34-m BWG | 0.029 | 0.036 | 0.033 |
| DSS 26 | 34-m BWG | 0.030 | 0.038 | 0.034 |
| DSS 34 | 34-m BWG | 0.030 | 0.030 | 0.030 |
| DSS 35 | 34-m BWG | 0.030 | 0.030 | 0.030 |
| DSS 36 | 34-m BWG | 0.030 | 0.030 | 0.030 |
| DSS 43 | 70-m | 0.026 | 0.035 | 0.032 |
| DSS 45 | 34-m HEF | 0.024 | 0.035 | 0.031 |
| DSS 53 | 34-m BWG | 0.03 | 0.03 | 0.03 |
| DSS 54 | 34-m BWG | 0.032 | 0.036 | 0.034 |
| DSS 55 | 34-m BWG | 0.050 | 0.037 | 0.048 |
| DSS-56 | 34-m BWG | 0.03 | 0.03 | 0.03 |
| DSS 63 | 70-m | 0.027 | 0.035 | 0.031 |
| DSS 65 | 34-m HEF | 0.026 | 0.034 | 0.030 |
| NOTE: |  |  |  |  |
| The numbers in this table represent the uncertainties in location at the time of VLBI |  |  |  |  |
| measurements. In the years since the measurements, a number of occurrences |  |  |  |  |
| have conspired to increase the uncertainties to as much as 0.1 meter, |  |  |  |  |
| 1 T-sigma. This is due to events such as the 2019 Ridgecrest earthquake, which |  |  |  |  |
| affected Goldstone at the level of several centimeters, as well as uncertainty in |  |  |  |  |
| tectonic plate velocities integrating up over the years. |  |  |  |  |

### 2.2 Coverage and Mutual Visibility

The coverage and mutual visibility provided for spacecraft tracking depends on the altitude of the spacecraft, the particular antenna being used, the blockage of the antenna beam by the land mask and structures in the immediate vicinity of the antennas, and whether simultaneous uplink coverage is required. Receive limits are governed by the mechanical capabilities of the antennas and the terrain mask. Transmitter limits, on the other hand, are based on radiation hazard considerations to on-site personnel and the general public and are set above the terrain mask and the antenna mechanical limits.

### 2.2.1 Use of Transmitters Below Designated Elevation Limits

Requests for coordination to relinquish the transmitter radiation restrictions will be considered for spacecraft emergency conditions or for critical mission support requirements (conditions where low elevation or high-power transmitter radiation is critical to mission objectives). In either event, the uplink radiation power should be selected as the minimum needed for reliable spacecraft support. In general, there is no transmission allowed below 10.210.5 degrees elevation by any antenna at any power level. DSS-43 (Canberra) will have new Sband ( 100 kW ) and X-band ( 80 kW ) transmitters operational as of February 2021. These transmitters cannot be used below 17.4 degrees elevation angle at any power level above 20 kW . JPL internal document 842-40-321 (Rev. C and later) should be consulted when it is necessary to determine the airspace restrictions and azimuth and elevation limits for the various stations.

### 2.2.1.1 Spacecraft Emergencies

The need for violation of transmitter radiation restrictions to support a spacecraft emergency will be determined by the DSN. The restrictions will be released after assuring that appropriate local authorities have been notified and precautions have been taken to ensure the safety of both on-site and off-site personnel.

### 2.2.1.2 Critical Mission Support

If critical mission activities require the transmitter radiation restrictions to be violated, the project is responsible for notifying the DSN through their normal point of contact three months before the activity is scheduled. The request must include enough information to enable the DSN to support it before the appropriate authorities. Requests made less than three months in advance will be supported on a best-efforts basis and will have a lower probability of receiving permission to transmit. Requests will be accepted or denied a minimum of two weeks before the planned activity.

### 2.2.2 Mechanical Limits on Surveillance Visibility

All DSN antennas have areas of non-coverage caused by mechanical limits of the antennas. The first area is the mechanical elevation limit, which is approximately six degrees for antennas using an azimuth-elevation mount. A second area of non-coverage is an area immediately above the antenna referred to as the keyhole.

The keyhole of the DSN azimuth-elevation antennas is directly overhead and results from the fact that high azimuth angular rates are needed to track spacecraft passing nearly overhead, at zenith. For the $70-\mathrm{m}$ antennas, with a maximum azimuth tracking rate of 0.25 deg/sec, spacecraft can be tracked continuously to an elevation of about 89 degrees. For the 34m antennas, with a maximum azimuth tracking rate of $0.8 \mathrm{deg} / \mathrm{sec}$, spacecraft can be tracked continuously to a maximum elevation of about 89.7 degrees. Thus, the size of the keyhole depends on how fast the antenna can be slewed in azimuth. Specifications on antenna motion are contained in module 302, Antenna Positioning. The locations of the DSN antennas are such that overhead tracks are not required for spacecraft operating near the plane of the ecliptic.

The DSN AZ/EL antennas have an additional restriction on antenna motion caused by the routing path of cables and hoses between the fixed and rotating portions of the antenna. This azimuth cable wrap has no effect on surveillance visibility but does place a restriction on the time between tracks due to the requirement to unwind the cables. Table 8 provides the approximate cable wrap limits for the DSN AZ/EL antennas. Users with appropriate access should also refer to the following link for the latest updates to the cable wrap limits:
https://spsweb.fltops.jpl.nasa.gov
(Select "SPS Support Files" tab and then select "view Station Parameters" tab.)

Table 8. Approximate Cable Wrap Limits for Azimuth-Elevation Antennas

| Antenna |  | Azimuth Position (Degrees) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Name(s) | Description | Counterclockwise <br> (CCW) Limit | Neutral | Clockwise <br> (CW) Limit |
| DSS 14 | $70-\mathrm{m}$ | 140.0 | 45 | 309.9 |
| DSS 43 | $70-\mathrm{m}$ | 230.2 | 135 | 39.8 |
| DSS 63 | $70-\mathrm{m}$ | 142.0 | 45 | 309.5 |
| DSS 15 (see Note) | $34-\mathrm{m} \mathrm{HEF}$ | 271.3 | 135 | 358.9 |
| DSS 45 (see Note) | $34-m$ HEF | 181.1 | 45 | 268.9 |
| DSS 65 | $34-m$ HEF | 271.3 | 135 | 358.9 |
| DSS 24 | $34-\mathrm{m} \mathrm{BWG}$ | 270.2 | 135 | 359.7 |
| DSS 25 | $34-m$ BWG | 270.2 | 135 | 359.7 |
| DSS 26 | $34-m$ BWG | 270.2 | 135 | 359.7 |
| DSS 34 | $34-m$ BWG | 180.0 | 45 | 269.7 |
| DSS 35 | $34-m$ BWG | 159.3 | 45 | 271.4 |
| DSS 36 | $34-m$ BWG | 159.3 | 45 | 268.0 |
| DSS 53 | $34-m$ BWG | 275.0 | 135.1 | 359.9 |
| DSS 54 | $34-m$ BWG | 269.9 | 140 | 359.7 |
| DSS 55 | $34-m$ BWG | 263.4 | 135 | 359.6 |
| DSS 56 | $34-m$ BWG | 270.0 | 135.05 | 359.0 |

NOTE: DSS-45 decommissioned as of 10/2016. DSS-15 decommissioned as of 5/2018.

### 2.2.3 Coverage Charts

Figures 2-10 provide examples of coverage for various combinations of stations, spacecraft altitudes, and type of support. The coverage limits in these figures were plotted by a program written as a collection of Microsoft Excel macros with shading and labels added for publication. The coverage areas shown are the locations on earth over which a spacecraft must be so that it is visible by all the stations at an antenna complex, subject to the altitude and receive/transmit elevation limits given for that particular case. The latest version of this program combines the capability to draw the coverage charts and is available for download from the 810005 web sites:
https://deepspace.jpl.nasa.gov/dsndocs/810-005/downloads/ .
The coverage charts are available from "Download Spacecraft Coverage and Visibility Spreadsheet for 301 ". The file includes a spreadsheet with the antenna coordinates used to create the figures. For antennas grouped closely at each complex (e.g. the BWG antennas at Goldstone), the visibility differences among the antennas are insignificant. This
$810-005$
301, Rev. N
download spreadsheet should not be used for generating the horizon masks. Horizon mask plots are available from the 301 N download spreadsheet (see Section 2.2.4). The spacecraft coverage spreadsheet uses generic elevation limits for the receive and transmit elevations. These are 6.0 degrees for receive, 10.0 degrees for low-power transmit, and 13.5 degrees for high-power transmit. There is no azimuth variation of these elevation limits, and the coverages thus shown will be the maximum available for spacecraft at the given altitude values, including geosynchronous and deep-space spacecraft, subject to the minimum elevation limits given in the specific antenna horizon masks (Section 2.2.4). The following coverage cases were drawn in Figures 2-10 for specific elevation limits somewhat different from the generic elevation limits given in the coverage and visibility download spreadsheet.

### 2.2.3.1 70-m Receive Coverage of Planetary Spacecraft

Figure 2 illustrates the receive coverage of planetary spacecraft by the DSN 70-m antenna subnet. The small ovals at each antenna location on the figure represent the $70-\mathrm{m}$ antenna keyholes above each station and are approximately to scale.

### 2.2.3.2 70-m Transmit Coverage of Planetary Spacecraft

Figure 3 illustrates the transmit coverage of planetary spacecraft by the DSN 70m antenna subnet using a 10.4-degree transmit elevation limit at DSS 14 and a 10.2-degree transmit elevation limit at DSS 43 and DSS 63. The small ovals at the antenna locations on the figure represent the 70-m antenna keyholes. The reduced coverage to the west of DSS 63 (seen over the western United States) is caused by the need to have a 20.2-degree elevation limit to protect the high ground to the northwest of the station.

### 2.2.3.3 34-m HEF Receive Coverage of Planetary Spacecraft

Figure 4 illustrates the receive coverage of planetary spacecraft by the DSN 34-m HEF antenna subnet. The keyhole above each 34-m HEF antenna is very small and is somewhat exaggerated for clarity on the maps. This chart is very similar to Figure 2 but is included to show that the location of DSS 65 shifts the apparent position of the high ground to the north and west of where it is observed from DSS 63.

### 2.2.3.4 34-m HEF Transmit Coverage of Planetary Spacecraft

Figure 5 illustrates the transmit coverage of planetary spacecraft by the DSN 34-m HEF antenna subnet. As is the case in Figure 4, the size of the circles used to indicate the keyholes on the map are larger than the actual size of the 34-m HEF antenna keyholes. The transmit elevation limit is 10.6 -degrees at DSS 15 and 10.5-degrees at DSS 45. At DSS 65, the transmit limit is 10.3 degrees but it is increased to 14.0 degrees when the antenna is pointed in a northerly direction from 326.6 to 355.1 degrees azimuth and again from 24.1 to 50.9 degrees azimuth. This is done to clear the hills to the north, north-west and other antennas to the north, north-east of DSS 65's new location.
$810-005$
301, Rev. N

### 2.2.3.5 34-m BWG Receive Coverage of Planetary Spacecraft

Figure 6 illustrates the receive coverage of planetary spacecraft by a subnet of DSN 34-m BWG antennas capable of supporting X and Ka bands. As is the case with the other 34-m antennas, the size of the keyhole circles on the map is larger than the actual size of the antenna keyholes. This chart is very similar to Figures 2 and 4 but is included to show that the location of DSS 55 shifts the apparent position of the high ground to where it does not significantly affect tracking coverage.

### 2.2.3.6 34-m BWG Transmit Coverage of Planetary Spacecraft

Figure 7 illustrates the transmit coverage of planetary spacecraft by the same subnet of $34-\mathrm{m}$ BWG antennas (DSS 26, 34, and 55) shown in Figure 6. DSS 55 is sited southeast of DSS 54 at a slightly lower elevation. To allow an adequate clearance above DSS 54 for the DSS 55 transmitter pencil beam, an 18.36-degree lower elevation limit is placed on the DSS 55 transmitter between 304.9 and 360 degrees. Figure 8 is included primarily to show the effect of substituting DSS 54 for DSS 55. There is no significant coverage difference between any of the 3 Goldstone BWG stations. Coverage by DSS 54 between 344.4 and 8.5 degrees azimuth is limited to elevations above 13.3 degrees in order to protect the high ground northwest of the station.

### 2.2.3.7 34-m BWG Receive Coverage of Near Earth Spacecraft

Figure 9 illustrates the receive coverage of near-Earth spacecraft by the DSN 34m BWG antennas at altitudes of $500 \mathrm{~km}, 5000 \mathrm{~km}$, and geosynchronous ( 35789 km ) using the near-Earth support stations, DSS 24, 34, and 54. As is the case with the other 34-m antennas, the size of the keyhole circles on the map is larger than the actual size of the antenna keyholes. It should be noted that at lunar distance the coverage is essentially the same as the planetary coverage shown in Figure 6.

### 2.2.3.8 34-m BWG Transmit Coverage of Near Earth Spacecraft

Figure 10 illustrates the transmit coverage of near-Earth spacecraft by the DSN $34-\mathrm{m}$ BWG antennas at altitudes of $500 \mathrm{~km}, 5000 \mathrm{~km}$, and geosynchronous ( 35789 km ) using the near-Earth support stations. As is the case with other figures, the keyholes are shown larger than actual size and coverage at lunar distance is essentially the same as the planetary coverage shown in Figure 7.

### 2.2.4 Horizon Masks and Antenna Limits

Horizon mask data and plots are available from the 810-005 download website at https://deepspace.jpl.nasa.gov/dsndocs/810-005/downloads/.

The horizon mask charts are available from "Download Horizon Mask Spreadsheet for 301N". These horizon mask charts should be considered valid beginning May 1, 2020, until further notice, and are presently being used for planning mission telecom sequences. Figures 11 through 24 show the receive and transmit horizon mask limits for all DSN stations.

For this revision (Rev. N) the masks for the MDSCC (Madrid) stations have not been updated to show the effects (masks plus blockages) due to the updated 2-meter lower DSS-53 location. The effects on the DSS-53 mask are believed to be small (horizon mask less than 0.1 deg higher, and blockage by other antennas less than 0.7 degrees higher). As seen from other antennas, DSS-53 will appear to be less than 0.7 degrees lower.

The receive limits are governed generally by the physical terrain surrounding the antenna and blockage by neighboring antennas, or by the mechanical lower limit of approximately 6 degrees elevation. The transmitter limits are governed by statutory restrictions of approximately 10 degrees for low power (typically 20 kW ) transmission, and approximately 13.5 degrees (by analysis) for high power (typically 80 kW ) transmission. Most antenna horizon masks differ slightly from these values.

In general, the absolute lower elevation limit for uplink transmission is 10.0 degrees, unless a higher limit is required to clear terrain or some other obstruction. DSS-65 has a lower transmit limit of 10.8 degrees, which includes interlock position uncertainties of as much as 0.5 degrees, so as to guarantee that there is no transmission at an elevation angle less than 10.0 degrees or closer than some safe distance (at least several meters) above an elevated horizon. At DSS-43 neither the $100-\mathrm{kW}$ S-band transmitter nor the $80-\mathrm{kW}$ X-band transmitter can be used below 17.4-degrees elevation angle at any power level above 20 kW .

The receive horizon masks for DSS-34, DSS-35, and DSS-36, Figures 15 thru 17, were measured by radiometric techniques to determine the actual antenna elevation angle where the increase in system noise temperature due to the beam impinging upon the terrain, and the accompanying blockage of the beam, would create an antenna G/T degradation that would make reliable spacecraft tracking impossible. The noise temperature increase chosen to define the receive horizon was +50 K , which would result in an approximately 3 dB increase in system noise temperature, and a 1 dB decrease of gain, resulting in a total G/T degradation of about 4 dB. Because of configuration changes to DSS-35, only the DSS-34 and DSS-36 receive horizons are determined by this method. The DSS-35 receive horizon was modeled from the existing +2.5 K noise contour (the transmit horizon) by lowering that profile by 2 degrees.

The transmit horizon masks for the Canberra BWG antennas were determined by the azimuth profile where the system noise temperature increase was +2.5 K , where it is thought the lower edge of the beam is just touching the terrain. An additional 0.5 degrees in azimuth and elevation was added to account for interlock position uncertainties. The transmit profile for DSS-35 was squared-off so that the beam clearance was 0.5 degrees above the highest obstacle, dropping down to 10.5 degrees at azimuths where the 10.5 degree elevation was 0.5 degrees above the +2.5 K profile, or about 2-3 degrees above the receive mask. The transmit horizon masks for DSS-34 and DSS-36 were also measured by radiometric means, but the transmit mask is now a continuous function of azimuth, and the transmitter lower limits are defined by a set of polynomials, each over a small range of azimuth. These polynomial transmit masks are used in the ATMC (Antenna Transmit Mask Controller).

A DSS-26 high-power ( 80 kW ) transmit horizon mask at 13.5 degrees elevation has been added to Figure 14, in addition to the low-power mask at 10.5 degrees.

Transmit and receive horizon masks for the Madrid antennas (DSS-53, -54, -55, $-56,-63$, and -65) have been calculated from SRTM (Shuttle Radar Topography Mission) data.

Figure 2. DSN 70-m Subnet Receive Coverage, Planetary Spacecraft

Figure 3. DSN 70-m Subnet Transmit Coverage, Planetary Spacecraft.

Figure 4. DSN 34-m HEF Subnet Receive Coverage, Planetary Spacecraft.

$\square$ DSS 26, Planetary range.
Figure 6. DSN 34-m BWG Antennas Receive Coverage, Planetary Spacecraft, Using DSS 26, 34, and 55
810-005
301, Rev. N

Figure 7. DSN 34-m BWG Antennas Transmit Coverage, Planetary Spacecraft, Using DSS 26, 34, and 55.

810-005
301, Rev. N

$\square$ Goldstone (DSS-26)
$\square$ Canberra (DSS-34)
$\square$ Madrid (DSS-55)


810-005
301, Rev. N

$\square$ Altitude $=$ Geosynchronous
Figure 10 DSN 34-m BWG Antennas Transmit Coverage, Near-Earth Spacecraft


Figure 11. DSS-14, 70-m, Receive, Low-Power Transmit, and High-Power Transmit Horizon


Figure 12. DSS-24, BWG, Receive and Low-Power Transmit Horizon Masks

DSS-34 HORIZON MASKS
 AZIMUTH, deg
Figure 15. DSS-34, BWG, Receive and Low-Power Transmit Horizon Masks
DSS-35 HORIZON MASKS
 AZIMUTH, deg
Figure 16. DSS-35, BWG, Receive and Low-Power Transmit Horizon Masks

DSS-43 HORIZON MASKS

Figure 18. DSS-43, 70-m, Receive, Low-Power Transmit, and High-Power Transmit


Figure 19. DSS-53, BWG, Receive and Low-Power Transmit Horizon Masks
DSS-54 HORIZON MASKS

 AZIMUTH, deg
Figure 20. DSS-54, BWG, Receive and Low-Power Transmit Horizon


Figure 21. DSS-55, BWG, Receive and Low-Power Transmit Horizon Masks

Figure 22. DSS-56, BWG, Receive and Low-Power Transmit Horizon Masks

810-005
301, Rev. N


Figure 23. DSS-63, 70-m, Receive, Low-Power Transmit, and High-Power Transmit

## Appendix A References

C. Boucher, Z. Altamimi, and L. Duhem, Results and analysis of the ITRF93, IERS Technical Note 18, Observatoire de Paris, October 1994

2 B. R. Bowring, "The accuracy of geodetic latitude and height equations," Survey Review, 28, pp. 202-206, 1985.

Deep Space Network

## 302

## Antenna Positioning

Document Owner:

| Signature Provided | $01 / 17 / 2017$ |
| :--- | :--- |
| Stephen D. Slobin | Date |
| Antenna System Engineer |  |

Prepared by:

| Signature Provided | $01 / 17 / 2017$ |
| :--- | :--- |
| Stephen D. Slobin | Date |
| Antenna System Engineer |  |

Approved by:

Signature Provided
01/17/2017

| Timothy Pham | Date |
| :--- | :--- |
| Communications Systems Chief |  |
| Engineer |  |

Released by:

| Signature Provided | $02 / 10 / 2017$ |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 302, Rev. D
Issue Date: February 10, 2017
JPL D-19379; CL \#17-0712
Jet Propulsion Laboratory
California Institute of Technology

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | 01/17/2017 |  | Signature Not Provided |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Jeff Berner Date  David Rochblatt <br> DSN Project Chief Engineer   Antenna System Engineer | Date |  |  |  |

## Change Log

| Rev | Issue <br> Date | Prepared By | Affected <br> Paragraphs | Change Summary |
| :---: | :---: | :---: | :---: | :--- |
| Initial | $10 / 7 / 2004$ | Stephen Slobin <br> Robert Sniffin | All | New Module |
| A | $12 / 15 / 2009$ | Stephen Slobin <br> Robert Sniffin | Many | Removed references and information related to the <br> decommissioned 26-m antennas. |
| B | $6 / 1 / 2010$ | Stephen Slobin <br> Robert Sniffin | Table 1 | Changed Azimuth Motion Limits to Travel Range and <br> Corrected DSS-27 cable wrap center value. <br> Eliminated the Rev. E designation for the document <br> series. |
| C | $02 / 09 / 2015$ | Stephen Slobin <br> Christine Chang | Table 4 <br> Figures 4,5,6,7 <br> Section 2.1 <br> Rev. B, Section <br> 2.3.2 <br> Section 2.5.2 <br> Section 2.6 | Updated MRE values - added DSS-35. <br> Added to show wind effect on pointing loss. <br> DSS-27 HSB antenna decommissioned. <br> Removed, IIRV no longer supported in DSN. <br> Expanded description of blind pointing errors. <br> Expanded description of CONSCAN and monopulse. |
| D | $02 / 10 / 2017$ | Stephen Slobin <br> Christine Chang | Sec. 2.6.2 <br> Table 4 | Ka-band monopulse MRE at DSS-36 added. <br> Added DSS-36 blind pointing performance. Noted <br> that DSS-45 is decommissioned. |

## Contents

Paragraph Page
1 Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope ..... 6
2 General Information ..... 6
2.1 Antenna Characteristics ..... 6
2.2 Coverage Restrictions and Servo Performance Limits ..... 7
2.3 Pointing Modes ..... 9
2.3.1 Direction Cosine Mode ..... 10
2.3.2 Planetary Mode ..... 10
2.3.3 Sidereal Mode ..... 10
2.3.4 70-m Precision Tracking Mode ..... 10
2.4 Statistics of Pointing Errors ..... 11
2.5 Blind Pointing ..... 13
2.5.1 Pointing Corrections ..... 14
2.5.1.1 Atmospheric Refraction Correction ..... 14
2.5.1.2 Gravity Deformation Correction ..... 14
2.5.1.3 Systematic Error Correction ..... 15
2.5.1.4 Azimuth Track Level Compensation ..... 15
2.5.2 Measured Blind Pointing Performance of DSN Antennas ..... 15
2.6 Closed-loop Pointing ..... 17
2.6.1 CONSCAN ..... 17
2.6.2 Monopulse. ..... 21
2.7 Beam Alignment ..... 21
2.8 X-band Beam Shift on 70-m Antennas ..... 22
2.9 DSS-25 Ka-band Transmit Aberration Correction ..... 22

## Illustrations

Figure Page
Figure 1. Azimuth Rates for Selected Circular Orbits. ..... 9
Figure 2. Rayleigh PDF and CDF for a Mean Radial Pointing Error $=4.0 \mathrm{mdeg}$ ..... 12
Figure 3. Cumulative Distributions of Pointing Errors for Selected MREs ..... 13
Figure 4. 34-m BWG Antenna X/Ka-band Pointing Error vs. Wind Speed ..... 19
Figure 5. X-band CONSCAN Average Pointing Loss vs. Wind Speed ..... 19
Figure 6. Ka-band CONSCAN Average Pointing Loss vs. Wind Speed ..... 20
Figure 7. Ka-band Average Pointing Loss using X-band CONSCAN vs. Wind Speed ..... 20

## Tables

Tables Page
Table 1. DSN Antenna Mechanical Characteristics ..... 8
Table 2. Mean Radial Error Multipliers for a Rayleigh Distribution ..... 11
Table 3. 34-m BWG Antenna Pointing Error Sources ..... 14
Table 4. Measured Blind Pointing Performance of DSN Antennas ..... 16

## 1 Introduction

### 1.1 Purpose

This module describes the pointing capabilities of the antennas used by the Deep Space Network (DSN) in sufficient detail to enable a telecommunications engineer to design spacecraft missions that are compatible with these capabilities.

### 1.2 Scope

This discussion in this document is restricted to the mechanical limitations of the antennas, their control algorithms, and the error sources that influence the ability to point the radio frequency (RF) beam in the desired direction. Wind velocity statistics that can be used to estimate the effects of wind on antenna pointing are presented in module 105. Coverage and restrictions to coverage caused by terrain masking are discussed in module 301.

## 2 General Information

Antenna positioning or pointing is the process of directing the antenna beam towards the desired target. The target may be a spacecraft or radio source that is producing a receivable signal. The target may also be a spacecraft other object at a known or suspected position that is not producing a signal but to which RF energy must be directed. The antenna must keep its RF beam properly aimed for the scheduled duration of the spacecraft or other observation, often referred to as a pass.

There are two types of antenna beam pointing. The first of these is blind pointing, sometimes referred to as open loop pointing, that relies on the ability to model the direction of the antenna beam in the presence of systematic and random processes. The second is closed-loop pointing that derives corrections from the received signal. Blind pointing produces larger errors, but is the only method available in the absence of a received signal or during radio science observations when the data quality would be adversely affected by closed loop positioning.

Antenna pointing is not only influenced by random errors due to wind and thermal effects, but also due to imperfect modeling of systematic pointing errors that vary unpredictably throughout the sky or along a particular path in the sky when tracking a spacecraft. Standard first-order systematic error pointing models (used for blind pointing) may not be adequate to describe "high frequency" (e.g., 2 or more cycles per 360 degrees movement in azimuth or elevation) variations in pointing. Fourth-order blind pointing models exist for all antennas and frequency bands.

### 2.1 Antenna Characteristics

The DSN employs three general types of antennas. At least one of each type antenna exists at each DSN complex. The antenna types are the $70-\mathrm{m}$ antennas, the $34-\mathrm{m}$ highefficiency (HEF) antennas, and the 34-m beam waveguide (BWG) antennas. All of these
antennas employ an azimuth-elevation (AZ-EL) mount. The Goldstone high-speed beam waveguide (HSB) antenna (DSS-27) has been decommissioned.

The antennas are pointed by variable-rate servo systems that use the antenna pointing commands as input and the axis position encoders (azimuth and elevation) as feedback. The $70-\mathrm{m}$ antennas also have a precision mode where the main reflector is slaved to a small hour-angle/declination instrument, referred to as the Master Equatorial (ME), using optical collimation techniques. The ME is mounted at the intersection of the $70-\mathrm{m}$ azimuth and elevation axes in a controlled environment and on a separate foundation to eliminate vibration and thermal effects. Servo performance is generally a function of antenna size, with higher tracking and slew rates being available from the smaller antennas. Table 1 summarizes the primary mechanical characteristics of the various antennas.

### 2.2 Coverage Restrictions and Servo Performance Limits

DSN antennas have restrictions to their coverage from two sources other than terrain masking. The first of these is the antenna keyholes - areas where coverage in not possible because the reflector would need to be positioned about the secondary (upper) axis in such a way that it would run into the primary (lower) axis or its supporting structure. The sizes of the keyholes can be inferred from the elevation motion limits given in Table 1 and are illustrated on the horizon mask charts in module 301. The second restriction occurs near the ends of the primary axis where the amount of motion required to correctly position the antenna beam exceeds the capability of the primary axis servo should the orbital path pass near an imaginary extension of the lower axis.

Azimuth-elevation antennas have an area of non-coverage directly above the antenna resulting from the fact that should a spacecraft pass directly overhead, the antenna would have to instantaneously rotate 180 degrees in azimuth to follow it. Clearly, this is not possible but, for spacecraft passing nearly overhead, the azimuth rate is finite and can be calculated from the equation.

$$
\begin{equation*}
r_{A Z}=\frac{r_{S C}}{\cos \left(E L_{\text {Peak }}\right)} \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
r_{A Z} & =\text { the peak azimuth rate required of the antenna } \\
r_{S C} & =\text { the cross-elevation rate of the spacecraft as seen from the antenna } \\
E L_{\text {Peak }} & =\text { the maximum elevation reached by the spacecraft. }
\end{array}
$$

Table 1. DSN Antenna Mechanical Characteristics

| Parameter | 70-m | 34-m HEF | 34-m BWG |
| :---: | :---: | :---: | :---: |
| Antenna Mount | AZ-EL | AZ-EL | AZ-EL |
| Slew Rate, each axis (deg/s) | 0.25 | 0.8 | 0.8 |
| Minimum Tracking Rate, each axis (deg/s) | 0.0001 | 0.0001 | 0.0001 |
| Maximum Tracking Rate, each axis (deg/s) | 0.25 | 0.4 | 0.4 |
| Acceleration each axis (deg/s ${ }^{2}$ ) | 0.2 | 0.4 | 0.4 |
| Deceleration (braking) each axis (deg/s²) | 2.5 | 5.0 | 5.0 |
| Axis Encoder Resolution (mdeg) | 0.021 | 0.021 | 0.021 |
| Axis Encoder Accuracy (mdeg) | $\pm 0.171$ | $\pm 0.171$ | $\pm 0.171$ |
| Master Equatorial Axis Encoder Resolution (mdeg) | 0.021 | - | - |
| Master Equatorial Axis Encoder Accuracy (mdeg) | $\pm 0.343$ | - | - |
| Azimuth Travel Range from Wrap Center (deg) | $\pm 265$ | $\pm 225$ | $\pm 225$ |
| GDSCC Wrap Center (deg) | 45 | 135 | 135 |
| CDSCC Wrap Center (deg) | 135 | 45 | 45 |
| MDSCC Wrap Center (deg | 45 | 135 | 135 |
| Elevation Motion Limits (deg) | 6-89.5 | 6-89.5 | 6-89.5 |

For spacecraft tracked at near-sidereal rates, the areas of non-coverage are not large but must be avoided by appropriate scheduling. The maximum peak spacecraft elevation is limited to 89 degrees for continuous tracking when using the $70-\mathrm{m}$ antennas. For the HEF and BWG antennas, the maximum peak elevation for continuous tracking is limited to 89.4 degrees.

Formula (1) can be used for Earth-orbiter spacecraft; however, the rate of spacecraft as seen from the antenna will be a function of orbit altitude. Figure 1 illustrates the effect of orbit altitude on peak azimuth rate for several circular orbits.


Figure 1. Azimuth Rates for Selected Circular Orbits.

## $2.3 \quad$ Pointing Modes

DSN antennas are normally operated by aiming their RF beams in accordance with a pre-determined set of instructions referred to as antenna pointing predictions or predicts. The format and contents of the predicts depends on their source, the type of support being provided, and the antenna being used. In addition to predict-driven modes, there are specialized pointing modes available for the antenna type. All pointing is provided in terms of the actual
direction to the target. The antenna controller adds whatever corrections are required to compensate for the atmosphere and imperfections in the antenna response, calculates the rate at which each axis must move to reach the next point at the desired time and delivers this information to the antenna servos. Position feedback from the selected axis position encoders is constantly monitored and used to adjust the axis tracking rates.

The $34-\mathrm{m}$ BWG antennas have a single predict-driven mode, the direction cosine mode. The Improved Inter-Range Vector (IIRV) mode is no longer supported in the DSN. The $34-\mathrm{m}$ HEF and $70-\mathrm{m}$ antennas have the direction cosine predict-driven mode. In addition, the 70m antennas also have the precision tracking mode. Common to all antennas are the planetary and sidereal tracking modes. These pointing modes are further described below.

### 2.3.1 Direction Cosine Mode

Target positions are delivered to the station as a binary file of predict points, where each point contains time, target range, and topographic direction cosines ( $\mathrm{X}, \mathrm{Y}$, and Z ) with their $2^{\text {nd }}$ and $4^{\text {th }}$ differences for use in an Everett Interpolation algorithm within the antenna controller. The points may represent the location of a single spacecraft from which data is to be acquired for an entire pass, a collection of radio sources that are to be observed on a predetermined schedule, or in the case of delta-differential one-way ranging ( $\triangle \mathrm{DOR}$ ), a series of observations alternating between a spacecraft and one or more radio sources. The direction cosine predict-driven mode is commonly available for all DSN antennas.

### 2.3.2 Planetary Mode

Planetary mode is used to track an object with slowly varying right ascension and declination. Pointing commands are interpolated from three planetary predict points (typically one per day) entered from the control position or read from a locally-created file of at least four predict points. The points may be geocentric or topocentric and should include precession and nutation corrections. Each point contains time, right ascension, declination, and range. Parallax correction is available for use with geocentric points when a non-sidereal object (such as a planet) is to be tracked.

### 2.3.3 $\quad$ Sidereal Mode

This mode, also called Star Track Mode, is used to track a celestial object at a fixed position (fixed at least for a number of days) described by geocentric right ascension (RA) and declination (DEC) coordinates, including precession and nutation. The points may be entered from the local control position or may be read from a locally-created file containing time, RA, and DEC. A capability to boresight the antenna after arriving on point is included. The boresight algorithm performs a small cross-elevation (XEL) scan centered on the expected target location followed by a small elevation (EL) scan. Pointing corrections are estimated from signal strength measurements. This mode is mainly used for evaluating antenna performance and collecting very-long baseline interferometry (VLBI) data.

### 2.3.4 $\quad 70-m$ Precision Tracking Mode

The $70-\mathrm{m}$ antennas have a precision tracking mode that makes use of an instrument called the master equatorial (ME). The master equatorial is a 7 -inch $(17.8 \mathrm{~cm})$ mirror
on an hour-angle/declination mount. The mount is attached to the top of a concrete and steel tower on a separate foundation in an environmentally controlled area within the antenna pedestal and alidade structure. The mirror can be positioned to better than 1 mdeg in each axis and the $70-$ m reflector is optically slaved to it. The precision tracking mode is available with any of the above modes but should only be used when needed because of its extra complexity.

### 2.4 Statistics of Pointing Errors

If an antenna has EL and XEL random pointing errors due to any number of causes that are normally (Gaussian) distributed, it can be shown that for equal EL and XEL standard deviations, $\sigma$, the radial pointing error (two dimensional) becomes Rayleigh distributed. The characteristics of the Rayleigh distribution are that the probability density function (PDF) is zero at zero pointing error, rises to a maximum value at the EL and XEL $\sigma$, and decreases with a long tail out to large values of radial pointing error. The cumulative distribution (CD) of the pointing error at a particular value is the integral of the PDF from zero to that value. The mean radial error (MRE) for the Rayleigh distribution of radial pointing errors is related to the standard deviation of the axial (XEL and EL) distributions as:

$$
\begin{equation*}
\mathrm{MRE}=\sqrt{\pi / 2} \cdot \sigma=1.2533 \sigma \tag{2}
\end{equation*}
$$

and the cumulative distribution at the MRE is 0.545 . This means that $54.5 \%$ of the pointing errors are less than or equal to the MRE. Conversely, $45.5 \%$ of the pointing errors are larger than the MRE. Once the MRE is known, the radial error associated with any CD can be calculated from the properties of the Rayleigh distribution. Table 2 provides the factors by which the MRE must be multiplied to obtain the radial error at the selected CD.

Table 2. Mean Radial Error Multipliers for a Rayleigh Distribution.

| CD | Mean Radial <br> Error Multiplier |
| :---: | :---: |
| 0.0 | 0.000 |
| 0.1 | 0.366 |
| 0.2 | 0.533 |
| 0.3 | 0.673 |
| 0.4 | 0.806 |
| 0.5 | 0.939 |
| 0.545 | $1.000($ MRE $)$ |


| $\mathbf{C D}$ | Mean Radial <br> Error Multiplier |
| :---: | :---: |
| 0.6 | 1.080 |
| 0.7 | 1.238 |
| 0.8 | 1.431 |
| 0.9 | 1.712 |
| 0.95 | 1.953 |
| 0.98 | 2.232 |
| 0.99 | 2.421 |

Figure 2 shows a graph of the PDF and cumulative distribution function (CDF) for a Rayleigh distribution with axial (XEL and EL) $\sigma$ of 3.19 mdeg , chosen to yield a mean radial error of 4.00 mdeg . Pointing performance such as this would be acceptable for a $34-\mathrm{m}$ DSN antenna operating at X-band where the pointing loss (see module 104) would be less than
$0.13 \mathrm{~dB} 90 \%$ of the time. It would be not be acceptable pointing for the same antenna operating at Ka-band antenna where the beamwidth is substantially smaller. The resulting Ka-band pointing loss (see module 104) would be greater than $0.7 \mathrm{~dB} 45.5 \%$ percent of the time and greater than $2 \mathrm{~dB} \mathrm{10} \mathrm{\%} \mathrm{of} \mathrm{the} \mathrm{time}$.

Figure 3 shows cumulative distributions of pointing error for values of mean radial error ranging from 2 to 20 mdeg and includes the pointing loss curves from modules 101 ( $70-\mathrm{m}$ Telecommunications Interfaces) and 104 (34-m BWG Telecommunications Interfaces). As an example of the use of this figure, consider the inverse of the preceding example. Assuming it has been determined that a $90 \%$ probability of having no more than 2 dB of pointing loss for a Ka-band experiment is acceptable, the chart is entered from the right along the 2-dB line until it intersects the Ka-band Pointing Loss curve. The line is extended vertically to the $\mathrm{CD}=0.9$ line where it intersects the MRE $=4$ curve. Thus, to accomplish the experiment with the desired pointing performance will require an antenna with an MRE capability of 4 mdeg.


Figure 2. Rayleigh PDF and CDF for a Mean Radial Pointing Error $=4.0 \mathrm{mdeg}$.


Figure 3. Cumulative Distributions of Pointing Errors for Selected MREs

### 2.5 Blind Pointing

Blind pointing relies on calibration and computer modeling to compensate for errors between the antenna beam direction and the direction as reported by the antenna axis position encoders. Blind pointing errors result in a pointing loss that is most severe on the BWG antennas when operating at Ka-band because of the extremely narrow beamwidth. The 70-m antennas have a relatively narrow X-band beamwidth, but this is mitigated by use of the precision tracking mode. The BWG antennas' beam waveguide tube at the center of the antenna prevents use of a master equatorial, and there are additional error sources. The BWG error sources, their magnitude, and the degree to which they can be reduced by modeling are tabulated in Table 3 and discussed in the following paragraphs.

Table 3. 34-m BWG Antenna Pointing Error Sources

| Error Source | Estimated Size (mdeg) | Correction Method | Residual Error <br> $(\mathrm{mdeg})$ |
| :--- | :--- | :--- | :--- |
| Atmospheric refractivity | 83 at EL $=10^{\circ}$ | Surface weather model | $0.8,1 \sigma$ at EL=10${ }^{\circ}$ |
| Gravity deformation of <br> dish and quadripod | $100, \mathrm{EL}(\mathrm{max})$ | Subreflector lookup <br> table | $5-10 \mathrm{P}-\mathrm{P}(\cong 6 \sigma)$ |
| Systematic errors | $100, \mathrm{EL}(\mathrm{max})$ | 12 term, first order <br> trigonometric model | $1-8$ (range) |
| Azimuth track level | $8 \mathrm{P}-\mathrm{P}(\cong 6 \sigma$ | Lookup table | 0.3 XEL, 0.1 EL |
| Azimuth encoder gear <br> noise | $0.44,1 \sigma$ | Uncorrected | $0.44,1 \sigma$ |
| Elevation encoder | 0.2 | Uncorrected | $0.2,1 \sigma$ |
| Thermal deformation | $8 \mathrm{P}-\mathrm{P}(\cong 6 \sigma \mathrm{EL} \& \mathrm{XEL})$ | Uncorrected | $8 \mathrm{P}-\mathrm{P}(\cong 6 \sigma$ |
| Wind displacement of <br> foundation | $1.1(30 \mathrm{mph}$ wind $)$ | Uncorrected | $1.1(30 \mathrm{mph}$ wind $)$ |
| Wind distortion of <br> structure | $6-9(30 \mathrm{mph}$ wind $)$ | Uncorrected | $6-9(30 \mathrm{mph}$ wind $)$ |
| Calibration <br> measurements | $1,1 \sigma$ | Uncorrected | $1,1 \sigma$ |
| Mean pointing error (without wind $)$ | $2.3-8.4$ (range) |  |  |
| Mean pointing error (with 30 mph wind) | $6.5-12.4$ (range) |  |  |

### 2.5.1 Pointing Corrections

### 2.5.1.1 Atmospheric Refraction Correction

The antenna controller uses local surface weather measurements to calculate and apply a pointing correction in elevation to compensate for atmospheric refraction. The weather data normally is provided from a local weather station but may be manually entered, if necessary.

### 2.5.1.2 Gravity Deformation Correction

The main reflector and the quadripod structure that supports the subreflector change shape slightly when the antenna moves in elevation. Because of this, the subreflector must be moved continuously during a pass in both the up and down as well as the in and out directions to optimize the gain. The up-down component of the motion causes a shift in antenna
pointing referred to as squint. This is compensated for by a squint correction algorithm that adjusts the elevation pointing depending on how far the subreflector has been moved.

### 2.5.1.3 Systematic Error Correction

All antennas, no matter how well they are designed and how carefully they are built, have certain repeatable pointing errors that can be measured by referencing well-known radio sources. Among the causes for these errors are imperfections such as angle-encoder offsets, azimuth axis tilt, gravitational flexure, axis skew, structure aging, etc. The DSN models these using constants and spherical harmonic functions of the antenna pointing angle in what is called a first-order pointing model. This model works reasonably well over the entire sky at S-band and X-band. However, experiments requiring extremely accurate pointing can benefit by special calibrations and adjusting the model for optimum performance in the portion of the sky where the experiment will occur. Antenna calibrations are performed periodically and the best model for the planned activity is always used.

The addition of Ka-band to the network has made the first order model inadequate as an all-sky model. As a result, a $4^{\text {th }}$ order systematic error model has been developed to handle pointing variations that are not directly traceable to physical imperfections in the antenna. More frequent calibration and possible use of different models for day and night operation are also being investigated to improve Ka-band pointing.

### 2.5.1.4 Azimuth Track Level Compensation

The BWG antenna azimuth tracks are composed of eight, precision-machined segments. Extremely small irregularities in the track, coupled with the four-wheeled rectangular support structure for the antenna, result in a 32-node signature that is more complex than can be modeled by the $1^{\text {st }}$ order or $4^{\text {th }}$ order systematic error correction model. The antenna controller employs a lookup table and applies appropriate corrections to both elevation and azimuth axes.

### 2.5.2 Measured Blind Pointing Performance of DSN Antennas

Table 4 presents measured X-band blind-pointing pointing performance of DSN antennas. S-band pointing is provided only for DSS-36. X-band pointing models are good enough to be used for S-band, due to the much larger S-band beamwidth. The blind pointing performance presented here is deduced from the pointing errors measured at X-band by CONSCAN and at Ka-band by monopulse (see below) during tracks on numerous spacecraft over a period of 3 to 9 months during 2014, and at DSS-36 during 2016. Although the pointing was maintained nearly perfectly on the spacecraft by use of the closed-loop systems, the running sum of the individual pointing corrections gives a measure of how much the blind pointing error varies over a track - in other words, how far the commanded antenna position varies from the actual spacecraft position. Additionally, reported pointing calibrations at the Madrid station include measurements made by ACME (Antenna Calibration and Measurement Equipment) on radio sources.

Table 4. Measured Blind Pointing Performance of DSN Antennas

| Antennas | Mean Radial Error, mdeg | Remarks (see NOTE) |
| :---: | :---: | :---: |
| 70-Meter <br> DSS-14, Goldstone DSS-43, Canberra DSS-63, Madrid | $\begin{aligned} & 3.2 \\ & 2.2 \\ & 2.9 \\ & 2.0 \end{aligned}$ | X-band <br> X-band <br> X-band <br> X-band, ACME |
| 34-Meter HEF <br> DSS-15, Goldstone DSS-45, Canberra DSS-65, Madrid | 5.4 See NOTE 6.0 4.7 | X-band <br> X-band <br> X-band, ACME |
| 34-Meter BWG <br> DSS-24, Goldstone DSS-25, Goldstone DSS-26, Goldstone DSS-34, Canberra DSS-35, Canberra DSS-36, Canberra DSS-54, Madrid DSS-55, Madrid | 4.4 3.5 2.7 5.3 3.1 5.9 3.9 7.7 $2.5-3.4$ 6.3 5.8 3.4 3.2 4.4 3.2 3.9 3.5 4.2 | X-band <br> X-band <br> Ka-band <br> X-band <br> Ka-band <br> X-band <br> Ka-band <br> X-band, preliminary <br> Ka-band <br> S-band <br> X-band <br> Ka-band <br> X-band <br> X-band, ACME <br> Ka-band <br> X-band <br> X-band, ACME <br> Ka-band |

NOTE: X-band = CONSCAN measurements of blind pointing
Ka-band $=$ monopulse measurements of blind pointing
ACME = Antenna Calibration and Measurement Equipment
DSS-45 decommissioned as of October 2016.

### 2.6 Closed-loop Pointing

Closed-loop pointing relies on the signal being received to provide corrections for antenna pointing. The DSN employs two methods of closed-loop pointing, CONSCAN and monopulse. Table 4 (above) presents the deduced blind pointing performance of DSN antennas as determined by closed-loop CONSCAN (X-band) and monopulse (Ka-band) pointing measurements.

### 2.6.1 CONSCAN

CONSCAN is available on all $70-\mathrm{m}$ and $34-\mathrm{m}$ antennas. It consists of performing a circular scan (as seen looking at the spacecraft) with the center at the predicted source position and a radius that reduces the received signal level by a small amount, typically 0.1 dB . If the target is at the expected location and antenna pointing model is perfect, no variation in the received signal level will be detected, although it will be down 0.1 dB from the maximum possible received signal level. If the initial pointing is imperfect or the target is not at the predicted location, each CONSCAN cycle will see a variation in amplitude from which the radial error and clock angle of the mis-pointing can be calculated. The typical time for a CONSCAN cycle is 120 seconds and the pointing is corrected after each cycle. The process is repeated continuously during the pass. Various amounts of CONSCAN "gain" can be applied for making the pointing correction, ranging from 0 (no correction applied) to 1 (full detected correction applied). A gain of less than 1 is usually applied to reduce the effect of noise during the CONSCAN cycle. This results in some time delay (perhaps 20 minutes) before fully corrected pointing is obtained.

CONSCAN is available at all frequency bands but is usually not necessary at S-band and is not recommended for Ka-band, since monopulse (see below) is usually available.

The relatively long CONSCAN cycle coupled with the much more severe Kaband atmospheric effects can provide misleading information to the pointing correction algorithm resulting in the antenna being driven off-point.

The mean pointing error (used for estimating pointing loss) using CONSCAN should be considered as the 0.1 dB point on the antenna pattern for the antenna and frequency in question. For a 34 -meter antenna at X-band, this value is 6 mdeg and for a 70 -meter antenna at X-band it is 3 mdeg . Considering CONSCAN pointing to be Rayleigh distributed, the pointing error for various CDs can be calculated from Figure 3. Antenna beam patterns for the various DSN antennas are given in modules 101 through 104.

The most critical pointing requirements in the DSN are for the use of Ka-band on the 34-m BWG antennas. This is because the half-power beamwidth is about 0.017 degrees, half the width of the X-band beam on the $70-\mathrm{m}$ antennas. Tracking results using CONSCAN indicate that the center of the CONSCAN circle can typically be kept pointed to within 6 mdeg of a spacecraft at X-band, and somewhat less at Ka-band.

Figure 4 shows the X -band pointing errors as measured by CONSCAN during a Kepler spacecraft track on the DSS-34 BWG antenna in August, 2012. Wind speeds up to about $45 \mathrm{~km} / \mathrm{hr}$ were experienced during the track, and it is felt that significant pointing errors resulted. A straight-line fit through the data indicates a mean pointing error of as much as 0.004 degrees for $45 \mathrm{~km} / \mathrm{hr}$ wind speed, although individual points are as much as 0.008 degrees. Each radial pointing error is the resulting measurement of one two-minute CONSCAN circle. The average X-band pointing loss over the CONSCAN cycle is small, less than 0.3 dB for the points shown in Figure 5.

Assuming that the pointing errors determined using Ka-band CONSCAN would be the same as what were measured at X-band, the average pointing losses over the Ka-band CONSCAN cycle are shown in Figure 6. In this case, at $50 \mathrm{~km} / \mathrm{hr}$ the straight-line fit gives 1.0 dB , although individual points are as much as 2.8 dB . Because of the wider X -band beamwidth, it is felt that the X-band CONSCAN measurements are noisier (in degrees) than what would be experienced at Ka-band, so estimates of the maximum Ka-band pointing losses are probably exaggerated to some degree.

There may be some conditions under which it might be necessary to use X-band CONSCAN while tracking at both X- and Ka-bands. Possibilities include unavailability of Kaband monopulse (Section 2.6.2), or gusty wind conditions which introduce excessive pointing "noise" into the Ka-band CONSCAN cycle. For the case of Ka-band tracking using X-band CONSCAN (for coincident X- and Ka-band beams), the Ka-band losses will be greater than those using Ka-band CONSCAN, as the Ka-band beam is "dragged around" in the X-band CONSCAN process, and thus is generally further away from the spacecraft than it would be using Ka-band CONSCAN alone. In this case the Ka-band pointing losses are shown in Figure 7 , and individual points are as large as 3.4 dB , with a minimum of 1.44 dB . The straight-line fit gives an average pointing loss over the CONSCAN cycle of about 2.0 dB at a wind speed of 50 $\mathrm{km} / \mathrm{hr}$.

Each pointing loss value shown in the figures is the average pointing loss over the two-minute CONSCAN cycle; thus there is a portion of the CONSCAN cycle where the pointing loss is significantly worse than the average, which might result in the spacecraft signal being lost. The straight-line fits are not intended to suggest a model, but rather to indicate the trends of pointing error and loss as a function of wind speed.


Figure 4. 34-m BWG Antenna X/Ka-band Pointing Error vs. Wind Speed


Figure 5. X-band CONSCAN Average Pointing Loss vs. Wind Speed


Figure 6. Ka-band CONSCAN Average Pointing Loss vs. Wind Speed


Figure 7. Ka-band Average Pointing Loss using X-band CONSCAN vs. Wind Speed

810-005
302, Rev. D

### 2.6.2 <br> Monopulse

Monopulse is a technique for extracting pointing information from the phase of the received signal while maintaining the source at the peak of the antenna pattern. This technique relies on the presence of a carrier signal to provide a reference for the error channel(s). As a result, it is not suitable for suppressed carrier signals or radio sources.

The monopulse capability is available to support deep space Ka-band $(32-\mathrm{GHz})$ at DSS-25, DSS-26, DSS-34, DSS-35, DSS-36, DSS-54, and DSS-55. The Ka-band feeds of these 34-m BWG antennas include a cryogenically cooled $\mathrm{TE}_{21}$ mode coupler that extracts a signal whose phase, with respect to the main beam signal, indicates the direction of the target with respect to the center of the beam and whose amplitude indicates the angular displacement from the beam center. The advantage of such a system over a conventional amplitude monopulse system is that only a single receiver channel is required for the error signal as opposed to two. The monopulse receiver measures the phase and amplitude of the signal in the error channel, calculates elevation and cross-elevation corrections, and forwards this information to the antenna controller 25 times a second. The antenna controller translates the errors into the local antenna coordinate system, integrates them, and applies the corrections to the predicted azimuth and elevation positions. During most Ka-band tracks using monopulse the pointing is maintained to with 2 mdeg, resulting in a maximum pointing loss of less than 0.2 dB . Monopulse pointing at DSS-36 was measured to be 1.5 mdeg MRE. Monopulse used at Ka-band is also used to determine the blind pointing errors for the 34 -meter BWG antennas.For initial acquisition using blind pointing, monopulse should be able to "pull-in" when the pointing is within about 10 mdeg. For larger pointing errors and/or low signal to noise ratios (SNRs), CONSCAN is used to get on target.

For extremely high signal-to-noise ratios (SNR $>40 \mathrm{~dB}-\mathrm{Hz}$ ), the monopulse system is capable of pointing the antenna within 1 mdeg of a stationary target. As SNR decreases, this performance is degraded by servo jitter resulting from noise in the selected servo bandwidth. A study has shown that the mean radial error using monopulse varies with SNR approximately as

$$
\begin{equation*}
M R E=0.2+12 e^{-0.13 S N R}, \mathrm{mdeg} \tag{3}
\end{equation*}
$$

where SNR is the monopulse signal-to-noise ratio, $\mathrm{dB}-\mathrm{Hz}$ (signal in the main channel divided by noise in the error channel). For example, for $\mathrm{SNR}=20 \mathrm{~dB}-\mathrm{Hz}, \mathrm{MRE}=1.1 \mathrm{mdeg}$. SNRs below $10 \mathrm{~dB}-\mathrm{Hz}$ will probably yield unacceptably poor pointing performance.

### 2.7 Beam Alignment

Most DSN antennas that support more than one frequency accomplish this by having multiple feedhorns. The exceptions to this are the 34-m HEF antennas that have a single S- and X-band coaxial feedhorn and the BWG antennas (with the exception of DSS-25) where there is a coaxial X - and Ka-band feedcone. When multiple feedcones are used, it is likely that there will be a small misalignment between the peak of the two antenna beams. However, if good pointing is achieved at the higher frequency, it virtually guarantees nearly perfect performance at the lower frequency due to the larger beamwidth. For example on the DSS-43, 70-m antenna
(Canberra), the S- and X-band beams have a pointing difference of about 4 mdeg in the EL direction. Because the S-band beam has a half-power beamwidth of about 118 mdeg , perfect pointing at X-band would give an S-band pointing loss of less than 0.02 dB .

## $2.8 \quad X$-band Beam Shift on 70-m Antennas

The 70-meter antennas have an $\mathrm{S} / \mathrm{X}$ dichroic plate that is retractable to provide an X-band only low-noise mode. There is an 8.5 mdeg (approximately) beam movement in the negative XEL direction (to the left, when looking outward from the antenna) when it is retracted. Separate systematic error models are maintained for each position of the dichroic plate and are selected automatically by the antenna controller.

### 2.9 DSS-25 Ka-band Transmit Aberration Correction

The extremely narrow beamwidth at Ka-band requires that the DSS-25 Ka-band uplink signal be aimed at the RA and DEC where the spacecraft will be when the signal arrives, while simultaneously receiving a signal that left the spacecraft one light-time previously. This is accommodated by mounting the Ka-band transmit feed on a movable X-Y platform that can displace the transmitted beam as much as 30 mdeg from the received beam. The reduction in gain caused by the feed not being located at the optimum focus of the antenna is discussed in module 104.

DSMS Telecommunications Link
Design Handbook

# 303 <br> Media Calibration 

Effective November 30, 2000

Document Owner:
P.11. Ricples
$\begin{aligned} & \text { P.H. Richter, } \\ & \text { Senior Engineer }\end{aligned}$
Date

Approved by:


Released by:
[Signature on file at TMOD Library]
TMOD Document Release Date

## Change Log

| Rev | Issue Date | Paragraphs <br> Affected | Change Summary |
| :---: | :---: | :---: | :---: |
| Initial | $11 / 30 / 2000$ | All |  |
|  |  |  | All |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Note to Readers

There are two sets of document histories in the 810-005 document, and these histories are reflected in the header at the top of the page. First, the entire document is periodically released as a revision when major changes affect a majority of the modules. For example, this module is part of 810-005, Revision E. Second, the individual modules also change, starting as an initial issue that has no revision letter. When a module is changed, a change letter is appended to the module number on the second line of the header and a summary of the changes is entered in the module's change log.

This module supersedes module MED-10 in 810-005, Rev. D.

## Contents

Paragraph Page
1 Introduction ..... 4
1.1 Purpose ..... 4
1.2 Scope ..... 4
2 General Information ..... 4
2.1 Global Positioning System Data ..... 4
2.1.1 GPS Signal Structure ..... 5
2.1.2 GPS Receiver/Processor Assembly (GRA) ..... 6
2.1.3 Relation of Phase and Group Delay to Atmospheric Properties ..... 7
2.2 Ground Weather Data ..... 14
Tables
Table Page

1. GPS Metric Data, Code Mode. ..... 7
2. GPS Metric Data, Non-Code Mode ..... 9
3. GPS Ephemeris Data ..... 10
4. GPS Almanac Data. ..... 12
5 Weather Data Transmitted from the SCA ..... 14

## 1 Introduction

### 1.1 Purpose

This module describes the capabilities of the equipment used by the Deep Space Network (DSN) to obtain data from which correction factors can be determined for media effects that limit navigational accuracy. The data are forwarded from each Deep Space Communications Complex (DSCC) to the Network Operations Control Center (NOCC) where they are processed and archived.

### 1.2 Scope

The functional performance and data characteristics of the Deep Space Station (DSS) Media Calibration Subsystem (DMD) are described. The DMD is responsible for obtaining Global Positioning System (GPS) and ground weather data for the NOCC Tracking Subsystem (NTK) and Navigation Subsystem (NAV).

## 2 General Information

The DMD provides two types of data:

- GPS data consisting of L-band carrier phase and group delay of GPS satellite signals, in addition to ephemeris and almanac data for the GPS satellites.
- Weather data, consisting of temperature, barometric pressure, relative humidity, precipitation rate, total precipitation, wind speed, and wind direction.


### 2.1 Global Positioning System Data

The Global Positioning System GPS Operational Constellation consists of at least 24 satellites that orbit the earth with a 12 sidereal-hour period. There are often more than 24 as new satellites are launched to replace the older ones. The orbit is such that the satellites repeat the same track and configuration over any point approximately each 24 hours ( 4 minutes earlier each day). There are six orbital planes (with nominally four satellites in each), equally spaced ( 60 degrees apart), and inclined at about fifty-five degrees with respect to the equatorial plane. This constellation provides the user with between five and eight satellites visible from any point on the earth. A minimum of four satellite signals must be received to estimate the four unknowns of position in three dimensions and time.

The DSCC GPS Receiver/Processor Assembly (GRA), which is part of the DMD, makes use of the GPS data to provide carrier phase and group delay for the GPS signals. These
data may then be used to characterize the Earth's ionosphere and troposphere along the line of sight from a given satellite to the DSCC.

### 2.1.1 GPS Signal Structure

The GPS satellite signals are complex in structure, with each L-band frequency being binary biphase-modulated with two pseudo-random noise codes, the Coarse Acquisition (C/A) and Precision (P) codes, and a navigation message.

The complete signal broadcast by a satellite may be represented as:

$$
\begin{align*}
s(t) & =\left[A_{C} C(t) D(t) \sin \left(2 \pi f_{1} t\right)+A_{P} P(t) D(t) \cos \left(2 \pi f_{1} t\right)\right] \\
& +\left[A_{P} P(t) D(t) \cos \left(2 \pi f_{2} t\right)\right] \tag{1}
\end{align*}
$$

where the first square bracket is the L 1 signal at frequency $f_{1}$, and the second square bracket is the L 2 signal at frequency $f_{2}$. The terms appearing above have the following definitions:

```
\(A_{c}\) and \(A_{p}=\) the constant amplitudes of the Coarse Acquisition (C/A) and
        Precision ( P ) codes
\(C(t)=\) the C/A-code modulation \((= \pm 1)\)
\(P(t) \quad=\quad\) the P -code modulation \((= \pm 1)\)
\(D(t) \quad=\quad\) the navigation message modulation \((= \pm 1)\)
\(f_{1} \quad=\quad 154 f_{0}=1575.42 \mathrm{MHz}\)
\(f_{2} \quad=\quad 120 f_{0}=1227.60 \mathrm{MHz}\)
```

The $C(t), P(t)$, and $D(t)$ modulations are all synchronized to the fundamental clock frequency, $f_{0}$, such that they have the following frequencies:
$f_{0} \quad=\quad 10.23 \mathrm{MHz}$ (Note 1)
$C(t)=f_{0} / 10=1.023 \mathrm{Mbps}$
$P(t) \quad=\quad f_{0}=10.23 \mathrm{Mbps}$
$D(t) \quad=\quad f_{0} / 204600=50 \mathrm{bps}$.
Note (1): $\quad$ To partially compensate for general and special relativistic effects on the satellite clock (gravitational red shift and time dilation), the actual value of $f_{0}$ is $10.23 \mathrm{MHz}-4.55 \mathrm{mHz}$.

The complete C/A code contains 1023 cycles (or "chips"), has a total period of 1.0 ms , and is different for each satellite.

The P-code is more complicated and consists of two code segments (X1 and X2), which differ in length by 37 chips. These are added modulo 2 and timed in such a way that
exactly 403,200 X1 code segments correspond to exactly one week, the period of the P-code. (The P-code actually has a total period of 37 weeks, with each satellite using only a single oneweek segment of the total.) The duration of the X1 code segment is thus 1.5 seconds and contains exactly $15,345,000$ chips at 10.23 Mbps . As is the case with the C/A code, the P-code is different for each satellite.

The navigation message also has a complex structure, with a total period of 12.5 minutes (one master frame) and is divided into frames, subframes, words, and bits. The first three subframes (lasting 6 seconds each) repeat every 30 seconds, while the last two subframes are different in each of 25 consecutive frames (pages), after which the entire message repeats.

### 2.1.2 GPS Receiver/Processor Assembly (GRA)

The GRA provides the following functional capabilities:

1) Automatically acquire and track the L1 and L2 GPS signals for specified satellites, usually all of those transiting
2) Extract and store GPS almanac and ephemeris data from the navigation message
3) Measure the differential P-code group delay between the L1 and L2 GPS signals
4) Measure the differential carrier phase between the L1 and L2 GPS signals.

The almanac data, contained in subframe 5 of the GPS navigation message, consist of approximate ephemeris data for all satellites and are used by the GRA for signal acquisition.

The ephemeris data for a specified satellite (subframes 2 and 3) provide a complete description of the orbit. When the data are combined with measured signal delays, the local position and atmospheric path that the signal has traversed can be determined.

Since the Department of Defense, which controls the GPS signal content, may elect at any time to encrypt the P-code (resulting in what is termed an anti-spoofing ( $\mathrm{A} / \mathrm{S}$ ) mode of operation in which the encrypted, or Y-code, is unavailable to civilian users of the system) the GRA operates in two distinct modes to determine the differential group and phase delays of the satellite signals.

In the normal, coded mode, the known P-code is used to determine the carrier phase and group delay of each signal (L1 and L2) separately. The computed differences may then be used to characterize the propagation medium over the path of the signals. This provides the most precise determination due to the length of the P -code.

In the codeless mode, advantage is taken of the fact that the same unknown Ycode is transmitted on both the L1 and L2 channels with an unknown delay. The product of the two signals is formed and the differential group and phase delays are determined by crosscorrelation. This method results in a somewhat reduced accuracy.

The GRA simultaneously receives and processes the signals from up to eight satellites selected to provide the longest unbroken tracks at any given time. In addition to the data described above, the system provides various status and health data on the signals being processed. Tables 1 through 4 list the GPS parameters measured, their ranges and accuracy, and the sample intervals provided.

### 2.1.3 Relation of Phase and Group Delay to Atmospheric Properties

The Earth's atmosphere may conveniently be divided into three regions according to the effects produced on the propagation of electromagnetic radiation:
(1) troposphere, stratosphere, and lower part of mesophere- region between the Earth's surface and about 60 km altitude consisting of neutral (unionized) gases
(2) ionosphere - region from about 60 km to between $\sim 500$ and 2000 km , depending on the extent of extraterrestrial ionizing radiation, consisting of partially ionized gases
(3) plasmasphere - ionized region extending from ~2000 km to about four Earth radii $(26,000 \mathrm{~km})$, where it blends into the solar wind of the Earth's magnetosphere

At the frequencies in which the DSN operates, tropospheric dispersion may be neglected and the refractivity represented by a dry and a wet component whose approximate total zenith phase and group delays are:

$$
\begin{aligned}
\Delta t_{D} & \sim 7.6 \mathrm{~ns} \\
\Delta t_{W} & \sim 0.3 \mathrm{~ns}-1.4 \mathrm{~ns}
\end{aligned}
$$

The first varies linearly with pressure at the Earth's surface; the second increases as the tropospheric moisture content increases.

Since tropospheric dispersion is negligible at L-band, these delays cancel when differential delays are computed or measured between $f_{1}$ and $f_{2}$.

In the ionized portion of the Earth's atmosphere, the medium displays anomalous dispersion at microwave frequencies. This causes the phase velocity to exceed, and the group velocity to be less than, the speed of light in a vacuum, c. Specifically, to a good approximation at L-band:

$$
\begin{gather*}
\frac{v}{\mathrm{c}}=1+\frac{x}{2}  \tag{2}\\
\frac{v_{g}}{\mathrm{c}}=1-\frac{x}{2} \tag{3}
\end{gather*}
$$

Table 1. GPS Metric Data, Code Mode

| Parameter | Units (1) | Approximate <br> Decimal Range |
| :--- | :--- | :--- |
| Delay Calibration | $2^{-7} \mathrm{~ns}$ | $\pm 255 \mathrm{~ns}$ |
| Output Interval | sec | $1-300 \mathrm{~s}$ |
| L1-C/A Doppler Phase | $2^{-16}$ cycles | $\pm 2.1 \times 10^{9}$ cycles |
| L1-C/A Doppler Phase Noise | $2^{-16}$ cycles | $0-1 \mathrm{cycle}$ |
| L1-P Doppler Phase | $2^{-16}$ cycles | $\pm 2.1 \times 10^{9}$ cycles |
| L1-P Doppler Phase Noise | $2^{-16}$ cycles | $0-1 \mathrm{cycle}$ |
| L2-P Doppler Phase | $2^{-16}$ cycles | $\pm 2.1 \times 10^{9}$ cycles |
| L2-P Doppler Phase Noise | $2^{-16}$ cycles | $0-1 \mathrm{cycle}$ |
| L1-C/A Group Delay | $2^{-11} \mathrm{~ns}$ | $\pm 0.27 \mathrm{sec}$ |
| L1-C/A Group Delay Noise | $2^{-11} \mathrm{~ns}$ | $0-32 \mathrm{~ns}$ |
| L1-P Group Delay | $2^{-11} \mathrm{~ns}$ | $\pm 0.27 \mathrm{sec}$ |
| L1-P Group Delay Noise | $2^{-11} \mathrm{~ns}$ | $0-32 \mathrm{~ns}$ |
| L2-P Group Delay | $2^{-11} \mathrm{~ns}$ | $\pm 0.27 \mathrm{sec}$ |
| L2-P Group Delay Noise | $2^{-11} \mathrm{~ns}$ | $0-32 \mathrm{~ns}$ |
| C/A SNR (1 sec) | $2^{-4}$ volt/volt | $0-4096$ |
| P1 SNR (1 sec) | $2^{-4}$ volt/volt | $0-4096$ |
| P2 SNR (1 sec) | $2^{-4}$ volt/volt | $0-4096$ |
| Receiver Clock Error | $2^{-32}$ sec | $\pm 0.5$ sec |
| L1-C/A Residual Phase | $2^{-10}$ cycles | $0-0.25 \mathrm{cycle}$ |

Note (1): Least significant bit transmitted by the GRA.

Table 2. GPS Metric Data, Non-Code Mode

| Parameter | Units (1) | Approximate <br> Decimal Range |
| :--- | :--- | :--- |
| Delay Calibration | $2^{-7} \mathrm{~ns}$ | $\pm 255 \mathrm{~ns}$ |
| Output Interval | sec | $1-300 \mathrm{sec}$ |
| L1-C/A Doppler Phase | $2^{-16}$ cycles | $\pm 2.1 \times 10^{9}$ cycles |
| L1-C/A Doppler Phase Noise | $2^{-16}$ cycles | $0-1$ cycle |
| L1-L2 Doppler Phase | $2^{-16}$ cycles | $\pm 2.1 \times 10^{9}$ cycles |
| L1-L2 Doppler Phase Noise | $2^{-16}$ cycles | $0-1$ cycle |
| L1-C/A Group Delay | $2^{-11} \mathrm{~ns}$ | $\pm 2.1 \times 10^{9}$ cycles |
| L1-C/A Group Delay Noise | $2^{-11} \mathrm{~ns}$ | $0-32 \mathrm{~ns}$ |
| P2-P1 Group Delay | $2^{-9} \mathrm{~ns}$ | $\pm 1.1 \mathrm{~s}$ |
| P2-P1 Group Delay Noise | $2^{-9} \mathrm{~ns}$ | $0-128 \mathrm{~ns}$ |
| C/A SNR (1 s) | $2^{-4}$ volt/volt | $0-4096$ |
| P2-P1 SNR (1 s) | $2^{-6}$ volt/volt | $0-1024$ |
| Receiver Clock Error | $2^{-32} \mathrm{~s}$ | $\pm 0.5 \mathrm{~s}$ |
| L1-C/A Residual Phase | $2^{-10}$ cycles | $0-0.25$ cycle |

Note (1): Least significant bit transmitted by the GRA.

Table 3. GPS Ephemeris Data

| Parameter | Units ${ }^{(1)}$ | Approximate Decimal Range |
| :---: | :---: | :---: |
| Sample Year (Modulo 100) | Year | 0-99 yrs |
| Sample Day-of-Year | Days | 0-366 days |
| Sample Hours | Hours | 0-24 hrs |
| Sample Minutes | Minutes | 0-60 minutes |
| Sample Seconds | seconds | 0-60 s |
| GPS Week Number | N/A |  |
| Satellite Number | N/A |  |
| L2 Code Type/L2 Code On | N/A |  |
| User Range Accuracy | N/A |  |
| Issue of Data (Clock) | N/A |  |
| Clock Data Reference Time ( $\mathrm{toc}_{\text {) }}$ | $2^{4} \mathrm{~s}$ | $0-6.0 \times 10^{5} \mathrm{~s}$ |
| Time Correction Coefficient (af2) | $2^{-55} \mathrm{~s} / \mathrm{s}^{2}$ | $\pm 3.6 \times 10^{-15} \mathrm{~s} / \mathrm{s}^{2}$ |
| Time Correction Coefficient ( $\mathrm{af}_{\mathrm{f} 1}$ ) | $2^{-43}{ }_{\text {s/s }}$ | $\pm 3.7 \times 10^{-9} \mathrm{~s} / \mathrm{s}$ |
| Time Correction Coefficient (afo) | $2^{-31}$ S | $\pm 3.9 \mathrm{~ms}$ |
| Issue of Data (Ephemeris) | N/A |  |
| Amplitude of Sine Harmonic Correction to the Orbit Radius ( $\mathrm{C}_{\mathrm{rs}}$ ) | $2^{-5} \mathrm{~m}$ | $\pm 1.0 \mathrm{~km}$ |
| Mean Motion Difference From Computed Values (Delta N) | $2^{-43}$ semicir/s | $\pm 1.2 \times 10^{-5} \mathrm{mrad} / \mathrm{s}$ |
| Mean Anomaly at Reference Time ( $\mathrm{M}_{0}$ ) | $2^{-31}$ semicir | $\pm 180$ deg |
| Amplitude of Cosine Harmonic Correction to the Argument of Latitude ( $\mathrm{C}_{\mathrm{uc}}$ ) | 2-29 radians | $\pm 6.1 \times 10^{-2} \mathrm{mrad}$ |
| Eccentricity (e) | $2^{-33}$ | 0-0.03 |
| Amplitude of Sine Harmonic Correction to the Argument of Latitude ( $\mathrm{C}_{\mathrm{us}}$ ) | 2-29 radians | $\pm 6.1 \times 10^{-2} \mathrm{mrad}$ |
| Square Root of Semi-Major Axis ( $\mathrm{A}^{1 / 2}$ ) | $2^{-19} \mathrm{~m}^{1 / 2}$ | 0-8200 m ${ }^{1 / 2}$ |
| Ephemeris Reference Time ( $\mathrm{t}_{0 \mathrm{E}}$ ) | $2^{4} \mathrm{~s}$ | $0-6.0 \times 10^{5} \mathrm{~s}$ |

Note (1): Least significant bit transmitted by the GRA.

Table 3. GPS Ephemeris Data (Continued)

| Parameter | Units (1) | Approximate <br> Decimal Range |
| :--- | :--- | :--- |
| Amplitude of Cosine Harmonic Correction to <br> Inclination ( $\mathrm{C}_{\text {ic }}$ ) | $2^{-29}$ radians | $\pm 6.1 \times 10^{-2} \mathrm{mrad}$ |
| Right Ascension at Reference Time (Omega ${ }_{0}$ ) | $2^{-31}$ semicir | $\pm 180 \mathrm{deg}$ |
| Amplitude of Sine Harmonic Correction to <br> Inclination ( $\mathrm{C}_{\text {is }}$ ) | $2^{-29}$ radians | $\pm 6.1 \times 10^{-2} \mathrm{mrad}$ |
| Inclination at Reference Time ( $\mathrm{i}_{0}$ ) | $2^{-31}$ semicir | $\pm 180 \mathrm{deg}$ |
| Amplitude of Cosine Harmonic Correction to the <br> Orbit Radius (Crc) | $2^{-5} \mathrm{~m}$ | $\pm 1.0 \mathrm{~km}$ |
| Argument of Perigee (Omega) | $2^{-31}$ semicir | $\pm 180 \mathrm{deg}$ |
| Right Ascension Rate (Omega DOT) | $2^{-43}$ semicir/s | $\pm 3.0 \times 10^{-3} \mathrm{mrad} / \mathrm{s}$ |
| Issue of Data (Ephemeris) | $\mathrm{N} / \mathrm{A}$ |  |
| Inclination Angle Rate (IDOT) | $2^{-43}$ semicir/s | $\pm 1.2 \times 10^{-5} \mathrm{mrad} / \mathrm{s}$ |

Note (1): Least significant bit transmitted by the GRA.

Table 4. GPS Almanac Data

| Parameter | Units ${ }^{(1)}$ | Approximate Decimal Range |
| :---: | :---: | :---: |
| Sample Year (Modulo 100) | Year | 0-99 yr. |
| Sample Day-of-Year | Days | 0-366 days |
| Sample Hours | Hours | 0-24 hrs |
| Sample Minutes | Minutes | 0-60 minutes |
| Sample Seconds | s | 0-60 s |
| GPS Week Number | N/A |  |
| Satellite Number | N/A |  |
| Data and Space Vehicle ID | N/A |  |
| Eccentricity (e) | $2^{-21}$ | 0-0.03 |
| Reference Time ( $\mathrm{t}_{\mathrm{OA}}$ ) | $2^{+12} \mathrm{~s}$ | $0-6.0 \times 10^{5} \mathrm{~s}$ |
| Delta Inclination ( $\delta_{\mathrm{i}}$ ) | $2^{-19}$ semicir | $\pm 11 \mathrm{deg}$ |
| Right Ascension Rate (Omega DOT) | $2^{-38}$ semicir/sec | $\pm 3.7 \times 10^{-4} \mathrm{mrad} / \mathrm{s}$ |
| Square Root of Semi-Major Axis ( $\mathrm{A}^{1 / 2}$ ) | $2^{-11} \mathrm{~m}^{1 / 2}$ | 0-8200 m ${ }^{1 / 2}$ |
| Right Ascension at Reference Time (Omega) | $2^{-23}$ semicir | $\pm 180$ deg |
| Argument of Perigee (Omega) | $2^{-23}$ semicir | $\pm 180$ deg |
| Mean Anomaly ( $\mathrm{M}_{0}$ ) | $2^{-23}$ semicir | $\pm 180$ deg |
| Correction Term ( $\mathrm{afo}_{\mathrm{f} 0}$ ) | $2^{-20}$ s | $\pm 0.03 \mathrm{deg}$ |
| Correction Term ( $\mathrm{a}_{\mathrm{f} 1}$ ) | $2^{-38} \mathrm{~s}$ | $\pm 1.2 \times 10^{-7} \mathrm{~s} / \mathrm{s}$ |

Note (1): Least significant bit transmitted by the GRA.
where:

| $v$ | $=$ phase velocity $=\omega / k$ |
| :--- | :--- |
| $v_{g}$ | $=$ group velocity $=d \omega / d k$ |
| $k$ | $=$ wave vector $(\lambda / 2 \pi)$ |
| $x$ | $=\left(f_{p} / f\right)^{2} \ll 1$ |
| $f$ | $=$ frequency of interest |
| $f_{p}$ | $=$ plasma frequency $=\left(N \mathrm{e}^{2} / \mathrm{m}_{0}\right)^{1 / 2} / 2 \pi$ |
| $N$ | $=$ electron density $\left(\right.$ electrons $\left./ \mathrm{m}^{3}\right)$ |
| e | $=$ electronic charge |
| m | $=$ electronic mass |
| $\varepsilon_{\mathrm{O}}$ | $=$ permittivity of free space. |

In terms of the above, the phase $(\Delta t)$ and group $\left(\Delta t_{g}\right)$ delays at frequency $f$ may be written:

$$
\begin{equation*}
\Delta t_{g}=-\Delta t=\left(\frac{1.345 \times 10^{-7}}{f^{2}}\right) \times \mathrm{TEC}, \mathrm{~s} \tag{4}
\end{equation*}
$$

where $\mathrm{TEC}=\int N d l$ is the total electron content (TEC) along the propagation path (electrons/m²).

The corresponding differential delays are given by:

$$
\begin{equation*}
\delta t_{g}=-\delta t=1.345 \times 10^{-7}\left(\frac{1}{f_{2}^{2}}-\frac{1}{f_{1}^{2}}\right) \times \mathrm{TEC}, \mathrm{~s} \tag{5}
\end{equation*}
$$

where $\delta t_{g}=\Delta t_{g}\left(f_{2}\right)-\Delta t_{g}\left(f_{1}\right)$.
Since the TEC along the satellite line of sight may vary between $\sim 10^{16}$ and $4 \times 10^{18} \mathrm{~m}^{-2}$, the group and phase delays typically range between $\sim 0.5 \mathrm{~ns}$ and 90 ns , and the differential delays between $\sim 0.35 \mathrm{~ns}$ and 35 ns , although larger values are often observed during periods of high solar activity.

### 2.2 Ground Weather Data

The ground weather data are generated by instruments located near the Signal Processing Centers (SPC) at each DSCC. In particular, the wind speed and direction sensors are adjacent to the 34 m HEF antennas.

All data are asampled once per second by the instruments, and the resulting data stream is transmitted to the Subsystem Control and Monitor Assembly (SCA) of the DMD. Here the data are packaged and transmitted to the NTK and NAV at regular intervals and stored for up to five days for later recall. Table 5 lists the weather parameters measured, their ranges and accuracy, and the interval of transmission to the NTK, NAV, and DMC.

Table 5 Weather Data Transmitted from the SCA

| Parameter | Range | Accuracy | Transmission Interval |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  | Default | Range |
| Temperature | -50 to $+50^{\circ} \mathrm{C}$ | $\pm 0.1^{\circ} \mathrm{C}$ | 60 s | 10 s to 1 hr |
| Barometric Pressure | 600 to 1100 mbar | 1.0 mb | 60 s | 10 s to 1 hr |
| Relative Humidity(1) | 0 to $100 \%$ | $2 \%$ | 60 s | 10 s to 1 hr |
| Dew Point Temperature | -40 to $50^{\circ} \mathrm{C}$ | $\pm 0.5^{\circ} \mathrm{C}$ | 60 s | 10 s to 1 hr |
| Precipitation Rate | 0 to $250 \mathrm{~mm} / \mathrm{hr}$ | $5 \%$ | 60 s | 10 s to 1 hr |
| Total Precipitation | $>0 \mathrm{~mm}$ | $5 \%$ | 60 s | 10 s to 1 hr |
| Wind Speed(2) | 0 to $100 \mathrm{~km} / \mathrm{hr}$ | $\pm 0.6 \mathrm{~km} / \mathrm{hr}$ | 60 s | 10 s to 1 hr |
| Wind Direction(2) | 0 to 360 deg | $\pm 3.6 \mathrm{deg}$ | 60 s | 10 s to 1 hr |

See notes on following page.
(1) Relative humidity is calculated from the measured weather parameters according to the formula:

$$
\begin{equation*}
\mathrm{RH}=10^{x} \text { percent }, \tag{6}
\end{equation*}
$$

where:

$$
\begin{aligned}
x & =2+2300\left(1 / T-1 / T_{d}\right) \\
T & =\text { temperature in Kelvins } \\
T_{d} & =\text { dew point temperature in Kelvins }
\end{aligned}
$$

(2) Wind data are averaged over $10-\mathrm{s}$ intervals by converting the polar velocity vector:

$$
\begin{equation*}
\mathbf{v}_{\mathbf{w}}=S_{w} \hat{\mathbf{e}}(\theta) \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{w}=\text { wind speed } \\
& \hat{\mathbf{e}}(\theta)=\text { wind direction unit vector }
\end{aligned}
$$

to rectangular form,

$$
\begin{equation*}
\mathbf{v}_{\mathbf{w}}=S_{x} \hat{\mathbf{i}}(\theta)+S_{y} \hat{\mathbf{j}}(\theta) \tag{8}
\end{equation*}
$$

and computing $\left\langle\mathrm{S}_{\mathrm{W}}\right\rangle$ and $\langle\theta\rangle$, where

$$
\begin{aligned}
\left\langle\mathrm{S}_{w}\right\rangle^{2} & =\left\langle\mathrm{S}_{x}\right\rangle^{2}+\left\langle\mathrm{S}_{y}\right\rangle^{2}, \\
\langle\theta\rangle & =\tan ^{-1}\left(\left\langle\mathrm{~S}_{x}\right\rangle /\left\langle\mathrm{S}_{y}\right\rangle\right), \\
S_{x} & =S_{w} \cos \theta, \\
S_{y} & =S_{w} \sin \theta .
\end{aligned}
$$

## 304

## Frequency and Timing

Document Owner:

| Signature Provided | 12/10/2020 |
| :--- | :--- |
| Andrey Matsko | Date |
| Frequency \& Timing System |  |
| Engineer |  |

Prepared by:

| Signature Provided | 12/10/2020 |
| :--- | :--- |
| Andrey Matsko | Date |
| Frequency \& Timing System |  |
| Engineer |  |

Approved by:

| Signature Provided | $11 / 30 / 2020$ |
| :--- | :--- |
| Timothy Pham | Date |
| Communications Systems Chief |  |
| Engineer |  |

Released by:

| Signature Provided | $12 / 21 / 2020$ |
| :--- | :--- |
| Christine Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 304, Rev. C
Issue Date: February 05, 2021
JPL D-19379; CL\#20-6547
Jet Propulsion Laboratory
California Institute of Technology

810-005
304, Rev. C

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | $12 / 07 / 2020$ |  | Signature Provided | 11/30/2020 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Jeff Berner | Date |  | Rabi Wang <br> DSN Project Chief Engineer |  |  |
|  |  | Frequency \& Timing Subsystem <br> Engineer | Date |  |  |

## Change Log

| Rev | Issue Date | Prepared By | Paragraphs Affected | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| - | 3/1/2004 | B. Benjauthrit | All | New Module |
| A | 9/30/2010 | Robert Tjoelker | All | Replaced DSMS with DSN. Eliminated the Rev. E designation for the document series. Deleted references to the decommissioned 26 m station, DSS 16. Updated performance information to match current capabilities. |
| B | 12/15/2014 | John Lauf | Sections1, 2, 3 <br> Figures 1, 2, 3 <br> Tables 1, 2 | Corrected configuration information at DTF-21, MIL-71 and CTT-22. <br> Removed references to DSS-27. <br> Replaced references to FODA with PFD and SFODA with S-PFD. <br> Replaced references to NIST with USNO. |
| C | 02/05/2021 | Andrey Matsko | Figure 2 $\begin{gathered} 2.2 .12 \\ 31.32 \end{gathered}$ | Added DSS65, DSS56 and DSS53 <br> Removed DSS15 and DSS45 <br> Section 3.1 was moved to Section 2.2.12; <br> Section 3.2 was renamed to Section 3.1 |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

> 810-005
> 304, Rev. C

## Contents

Paragraph Page
1 Introduction ..... 6
1.1 Purpose ..... 6
1.2 Scope ..... 6
2 General Information ..... 6
2.1 Functions ..... 9
2.2 Components ..... 9
2.2.1 Atomic Frequency Standards ..... 9
2.2.2 Frequency Standards at the DSCCs ..... 11
2.2.3 FSTL and DSS-25 Cryogenic Sapphire Oscillator ..... 12
2.2.4 Frequency References for Test Facilities ..... 12
2.2.5 Signal Processing Centers ..... 12
2.2.6 34-m High Efficiency Antennas and 70-m Antennas ..... 13
2.2.7 34-m Beam Waveguide Antennas ..... 13
2.2.8 Time Standards ..... 13
2.2.9 DSCC Time Standard ..... 13
2.2.10 DTF-21, CTT-22, MIL-71 and NOCC Time Standards ..... 14
2.2.11 Time Distribution ..... 15
2.2.12 Phase Calibration Generators ..... 15
2.3 Frequency and Time Synchronization ..... 17
2.4 Adjustment of DSN Time to UT1 ..... 17
3 Proposed Capabilities ..... 19
3.1 Stabilized Photonic Frequency Distribution (S-PFD) ..... 19

## Illustrations

Figure 1. DSN Frequency and Timing - Simplified Block Diagram .............................................. 7
Figure 2. DSN Time Transfer .......................................................................................................... 8
Figure 3. Allan Deviation of Frequency Standards. ...................................................................... 10
Figure 4. S-band and X-band Phase Calibration Generator Stability. ........................................... 16
Figure 5. Common-View GPS Time Transfer............................................................................... 18

## Tables

Table Page

Table 1. DSN Frequency Standard Performance........................................................................... 11
Table 2. DSCC Time Standard Characteristics.............................................................................. 14
Table 3. X/Ka-band Phase Calibration Generator. ........................................................................ 16
Table 4. DSN Leap Second Adjustments. ..................................................................................... 18

## 1 Introduction

### 1.1 Purpose

This module provides information to assist Deep Space Network (DSN) customers in understanding the limits placed on navigation, quality of science observations, and telecommunications performance by the Frequency and Timing Subsystem (FTS) equipment installed in the DSN.

### 1.2 Scope

The discussion in this module is limited to the accuracies and stabilities of frequency and time within the DSN including the effects of implementations that are unique to each site. The module deals primarily with general system information of the operational DSN FTS capability. Performance information that pertains only to specific users, such as performance for the radio science community, may be found in the modules for these topics. A brief discussion of potential enhancements is included at the end of the module.

## 2 General Information

Figure 1 provides an overview of Frequency and Timing in the DSN. The frequency reference for the three Deep Space Communications Complexes (DSCCs) at Goldstone (GDSCC), Canberra (CDSCC) and Madrid (MDSCC) respectively, is derived from one of at least four, redundant atomic frequency standards (AFSs). The Development and Test Facility (DTF-21) has one AFS while the other two sites, the Merritt Island Launch Annex (MIL71) and the Compatibility Test Trailer (CTT-22) use disciplined GPS receivers as a frequency reference source.

At each DSCC, a single (prime) atomic frequency standard serves as the source for all coherent, precision, station frequencies and provides the reference for the station Master Clock. The other AFSs serve as backups to the prime standard, should it fail, indicate instability or require maintenance. Each station synchronizes its clock to the United States Naval Observatory (USNO) realization of Coordinated Universal Time (UTC), referred to as UTC (USNO), via the Global Positioning System (GPS). Time offset data measured at the DSCCs are forwarded to the DSN Time Analyst who is responsible for verifying that station frequency and time offsets, relative to UTC (USNO), are within specified limits. The frequency and time performance for the test facilities is the responsibility of their respective operations organizations.

304, Rev. C


Figure 1. DSN Frequency and Timing - Simplified Block Diagram

*DSS-53 is expected operational by end of 2021
Figure 2. DSN Time Transfer

### 2.1 Functions

The FTS provides the following major functions:

1) Generate and distribute very stable reference frequencies, time codes, and timing pulses to other equipment
2) Provide measurements of clock synchronization (time) and syntonization (frequency) traceable to UTC (USNO)
3) Generate phase calibration tones for very-long baseline interferometry (VLBI) via phase calibration generators. See paragraph 2.2.12 for further details.

### 2.2 Components

Principal components of the FTS include frequency standards, clocks, frequency and time distribution equipment, phase calibration generators, and performance measurement equipment.

### 2.2.1 Atomic Frequency Standards

Two types of atomic frequency standards are nominally deployed at the DSCCs. They are the hydrogen maser and the cesium-beam standard. The performance of these standards is a function of multiple factors including model, configuration, and the environment. Figure 3 shows the range of performance routinely available in the DSN in terms of Allan Deviation, $\sigma$, over the averaging time, $\tau$. The lower bound of the range in the figure captures the optimum performance that should be expected in the implemented configuration. The upper bound can be considered as the worst case. This figure also shows the performance of the cryogenic sapphire oscillator (CSO), a non-atomic oscillator that may be made available for special experiments. See paragraph 2.2.3 for additional details.


Figure 3. Allan Deviation of Frequency Standards.

Hydrogen masers have been employed as the prime DSN frequency standard for some years. They provide spectral purity commensurate with a very good quartz crystal oscillator and frequency stability that is optimal for measurement periods between 1000 and 10,000 seconds. Spectral purity is especially important because the frequency reference must be multiplied up to local oscillator frequencies as required by DSN transmit and receive equipment. The frequency multiplication degrades the spectral purity (expressed as a signal-to-noise ratio) by 6 dB per octave or 20 dB per decade. Noise injected by a local oscillator has the same effect on receiver performance as noise from any other source and can significantly degrade radio science investigations. Stability for measurement times through 10,000 seconds is important for navigation, where frequencies and timing signals are compared delayed by the round-trip light time to the spacecraft. Another driver for stability at medium-to-long measurement times is radio science and VLBI investigations that normally are performed over a period of 8 to 12 hours. Table 1 summarizes the performance of the DSN frequency standards in the implemented configuration.

Table 1. DSN Frequency Standard Performance

| Parameter | Value |
| :---: | :---: |
| Frequency Offset Relative to UTC <br> Typical <br> Resolution reconstructed by analysis $(3 \sigma)$ | $\begin{aligned} & <3 \times 10^{-13} \\ & <1 \times 10^{-13} \end{aligned}$ |
| Fractional Frequency Drift Specified Typical | $\begin{gathered} 1 \times 10^{-13} / 10 \text { days } \\ <3 \times 10^{-14} / 10 \text { days } \end{gathered}$ |
| Harmonic distortion (sine waves) | <5\% |
| Stability (Allan Deviation) | See Figure 3 |
| SSB Phase Noise at 100 MHz , in 1 Hz bandwidth, 1 Hz from the carrier <br> Hydrogen Maser <br> Cesium Standard | $\begin{aligned} & -97 \text { to }-104 \mathrm{dBc} / \mathrm{Hz} \\ & -65 \text { to }-85 \mathrm{dBc} / \mathrm{Hz} \end{aligned}$ <br> For other frequencies, add $20 \log (f / 100)$ to these values, where $f$ is the desired frequency in MHz . |
| Availability | > 0.9999 |

### 2.2.2 Frequency Standards at the DSCCs

The present complement of standards at each DSCC nominally comprises two hydrogen masers and two cesium standards. The standards are located in an environmentally controlled area of the Signal Processing Center (SPC).

### 2.2.3 FSTL and DSS-25 Cryogenic Sapphire Oscillator

Cryogenic oscillators provide the ultra-high short-term stability and low phase noise for measurement times less than 200 seconds. The cryogenic sapphire oscillator achieves long-term operation using commercial cryogenic cooling systems. A CSO with the performance shown in Figure 3 has been installed at DSS-25 to provide an improved reference for radio science investigations and the JPL FSTL for low phase noise characterization. The CSO is currently only available for use at DSS-25 through special arrangements.

### 2.2.4 $\quad$ Frequency References for Test Facilities

Reference frequencies at DTF-21 are derived from a Cesium Beam standard (see Figure 3 for nominal stability). Reference frequencies at MIL-71 and CTT-22 are derived from a disciplined GPS Receiver. For testing at JPL locations that requiring high performance, a signal from a hydrogen maser, similar to those used at the complexes, can be made available from the JPL Frequency Standards and Test Laboratory (FSTL) via a fiber optic link. The calibration of this hydrogen maser can be traced to UTC via GPS.

The Network Operations Control Center (NOCC) at JPL does not require reference frequencies but receives time code via the JPL Calibration Laboratory.

### 2.2.5 Signal Processing Centers

Reference frequencies at the DSCCs are distributed via a system of high-quality distribution amplifiers and coax cables that are designed to minimize degradation to the frequency standard performance. Outputs from the selected frequency standard are routed to the Frequency Reference Selection (FRS) Assembly. The FRS provides a switching capability, a frequency flywheel, and standard coherent reference outputs at 100,10 , and 5 MHz . These reference signals are routed from the frequency standards room to an assembly within the SPC control room referred to as the Frequency Reference Distribution (FRD) Assembly. The FRD provides 5,10 , and 100 MHz distribution to all control room equipment.

### 2.2.6 34-m High Efficiency Antennas and 70-m Antennas

The frequency references for the Receiver Downconverters at the 34-m High Efficiency (HEF) and 70-m antennas are provided by a fiber optic transmission system, the Photonic Frequency Distribution (PFD), designed to preserve the stability equivalent to that of a hydrogen maser at the distribution point within the antennas. The PFD installation at these stations uses special low temperature coefficient fiber optic cabling to transport the reference frequency from the SPC to the tilting structure of the antennas. This is important because the cables on the antennas can experience significant changes in temperature both from the environment and when antenna motion exposes them or shields them from the sun.

### 2.2.7 34-m Beam Waveguide Antennas

The frequency references for the Exciters and Receiver Downconverters at the 34m beam waveguide (BWG) antennas are provided via PFDs. Standard temperature coefficient, single mode fiber is used for frequency distribution to all of the DSN BWG antennas. However, it is buried 1.2 m below the surface where there are no significant diurnal changes for antennas located near the SPCs. The diurnal phase change for DSS-26, located 15.5 km from the SPC, has been measured as 1-degree at 100 MHz over a 12 -hour period and $\sim 8 \mathrm{~ns}$ peak to peak over an annual cycle. Diurnal phase variations at DSS-24 and DSS-25 are nominally the same as DSS-26 as the signal distribution follows an almost identical path to that of DSS-26. All equipment requiring frequency references at the BWG antennas is located within the antenna pedestals so antenna motion has no effect on frequency stability.

### 2.2.8 Time Standards

All DSN facilities use a single time source, traceable to UTC, for all operational equipment within the facility that requires precision timing. The accuracy and availability of this time source depends on the requirements of the facility at which it is installed.

### 2.2.9 DSCC Time Standard

Each DSCC contains a Master Clock whose rate is determined by the selected online frequency standard. In the rare circumstance of a switchover between online standards, an in-series, low noise flywheel oscillator continues to provide a frequency reference to the Master Clock during the switching period (typically < 5ms). This technique ensures that the maximum clock error after a frequency standard switchover does not exceed a clock cycle (10 ns with a 100 MHz reference). Characteristics of the DSCC time standard are provided in Table 2.

Time offset from UTC (USNO) is maintained at $<3 \mu$ s from UTC with a knowledge $<20 \mathrm{~ns}$. Synchronization between the DSCCs and UTC is accomplished using "common-view" or "all-in-view" GPS time transfer between USNO and the DSCCs.

810-005
304, Rev. C

Table 2. DSCC Time Standard Characteristics

| Parameter | Value |
| :--- | :---: |
| Time Reference | UTC (USNO) |
| Setability | 10 ns |
| Offsets from UTC <br> Requirement <br> Resolution from UTC, reconstructed <br> by analysis (3 $\sigma$ ) | $<3 \mu \mathrm{~s}$ |
| Offsets between DSCCs <br> Requirement | $<1 \mu \mathrm{~s}$ |
| Resolution between DSCCs, <br> reconstructed by analysis $(3 \sigma)$ | $<6 \mu \mathrm{~s}$ |
| Availability | $>0.9999 \mathrm{~ns}$ |

### 2.2.10

DTF-21, CTT-22, MIL-71 and NOCC Time Standards
Timing signals and day-of-year at DTF-21 and CTT-22 are derived from a Master Clock identical to that operating in each DSCC. At DTF-21 the clock rate is derived from a Cesium frequency standard. The Master Clock may be calibrated to GPS receivers that reference GPS Time and are traceable to UTC with an accuracy of $\leq 100 \mathrm{~ns}$. At MIL-71 and CTT-22, clock rates are determined by disciplined GPS receivers.

Time and date at the NOCC are obtained via the Network Time Protocol (NTP) that is derived from UTC. The time is referenced to GPS Time and is traceable to UTC with an accuracy of $\leq 100 \mathrm{~ns}$. NTP enables all computers at the NOCC to be synchronized within 0.1 s of UTC.

### 2.2.11 Time Distribution

Station time information is distributed from the Master Clock, via fiber optic cables up to 30 km in length, to Time Code Translators (TCTs) that are typically located in racks of user subsystems that require precision time or pulse rate signals. TCTs can be calibrated to compensate for fixed distribution path length delays with a resolution of 10 ns so the offset knowledge of synchronization from the Master Clock to a specific user is $<10 \mathrm{~ns}$. The typical jitter stability at the output of the TCTs is $<30 \mathrm{ps}$ (RMS).

Certain monitor and control computers that do not require precision timing ( $>0.1 \mathrm{~s}$ accuracy) are synchronized to local NTP servers, independent of the station FTS.

### 2.2.12 Phase Calibration Generators

The stability of the receivers used to detect signals from extra-galactic radio sources at the various DSN antenna sites is critical, but often difficult to control because of the extreme and exposed environment of the antenna and its electronics. Performance of VLBI measurements can be improved by comparing phase variations in received signals to a stable calibration tone locally generated in the detection bandwidth. The Phase Calibration Generator (PCG) provides these high stability calibration comb tones.

On the 70-m and DSS-65 HEF antennas, a comb spectrum with a fixed 1.0 MHz line spacing can be injected into the feedcone or microwave waveguide ahead of the S-band and X-band low noise amplifiers (LNAs). On the 70-m antennas, a similar spectrum can also be injected into the waveguide ahead of the L-band LNAs.

Receiver and comb generator stability tests on the S- and X-band PCGs were performed at the JPL Frequency Standards Test Laboratory both in a stabilized temperature environment and with temperature cycling. The averaged Allan Deviation from the 15 units tested is shown in Figure 4. Based on knowledge of temperature sensitivity of the PCG and the environmental requirements for the locations where they are installed, a curve showing the estimated installed performance of the S- and X-band PCG at a typical DSN site has been calculated and is also shown in Figure 4.


Figure 4. S-band and X-band Phase Calibration Generator Stability.
A newer X/Ka-band phase calibration generator has been developed and deployed at all BWG antennas except DSS-24. This design generates stable comb tones spanning the frequency range from 3 GHz to 40 GHz . The performance capabilities are summarized in Table 3.

Table 3. X/Ka-band Phase Calibration Generator.

| Parameter | Capability |
| :--- | :--- |
| Stability (Allan Deviation) |  |
| 1 s | $5 \times 10^{-14}$ |
| 10 s | $8 \times 10^{-15}$ |
| 100 s | $1.0 \times 10^{-15}$ |
| 1000 s | $1.2 \times 10^{-16}$ |
| $10,000 \mathrm{~s}<\tau<100,000 \mathrm{~s}$ | $<5 \times 10^{-17}$ |
| Amplitude Flatness | $\pm 1.7 \mathrm{~dB}, 32-33 \mathrm{GHz}$ |
| Comb Spacing | $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 4 MHz |
|  | selectable |

### 2.3 Frequency and Time Synchronization

DSN frequency and time synchronization is referenced to UTC using "commonview" or "all-in-view" GPS time transfer. This technique allows the direct comparison of two clocks at widely separated locations by canceling out the effect of GPS clock performance and most media effects (see Figure 5). The DSN GPS receiver takes the time difference between the DSN Master Clock and the time obtained from one or more GPS satellites (including propagation delay) and creates a data file. USNO maintains a similar database between UTC (USNO) and all GPS satellites. The USNO database is queried periodically and the DSN Time Analyst uses the data and a weighted averaging technique to derive time offsets. Frequency offsets are derived using a moving average barycentric filter. The resultant information is used to adjust the DSN frequency standards to keep them within the required frequency and time specification limits.

## $2.4 \quad$ Adjustment of DSN Time to UT1

The Earth's rate of rotation is not uniform. It is affected by gravitational effects of the sun, moon, and planets, tidal effects, and several other mechanisms. The time scale based on the earth's rotation, corrected for polar motion, is called UT1 and is maintained by the International Earth Rotation Service (IERS), http://www.iers.org/. UT1 enables proper aiming of telescopes and radio-telescopes (including DSN antennas) at celestial objects.

The mean solar day as determined from the UT1 time scale is approximately 2 ms longer than 86,400 SI seconds established by atomic clocks. By international agreement, the UT1 and UTC time scales are kept synchronized within $\pm 0.9$ seconds by step-time adjustments of exactly one second (leap seconds). Notification to perform this adjustment is received from the IERS between 30 and 60 days before the adjustment is required. Leap seconds are added or subtracted, usually at the end of December or June, at the end of the day and set, as described below. DSN users must be aware of the potential for interference between time adjustments and sequences of time-critical events. Table 4 provides the sequences of time codes that occur during leap second adjustments.


Figure 5. Common-View GPS Time Transfer

Table 4. DSN Leap Second Adjustments.

| Day | Second | Time |
| :---: | :---: | :---: |
| Leap Second Add |  |  |
| $n$ | $t$ | $23: 59: 59$ |
| $n+1$ | $t+1$ | $23: 59: 60$ |
| $n+1$ | $t+2$ | $00: 00: 00$ |
| $n+1$ | $t+3$ | $00: 00: 01$ |
| Leap Second Subtract |  |  |
| $n$ | $t$ | $23: 59: 58$ |
| $n+1$ | $t+1$ | $00: 00: 00$ |
| $n+1$ | $t+2$ | $00: 00: 01$ |

## 3 Proposed Capabilities

The following paragraphs discuss capabilities that have not yet been fully implemented by the DSN but have adequate maturity to be considered for spacecraft mission and equipment design. Telecommunications engineers are advised that any capabilities discussed in this section cannot be committed to except by negotiation with the Interplanetary Network Directorate (IND) Plans and Commitments Program Office.

### 3.1 Stabilized Photonic Frequency Distribution (S-PFD)

The existing PFD implementation for frequency reference distribution to the antennas provides a return link that facilitates performance verification at the user port. Nevertheless, the PFD frequency distribution system is open loop. I.e. there is no provision to actively compensate for distribution link induced phase variations (e.g. due to environmental thermal variations) - potentially significant at the remote antennas at Goldstone where the distribution link can be up to 30 km . A closed-loop modification to the PFD hardware has been developed which does actively compensate for induced phase variations on the distribution link. Initial testing at JPL indicates a 50- to 100-times improvement in stability at averaging times greater than 100s.

## DSN Telecommunications Link

Design Handbook

## 305, Rev. B <br> Test Support

Released October 31, 2009

Prepared by:


Approved by:


Released by:

| Signature on File at DSN Library | $10 / 31 / 2009$ |
| :--- | ---: |
| DSN Document Release | Date |

© <2009> California Institute of Technology.
Government sponsorship acknowledged.

810-005, Rev. E
305, Rev. B

## Change Log

| Rev | Issue Date | Paragraphs <br> Affected | Change Summary |
| :---: | :---: | :---: | :---: |
| - | $7 / 30 / 2003$ | All | New Module |
| A | $5 / 26 / 2006$ | Many | Documents revised capabilities due to relocation <br> of DTF-21 and MIL-71. |
| B | $10 / 31 / 2009$ | Many | Replaced DSMS with DSN. Removed references <br> to the decommissioned 26-m stations. |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Note to Readers

There are two sets of document histories in the 810-005 document that are reflected in the header at the top of the page. First, the entire document is periodically released as a revision when major changes affect a majority of the modules. For example, this module is part of 810-005, Revision E. Second, the individual modules also change, starting as an initial issue that has no revision letter. When a module is changed, a change letter is appended to the module number on the second line of the header and a summary of the changes is entered in the module's change log.

## Contents

Paragraph Page
1 Introduction ..... 4
1.1 Purpose ..... 4
1.2 Scope ..... 4
2 General Information ..... 5
2.1 Functions ..... 5
2.2 Station Test Support Equipment ..... 6
2.2.1 Telemetry Simulation Assembly ..... 6
2.2.2 System Performance Test Assembly ..... 9
2.2.2.1 Telemetry Bit Error Rate Tests ..... 9
2.2.2.2 Telemetry Time Delay Tests ..... 11
2.2.2.3 Data Stream Continuity Tests ..... 11
2.2.2.4 Data Stream Extraction Tools ..... 11
2.2.2.5 Data Analysis Tools ..... 11
2.2.3 RF Signal Generation ..... 12
2.3 DSN Compatibility Test Facilities ..... 12
2.3.1 DTF-21 ..... 12
2.3.2 CTT-22 ..... 13
2.3.3 MIL-71 ..... 14
2.3.4 Specialized Test Support Equipment ..... 15
3 Test Activities ..... 15
3.1 Data Flow Testing ..... 15
3.1.1 GDS Tests ..... 15
3.1.2 MOS Tests ..... 15
3.1.3 GDS Tests ..... 17
3.1.4 MOS Tests ..... 17
3.1.5 ORTs ..... 18
3.2 Demonstration Tracks ..... 18
3.3 Compatibility Tests ..... 18
3.3.1 Subsystem Design Compatibility Tests ..... 18
3.3.2 System Design Compatibility Tests ..... 19
3.3.3 System Design Compatibility Tests ..... 19
3.3.4 System Compatibility Verification Tests ..... 20
Appendix A Compatibility Test Trailer Significant Characteristics. ..... A-1

## Illustrations

Figure Page

1. DSN Test Support Overview. ..... 6
2. TSA Real-time Data Generation Process. ..... 10
3. Compatibility Test Trailer, CTT-22 ..... 14
4. Compatibility Test Process ..... 19
A-1. Recommended CTT Parking Site Dimensions. ..... 2
Tables
Table Page
5. TSA Capabilities and Limitations ..... 7
6. Equipment at Compatibility Test Facilities ..... 13
7. Characteristics of Compatibility Test Equipment. ..... 15
A-1. CTT 22 Significant Characteristics ..... A-1

## 1 Introduction

### 1.1 Purpose

This module provides information to enable Deep Space Network (DSN) customers design tests that use the DSN test instrument and identify the appropriate site to conduct the tests. These tests are used primarily during the mission implementation process to validate spacecraft, spacecraft components, and spacecraft support.

### 1.2 Scope

This module deals solely with test support for flight projects currently available in the DSN. It provides characteristics of equipment that are unique to the test environment. It does not provide information about the capability of the operational equipment that is installed at each test support site. Characteristics of operational equipment may be found elsewhere in this Design Handbook.

## 2 General Information

The DSN exists to provide communication between a project control center and its spacecraft. Commands are relayed to the spacecraft on the forward link and the transmitted data from the spacecraft is extracted from the return link. This involves both a ground link and a space link. Trouble free communications on both links are important for mission success. The DSN provides extensive capability to demonstrate the performance of the ground link in combination with project control centers and with spacecraft hardware in a test environment. Test support is available from the three Deep Space Communications Complexes located at Goldstone, California; Madrid, Spain; and Canberra, Australia. In addition, the DSN includes three facilities that exist primarily for test support. These are the Development and Test Facility (DTF) 21 in Monrovia, California; the Compatibility Test Trailer (CTT) 22; and the Merritt Island Launch Annex (MILA) facility (MIL-71) at the Kennedy Space Center (KSC), Florida.

### 2.1 Functions

The DSN has three primary functions with respect to test support:

1) To support data flow testing between the DSN stations and project control centers,
2) To validate the compatibility between spacecraft or spacecraft subsystems and the DSN,
3) To provide communication between a spacecraft and its project control center during pre-launch activities.
Figure 1 provides an overview of the DSN test support that is available both at the stations and at the compatibility test sites. This support may involve elements of the Microwave, Uplink and Downlink equipment, the Telemetry Simulation Assembly (TSA), the System Performance Test (SPT) Assembly, and Service Management.

The TSA generates test data in the format specified by the customer subject to the restrictions described in this document. The data may be coupled directly into the station downlink equipment or it may be modulated on a radio frequency (RF) carrier (or on a subcarrier that is modulated on the RF carrier) by the uplink equipment, injected into the station microwave equipment, and received by the downlink equipment before being processed as if it had come from a spacecraft. The received data and any other data subscribed to by the project are forwarded to the project control center and to the SPT Assembly for analysis. The analyzed results from the SPT Assembly are made available to the project. Service Management is responsible for scheduling and the non-real-time interfaces between the DSN and the customers.

The links to and from the spacecraft are accomplished by direct cabling although Ka-band signals are normally downconverted near the spacecraft and transferred to the downlink equipment at the DSN intermediate frequency ( $100-600 \mathrm{MHz}$ ). The uplink equipment at the compatibility test sites may be used to relay project-originated commands that can be acted on by the spacecraft or spacecraft subsystems under test.


Note: Interfaces appearing as dashed lines only exist at Compatibility Test Facilities.
Figure 1. DSN Test Support Overview.

### 2.2 Station Test Support Equipment

Each DSN location includes a TSA, an SPT Assembly, and appropriate equipment to generate simulated spacecraft signals.

### 2.2.1 Telemetry Simulation Assembly

The TSA enables telemetry testing to be performed without the need for a spacecraft. It includes either two or four independent channels that can be controlled locally or remotely. Each channel can replay pre-recorded data from disk or generate telemetry data in real time without using disk storage. Pre-recorded data can be uncoded or can be symbols in any coding scheme acceptable to the equipment under test. Pre-recorded data is the only way turbo coded data can be simulated at this time.

Pre-recorded or real-time data can be converted to any pulse code modulation (PCM) format, have any convolutional coding acceptable to the DSN applied, have ReedSolomon (RS) coding added, modulate the data onto a subcarrier, add Gaussian (noise amplitude decreases with increasing frequency in output bandwidth) or white noise (noise amplitude is uniform across output bandwidth), and simulate Doppler frequency shifts of the subcarrier frequency and data rate. The capabilities and limitations of the TSA are summarized in Table 1.

Table 1. TSA Capabilities and Limitations.

| Capability | Limitations |
| :--- | :---: |
| RECORDED DATA |  |
| Spacecraft ID (used for locating recorded <br> data) | No Restrictions - Examples are Uncoded, RS coded, <br> Convolutional Coded, Turbo Coded, etc. |
| Data Types |  |
| Starting Byte Offset for Playback |  |
| REAL-TIME DATA | Uncoded, RS coded, Convolutional Coded, <br> concatenated RS and Convolutional Coded |
| Data Types | All 1s, all 0s, alternating 1s \& 0s, PN sequences, |
| $1-128$ 1s followed by 1-128 0s |  |

Table 1. TSA Capabilities and Limitations (Continued).

| Capability | Limitations |
| :---: | :---: |
| Fixed Frame Errors |  |
| Number of Errors | 0-32 |
| Starting Bit (each error) | 1-128000 |
| Error Mask (each error) | 6 hexadecimal digits |
| DATA RATE |  |
| Uncoded Data (b/s) | $3.0000-25,000,000.0000$ |
| Coded Data (s/s) | 3.0000 - Code Rate to 25,000,000.0000 |
| Doppler Simulation (data \& subcarrier) | Carrier Doppler Predict File Must Exist |
| DATA ENCODING |  |
| PCM Formats | NRZ-L, NRZ-M, NRZ-S, Bi- $\phi-\mathrm{L}, \mathrm{Bi}-\phi-\mathrm{M}, \mathrm{Bi}-\phi-\mathrm{S}$ |
| Convolutional Coding |  |
| Rate (r) | 1/2, 1/3, 1/4, 1/5, 1/6 |
| Constraint Length (k) | 3-15 |
| Connection Vectors | $2-6$ vectors expressed as 4 hexadecimal digits |
| $k=7, r=1 / 2$ Symbol Order | CCSDS or DSN |
| Alternate Symbol Inversion | Optional |
| Reed-Solomon Encoding |  |
| Code Supported | RS $(255,223)$ |
| Interleave Factor | 1-8 |
| Virtual Fill | Provided for short frames (<223 x Interleave) |
| Sync Word | Attached or Embedded |
| OUTPUT (each channel) |  |
| Subcarrier (bi-phase modulated) |  |
| Frequency (Hz) | 100.000-1,000,000.000 |
| Waveform | Sine or Square |
| Noise | Gaussian (frequency dependent) or white (frequency independent) |
| Signal/Noise Ratio (dB) | -60.0 to +40.0 |

Real-time data includes the capability for frame generation with fixed or pseudonoise (PN) data patterns, optional frame counter, time-tag, programmable data fields, and systematic frame error generation. Real-time data generation starts by filling a suitable data structure from which a continuous data stream can be produced with the selected data pattern. Next, the data pattern is overlaid with the Attached Synchronization Marker (ASM), for framesynchronized data, and other fixed and variable fields at appropriate intervals if required. If Reed-Solomon (RS) coding is required, sufficient space is allowed between the end of one frame and the start of the next ASM to permit the RS parity symbols to be inserted as the frame is coded. RS frame sizes specified as having a data length of less than 223 bytes multiplied by the interleave factor will result in an appropriate amount of virtual fill being inserted at the beginning of each frame. The completed data may be convolutionally coded prior to being converted to PCM. Figure 2 illustrates this process for a 1784 bit data frame using a PN11 fill pattern, a standard 32-bit ASM, no additional data fields, and RS encoding.

Each TSA channel functions independently and each DSN location can support as many test activities as the number of channels in the TSA. Initial configuration of each channel is from a pre-programmed configuration file that can be modified using operator directives (ODs). The revised configuration can then be saved under a new file name for later use.

### 2.2.2 $\quad$ System Performance Test Assembly

The SPT assembly operates as a stand-alone system test tool. It is used to collect and analyze test data from the test equipment and present the results to the project. The SPT functions include:

1) Telemetry bit error rate (BER) tests,
2) Telemetry time delay tests,
3) Data stream continuity tests,
4) Data stream extraction tools,
5) Data analysis tools.

### 2.2.2.1 Telemetry Bit Error Rate Tests

Telemetry BER tests evaluate the performance of the Telemetry Service by comparing the telemetry data output when supplied with a known (TSA generated or, in the case of turbo codes, previously recorded) input to the system. A desired $E_{b} / N_{0}$ (energy-per-bit to noise spectral density ratio) or $E_{S} / N_{0}$ (energy-per-symbol to noise spectral density ratio) is established using the received noise as a reference for RF testing or the additive noise capability of the TSA for data testing. The bit or symbol error rate determined by the SPT is used to calculate the theoretical input $E_{b} / N_{0}$ or $E_{S} / N_{0}$ for a lossless system employing the specified code. The difference between the actual input and the theoretical input is the system loss. The following codes can be used for BER tests.


32-bit Attached Synchronization Marker (Overlaid on PN11 pattern)
223 Reed-Solomon Data Symbols (From PN11 pattern)
32 Reed-Solomon Parity Symbols (Overlaid on PN11 pattern)

Figure 2. TSA Real-time Data Generation Process.

1) None (Uncoded)
2) Convolutional $(k=7, r=1 / 2)$
3) Convolutional $(k=15, r=1 / 4)$,
4) Convolutional $(k=15, r=1 / 6)$,
5) Concatenated Reed-Solomon and any of above convolutional codes,
6) CCSDS turbo codes for block sizes of 8920 bits and smaller (using recorded data prepared in accordance with the frame generation process described above).

The SPT operates with the data patterns specified below. To do real time data validation, the SPT needs a frame description; fill pattern used, and location and content of fields. It is important to note that the SPT expects the type of frame generation process employed by the TSA, where the fields overlay the fill pattern. Frames generated with a different process cannot be checked in real time.

1) Alternating 1 s and 0 s ,
2) Alternating 00 and FF bytes,
3) PN11 through PN16 data with operator modifiable connection vector,
4) Frame sync word or other user specified pattern only,
5) User data file that includes frame sync and frame sequence number;

### 2.2.2.2 Telemetry Time Delay Tests

The telemetry time delay test compares the time-tag applied to each data frame header by the telemetry system with the time-tag inserted into the simulated telemetry data by the TSA. The test provides the mean, standard deviation, and number of blocks exceeding a user specified tolerance between these two times. This test is not available for turbo coded or other previously coded playback data.

### 2.2.2.3 Data Stream Continuity Tests

The SPT can monitor any data stream routed through the Reliable Network Server (RNS). The SPT evaluates data stream continuity by detecting missing or duplicate block serial numbers and by detecting time gaps within the headers of the data blocks.

The SPT has the capability to record the data being processed during BER tests for off-line analysis of data stream continuity.

### 2.2.2.4 Data Stream Extraction Tools

The SPT can extract user-specified data items from any data stream routed through the RNS. The extraction mechanism permits the user to specify the structure of the data block including position, length, and conversion units of each item to be extracted. The extracted data is stored in a delimited, user-specified format and is accessible for real-time and post-test analysis.

### 2.2.2.5 Data Analysis Tools

The SPT includes a complete set of graphical and mathematical tools for analysis of data extracted from any data stream visible from its network port. These tools include the capability to:

1) Provide the capability to graph real-time or stored data by specifying the inputs for the X - and Y -axes. This capability includes the ability to modify the axis scales and provide text notations to the graph and its components.
2) Calculate the mean, variance, standard deviation, and standard error of a sample when provided with the initial and end point of the data.
3) Determine the $90 \%$ and $95 \%$ confidence intervals for the mean when the sample size is greater than 30
4) Perform a linear squares fit to the data and determine the correlation coefficient
5) Perform a null hypothesis test.

### 2.2.3 RF Signal Generation

The principal RF signal source is the DSN exciter equipped with appropriate attenuators to generate an uplink signal with command and ranging modulation as expected by the spacecraft. For tests not involving a spacecraft, the exciter can be modulated by simulated telemetry from the TSA, ranging modulation, or both. The RF output of the exciter is translated to the downlink frequency and can be attenuated to whatever level is appropriate to simulate the expected signal-to-noise ratio for the spacecraft signal during its various mission phases. The ability of the exciter to follow a pre-determined frequency profile can be used to simulate Doppler effects.

A secondary frequency source for spacecraft simulation (the Receiver Test Signal Generator) exists at all sites except CTT-22 and MIL-71. It is capable of producing an adjustable output with modulation from one of the TSA channels and can be used independently of the exciter to simulate a second S-band or X-band telemetry downlink or possibly an interfering spacecraft.

### 2.3 DSN Compatibility Test Facilities

There are three DSN facilities that are provided primarily to support compatibility testing. Each of these facilities has its own unique capabilities and contains both operational and specialized test equipment. The equipment available in each of the facilities is summarized in Table 2.

### 2.3.1 DTF-21

DTF-21 is located near JPL in Monrovia, CA. It is equipped with simulated front ends for the DSN 70-m and 34-m stations, uplink and downlink equipment, and at least one set of all data processing equipment found in the Signal Processing Centers (SPCs). Simulators for the antennas, transmitters, and microwave control equipment are provided to mimic their responses. Communications are provided by standard JPL/NASA Integrated Service Network (NISN) ground communications interfaces and a Cesium Beam Frequency Standard provides station timing. DTF-21 may be configured to simulate any station at a DSCC. This capability provides a convenient environment for Project/DSN interface testing. DTF-21 includes an RF shielded room in order to isolate devices under test.

Table 2. Equipment at Compatibility Test Facilities

| Equipment | DTF-21 | CTT-22 | MIL-71 |
| :---: | :---: | :---: | :---: |
| 34-M/70-M EQUIPMENT |  |  |  |
| Antenna Pointing Assy | 1 | - | - |
| Uplink Assembly Command Modulation Generators (2), Exciter and ranging control) | 2 | 1 | 1 |
| Block V Exciter (with uplink ranging) | 1 | 1 | 1 |
| Downlink Channel Processors | 3 | 2 | 2 |
| Receiver Test Signal Generator | 1 | - | - |
| Microwave Switch Control | 1 | - | - |
| SPC EQUIPMENT |  |  |  |
| Full Spectrum Receiver | 1 | - | - |
| Frequency and Timing Assembly | 1 | 1 | 1 |
| NETWORK MONITOR AND CONTROL <br> EQUIPMENT (NMC) |  |  |  |
| Operator Consoles | 3 | 1 | 1 |
| GROUND COMMUNICATIONS FACILITY (GCF) EQUIPMENT |  |  |  |
| GCF Monitor Processor | 2 | 1 | 1 |
| Router | 2 | 2 | 2 |
| Reliable Network Server (RNS) | 2 | 1 | 1 |
| Operational Voice | Yes | No | Yes |
| Telephone | Yes | Yes | Yes |
| COMPATIBILITY TEST EQUIPMENT |  |  |  |
| S-band Microwave | Yes | Yes | Yes |
| X-band Microwave | Yes | Yes | Yes |
| Ka-band Reception | No | 1 as required | 1 as required |
| TSA | 4-channel | 2-channel | 2-channel |
| SPT Assembly | 1 | 1 | 1 |
| Y-factor detector | 1 | 1 | 1 |

### 2.3.2 CTT-22

CTT-22 is a $14.6-\mathrm{m}$ (48-foot) towable trailer designed and implemented specifically to perform compatibility and telemetry data flow testing at spacecraft manufacturing facilities and to provide launch support of spacecraft from locations other than Cape Canaveral. It provides capabilities representative of those found at a DSCC. It can be relocated to any
convenient location around the world. However, special arrangements would be required for locations outside the continental United States.

The trailer requires an 18.6 m by $6.6 \mathrm{~m}(61 \mathrm{ft}$ by 21.6 ft$)$ area for parking and access that is connected via roadways for delivery. Recommended setup time is 24 hours to allow for parking, connection, and equipment stabilization. Interfaces between the CTT and spacecraft are normally made with low-loss coaxial cable. A router is included to enable communication with networks or leased communication circuits. A photograph of the trailer is provided as Figure 3. Significant characteristics and the recommended parking site dimensions can be found in Appendix A.


Figure 3. Compatibility Test Trailer, CTT-22.

### 2.3.3 MIL-71

MIL-71 is located in the Mission Operations Support Building (MOSB) at the Kennedy Space Center in Florida, USA. The facility is normally maintained in a caretaker status between launches and is implemented as needed, usually to simulate a 34-m Beam Waveguide (BWG) station, for pre-launch project and DSN compatibility. MIL-71 RF interfaces are via fiber optic links to various launch support facilities and to project control centers via NISN ground communications circuits. Use of the facility must be planned and scheduled early enough to allow for temporary relocation of personnel and re-verification of equipment.

## 810-005, Rev. E <br> 305, Rev. B

### 2.3.4 Specialized Test Support Equipment

The equipment requirements for the compatibility test facilities differ from DSN tracking sites - the most obvious difference is the lack of a large antenna. Characteristics of the compatibility test equipment that are significantly different from equipment at the tracking sites are summarized in Table 3.

## 3 Test Activities

The following paragraphs provide a brief discussion of the test activities for which the DSN provides support.

### 3.1 Data Flow Testing

Data flow tests are usually conducted at the Deep Space Communications Complexes. They include Ground Data System (GDS) tests, Mission Operations System (MOS) tests, and Operations Readiness Tests (ORTs).

### 3.1.1 GDS Tests

GDS tests are conducted under the direction of the project Mission Manager, who will delegate the responsibility to either the GDS Integration Engineer or the End-to-End Information System (EEIS) Test Engineer who is responsible for scheduling and running the tests and for documenting the results. The emphasis of these tests is on the end-to-end integrity of the GDS, that is, the DSN, the Ground Communications Facility (GCF), the Advanced Multimission Operations System (AMMOS), end user devices, and all the associated interfaces. GDS testing normally starts with a minimum number of components and gradually builds up in complexity to involve all elements of the GDS.

### 3.1.2 MOS Tests

MOS tests address the state of training and readiness of the project mission operations personnel to carry out their assigned responsibilities on a realistic mission time line using the GDS facilities. Similarly to GDS tests, the Mission Manager is responsible for the MOS test program. The MOS Test and Training Engineer has responsibility for the design, scheduling, and execution of the MOS tests. At the successful completion of MOS testing, the flight team is certified as "flight ready."

Table 3. Characteristics of Compatibility Test Equipment.

| Parameter | Value* | Remarks |
| :---: | :---: | :---: |
| SHIELDED ENCLOSURE |  | DTF 21, only |
| Dimensions |  |  |
| Width [m (ft)] | 3.7 (12) |  |
| Depth [m (ft)] | 3.7 (12) |  |
| Height [m (ft)] | 3.0 (10) |  |
| Entry Door |  |  |
| Width [m (ft)] | 1.2 (4) |  |
| Height [m (ft)] | 2.1 (7) |  |
| Isolation (dB) | 140 |  |
| Available Power |  | Within enclosure |
| Voltage (VAC) | 120 | Single Phase, nominal |
| Current (A) | 30 |  |
| RF INTERFACES |  |  |
| S-band Direct Input |  |  |
| System Temperature (K) | $500 \pm 50$ |  |
| S-band Fiber Optic Input |  |  |
| Noise (dB) | 49 |  |
| Nominal input signal level (dBm) | 13 |  |
| X-band Direct Interface |  |  |
| System Temperature (K) | $500 \pm 50$ |  |
| X-band Fiber Optic Input |  |  |
| Noise (dB) | 59 |  |
| Nominal input signal level (dBm) | 13 |  |
| Ka-band Interface |  | Downconverted to fiber optic IF |
| System Temperature (K) | $725 \pm 50$ | Includes follow-on contribution |
| Output signal levels (dBm) | +3 | Maximum, S- and X-band |
| Output (Exciter) Power Stability (dB) | < 0.5 | Over 12-h period |
| Attenuator step size (dB) | 0.1 | Independent for input and output |

* All values are manufacturer's specifications.

Table 3. Characteristics of Compatibility Test Equipment (Continued).

| Parameter | Value | Remarks |
| :--- | :---: | :--- |
| FREQUENCY STABILITY | DTF 21, only. CTT 22 and MIL <br> 71 do not have thermal controls <br> and stability is unknown |  |
| 1 s | $5.0 \times 10^{-12}$ |  |
| 10 s | $3.5 \times 10^{-12}$ |  |
| 100 s | $8.5 \times 10^{-13}$ |  |
| 1000 s | $2.7 \times 10^{-13}$ |  |
| 10000 s | $8.5 \times 10^{-14 *}$ |  |
| 86400 s (1 day) | $3.0 \times 10^{-14 *}$ |  |
| TIME ACCURACY | 1.0 | With respect to Global <br> Positioning Satellite (GPS) Time |
| Reference Time ( $\mu \mathrm{s}$ ) | 100 | With respect to reference time |
| Time Distribution (ns) |  |  |

* Excluding environmental effects


### 3.1.3 GDS Tests

GDS tests are conducted under the direction of the project Mission Manager, who will delegate the responsibility to either the GDS Integration Engineer or the End-to-End Information System (EEIS) Test Engineer who is responsible for scheduling and running the tests and for documenting the results. The emphasis of these tests is on the end-to-end integrity of the GDS, that is, the DSN, the Ground Communications Facility (GCF), the Advanced Multimission Operations System (AMMOS), end user devices, and all the associated interfaces. GDS testing normally starts with a minimum number of components and gradually builds up in complexity to involve all elements of the GDS.

### 3.1.4 MOS Tests

MOS tests address the state of training and readiness of the project mission operations personnel to carry out their assigned responsibilities on a realistic mission time line using the GDS facilities. Similarly to GDS tests, the Mission Manager is responsible for the MOS test program. The MOS Test and Training Engineer has responsibility for the design, scheduling, and execution of the MOS tests. At the successful completion of MOS testing, the flight team is certified as "flight ready."

### 3.1.5 ORTs

ORTs are conducted to demonstrate the readiness of the MOS to support flight operations. The successful completion of these tests demonstrates that all elements of the MOS (hardware, software, people, procedures, and facilities) work together to accomplish routine and mission critical activities. The DSN considers ORTs to be real-time mission activities and provides full support with all committed resources.

### 3.2 Demonstration Tracks

From time to time, the DSN requests the support of flight projects to verify that a newly implemented capability provides the required support in an actual tracking environment. These activities are referred to as Demonstration Tracks and are scheduled with projects that can tolerate data loss should something not work as planned. They are very similar to GDS tests except that they are planned and conducted by DSN personnel who are also responsible for analyzing the results. Demonstration Tracks are always conducted prior to committing a DSN capability for operational support.

### 3.3 Compatibility Tests

The DSN recommends compatibility testing with all spacecraft for which support is committed. If the project waives compatibility testing, the DSN cannot assume responsibility for spacecraft/DSN interface compatibility. In such cases, DSN support would be provided on a "best-efforts" basis.

Compatibility testing validates the compatibility between the spacecraft radio frequency subsystem and its telecommunications capabilities as they interface with DSN RF and data systems. This testing is conducted at DTF-21, at MIL-71, or at a spacecraft manufacturing facility using CTT-22. Compatibility testing is normally conducted in three phases depending on project requirements: spacecraft subsystem design, spacecraft system design, and system compatibility verification. Figure 4 illustrates the major steps in the compatibility test process.

### 3.3.1 Subsystem Design Compatibility Tests

The objective of these tests is to demonstrate design compatibility between the spacecraft radio subsystems and the DSN telecommunications subsystems. The tests are performed as early as practical in the spacecraft development program (typically 1-3 years before spacecraft integration). DTF-21 is equipped with an RF shielded enclosure and supporting facilities to accommodate project equipment needed for testing.

The spacecraft telecommunications subsystems are likely be in the form of engineering-level (breadboard or prototype) hardware at this point in the design process. If a new DSN capability is being verified, the test facility (DTF-21 or CTT-22) will be configured with valid (but not necessarily DSN operationally ready) subsystem equipment and software. The types of tests performed during this phase include:


Figure 4. Compatibility Test Process

1) Radio frequency tests including maximum acquisition sweep rates, RF spectrum, transponder rest frequency determination, threshold signal levels, and ranging delay calibration.
2) Telemetry tests including bit error rate, modulation index measurement, and acquisition time.
3) Command tests including performance with ranging modulation and performance with Doppler.

### 3.3.2 System Design Compatibility Tests

The objective of these tests is to demonstrate the compatibility between the DSN and spacecraft telecommunications system designs and that these designs are in accordance with negotiated flight project/DSN agreements. The tests involve a fully assembled spacecraft and are usually supported by CTT-22. When appropriate, the tests may utilize AMMOS or the Deep Space Operations Center (DSOC). The types of tests performed during this phase are:

### 3.3.3 System Design Compatibility Tests

The objective of these tests is to demonstrate the compatibility between the DSN and spacecraft telecommunications system designs and that these designs are in accordance with negotiated flight project/DSN agreements. The tests involve a fully assembled spacecraft and are usually supported by DTF-21 for JPL spacecraft or by CTT-22 for non-JPL spacecraft. When appropriate, the tests may utilize AMMOS or the Deep Space Operations Center (DSOC). The types of tests performed during this phase are:

1) RF tests including two-way phase jitter measurements,
2) Repeats of selected subsystem design tests,
3) Data flow compatibility tests with the Project Operations Control Center (POCC).

### 3.3.4 System Compatibility Verification Tests

The objective of these tests is to ensure that the design compatibility (established during system-level tests) is maintained after equipment implementation and transportation of the spacecraft to the launch site. System verification tests are usually a subset of the tests run in the previous phases and are normally supported by MIL-71. The tests may be performed as part of the DSN Operational Verification Test (OVT) or as a project end-to-end test. Both the spacecraft and the DSN facilities must be in a mission-ready status for these tests to ensure that the final decision of compatibility status is valid. Formal waivers are required to permit substitution of non-operational DSN equipment or software for the tests.

# Appendix A Compatibility Test Trailer Significant Characteristics 

Table A-1. CTT-22 Significant Characteristics.

| Parameter | Value | Remarks |
| :---: | :---: | :---: |
| DIMENSIONS AND WEIGHT |  | Highway Configuration |
| Length [m (ft)] | 14.6 (48) | Rear stairs removed and stowed |
| Width [m (ft)] | 2.6 (8.5) | Side stairs removed and stowed |
| Height [m (ft)] | 4.1 (13.5) |  |
| Weight [kg (lbs)] | 22,700 (50,000) | Maximum |
| Rear Access Door |  |  |
| Width [cm (in)] | 107 (42) |  |
| Height [cm (in)] | 227 (89.5) |  |
| Side Access Door |  |  |
| Width [cm (in)] | 91 (36) |  |
| Height [cm (in)] | 208 (82) |  |
| ENVIRONMENTAL REQUIREMENTS |  |  |
| Slope of parking pad (deg) | 5 | Maximum |
| Exterior Temperature [C (F)] | -18 to 41 (0 to 105) | Interior is climate controlled |
| POWER REQUIREMENTS ( 60 Hz ) |  | Two 30.5 m (100 ft) cables and $3 \mathrm{~m}(10 \mathrm{ft})$ pigtails provided for each circuit |
| Voltage (VAC) | 120/208 | $60 \mathrm{~Hz}, 3$-Phase, 4-wire plus ground |
| Equipment Buss |  |  |
| Service Rating (A) | 100 | Per phase |
| Connector | AR61047-S22 | Crouse-Hinds Reversed Contacts |
| Utility Buss |  |  |
| Service Rating (A) | 125 | Per phase |
| Connector | AR2041-S22 | Crouse-Hinds Reversed Contacts |
| RF INTERFACES |  | Two $30.5 \mathrm{~m}(100 \mathrm{ft})$ Type N (male) to Type N (male) low-loss cables provided |
| RF Connectors | 4 Type N, Female 6 Type TNC, Female | Connector impedance is 50 ohms. |
| DATA INTERFACES |  | One $30.5 \mathrm{~m}(100 \mathrm{ft})$ cable provided for each interface |
| Serial Data | RS-449 and RS-530 | Several circuits, data rates from 9.6 to 3.0 $\mathrm{Mb} / \mathrm{s}$, DB25S or DB37P connectors. Data rates above $1.4 \mathrm{Mb} / \mathrm{s}$ are supported via MLPP routing protocol and multiple circuits. |
| Local Area Network (data) | 10/100 MB/s | RJ-45 Connector |
| Local Area Network (monitor) | 10/100 MB/s | RJ-45 Connector (Used at JPL, only) |
| Telephone | 2/4 wire | Several circuits, RJ11 and RJ45 female connectors |
| Intercom | 4 wire/channel | Analog intercom voice instrument provided |



A-1. Recommended CTT Parking Site Dimensions.

## 901 <br> Handbook Glossary

Document Owner:

| Signature Provided | $12 / 17 / 2020$ |
| :--- | :--- |
| Christine Chang | Date |
| Support System Engineer |  |

Prepared by:

| Signature Provided | $12 / 17 / 2020$ |
| :--- | :--- |
| Christine Chang | Date |
| Support System Engineer |  |

Approved by:

| Signature Provided | $11 / 20 / 2020$ |
| :--- | :--- |
| Timothy T. Pham | Date |
| Communications Systems Chief |  |
| Engineer |  |

Released by:

| Signature Provided | $12 / 21 / 2020$ |
| :--- | :--- |
| C. Chang | Date |
| DSN Document Release Authority |  |

DSN No. 810-005, 901, Rev. H
Issue Date: February 05, 2021
JPL D-19379; CL\#20-6546
Jet Propulsion Laboratory
California Institute of Technology

## Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided comments, if any, to the signatories on the Cover Page.

| Signature Provided | $12 / 17 / 2020$ |
| :--- | :--- |
| Jeff Berner | Date |
| DSN Project Chief Engineer |  |

## Change Log

| Rev | Issue Date | Prepared by | Affected Sections or Pages | Change Summary |
| :---: | :---: | :---: | :---: | :---: |
| - | 11/30/2000 | R. Sniffin | All | Initial Release |
| A | 8/15/03 | R. Sniffin | 2 | Corrected units of Boltzmann's constant and other typographical errors. Added abbreviations for new and revised modules. |
| B | 10/7/04 | R. Sniffin | 2 | Revised abbreviation list for new and revised modules. |
| C | 10/21/05 | R. Sniffin | 2 | Revised abbreviation list for new and revised modules. |
| D | 10/31/2009 | A. Kwok | Many | Replaced DSMS with DSN. Removed all references related to the $26-\mathrm{m}$ stations. |
| E | 4/29/2011 | C. Chang | 2 | Revised abbreviation list for revised modules. |
| F | 3/22/2012 | C. Chang | 2 | Modified the abbreviation IERS |
| G | 02/10/2017 | C. Chang | $\begin{aligned} & \text { Sections 1.1, } \\ & \text { 1.2, 1.4.3, \& } 2 \end{aligned}$ | Added terms used by various 810-005 modules. Obsoleted unused items. |
| H | 02/05/2021 | C. Chang | Section 2 <br> Removed section 1.4.3 | Updates terms/abbreviation: <br> - Added DSS-53, DSS-56, AOS, DCD, FEC, HSB, IRIG, MNR, SQPSK, USG <br> - Deleted DSS-15, AM, AMMOS, DDC, DN, FSP, L/P, MB, MGSS, MRN, MOCC, MRT, NB, TSDA, WB, WD |

## Contents

ParagraphPage
1 Introduction ..... 5
1.1 Purpose. ..... 5
1.2 Scope ..... 5
1.3 Revisions ..... 5
1.4 Definitions ..... 5
1.4.1 Terms ..... 5
1.4.2 Abbreviations ..... 5
2 Abbreviations and Terms ..... 7

## 1 Introduction

### 1.1 Purpose

The purpose of this document is to present a useful glossary of commonly used terms and abbreviations that are current and applicable to the Deep Space Network (DSN).

### 1.2 Scope

This scope of this document is limited to providing terms and abbreviations that are used within Document 810-005 and especially those that may be different from usage in other organizations.

Terms and abbreviations are included in this document if they meet any of the following criteria:

- used within the DSN but with a meaning that may be unique to the DSN,
- used within 810-005 in place of equivalent terms and abbreviations that may be used elsewhere, or
- commonly used in the field of telecommunications engineering but not necessarily known to all users of 810-005.


### 1.3 Revisions

This glossary will be periodically revised with changes, improvements, or additions. Usually, these revisions will be coincident with the publication of new or revised 810-005 modules that contain new or revised terminology.

### 1.4 Definitions

The following paragraphs define the types of items that appear in this glossary and give general rules for their formation.

### 1.4.1 Terms

A term is any word or expression that has a precise meaning in a particular field, in this case, telecommunications engineering.

### 1.4.2 Abbreviations

An abbreviation is a shortened or contracted form of a word or phrase. In a strict sense, the letters are individually pronounced (for example, rpm or DSN) or the reader might
visualize and pronounce the complete form of the word (for example, "assembly" for "assy" or "telemetry" for "TLM").

## 2 Abbreviations and Terms

| Abbreviation or Term | Definition |
| :---: | :---: |
| A |  |
| A-D | analog-to-digital |
| A/S | anti-spoofing mode of operation (Global Positioning System) in which the encrypted, or Y-code, is unavailable to civilian users of the system |
| ACME | Antenna Calibration and Measurement Equipment |
| AFC | automatic frequency control |
| AFS | atomic frequency standard |
| AGC | automatic gain control |
| AIU | Antenna Interface Unit |
| alidade | The rotating but non-tilting portion of the DSN azimuthelevation antennas. |
| AMP | amplifier |
| AOS | Advanced Orbiter System |
| APID | Application Process Identifier |
| ASM | Attached Synchronization Marker |
| atm | atmospheric |
| ATSE | Antenna Test Signal Equipment |
| AWGN | additive white Gaussian noise |
| az or AZ | azimuth |
| AZ-EL | azimuth-elevation |
| Azen | Zenith Atmospheric Attenuation |
| B |  |
| B3MCD | Block III Maximum Likelihood Convolutional Decoder |
| B/W or BW | bandwidth |
| b/s | Bits per second |
| BCH | Bose-Chaudhuri-Hocquenghem (code) |
| BER | bit error rate |


| Abbreviation or Term | Definition |
| :---: | :---: |
| BET | bit error tolerance |
| $\mathrm{Bi}-\varphi$ | Bi-phase |
| $\mathrm{Bi}-\varphi-\mathrm{L}$ | Bi-phase, level |
| $\mathrm{Bi}-\varphi-\mathrm{M}$ | Bi-phase, mark |
| Bi- $\varphi$-S | Bi-phase, space |
| BL | loop bandwidth |
| Boltzmann's constant | -198.6 dBm/(Hz $\cdot \mathrm{K}$ ) |
| BP | Belief Propagation |
| bps | Bits per second |
| BPSK | binary phase shift keyed |
| BVR | Block V Receiver (part of DTT Subsystem) |
| BWG | Beam Waveguide (antenna or subnet) |
| C |  |
| c | speed of light, 299,792.458 km/s |
| Category A | missions within 2 million km of Earth |
| Category B | missions at distances greater than 2 million km from Earth |
| C/A | Coarse Acquisition (GPS code) |
| CCSDS | Consultative Committee for Space Data Systems |
| CCW | counter-clockwise |
| CD | cumulative distribution |
| CDF | cumulative distribution function |
| CDSCC | Canberra (Australia) Deep Space Communications Complex |
| CFDP | CCSDS file Delivery Protocol |
| CLTU | Communications Link Transmission Unit |
| CLTUF | Communications Link Transmission Unit File |
| CMD | command |
| CONSCAN | conical scanning |
| CRC | Cyclic Redundancy Check |
| CRG | Coherent Reference Generator |
| cryo | cryogenic |


| Abbreviation or Term | Definition |
| :---: | :---: |
| CSO | Cryogenic Sapphire Oscillator (frequency standard) |
| CSS | Channel-Select Synthesizer |
| CTT | Compatibility Test Trailer |
| CV | connection vector |
| CVCDU | Coded Virtual Channel Data Unit |
| CW | clockwise |
| D |  |
| D/C | downconverter |
| D/L | downlink |
| DAT | Data Acquisition Terminal |
| dB | decibel(s) |
| dBc | decibel(s) with respect to carrier |
| dBi | decibel(s) with respect to isotropic |
| dBm | decibel(s) with respect to one milliwatt |
| dBV | decibel(s) with respect to one Volt |
| dBW | decibel(s) with respect to one Watt |
| DCC | Downlink Channel Controller |
| DCD | Data Capture and Delivery |
| DCPC | Downlink Channel Processing Cabinet |
| DCT | design control table |
| DDC | Digital Downconverter |
| dec or DEC | declination |
| deg | degree(s) |
| $\triangle$ DOR | Delta-Differential One-way Ranging |
| DIG | digitizer (assembly) |
| DMD | DSS Media Calibration (subsystem) or Data Monitor and Display (assembly) |
| DOR | differential one-way range |
| DRVID | differenced range versus integrated Doppler |
| DSCC | Deep Space Communications Complex |
| DSG | Downlink Signal Generator (a DSN assembly) |
| DSN | Deep Space Network |
| DSOC | Deep Space Operations Center |


| Abbreviation or Term | Definition |
| :---: | :---: |
| DSS | Deep Space Station |
| DSS-13 | 34-m research \& development antenna at Goldstone DSCC |
| DSS-14 | 70-m antenna at Goldstone DSCC |
| DSS-24 | 34-m BWG antenna at Goldstone DSCC |
| DSS-25 | 34-m BWG antenna at Goldstone DSCC |
| DSS-26 | 34-m BWG antenna at Goldstone DSCC |
| DSS-34 | 34-m BWG antenna at Canberra DSCC |
| DSS-35 | 34-m BWG antenna at Canberra DSCC |
| DSS-36 | 34-m BWG antenna at Canberra DSCC |
| DSS-43 | 70-m antenna at Canberra DSCC |
| DSS-53 | 34-m BWG antenna at Madrid DSCC |
| DSS-54 | 34-m BWG antenna at Madrid DSCC |
| DSS-55 | 34-m BWG antenna at Madrid DSCC |
| DSS-56 | 34-m BWG antenna at Madrid DSCC |
| DSS-63 | 70-m antenna at Madrid DSCC |
| DSS-65 | 34-m HEF antenna at Madrid DSCC |
| DTF | Development and Test Facility |
| DTT | Downlink Tracking and Telemetry (Subsystem) |
| DVP | DSN VLBI Processor |
| E |  |
| Eb/N0 | energy per bit divided by noise power spectral density |
| EEIS | End-to-End Information System |
| EGRS | extra-galactic radio source |
| EIRP | effective isotropic radiated power |
| el, EL, elev | elevation |
| EOP | Earth Orientation Parameters (of the International Earth Rotation Service [IERS]) or Earth Orientation and Polar motion |
| F |  |
| F/O | fiber optic |
| FER | frame error rate |
| FEC | Forward Error Correcting |
| FET | field effect transistor |

## Abbreviation or Term

Deep Space Station
34-m research \& development antenna at Goldstone DSCC
70-m antenna at Goldstone DSCC
34-m BWG antenna at Canberra DSCC
34-m BWG antenna at Canberra DSCC
34-m BWG antenna at Canberra DSCC
70-m antenna at Canberra DSCC
34-m BWG antenna at Madrid DSCC
34-m BWG antenna at Madrid DSCC
34 BWG antena at Madrid DSCC

70-m antenna at Madrid DSCC
34-m HEF antenna at Madrid DSCC
Development and Test Facility

DSN VLBI Processor
energy per bit divided by noise power spectral density
End-to-End Information System
extra-galactic radio source
effective isotropic radiated power
elevation
Earth Orientation Parameters (of the International Earth Rotation Service [IERS]) or Earth Orientation and Polar motion
fiber optic
frame error rate
field effect transistor

| Abbreviation or Term | Definition |
| :---: | :---: |
| FFT | Fast Fourier transform |
| FM | frequency modulation |
| FODA | Fiber-optic Distribution Assembly |
| FOM | figure of merit |
| FRD | Frequency Reference Distribution (a DSN Assembly) |
| FSTL | Frequency Standards Test Laboratory (at JPL) |
| FTP, ftp | file transfer protocol |
| FTS | Frequency and Timing Subsystem |
| G |  |
| G/T | (antenna) gain divided by (operating system) temperature |
| GCF | Ground Communications Facility |
| GCN | Ground Communications Network |
| GCR | Ground Communications Router |
| GDS | Ground Data System |
| GDSCC | Goldstone (California) Deep Space Communications Complex |
| GMSK | Gaussian minimum-shift keying |
| GPS | Global Positioning System |
| GRA | GPS Receiver/Processor Assembly |
| GSFC | Goddard Spaceflight Center |
| GSSR | Goldstone Solar System Radar |
| H |  |
| H/P | high power |
| HA | hour angle |
| HEF | high efficiency (antenna) |
| HEMT | high electron-mobility (field-effect) transistor |
| HPBW | half-power beamwidth |
| HRM | high-rate (radio loss) model |
| HSB | High-Speed Beam waveguide |
| Hz | hertz |
| I |  |
| I/F | interface |

Abbreviation
or $\boldsymbol{T e r m}$$\quad$ Definition

| Abbreviation <br> or $\boldsymbol{T e r m}$ |  |
| :--- | :--- |
| m | Definition |
| MAP | meters |
| MASER | microwave amplification by stimulated emission of radiation |
| max | maximum |
| MB/s | Megabyte per second |
| MCD | Maximum Likelihood Convolutional Decoder |
| mdeg | millidegree |
| MDSCC | Madrid (Spain) Deep Space Communications Complex |
| ME | Master Equatorial |
| MGC | manual gain control |
| MHz | megahertz |
| MIL-71 | Merritt Island Launch Area at the Kennedy Space Center |
| MILA | Merritt Island Launch Area |
| min | Minimum or Minute |
| MJD | Modified Julian Day |
| MNR | Metric Normalization Rate |
| MOC | Mission Operations Center |
| mod | modulation, module |
| MOS | Mission Operations System |
| mph | miles per hour |
| MRE | mean radial error |
| Ms/s | Mega samples per second |
| MSL | mean sea level |
| MSPA | multiple spacecraft per antenna |
| $\boldsymbol{N}$ |  |
| NA, N/A | Network Monitor and Control (Subsystem) |
| NASA | National Aeronautics and Space Administration |
| NAV | Navigation |
| NCO | numerically controlled oscillator |
| NISN | NASA Integrated Service Network |
| NIST | National Institute of Standards and Technology |
| NMC | NOAA |


| Abbreviation or Term | Definition |
| :---: | :---: |
| NOCC | Network Operations Control Center |
| NRZ | non-return to zero |
| NRZ-L | non-return to zero, level |
| NRZ-M | non-return to zero, mark |
| NRZ-S | non-return to zero, space |
| NTIA | National Telecommunications and Information Administration |
| NTP | Network Time Protocol |
| 0 |  |
| OD | Operator Directive |
| OOL_BET | Out-of-lock Bit Error Tolerance |
| OQPSK | offset quadrature phase-shift keyed |
| ORT | Operational Readiness Test |
| OVT | Operational Verification Test |
| P |  |
| PCG | Phase Calibration Generator |
| PCFS | Personal Computer Field System |
| PCM | pulse-code modulation |
| PDF | probability density function <br> portable document format (type or extension of computer file) |
| PDRVID | pseudo-DRVID |
| PDU | Protocol Data Unit |
| PFD | Photonic Frequency Distribution |
| PLL | phase-locked loop |
| PM | phase modulation |
| PN | pseudo-random noise |
| POCC | Project Operations Control Center |
| PSK | phase-shift keyed |
| Q |  |
| QPSK | quadrature phase-shift keying |
| QQCL | quantity, quality, continuity, and latency |

Abbreviation or Term

Operator Directive
Out-of-lock Bit Error Tolerance
offset quadrature phase-shift keyed
Operational Readiness Test
Operational Verification Test

Phase Calibration Generator
Personal Computer Field System
pulse-code modulation
probability density function
portable document format (type or extension of computer file)
pseudo-DRVID
Protocol Data Unit
Photonic Frequency Distribution
phase-locked loop
phase modulation
pseudo-random noise
Project Operations Control Center
phase-shift keyed
quantity, quality, continuity, and latency

| Abbreviation or Term | Definition |
| :---: | :---: |
| $\boldsymbol{R}$ |  |
| R/T | real-time |
| R\&D | Research and Development |
| RA | right ascension |
| RCP | right (-hand) circular polarization |
| rev | revision |
| RF | radio frequency |
| RH | relative humidity |
| RID | RF-to-IF Downconverter |
| RMDC | Radio-Metric Data Conditioner |
| RMS; rms | root-mean-square |
| RNG | range |
| RRP | Receiver and Ranging Processor |
| RRT | Receiver, Ranging and Telemetry |
| RS | Reed-Solomon (code), radio science |
| RSR | Radio Science Receiver |
| rss, RSS | root-sum-square |
| RTLT | round-trip light time |
| RU | range unit |
| $S$ |  |
| S/C | spacecraft |
| S/X | S-band or X-band |
| S/N | Signal-to-Noise |
| SCMF | Spacecraft Command Message File |
| sec | seconds |
| SEP | Sun-Earth-Probe (angle) |
| SER | Symbol error rate |
| SETSI | Secretaria de Estado de Telecomunicaciones para la Sociedad de la Informacion |
| SFDU | Standard Formatted Data Unit |
| SFODA | Stabilized Fiber-optic Distribution Assembly |
| SFTP | Secure File Transfer Protocol |


| Abbreviation or Term | Definition |
| :---: | :---: |
| SFU | solar flux units (one SFU = $1 \square 10^{-22} \mathrm{~W} / \mathrm{m}^{2} / \mathrm{Hz}$ ) |
| SGA | Signal Generation Assembly |
| SLE | Space Link Extension |
| SMS | Service Management System (a DSN system) |
| SNR | signal-to-noise ratio |
| SPC | Signal Processing Center |
| SPD | S-Band Polarization Diplexed (feedcone) |
| sps | symbols per second |
| SPS | Service Preparation Subsystem (a DSN subsystem) |
| SPT | System Performance Test or System Performance Test Assembly |
| SQPSK | Staggered QPSK |
| SSH | Secure Shell |
| STEC | slant total electron content |
| stowed | With respect to an antenna, aimed near zenith for protection from the wind. |
| sub, subcarr | subcarrier |
| SYM | symbol |
| SYS | system |
| T |  |
| $\mathrm{T}_{\text {AMW }}$ | Antenna-Microwave Noise Temperature |
| TBD | to be determined |
| TCT | Time Code Translator |
| TDDS | Tracking and Data Delivery System |
| TDM | Time-division multiplex |
| TDRSS | Tracking and Data Relay Satellite System |
| TDS | Telemetry Delivery Subsystem |
| TEC | total electron content |
| TLM | telemetry, Telemetry Service |
| TLP | Telemetry Processor |
| $\mathrm{T}_{\mathrm{OP}}$ | T sub OP (operating system noise temperature) |
| $\mathrm{T}_{\text {sky }}$ | sky noise |
| TXR | transmitter or Transmitter Subsystem |


| Abbreviation or Term | Definiti |
| :---: | :---: |
| U |  |
| U/C | upconverter |
| U/L | uplink |
| UPA | Uplink Processor Assembly |
| UPL | Uplink (Subsystem) |
| URA | Uplink Ranging Assembly |
| USG | Uplink Signal Generator |
| USNO | United States Naval Observatory |
| USO | Ultra-Stable Oscillator |
| UTC | Universal Time, Coordinated |
| UTPM | Universal Time and Polar Motion |
| $V$ |  |
| VAC | vacuum |
| VC | virtual channel |
| VCDU | Virtual Channel Data Unit |
| VCO | voltage controlled oscillator |
| VCXO | voltage-controlled crystal oscillator |
| VEX | VLBI experiment |
| VLBI | Very-Long Baseline Interferometry |
| VMF | Vienna Mapping Function |
| VSR | VLBI Science Receiver |
| W |  |
| WGS | World Geodetic System |
| WRMS | Weighted Root Mean Square |
| WVSR | Wideband VLBI Science Receiver |
| $\boldsymbol{X}$ |  |
| X/KA | X-band or Ka-band |
| X-EL, XEL | cross-elevation |
| XMIT | transmit |


| Abbreviation <br> or Term |  |
| :--- | :--- |
| XOR | Definition |
| XRO | Xodulo two addition |
| XTR | X-band receive only (feedcone) |
| Y-Z |  |
| yr | year |
| ZDD | Zero-delay Device |
| ZEN | zenith |


[^0]:    ${ }^{1} \mathrm{~K}$-band and 26 GHz are used interchangeably and refer to the near-earth $25.5-27.0 \mathrm{GHz}$ band. They are distinct from Ka-band (also referred to as 32 GHz band), which refers to the deep space $31.8-32.3 \mathrm{GHz}$ band.

[^1]:    * DSN currently only supports the first configuration (CCSDS convolutional encoder) for Ka 26 GHz

[^2]:    $\sigma_{R R} \quad$ standard deviation of range measurement error due to all noise, m
    $\sigma_{\tau} \quad$ standard deviation of two-way delay, s
    $\sigma_{\mathrm{RU}} \quad$ standard deviation of the two-way phase delay, RU
    $\Gamma_{Q} \quad$ factor by which downlink noise floor increases in quadrature receiver channel
    $\mathrm{K}_{N Q} \quad$ contribution to $\Gamma_{Q}$ from uplink noise and downlink intermodulation products
    $\mathrm{K}_{\text {tlm }} \quad$ contribution to $\Gamma_{Q}$ from telemetry interference
    $\mathrm{K}_{f t h} \quad$ contribution to $\Gamma_{Q}$ from feedthrough command interference
    $P_{N Q} /\left.P_{T}\right|_{\mathrm{D} / \mathrm{L}} \quad$ ratio of power from $\mathrm{K}_{N Q}$ sources to total power on downlink
    $S_{\text {tlm }}(f) \quad$ one-sided, unity-power, power spectral density of telemetry, $1 / \mathrm{Hz}$
    $S_{c m d}(f)$ one-sided, unity-power, power spectral density of command, $1 / \mathrm{Hz}$
    $\hat{S}_{t l m}(\cdot) \quad$ maximum of weighted average of $S_{t l m}(f)$, normalized by $T_{t l m}$
    $\hat{S}_{c m d}(\cdot) \quad$ maximum of weighted average of $S_{c m d}(f)$, normalized by $T_{c m d}$
    $f_{n, k} \quad$ frequency of spectral line at frequency index $k$ for component PN code $n, \mathrm{~Hz}$
    $P_{n, k} \quad$ relative power of spectral line at frequency index $k$ for component PN code $n$
    $\tilde{C}_{n}(k) \quad$ DFT of component PN code $n$, as calculated from $\lambda_{n}$ samples

